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ABSTRACT

While numerous second-order optimization methods have been proposed to ac-
celerate training in deep learning, they are seldom used in practice. This is partly
due to a limited understanding of the conditions under which second-order opti-
mization outperforms first-order optimization. This study aims to identify these
conditions, particularly in terms of batch size and dataset size. We find empir-
ically that second-order optimization outperforms first-order optimization when
the batch size is large and the data set size is not too large.

1 INTRODUCTION

Second-order optimization utilizes gradients preconditioned by a second-order information ma-
trix(Pascanu & Bengio, 2013). Various Second-order optimization methods have been proposed,
differing in the type of second-order information matrix and the method of matrix approximation.

K-FAC is a major second-order optimization method proposed in Martens & Grosse (2015) as an
approximation of natural gradient descent(Amari, 1998). K-FAC has been studied in numerous
papers because of its effectiveness in many deep learning optimizations(Grosse & Martens, 2016;
Martens et al., 2018; Izadi et al., 2020; Eschenhagen et al., 2023; Zhang et al., 2022). Inspired
by the fast convergence of K-FAC, Benzing (2022) proposed FOOF, hypothesizing that the fast
convergence of K-FAC might stem from local learning rather than from natural gradient descent.
Shampoo represents another notable advancement in second-order optimization(Gupta et al., 2018).
It serves as an approximation to adaptive gradient descent (Duchi et al., 2011). Other second-order
optimization methods, such as K-BFGS (Goldfarb et al., 2020) and PSGD (Li, 2017; 2018), estimate
the curvature matrix through iterative processes. Additionally, second-order optimization methods
like SENG (Yang et al., 2020) employ the Sherman-Morrison-Woodbury (SMW) formulas in inverse
matrix computations to facilitate second-order optimization.

In this study, we initially examine the batch size characteristics of second-order optimization meth-
ods across various existing approaches. Some studies suggest that the large batch problem, where
accuracy deteriorates when training with larger batch sizes, is less likely to occur with second-
order optimization methods (Zhang et al., 2019), and numerous studies have applied second-order
optimization to large-batch learning (Osawa et al., 2019b; Ueno et al., 2020; Anil et al., 2021).
However, comprehensive research comparing different methods is still lacking. Additionally, in
the Appendix.A.2, we investigate the relationship between batch size and hyperparameters and find
some interesting proportional relationships. Next, we observe the behavior when the dataset size is
increased while keeping the batch size constant. Surprisingly, we find that in training with larger
dataset sizes, such as in language modeling, the advantage of second-order optimization over first-
order optimization becomes less evident. This indicates that not only the batch size but also the
dataset size is an important factor in determining the superiority of second-order optimization.

2 SECOND ORDER OPTIMIZATION IS GOOD FOR LARGE BATCH SIZES

Second-order optimization is known to be more advantageous than first-order optimization when the
size of the mini-batch is large and the specific mini-batch closely resembles the entire dataset(Zhang
et al., 2019; Osawa et al., 2019b; Anil et al., 2021). Fig.1 shows that for various architectures,
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Figure 1: Second-order optimization performs better than first-order optimization for large
batch training Second-order optimization methods perform better with larger mini-batch sizes.
However, for PSGD, test accuracy decreases similarly to SGD as batch size increases.

second-order optimization methods, including K-FAC and Shampoo, outperform first-order opti-
mization methods for larger batch sizes. Note that the accuracy of PSGD decreases rapidly as the
batch size increases. This may occur because PSGD computes the curvature matrix iteratively. See
Appendix A.1 for more details. In addition, when the mini-batch size is small, K-FAC(local) with-
out an exponential moving average does not perform as well as K-FAC(global) with an exponential
moving average. The relationship between batch size and appropriate hyperparameter settings is
described in detail in Appendix A.2.

3 SECOND ORDER OPTIMIZATION IS GOOD FOR SMALL DATASET SIZE
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Figure 2: Train Curve Comparison of optimizers for different dataset sizes in training
character-level language modeling. We trained minGPT on the BookCorpus dataset for character-
level language modeling. When the dataset size is small, K-FAC and Shampoo converge faster than
AdamW. However, as the dataset size increases, the convergence rate of K-FAC deteriorates.

In training language models, the dataset size is typically huge, and as a result, usually only about
one epoch is trained. This implies that LLM is trained with relatively small mini-batch sizes, mak-
ing it challenging to observe the advantages of second-order optimization compared to first-order
optimization. As shown in Fig.2, when the dataset size is small, K-FAC and Shampoo achieve faster
convergence than Adam. However, as the data set size increases, the final convergence destination
of K-FAC becomes worse, and the speed of convergence of Shampoo and Adam coincides. This
suggests that second-order optimization may not be a better method than first-order optimization
when the data set size is too large.

4 CONCLUSION AND DISCUSSION

We investigated the convergence properties of second-order optimization methods concerning batch
size and dataset size. Our findings indicate that, with few exceptions, second-order optimization
generally surpasses first-order optimization when dealing with larger batch sizes. However, as the
size of the dataset becomes excessively large, the convergence rate of second-order optimization
becomes comparable to, or may even be less effective than, that of first-order optimization. These
findings suggest that the advantages of second-order optimization over first-order optimization might
not be as significant in language model optimization. This is because language modeling frequently
involves very large datasets and relatively small batch sizes in comparison to the size of the dataset.
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Appendices
A SECOND-ORDER OPTIMIZATION AND BATCH SIZE

A.1 PSGD ON LARGE BATCH TRAINING
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Figure 3: The quality of curvature is determined by the number of Iterations According to the
criterion, the quality of PSGD’s curvature matrix improves as iteration increases. Therefore, the
quality of PSGD curvature in iterations is independent of the mini-batch size, but in epochs, the
quality of PSGD curvature depends on the mini-batch size.

The accuracy of PSGD may decrease rapidly as the batch size increases. This may occur because
PSGD computes the curvature matrix iteratively. To investigate the cause of this deterioration, we
use the following criterion, which measures the quality of the Preconditioner matrix P as employed
in the PSGD paper(Li, 2017; 2018).

c(P ) = Eδθ

[
δĝ⊤P δĝ + δθ⊤P−1δθ

]
(1)

where δθ represents the perturbation of parameters and δĝ represents the perturbation of gradients.
A smaller PSGD criterion value indicates a higher quality of the curvature matrix. Figure.3 illus-
trates the PSGD criterion as the batch size changes. When the horizontal axis represents epochs, the
PSGD criterion increases with the batch size. However, when the horizontal axis represents itera-
tions, the decrease in the criterion appears to be independent of the batch size. This suggests that
the quality of the curvature matrix may not improve sufficiently with larger batch sizes due to the
reduced number of iterations compared to the same number of epochs.

A.2 EFFECT OF BATCH SIZE ON OTHER HYPERPARAMETERS

In first-order optimization methods, an increase in batch size requires a proportional increase in
the learning rate (Hinton, 2012; Krizhevsky, 2014; Goyal et al., 2017). This trend is also observed
in second-order optimization. Fig.4 illustrates that second-order optimization methods, including
K-FAC, FOOF, and Shampoo, demand proportionally larger damping as the batch size increases.

In addition to the learning rate, second-order optimization methods incorporate a hyperparameter
known as the damping term, which is also contingent on the batch size. Specifically, it is observed
in Fig.4 that the damping should be reduced as the batch size increases. This may be attributed to the
fact that in second-order optimization, the ratio of learning rate to damping effectively represents the
actual learning rate. When both the learning rate and damping are concurrently adjusted for specific
batch size, higher accuracies are achieved when the learning rate-to-damping ratio remains constant.

A.3 TRAIN ACCURACY IN LARGE BATCH LEARNING OF SECOND ORDER OPTIMIZATION

Fig. 5 shows that second-order optimization methods performs better than first-order optimization
methods even in the Training accuracy. In terms of Training Accuracy, AdamW shows almost the
same accuracy as other methods in small batch training of Resnet18 on CIFAR10. However, given
its poor performance in Test Accuracy, we can say that in this setting AdamW does not generalize
as well as other optimization methods.
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Figure 4: Learning rate, damping, and batch size are interrelated We trained a 3-layer MLP on
MNIST. We see that the optimal learning rate and damping depend on the batch size.

A.4 RELATIONSHIP BETWEEN DATA SET SIZE AND CRITICAL BATCH SIZE

When dealing with large datasets, the mini-batch size is often small relative to the entire dataset.
Consequently, the benefits of second-order optimization, which are more evident with larger batch
sizes, can be minimal or negligible. Figure 6 illustrates how the performance of first-order versus
second-order optimization varies with the batch-to-dataset size ratio. With a low ratio, the perfor-
mance difference between the two optimization methods becomes negligible.

A.5 LARGE BATCH TRAINING IN LLM

The results for large-batch learning of GPT2 are shown in Table. 1. The dataset is OpenWebText.
Here, we are comparing by fixing the number of samples used for training at 4915200000. In cases
of small batch sizes (≤ 1152), AdamW reduces the validation loss more than the second-order
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Figure 5: Second-order optimization performs better than first-order optimization for large
batch training even in the Training Accuracy.
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Figure 6: If the ratio of Batch size to Train size is not sufficiently large, the benefits of second-
order optimization are not apparent. The second-order optimization achieves high accuracy even
when the batch size / train size is large. The difference in performance between first-order optimiza-
tion and second-order optimization depends on the batch size / train size, and its performance gap is
negligible when the train size is large. We trained an MLP on MNIST.

optimization method, Shampoo. However, with larger batch sizes (≥ 1536), Shampoo shows a
greater reduction in validation loss compared to AdamW. This indicates that in Large Language
Models (LLMs), Shampoo, a second-order optimization method, excels in large-batch learning. It is
also observed that the batch sizes commonly used are very small, where Shampoo does not perform
as effectively.

Batch Size
384 768 1152 1536 1920

AdamW 3.29 3.62 3.85 4.68 5.61
Shampoo 3.43 3.72 3.95 4.62 5.43

Table 1: Shampoo reduces validation loss more effectively than AdamW in Large Batch LLM
training. We trained GPT2 on openwebtext with AdamW and Shampoo. Its block size is 1024 and
hyperparameters (learning rate and β2) are tuned using grid search.

B AT WHAT POINT DURING TRAINING IS SECOND-ORDER INFORMATION
IMPORTANT?

The curvature matrix calculated by the second-order information matrix is known to fluctuate greatly
at the early stage of training, but then stabilizes and changes very littleFort et al. (2020); Kalra &
Barkeshli (2023); Damian et al. (2023). In this case, the curvature matrix should be frequently
updated in the early stages of learning, but once training has progressed to a certain extent, the
intervals for calculating the curvature matrix can be extended, and we may be able to reuse the
curvature matrixOsawa et al. (2019a) 1.

1In second-order optimization, there are two additional calculations beyond those in first-order optimization:
the calculation of the curvature matrix and the calculation of the preconditioner matrix, which is the inverse
of the curvature matrix. This section mainly focuses on minimizing the computational cost of the inverse
calculation, as the calculation of the curvature matrix is relatively small.
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shows that the curvature matrices for all layers except the final layer hardly need to be updated after
the middle stage of training. We trained ResNet18 trained with CIFAR10.

Percentage of frequent updates (Preconditioner Interval = 10)
0% 0.01% 0.03% 0.1% 0.3% 1% 3% 10%

300 1.3 0.9 79.88 79.75 79.82 79.83 79.98 79.83
1000 0.82 0.75 79.94 79.52 79.90 79.99 79.89 79.98

Preconditioner 3000 0.48 0.32 0.51 79.50 79.64 80.12 80.08 79.92
Interval 10000 0.33 0.51 0.58 79.69 79.85 79.87 80.06 79.87

30000 0.12 0.12 0.17 79.34 80.07 80.02 79.99 80.19

Table 2: In ViT-Pretraining, we can reduce the frequency of computing the inverse matrix. We
trained Deit-small on ImageNet using Shampoo for 300epochs. We can see that if we update the
curvature matrix only during 1 epoch (= 0.3% = 2500 iterations), we need not to update the curvature
matrix after that. We compute statistics for every 10 iterations.

Figure.7 observes the eigenvalues for each layer during training by Shampoo. The eigenvalues de-
crease rapidly in the early stages of learning (for 3 5 epochs), while they remain stable after that.
Note that this trend is not observed in the final layer. Therefore, the frequency of Preconditioner
calculations during training can be greatly reduced after the midpoint of training. Table 2 illustrates
the impact on accuracy when Vision Transformers (ViT) are trained using Shampoo, with updates
occurring more frequently during the initial stages of training and the frequency of updates dimin-
ishing during the middle and later stages. The results indicate that, after the curvature has been
adequately calculated for approximately one epoch, the frequency of updates can be significantly
reduced thereafter.
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C EXPERIMENTAL SETTINGS

We implemented a second-order optimization method based on the ASDL library(Osawa et al.,
2023). We indicate the search range for grid search by curly braces {}.

Figure.1 (MLP) We trained a 3-layer MLP on MNIST. We considered a 3-layer multilayer per-
ceptron (MLP) with ReLU activation. The MLP models do not include bias. The width of the middle
layer is set to 2048. The hyperparameters are as follows. Grid search was used to find the optimal
parameters. Table.3 shows its hyper parameters.

Parameter Values
Learning Rate {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
Momentum 0.9
Epochs 20
Curvature Update Interval for second-order optimization 1
Damping for second-order optimization {1, 1e-3, 1e-6, 1e-9}
Gradient Clipping Norm 10
Weight Decay 1e-5
Label Smoothing 0.1

Table 3: Hyper-parameters for MLP on MNIST in Figure.1

Figure.1 (ResNet18) We trained a ResNet18 on CIFAR10. We used the existing implementation2

for training CIFAR10. The hyperparameters are as follows. Grid search was used to find the optimal
parameters. Table.4 shows its hyper parameters.

Parameter Values
Learning Rate {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
Momentum 0.9
Epochs 100
Curvature Update Interval for second-order optimization {10, 100}
Damping for second-order optimization {1, 1e-3, 1e-6, 1e-9}
Gradient Clipping Norm 10
Weight Decay 5e-4
Label Smoothing 0.1

Table 4: Hyper-parameters for ResNet18 on CIFAR10 in Figure.1

Figure.1 (ViT-Tiny) We trained a ViT-Tiny pretrained by ImageNet on CIFAR10. We used mod-
els in Pytorch Image Models(Wightman, 2019). The hyperparameters are as follows. Grid search
was used to find the optimal parameters. Table.5 shows its hyper parameters. Missing point (PSGD
with batch size = 1024) is due to the memory consumption.

Parameter Values
Learning Rate {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
Momentum 0.9
Epochs 20
Curvature Update Interval for second-order optimization {10, 100}
Damping for second-order optimization {1, 1e-3, 1e-6, 1e-9}
Gradient Clipping Norm 10
Weight Decay 1e-5
Label Smoothing 0.1

Table 5: Hyper-parameters for ViT-Tiny on CIFAR10 in Figure.1

2https://github.com/uoguelph-mlrg/Cutout
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Figure.2 We trained minGPT3 on the BookCorpus dataset for character-level language modeling.
The hyperparameters for training are as follows. Grid search was used to find the optimal parameters.
Table.6 shows its hyper parameters.

Parameter Values
Learning Rate {1, 3e-1, 3e-3, 1e-3}
Momentum 0.9
Batch Size 64
Iterations 1000
Curvature Update Interval (K-FAC, Shampoo) 1
Damping (K-FAC, Shampoo) 1e-3
Dropout {0, 0.2}
Weight Decay 1e-5
Warmup Iterations {1, 100}

Table 6: Hyper-parameters for minGPT on Bookcorpus in Figure.2

3We used this repository : https://github.com/karpathy/minGPT. And we used gpt-mini in
this repository.
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