
Published in Transactions on Machine Learning Research (11/2024)

Reconciling Kaplan and Chinchilla Scaling Laws

Tim Pearce Microsoft Research

Jinyeop Song MIT

Reviewed on OpenReview: https: // openreview. net/ forum? id= NLoaLyuUUF

Abstract

Kaplan et al. (2020) (‘Kaplan’) and Hoffmann et al. (2022) (‘Chinchilla’) studied the scaling
behavior of transformers trained on next-token language prediction. These studies pro-
duced different estimates for how the number of parameters (N) and training tokens (D)
should be set to achieve the lowest possible loss for a given compute budget (C). Kaplan:
Noptimal ∝ C0.73, Chinchilla: Noptimal ∝ C0.50. This paper finds that much of this discrep-
ancy can be attributed to Kaplan counting non-embedding rather than total parameters,
combined with their analysis being performed at small scale. Simulating the Chinchilla
study under these conditions produces biased scaling coefficients close to Kaplan’s. Hence,
this paper reaffirms Chinchilla’s scaling coefficients, by explaining the primary cause of Ka-
plan’s original overestimation. As a second contribution, the paper explains differences in
the reported relationships between loss and compute. These findings lead us to recommend
that future scaling studies use total parameters and compute. 1

Start from fitted model of Chinchilla’s training curves

Generate training curves for model sizes used in

Kaplan’s study (1k to 1.5B params)

Find compute optimal frontier in terms of total

parameters and compute as in Chinchilla

Find compute optimal frontier in non-embedding

parameters and compute as in Kaplan

Find power law scaling coefficient of 0.51,

close to Chinchilla’s 0.50

Find local power law scaling coefficient of

0.78, close to Kaplan’s 0.73

Figure 1: Overview of the approach used to reconcile the two studies.

1 Introduction

Kaplan et al. (2020) (‘Kaplan’) and Hoffmann et al. (2022) (‘Chinchilla’) provided two influential studies
measuring the impact of scale in large language models (LLMs). Both informed large-scale efforts on how to
trade off model parameters (N) and training tokens (D) for a given compute budget (C), but with conflicting
advice. Kaplan’s finding that Noptimal ∝ C0.73, Doptimal ∝ C0.27 led to the conclusion that “big models may
be more important than big data”, and LLMs trained in the ensuing years committed more resources to

1Code for analysis: https://github.com/TeaPearce/Reconciling_Kaplan_Chinchilla_Scaling_Laws

1

https://openreview.net/forum?id=NLoaLyuUUF
https://github.com/TeaPearce/Reconciling_Kaplan_Chinchilla_Scaling_Laws

Published in Transactions on Machine Learning Research (11/2024)

model size and less to data size. The subsequent Chinchilla study found Noptimal ∝ C0.50, Doptimal ∝ C0.50,
leading to their main thesis “for many current LLMs, smaller models should have been trained on more
tokens to achieve the most performant model”, sparking a trend towards LLMs of more modest model sizes
being trained on more data.

What was the cause of the difference in these scaling coefficient estimates that led to vast
amounts of compute (plus emissions and finances) being used inefficiently? There have been
suggestions that differences could be explained by different optimization schemes (Hoffmann et al., 2022)
or datasets (Bi et al., 2024). This note finds these suggestions incomplete, and offers a simple alternative
explanation; much of the discrepancy can be attributed to Kaplan counting non-embedding rather than total
parameters, combined with their analysis being performed at small scale.

We find that this methodological difference also plays a part in differences in the reported relationship
between compute and loss. Kaplan: Loptimal ∝ C0.057, Chinchilla: Loptimal − E ∝ C0.178.

Concretely, this paper offers the following contributions.

• We develop an analytical approach comparing the scaling relationships reported in Kaplan and
Chinchilla (Section 3). This approach finds that Kaplan’s reported relationship is locally consistent
with Chinchilla’s, if non-embedding parameters are used, and at smaller scale.

• Secondly, we study the reported relationships between compute and loss (Section 5). Again non-
embedding parameters and smaller scale models are the cause of Kaplan’s biased estimate, combined
with the absence of an offset term in their compute-loss form.

• We recommend that going forward the scaling community measures total parameters and total
compute, and uses an offset in the compute-loss relationship.

2 Preliminaries

This section introduces some background knowledge and definitions (Section 2.1), outlines the analysis
approach for our main result (Section 2.2), and documents assumptions (Section 2.3).

2.1 Set Up

Neural scaling laws. Kaplan et al. (2020) & Hoffmann et al. (2022) investigated empirically modeling
the relationships between the number of parameters (N), training tokens (D), training compute (C) and
loss (L) in transformers for language modeling. The main functional form of relationship considered was a
power law, y = axb, which is widely used throughout the sciences to describe a relationship between two
quantities (x & y) that holds over many orders of magnitude, e.g. (Kello et al., 2010).

Definition of N & C. One difference between the two studies is the definition of N & C. Kaplan studied
relationships in terms of non-embedding parameters (N\E) and non-embedding compute (C\E), excluding the
contributions of the embedding layers for the vocabulary and position indices (NE). By contrast, Chinchilla
studied total parameters (NT) and total compute (CT). We define,

NT = NE + N\E , (1)
NE = (h + v)d, (2)

where d is the dimension of the transformer residual stream, v is vocab size, h is context length (only included
when positional embeddings are learned). Using the common approximation for training compute FLOPs
C = 6ND (a factor of 6 covers a forward and backward pass), we define total and non-embedding compute,

CT = 6NT D = 6(NE + N\E)D, (3)
C\E = 6N\ED. (4)

2

Published in Transactions on Machine Learning Research (11/2024)

Compute optimality. This definition of compute C = 6ND suggests a direct trade off between parameters
and training tokens for a given compute budget. The two studies focus on ‘compute optimal’ configurations
of these quantities. That is, for a given compute budget, the parameters and training tokens that lead to
the lowest possible loss. For total parameters this is written (using ∗ to signify ‘optimal’),

N∗
T = argmin

NT s.t. CT =6NT D
L(NT , CT). (5)

Given this notation, the estimated scaling coefficients can be more precisely written,

Kaplan: N∗
\E ∝ C0.73

\E , (6)
Chinchilla: N∗

T ∝ C0.50
T . (7)

(Note that whilst this work focuses on the scaling coefficient for parameters, by subscribing to C = 6ND
the data coefficient is implied; N ∝ Ca =⇒ C/D ∝ Ca =⇒ D ∝ C1−a.)

Functional form. An important functional form relating NT , D, L used in Chinchilla is given by,

L(NT , D) = Nc

Nα
T

+ Dc

Dβ
+ E, (8)

where Nc, Dc, α, β > 0 are empirically fitted constants and E is the ‘irreducible’ loss inherent in language.
This form conveniently gives rise to power law relationships; N∗

T ∝ Ca
T with a = β

α+β , D∗
T ∝ Cb

T with
b = α

α+β , and L∗
T − E ∝ C−γ

T with γ = αβ
α+β .

There are two possible specifications from the constants in Eq. 8 – those originally reported in Chinchilla,
and those reported in a re-analysis conducted by Besiroglu et al. (2024) claiming to correct minor errors in
the fitting procedure. Our work reports results with both specifications.

Chinchilla specification: Nc = 406.4, Dc = 410.7, α = 0.3392, β = 0.2849, E = 1.693 =⇒ N∗
T ∝ C0.46

T , (9)
Epoch AI specification: Nc = 482.0, Dc = 2085.43, α = 0.3478, β = 0.3658, E = 1.817 =⇒ N∗

T ∝ C0.51
T .

(10)

2.2 Analysis Overview

Our analysis uses information and data from the Chinchilla and Kaplan studies to estimate the scaling laws
that would emerge if the Chinchilla relationship had been expressed in terms of N\E & C\E , and this had
been done over the smaller model sizes used in Kaplan, as summarized in Figure 1.

We will see that for large NT , NE becomes a negligible portion of the model’s parameters and compute cost.
Hence in the large parameter regime the two coefficients directly conflict with each other. At smaller values
of NT , NE is not negligible (this is the regime considered in Kaplan’s study – 768 to 1.5B parameters). We
find that at the smaller end of this range, the relationship between N∗

\E & C\E is not in fact a power law.
However, fitting a “local” power law at this small scale, produces a coefficient that is close to Kaplan’s, and
hence roughly reconciles these two results.

Our approach in Section 3 is broken down as follows.

• Step 1. Fit a suitable function predicting N\E from NT .

• Step 2. Incorporate this function into a model predicting loss in terms of NT & CT .

• Step 3. Analytically derive the relationship between N∗
\E & C\E .

• Step 4. Simulate synthetic data from the Chinchilla loss model over the model sizes used Kaplan.
Fit a local power law for N∗

\E in terms of C\E .

3

Published in Transactions on Machine Learning Research (11/2024)

Section 4 experimentally verifies our analysis by training a set of language models at tiny scale and conducting
scaling law analyses under various settings. Simply changing the basis NT to N\E produces coefficients inline
with Chinchilla and Kaplan respectively, while multiple token budgets and decay schedules does not.

Section 5 presents a second, related contribution. We reconcile differences in the relationship between loss
and compute proposed by the two studies. We leverage a similar analysis as above, but Step 3 & 4 are now
performed with respect to the relationship between the optimal loss L∗

\E , and compute C\E . So again, we
begin from Chinchilla data, and correct for the exclusion of embedding parameters and compute, combined
with the smaller model sizes used in Kaplan’s study, and additionally a differing choice of fitting function.
Through these corrections, we are able to roughly recover Kaplan’s compute-loss coefficient, and hence
reconcile the two studies.

2.3 Assumptions

For transparency, we list the assumptions and approximations made in our analysis.

• We assume C\E = 6N\ED and CT = 6NT D.

• We assume a fixed functional form between total and non-embedding parameters in Eq. 11, and fit
ω empirically using Chinchilla model configurations.

• We assume a fixed functional form between loss, total parameters and training data given by Eq. 8.
We report results using both the Chinchilla (Eq. 9) and Epoch AI (Eq. 10) fitted constants.

• We approximate Kaplan’s models with 20 logarithmically spaced model sizes from 0.79k to 1.58B
non-embedding parameters.

3 Analysis: Compute-Parameter Scaling Coefficient

This Section presents our main analysis. We show that a local scaling coefficient of 0.74 to 0.78 (close
to Kaplan’s 0.73) can arise when computed in terms of non-embedding parameters in the small-parameter
regime, whilst being consistent with Chinchilla’s coefficient.

Step 1. Fit a suitable function predicting N\E from NT .

We require a suitable function relating non-embedding and total parameters. We propose to use the form

NT = N\E + ωN
1/3
\E , (11)

for some constant ω > 0. Aside from having several nice properties (strictly increasing and limNT →∞ NT =
N\E

2), it can be motivated from both the Kaplan and Chinchilla study.

Kaplan perspective. Consider Kaplan’s method for parameter counting,

NT = 12ld2 + NE , (12)

where l is number of layers. Whilst Kaplan do not list their model configurations, they do study varying
aspect ratio A = d/l for a fixed size model. They find that models of a given size perform similarly over a
range of aspect ratios, and this is not affected by model scale (their Figure 5). Hence, we could assume a
sizing scheme with fixed aspect ratio (A ≈ 40 appears sensible from their plots). Assuming this sizing allows
us to state (with l = d/A in Eq. 12),

NT = 12
A

d3 + NE . (13)

2Proof. NT = N\E + ωN
1/3
\E

=⇒ NT /N\E = 1 + ωN
−2/3
\E

. Examining the r.h.s., limNT →∞ 1 + ωN
−2/3
\E

= 1, hence we
conclude on the l.h.s limNT →∞ N\E/NT = 1 or N\E = NT .

4

Published in Transactions on Machine Learning Research (11/2024)

Observing that N\E = (12/A)d3 =⇒ d = (N\E(A/12))1/3, and combining with NE = (v + h)d,

NT = N\E + (v + h)
(

A

12

)1/3
N

1/3
\E . (14)

This is the same form as Eq. 11 with ω = (v + h)
(

A
12
)1/3.

Figure 2: Total parameter count vs. non-embedding parameter count for the suite of models sizes used in
the Chinchilla study, along with our fitted approximation. Note the curvature at model sizes below around
200M parameters.

Chinchilla perspective. We empirically fit a function NT = N\E + ωNδ
\E (note the learnable exponent)

to the Chinchilla model configurations listed in Table A9 of Hoffmann et al. (2022) for a range of NT (44M
to 16B). We compute NE from Eq. 2, using the reported vocab size of 32,000, but ignore the context length
2,048 since Chinchilla used non-learnable position embeddings (though their inclusion effects coefficients only
slightly).

Figure 2 shows the configurations and relationship from a model fitted with numpy’s polyfit, which produces
coefficients, ω = 47491 & δ = 0.34. The exponent has come out close to 1/3, and an implied aspect ratio
A = 39.2 (inferred from ω). Hence, this further supports the form in Eq. 11.

Step 2. Incorporate this function into a model predicting loss in terms of NT & CT .

Recall that whilst we are interested in the dependence of N∗
T on CT , this arises only via their mutual

relationship with loss

N∗
T = argmin

NT s.t. CT =6NT D
L(NT , CT). (15)

In order to analytically study their scaling relationship, we need an analytical form of loss, for which we use
the functional form in the Chinchilla study. Taking Eq. 8 and using CT = 6NT D,

L(NT , CT) = Nc

Nα
T

+ Dc

(CT /6NT)β
+ E. (16)

By differentiating Eq. 16 wrt NT and setting to zero, then rearranging in terms of NT we find

N∗
T =

(
α

β

Nc

Dc

) 1
α+β

(
CT

6

) β
α+β

or simply N∗
T ∝ C

β
α+β . (17)

5

Published in Transactions on Machine Learning Research (11/2024)

We now modify Eq. 16 to be in terms of non-embedding parameters and compute. Note whilst NT requires
Eq. 11 from step 1, the second term avoids this as D = CT /6NT = C\E/6N\E .

L(N\E , C\E) = Nc

(N\E + ωN
1/3
\E)α

+ Dc

(C\E/6N\E)β
+ E (18)

Step 3. Analytically derive the relationship between N∗
\E & C\E.

To find the relationship between N∗
\E & C\E we take the derivative of Eq. 18 wrt N\E , set to zero and

rearrange,

6N∗
\E

(
N∗

\E + ω

3 N∗
\E

1/3
)− 1

β
(

N∗
\E + ωN∗

\E
1/3
) 1+α

β

(
β

α

Dc

Nc

) 1
β

= C\E . (19)

This shows that in general the relationship between N∗
\E & C\E is not a power law. However, we can consider

a “local” power law approximation. That is, for some particular value of N\E , there is some constant g giving
a first order approximation (denoted by ∝∼) N∗

\E
∝∼ Cg

\E , where g is defined

1
g

:=
d log(C\E)
d log(N∗

\E) = 1− 1
β

N∗
\E

2/3 + ω
9

N∗
\E

2/3 + ω
3

+ α + 1
β

N∗
\E

2/3 + ω
3

N∗
\E

2/3 + ω
. (20)

Working is given in Appendix A.1. Figure 3 plots Eq. 19 & 20, using coefficients for α, β, Nc, Dc from the
Epoch AI specification, and ω = 47491. There are three phases.

• At small scale, limN∗
\E

→0
1
g = α/3+β

β =⇒ N∗
\E
∝∼ C

β
α/3+β

\E
3.

• At large scale, limN∗
\E

→∞
1
g = α+β

β =⇒ N∗
\E
∝∼ C

β
α+β

\E
4, as in the NT case in Eq. 17.

• There is also a transition phase, where g briefly increases. This happens in between the two limits,
when N

2/3
\E is of the same order as ω. Indeed at exactly the point N

2/3
\E = ω, we have NT =

N\E + ωN
1/3
\E = NT = 2N\E , or a 50/50 split between embedding and non-embedding parameters.

In Figure 3 we see this transition region occurs around this point; N\E = ω3/2 = 474913/2 ≈ 1×107.

Step 4. Simulate synthetic data from the Chinchilla loss model over the model sizes used Kaplan. Fit a local
power law for N∗

\E in terms of C\E.

By reading g off Figure 3, we could estimate a local power law and hence scaling coefficient for a given value
of N∗

\E . However, it’s not clear what N∗
\E point value is representative of the Kaplan study. We opt for

a more faithful estimation procedure, generating synthetic training curves from Eq. 18 across the range of
model sizes used in Kaplan, and fit coefficients using models falling on the compute efficient frontier. This
will also verify our analytic expression for N∗

\E & C\E in Eq. 19.

Figure 4 shows the synthetic training curves generated. We simulated 20 models with N\E ranging from
790 parameters to 1.58B (Kaplan reports using model sizes “ranging in size from 768 to 1.5 billion non-
embedding parameters”). For other constants in Eq. 18, we adopt the Epoch AI specification (Eq. 10) and
ω = 47491, though we report final results for the Chinchilla specification (Eq. 9) also.

Main result. Figure 5 shows the estimated scaling coefficient when fitting a power law to the compute
optimal frontier (Chinchilla’s Method 1) produced by these synthetic training curves. This marks our main

3Proof. As N∗
\E

→ 0, we can ignore N∗
\E

terms and 1/g = 1 − (1/β)(3/9) + (α + 1)/3β = 1 + α/3β.
4Proof. As N∗

\E
→ ∞, we can ignore ω terms and 1/g = 1 − (1/β) + (α + 1)/β = 1 + α/β.

6

Published in Transactions on Machine Learning Research (11/2024)

Figure 3: Visualization of Eq. 19 & 20, using the Epoch AI specification.

result – beginning from a model taken from Chinchilla’s study, and modifying two aspects to align with
Kaplan’s study (NT → N\E , small model sizes 0.79k – 1.58B parameters), we find local scaling coefficients,

Epoch AI specification: N∗
\E
∝∼ C0.78

\E , (21)
Chinchilla specification: N∗

\E
∝∼ C0.74

\E , (22)

which are close to the Kaplan coefficient of 0.73. Hence, this shows that the Chinchilla coefficient
is roughly consistent with Kaplan’s coefficient, given these two adjustments. This constitutes
the paper’s main result, reconciling these two apparently conflicting results.

4 Experiments: Compute-Parameter Scaling Coefficient

We provide brief experiments verifying that our claims hold for models trained at small scale (millions of
parameters).

Experiment 1. Firstly, we verify whether scaling coefficients come out close to Chinchilla’s and Kaplan’s
when using NT and N\E respectively.

We trained five models of sizes, NT ∈ [0.8M, 1.6M, 2.1M, 3.3M, 4.6M] on the BookCorpus dataset. We used
the GPT-2 tokenizer with vocab size of 50,257, and a context length of 16 (whilst much smaller than typical,
our experiments suggest scaling coefficients are not affected by context length). Chinchilla’s Method 1 was
used to fit scaling coefficients, with the approximation C = 6ND.

Models were trained for updates ∈ [4000, 4000, 4000, 8000, 8000], batchsize was 65,536 tokens per update, for
total training tokens D ∈ [262M, 262M, 262M, 524M, 524M]. The best learning rate for each model size was
chosen ∈ [0.001, 0.005, 0.01, 0.05] and no annealing was applied.

Result 1. Table 1 shows that when coefficients are fitted to NT , we find NT ∝ C0.49
T and for N\E , we find

N\E ∝ C0.74
\E . These match closely with the Chinchilla and Kaplan coefficients.

Experiment 2. We provide an ablation of optimization schemes demonstrating that using multiple training
budgets per model affects coefficients only marginally (counter to Chinchilla’s explanation).

• Scheme 1. A single learning rate of 0.001 is set for all models. A single model trained per size, and
no annealing applied.

• Scheme 2. The best learning rate is chosen per model. A single model trained per size, and no
annealing applied. (As in our NT vs. N\E comparison.)

7

Published in Transactions on Machine Learning Research (11/2024)

Figure 4: Synthetic training curves from Eq. 18 fitted to the Chinchilla data using the Epoch AI specification.
Curves are generated for 20 logarithmically-spaced models matching Kaplan’s size range. Left in terms of
training tokens, right in terms of non-embedding compute, as used in the Kaplan study. Hence the right
plot can be viewed as Chinchilla’s loss curves, adjusted to match Kaplan’s model sizes and non-embedding
measurements.

Figure 5: Using the synthetic training curves generated in Figure 4, we empirically fit the frontier of compute
efficient models using Chinchilla’s Method 1. This gives our main result; synthetic training curves generated
from Chinchilla’s study, adjusted for model sizes and non-embedding compute, produce a local scaling
coefficient N∗

\E ∝ C0.78
\E , close to Kaplan’s reported coefficient of 0.73. The analytical function from Eq. 19

is also verified.

• Scheme 3. The best learning rate is chosen per model. A single model trained per size, and cosine
annealing applied at the update budget. (Kaplan study used this.)

8

Published in Transactions on Machine Learning Research (11/2024)

• Scheme 4. The best learning rate is chosen per model. Six models trained per size at different
budgets ∈ [0.25D, 0.5D, 0.75D, 1.0D, 1.5D, 2.0D], and cosine annealing applied. (Chinchilla study
used this.)

Result 2. Table 1 shows that optimization scheme has a smaller impact on scaling coefficients than switching
from NT to N\E . Using a single set of models with no annealing (scheme 2) produces the same coefficients
as using the more computationally expensive scheme 4. Counter to Chinchilla’s comment that moving from
Kaplan’s scheme 3 to scheme 4 would reduce the scaling coefficient, our experiment suggests the opposite is
the case, increasing from 0.46 to 0.49. This might explain our slight overestimation of the scaling coefficients
in Eq. 21 & 22.

Table 1: Comparison of different scaling coefficients from our experiments. Note that the change moving
from NT to N\E has a much larger effect than moving between optimization schemes.

Experiment a where Noptimal ∝ Ca b where Doptimal ∝ Cb

Chinchilla, NT 0.50 0.50
Kaplan, N\E 0.73 0.27

Ablating NT vs N\E

Ours, NT & CT 0.49 0.51
Ours, N\E & C\E 0.74 0.26

Ablating optimization scheme
Ours, NT , scheme 1, single lrate, no anneal 0.58 0.42
Ours, NT , scheme 2, best lrate, no anneal 0.49 0.51
Ours, NT , scheme 3, best lrate, single-cosine anneal 0.46 0.54
Ours, NT , scheme 4, best lrate, multi-cosine anneal 0.49 0.51

5 Analysis: Compute-Loss Scaling Coefficient

As well as analyzing the compute-optimal parameter scaling, Kaplan and Chinchilla also described the scaling
relationship between compute and loss, assuming parameters were scaled optimally. This optimal loss was
again given in terms of non-embedding compute by Kaplan, and total compute by Chinchilla,

L∗
\E = min

s.t. C\E=6N\ED
L(N\E , C\E), (23)

L∗
T = min

s.t. CT =6NT D
L(NT , CT). (24)

Concretely, the two studies reported the following forms and coefficients linking optimal loss and compute.

Kaplan compute-loss form: L∗
\E =

(
C\E

C0

)−γ

(25)

Kaplan compute-loss fit: L∗
\E ∝ C−0.057

\E (26)

Chinchilla compute-loss form: L∗
T =

(
CT

C0

)−γ

+ E (27)

Chinchilla compute-loss fit, Epoch AI spec: L∗
T − E ∝ C−0.178

T (28)
Chinchilla spec: L∗

T − E ∝ C−0.155
T (29)

(See Section A.3 for Chinchilla’s compute coefficient.) Similar to the compute-parameter scaling coefficient,
on the surface Kaplan’s coefficient of 0.057 appears quite far from Chinchilla’s of 0.155–0.178. However,
we will again show that by beginning from the Chinchilla study, and adjusting for Kaplan’s non-embedding
compute, smaller scale, and additionally their compute-loss form, these two coefficients can be roughly
reconciled.

9

Published in Transactions on Machine Learning Research (11/2024)

Figure 6: Visualization of Eq. 30, using the Epoch AI specification.

Our analysis follows the same four-step approach as in Section 3. We can directly reuse Steps 1 & 2, while
Steps 3 & 4 are now modified to study the relationship between optimal loss and compute, rather than
optimal parameters and compute as previously.

Step 3. Analytically derive the relationship between L∗
\E & C\E.

We find that the relationship between L∗
\E & C\E is not a power law (derived in Section A.2).

d log(L∗
\E)

d log(C\E) = g

L∗
\E

−αNc

(
N∗

\E + 1
3 ω
(

N∗
\E

)1/3
)

(
N∗

\E + ω
(

N∗
\E

)1/3
)α+1 + βDc

(
C\E

6N∗
\E

)−β (
1− 1

g

) . (30)

However, again we can consider a local first-order approximation, L∗
\E
∝∼ Ck

\E , where k = d log(L∗
\E)

d log(C\E) . We
visualize this in Figure 6.

Step 4. Simulate synthetic data from the Chinchilla loss model over the model sizes used Kaplan. Fit a local
power law, for L∗

\E in terms of C\E, using Kaplan’s compute-loss form.

As in Section 3, we could use Eq. 30 to compute a point estimate for k in the relationship L∗
\E
∝∼ Ck

\E .
However, again we opt for the more faithful procedure of simulating data from the loss curves. We then fit
Kaplan’s compute-loss form L∗

\E =
(

C\E

C0

)−γ

. For the two specifications, these give the following models,

Epoch AI specification:L∗
\E
∝∼ C−0.069

\E , (31)

Chinchilla specification:L∗
\E
∝∼ C−0.066

\E , (32)

which are roughly inline with Kaplan’s reported coefficient of L∗
\E
∝∼ C−0.057

\E .

Figure 7 visualizes the fit of the Chinchilla compute-loss form vs. the Kaplan compute-loss form, when one
counts total compute vs. non-embedding compute. We see that Kaplan’s form provides a good fit of the
data in the non-embedding compute plot at small scale, over the range of model sizes they considered. We
speculate that this might be the motivation for Kaplan’s selection of this simpler compute-loss form.

10

Published in Transactions on Machine Learning Research (11/2024)

Figure 7: Synthetic data with the Epoch AI specification, as in Figure 4. Here we visualize the quality of
the fits using both the Kaplan and Chinchilla compute-loss forms. Notice that Chinchilla’s form provides a
better fit under total compute, while Kaplan’s form is a better match under non-embedding compute.

6 Related work

Following early works formalizing how language models improve with parameters, data, and training compute
(Rosenfeld et al., 2019; Kaplan et al., 2020; Hoffmann et al., 2022), there has been investigation into whether
these scaling laws arise in other domains (Henighan et al., 2020), and to explain their existence from a
theoretical standpoint (Hutter, 2021; Maloney et al., 2022; Bahri et al., 2024).

Closer in spirit to our paper are several concurrent works that have investigated the influence of various
design decisions on scaling law analyses. Su et al. (2024) revisit the methodology used to find scaling
coefficients. Hägele et al. (2024) found that multiple independent cosine schedules could be reproduced
more efficiently through a constant learning rate with multiple short decays, or stochastic weight averaging.
Our finding is subtly different; a simple fixed learning rate will recover very similar compute-parameter
scaling coefficients as multiple cosine schedules. Bi et al. (2024) study the effect of various hyperparameters
on scaling laws. They observe that different text datasets produce slightly different optimal coefficients,
with ‘cleaner’ data leading to more parameter-hungry scaling behavior, which they speculate could partially
explain the difference between Kaplan and Chinchilla coefficients.

Porian et al. (2024) provide a concurrent work with the same objective as our paper – explaining the differ-
ences between the Kaplan and Chinchilla coefficients. Through a set of large-scale experiments reproducing
Kaplan’s study, they determine that responsibility for the discrepancy can be attributed, in decreasing order
of significance, to; 1) Kaplan counting non-embedding rather than total compute. 2) Kaplan using a fixed-
length warmup period that was too long for smaller models, making them appear less efficient. 3) Kaplan not
fully tuning optimization hyperparameters. We see these findings as complimentary to our own. We have
been able to identify the primary ‘first-order’ reason using only information that was publicly available in
the two papers, with a fully analytical approach. (Tiny-scale experiments were run post-hoc as verification.)
This illustrates the promise of applying mathematical approaches to the empirical science of scaling.

11

Published in Transactions on Machine Learning Research (11/2024)

7 Discussion

This paper aimed to explain the difference between the Kaplan and Chinchilla scaling coefficients. We found
two issues in Kaplan’s study that combined to bias their estimated scaling coefficients; their choice to count
only non-embedding parameters, and studying smaller sized model sizes. This means there is curvature in
the true relationship between N\E & NT (Figure 5). At larger values of NT , the embedding parameter
counts become negligible, NT = N\E , and differences would not arise. Alternatively, had Kaplan studied
relationships directly in terms of NT , this issue would also not arise, even at this smaller scale (confirmed
by our Experiment 1 finding NT ∝ C0.49

T even for NT < 5M). The form Kaplan used to predict loss from
compute further contributed to differences in the reported compute-loss scaling coefficients.

Inconsistency across scaling studies. Existing literature on scaling is not consistent in its use of non-
embedding vs. total compute. Some studies (Henighan et al., 2020; Gordon et al., 2021; Ghorbani et al.,
2021; Fernandes et al., 2023; Hu et al., 2024; Bi et al., 2024; Su et al., 2024) follow Kaplan’s approach,
using non-embedding parameters or compute, while others (Clark et al., 2022; Que et al., 2024; Wang
et al., 2023) adhere to the Chinchilla approach, using total parameters. Our work indicates that this choice
can substantially alter scaling exponents, complicating cross-study comparisons. Similarly, the choice of
compute-loss equation varies through the literature. Studies such as (Clark et al., 2022; Brown et al., 2020;
Smith & Doe, 2024) opt for the Kaplan compute-loss form without offsets. In contrast, (Henighan et al.,
2020; Gordon et al., 2021; Fernandes et al., 2023; Hu et al., 2024; Wang et al., 2023) employ the Chinchilla
compute-loss form with non-zero offsets. Again, our work suggests that these methodological differences can
lead to significant variations in scaling predictions and interpretations.

The lack of a standardized approach in scaling studies risks making comparisons misleading and insights less
clear. We see our work as helping to understand certain decisions made in previous studies that should be
standardized. Concretely, we advise future studies to report total, rather than non-embedding, parameters,
and to include an offset in the compute-loss fitting models. We discuss motivation for these choices below.
Furthermore, our initial evidence does not support using multiple cosine decays per model size – we find a
single fixed learning rate per model size is sufficient for measuring compute-optimal parameter coefficients.

Why should embedding parameters contribute to scaling behavior? Several works evidence that
embedding parameters capture meaningful language properties. Word embeddings can be factorized into
semantically interpretable factors (even the shallow Word2vec) (Mikolov et al., 2013a;b; Arora et al., 2018).
LLMs learn linear embeddings of space and time across scales (Gurnee & Tegmark, 2024). Developing such
meaningful embedding structures allows LLMs to perform high-level language operations, such as arithmetic
(McLeish et al., 2024). Therefore, if one believes that the embedding layer does more than just ‘translate’
tokens to a vector of the correct dimension, we see no reason to exclude them in the parameter count.

Why should a non-zero offset be used in loss-compute predictions? The Chinchilla compute-loss
form with a non-zero offset (Eq. 27), is a more appropriate form from the perspective of statistical learning.
This approach accounts for the concept of irreducible risk (Hernandez et al., 2023), which posits a lower
bound on achievable loss regardless of model or dataset size. This may arise from various factors: inherent
biases or limitations in the learning algorithm, or noise in the original task. As a concrete example in
language modeling, the best a model can do for the prediction of the first token in a sequence, is to estimate
the marginal distribution of all tokens, which leads to a non-zero loss.

Limitations. We acknowledge several limitations of our analysis. We have aimed to capture the primary
‘first order’ reason for the difference between the Kaplan and Chinchilla scaling coefficients. But there
are multiple other differences between the two studies that likely also affect scaling coefficients (Section
6); datasets (Kaplan used OpenWebText2, Chinchilla used MassiveText), transformer details (Kaplan used
learnable position embeddings while Chinchilla’s were fixed, also differing tokenizers, vocabularly sizes),
optimization scheme (Kaplan used scheme 3, Chinchilla scheme 4, also differing warmup schedules), differ-
ences in computation counting (Kaplan used C = 6ND, Chinchilla’s Method 1 & 2 used a full calculation).
However, our work suggested these factors impact coefficients in a more minor way.

12

Published in Transactions on Machine Learning Research (11/2024)

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure of

word senses, with applications to polysemy. Transactions of the Association for Computational Linguistics,
6:483–495, 2018. doi: 10.1162/tacl_a_00034. URL https://aclanthology.org/Q18-1034.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural scaling
laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication attempt.
arXiv preprint arXiv:2404.10102, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. arXiv
preprint arXiv:2401.02954, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann, Bogdan
Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for routed language
models. In International conference on machine learning, pp. 4057–4086. PMLR, 2022.

Patrick Fernandes, Behrooz Ghorbani, Xavier Garcia, Markus Freitag, and Orhan Firat. Scaling laws for
multilingual neural machine translation. In International Conference on Machine Learning, pp. 10053–
10071. PMLR, 2023.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia, Ciprian
Chelba, and Colin Cherry. Scaling laws for neural machine translation. arXiv preprint arXiv:2109.07740,
2021.

Mitchell A Gordon, Kevin Duh, and Jared Kaplan. Data and parameter scaling laws for neural machine
translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 5915–5922, 2021.

Wes Gurnee and Max Tegmark. Language models represent space and time, 2024.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin Jaggi. Scal-
ing laws and compute-optimal training beyond fixed training durations. arXiv preprint arXiv:2405.18392,
2024.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, Sam McCandlish, Tom B. Brown, Andrew Carr, Dieterich
Lawson, Jacob Steinhardt, Chris Olah, and Dario Amodei. Scaling laws for neural language models.
Proceedings of the National Academy of Sciences, 120(26), 2023. doi: 10.1073/pnas.2311878121. URL
https://www.pnas.org/doi/10.1073/pnas.2311878121.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022.

13

https://aclanthology.org/Q18-1034
https://www.pnas.org/doi/10.1073/pnas.2311878121

Published in Transactions on Machine Learning Research (11/2024)

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models with scalable
training strategies. arXiv preprint arXiv:2404.06395, 2024.

Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Christopher T. Kello, Gordon D.A. Brown, Ramon Ferrer i Cancho, John G. Holden, Klaus Linkenkaer-
Hansen, Theo Rhodes, and Guy C. Van Orden. Scaling laws in cognitive sciences. Trends in Cognitive
Sciences, 14(5):223–232, 2010. ISSN 1364-6613. doi: https://doi.org/10.1016/j.tics.2010.02.005. URL
https://www.sciencedirect.com/science/article/pii/S136466131000046X.

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws. arXiv
preprint arXiv:2210.16859, 2022.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers can do
arithmetic with the right embeddings, 2024.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013a. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word repre-
sentations. In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff (eds.), Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 746–751, Atlanta, Georgia, June 2013b. Association for Computational Linguistics.
URL https://aclanthology.org/N13-1090.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving discrepancies
in compute-optimal scaling of language models. arXiv preprint arXiv:2406.19146, 2024.

Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu Duan, Zhiqi Bai,
Jiakai Wang, Yuanxing Zhang, et al. D-cpt law: Domain-specific continual pre-training scaling law for
large language models. arXiv preprint arXiv:2406.01375, 2024.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction of the
generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.

J. Smith and A. Doe. The role of xyz in abc. bioRxiv, 2024. doi: 10.1101/2024.06.06.597716v1. URL
https://www.biorxiv.org/content/10.1101/2024.06.06.597716v1.full.pdf.

Hui Su, Zhi Tian, Xiaoyu Shen, and Xunliang Cai. Unraveling the mystery of scaling laws: Part i. arXiv
preprint arXiv:2403.06563, 2024.

Peihao Wang, Rameswar Panda, and Zhangyang Wang. Data efficient neural scaling law via model reusing.
In International Conference on Machine Learning, pp. 36193–36204. PMLR, 2023.

14

https://www.sciencedirect.com/science/article/pii/S136466131000046X
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://aclanthology.org/N13-1090
https://www.biorxiv.org/content/10.1101/2024.06.06.597716v1.full.pdf

Published in Transactions on Machine Learning Research (11/2024)

A Appendix

A.1 Derivation of Eq.20

This section derives Eq.20

1
g

:=
d log(C\E)
d log(N∗

\E) = 1− 1
β

N∗
\E

2/3 + ω
9

N∗
\E

2/3 + ω
3

+ α + 1
β

N∗
\E

2/3 + ω
3

N∗
\E

2/3 + ω
. (33)

First note that

d log(C\E)
d log(N∗

\E) =
d log(C\E)

dN∗
\E

dN∗
\E

d log(N∗
\E) (34)

=
d log(C\E)

dN∗
\E

N∗
\E (35)

Recall the definition of C\E from Eq. 19

C\E = 6N∗
\E

(
N∗

\E + ω

3 N∗
\E

1/3
)− 1

β
(

N∗
\E + ωN∗

\E
1/3
) 1+α

β

(
β

α

Dc

Nc

) 1
β

(36)

log(C\E) = log(N∗
\E)︸ ︷︷ ︸

term 1

− 1
β

log
(

N∗
\E + ω

3 N∗
\E

1/3
)

︸ ︷︷ ︸
term 2

+ 1 + α

β
log
(

N∗
\E + ωN∗

\E
1/3
)

︸ ︷︷ ︸
term 3

+const. (37)

where const. does not depend on N∗
\E . We now can take the derivative of each term.

Derivative of term 1.

d log(N∗
\E)

dN∗
\E

= 1
N∗

\E

(38)

Derivative of term 2.

1
β

d log
(

N∗
\E + ω

3 N∗
\E

1/3
)

dN∗
\E

= 1
β

d log
(

N∗
\E + ω

3 N∗
\E

1/3
)

dN∗
\E + ω

3 N∗
\E

1/3

dN∗
\E + ω

3 N∗
\E

1/3

dN∗
\E

= 1
β

1 + ω
9 N∗

\E
−2/3

N∗
\E + ω

3 N∗
\E

1/3 (39)

Derivative of term 3.

α + 1
β

d log
(

N∗
\E + ωN∗

\E
1/3
)

dN∗
\E

= α + 1
β

d log
(

N∗
\E + ωN∗

\E
1/3
)

dN∗
\E + ωN∗

\E
1/3

dN∗
\E + ωN∗

\E
1/3

dN∗
\E

= α + 1
β

1 + ω
3 N∗

\E
−2/3

N∗
\E + ωN∗

\E
1/3

(40)

Then assemble all terms and multiply by N∗
\E as per Eq. 35.

15

Published in Transactions on Machine Learning Research (11/2024)

A.2 Derivation of compute-loss analytical form in Eq. 30

This section derives k, defined as,

k =
d log(L∗

\E)
d log(C\E) . (41)

Expanding with the chain rule we find,

k =
d log(L∗

\E)
dL∗

\E

dL∗
\E

dN∗
\E

dN∗
\E

d log(N∗
\E)

d log(N∗
\E)

d log(C\E) , (42)

=
N∗

\E

L∗
\E

dL∗
\E

dN∗
\E

g, (43)

where we previously derived g = d log(N∗
\E)

d log(C\E) in Eq. 20.

This leaves us with dL∗
\E

dN∗
\E

to find. First note that L∗
\E is given by Eq. 18 when the optimal model size is

used, i.e., N\E ← N∗
\E ,

L∗
\E = Nc

(N∗
\E + ωN∗

\E
1/3)α

+ Dc

(C\E/6N∗
\E)β

+ E. (44)

Before taking this derivative, we recall that C\E is actually a function of N∗
\E (via Eq. 19). Hence, we tackle

the derivative in two parts. We find the first term derivative is equal to,

d Nc

(N∗
\E

+ωN∗
\E

1/3)α

dN∗
\E

= −αNc

(
1 + 1

3 ω
(

N∗
\E

)−2/3
)

(
N∗

\E + ω
(

N∗
\E

)1/3
)α+1 . (45)

The derivative of the second term, via the product rule, and spotting that dC\E

dN∗
\E

= C\E

gN∗
\E

, equals,

d Dc

(C\E/6N∗
\E

)β

dN∗
\E

= βDc
1

N∗
\E

(
C\E

6N∗
\E

)−β

− βDc
1

gN∗
\E

(
C\E

6N∗
\E

)−β

(46)

= βDc
1

N∗
\E

(
C\E

6N∗
\E

)−β (
1− 1

g

)
. (47)

Hence, combining these two terms we find,

dL∗
\E

dN∗
\E

= −αNc

(
1 + 1

3 ω
(

N∗
\E

)−2/3
)

(
N∗

\E + ω
(

N∗
\E

)1/3
)α+1 + βDc

1
N∗

\E

(
C\E

6N∗
\E

)−β (
1− 1

g

)
. (48)

Combining this result into to Eq. 43 we get,

k = g
N∗

\E

L∗
\E

dL∗
\E

dN∗
\E

(49)

= g

L∗
\E

−αNc

(
N∗

\E + 1
3 ω
(

N∗
\E

)1/3
)

(
N∗

\E + ω
(

N∗
\E

)1/3
)α+1 + βDc

(
C\E

6N∗
\E

)−β (
1− 1

g

) . (50)

16

Published in Transactions on Machine Learning Research (11/2024)

A.3 Compute-loss coefficient derivation

We know from Eq. 17 N∗
T ∝ C

β
α+β , and similarly D∗

T ∝ C
α

α+β . Substituting these into the loss form of Eq.
8, and for some new constants N̄c, D̄c we find,

L∗
T = Nc

N∗
T

α + Dc

D∗
T

β
+ E, (51)

= N̄c

C
αβ

α+β

+ D̄c

C
αβ

α+β

+ E, (52)

L∗
T − E ∝ C

−αβ
(α+β) . (53)

17

	Introduction
	Preliminaries
	Set Up
	Analysis Overview
	Assumptions

	Analysis: Compute-Parameter Scaling Coefficient
	Experiments: Compute-Parameter Scaling Coefficient
	Analysis: Compute-Loss Scaling Coefficient
	Related work
	Discussion
	Appendix
	Derivation of Eq.20
	Derivation of compute-loss analytical form in Eq. 30
	Compute-loss coefficient derivation

