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Abstract

We propose MIRA (Multimodal Imagination for Reasoning Assessment), a new1

benchmark designed to evaluate models in scenarios where generating intermediate2

visual images is essential for successful reasoning. Unlike traditional Chain-of-3

thought (CoT) methods that rely solely on text, tasks in MIRA require models to4

generate and utilize intermediate images — such as sketches, structural diagrams,5

or path drawings — to guide their reasoning process. This setup closely mirrors6

how humans solve complex problems through “drawing to think”. To solve this,7

MIRA focuses on tasks that are intrinsically challenging and involve complex8

structures, spatial relationships, or reasoning steps that are difficult to express9

through language alone (e.g., tracking a die’s movement on a board and summing10

the face-down values after each roll). To ensure that our evaluation data is of high-11

quality, we include 546 multimodal problems, annotated with intermediate visual12

images and final answers. We also propose a unified evaluation protocol for MIRA13

that spans three levels of evaluation input: direct input with image and question14

only, text-only CoT (Text-CoT) input with image and thinking prompts, and Visual-15

CoT input with both annotated image clues and textual thinking prompts. To probe16

the upper bound of model capacity on our benchmark, we also report pass@k and17

majority voting accuracies under different k settings. Experimental results show18

that existing multimodal large language models (MLLMs), including strongest19

private models (e.g., GPT-5, o3, Gemini 2.5 Pro) as well as strong open-weight20

models (e.g., Qwen2.5-VL, GLM 4.5V), perform poorly when relying solely on21

textual prompts. However, when intermediate visual cues are provided, model22

performance improves consistently, yielding an average relative gain of 33.7%23

across all models and tasks. We also probe the upper bound by expanding the24

search space and designing textual prompts aligned with Visual-CoT, but both yield25

only limited improvements compared to our Visual-CoT setting. These results26

underscore the critical role of imagined visual information in enabling successful27

reasoning on MIRA.28

1 Introduction29

Chain-of-Thought (CoT) prompting has emerged as a powerful paradigm for improving the reasoning30

capabilities of large language models (LLMs) [41]. By generating intermediate natural language31

rationales, CoT enables models to decompose complex problems into manageable steps, yielding32

significant gains in tasks such as arithmetic reasoning, commonsense inference, and multi-hop33

question answering [23, 52]. Despite its effectiveness, existing CoT methods operate entirely in34

the textual domain—even for multimodal models: every intermediate step must be verbalized in35

words. This purely linguistic format is inherently limiting, as many real-world reasoning prob-36

lems are intrinsically visual — requiring spatial reasoning, geometric manipulation, or physical37
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simulation — that humans typically address by drawing to think. In such cases, natural language38

sometimes becomes an awkward and lossy medium for expressing intermediate states, forcing mod-39

els to describe visual cues step-by-step. As AI models showing exceptionally strong capabilities40

on everyday tasks with resemblant human perceptions, questions arise when facing these real-41

world questions: Can current multimodal models truly reason with integrated visual artifacts, and42

how much can this capability contribute to solving complex visual reasoning problems?43

Existing multimodal reasoning benchmarks primarily treat individual images as the input, testing44

models on tasks such as visual question answering [16, 2, 49, 50, 48, 33], image captioning [24, 14, 9],45

or visual grounding [47, 28]. While some recent datasets incorporate multi-step reasoning [26, 40,46

8, 10, 44], the intermediate steps remain text-only, and visual generation is rarely required to solve47

these problems. A few preliminary efforts have explored tool-augmented reasoning, where models48

can call external drawing components or retrieve related images [21, 51, 17, 27, 36], but these are49

often limited to specific domains and constrained by tools leveraged.50

To bridge this gap, we introduce MIRA (Multimodal Imagination for Reasoning Assessment), a51

benchmark designed to evaluate reasoning scenarios where generating or leveraging intermediate52

visual representations is essential. Each instance is constructed according to three principles: (1)53

requiring intermediate visual cues to answer the question, (2) pairing each instance with annotated54

step-wise visual clues to enable evaluation under a Visual-CoT setup, and (3) enforcing strict human55

annotation and cross-validation to guarantee data quality. MIRA includes both tasks that hinge on a56

single auxiliary image and those requiring a sequence of intermediate visual states (e.g., tracking57

object state changes over time). In total, the benchmark spans 20 task types and 546 carefully58

designed examples, covering scenarios from spatial layout reasoning and geometric construction to59

cross-temporal state tracking. All examples are paired with gold-standard intermediate visual states60

and images precisely aligned with reference reasoning trajectories, along with final answers, ensuring61

evaluation is automated and repeatable.62

Since each problem is paired with human-annotated intermediate visual states, to explore the capacity63

of models given different granularities of visual information, we evaluate models under three settings:64

(1) Direct Evaluation — giving question and image directly; (2) Text-CoT Reasoning — giving CoT65

prompt with the question and image; and (3) Simulated Visual-CoT Reasoning — giving both visual66

step input and textual CoT prompt along with the question and image. This protocol decouples the67

information contribution of visuals from textual generation ability and provides an evaluation path68

for future MLLMs that can “think while drawing”. We select state-of-the-art open-weight MLLMs69

and commercial MLLMs from six different companies. By employing these three input settings, our70

analysis uncovers several key findings. MIRA proves highly challenging: even GPT-5 reaches only71

16.5% accuracy with direct inputs, and no model surpasses 20%. Some categories are particularly72

difficult, such as Puzzles (9.5% vs. 16.1% on others). Text-CoT, while useful elsewhere, often73

underperforms here on MIRA reducing accuracy for Gemini 2.5 Pro and o3 by 18.3% and 14.0%. In74

contrast, our Visual-CoT delivers consistent gains, e.g., GPT-5-mini improves from 13.7% to 23.2%75

on average, and Physics tasks nearly double across all proprietary MLLMs. Together, these results76

highlight both the limits of text-only CoT prompting and the promise of visual reasoning for existing77

advanced multimodal systems.78

2 Related Work79

CoT Reasoning in LLMs. Prompting models to articulate step-by-step solutions in natural language80

- i.e., chain-of-thought prompting - significantly improves their reasoning performance [41]. Building81

on this paradigm, variants like zero-shot CoT [23] and automatically constructed CoT exemplars [52]82

enable models to break down complex problems into intermediate textual steps, achieving strong83

results on arithmetic, commonsense, and multi-hop QA tasks. However, these approaches remain84

purely textual: they assume verbal reasoning alone suffices and struggle on inherently visual tasks85

that are better served by diagrams or spatial representations, where intermediate graphical states86

would be needed.87

Reasoning Benchmarks in MLLMs. Multimodal reasoning research has been driven by bench-88

marks like Visual Question Answering (VQA) [2, 16, 49], image captioning [24, 14], and visual89

grounding [47, 28]. These tasks use an image-in, text-out format focusing on visual understanding,90

and many prompts target simple perception (e.g., “Who is wearing glasses?”), placing minimal de-91
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Input image CoT image

Q: Given 10 blue points, they form a 
blue convex hull. Given 10 green points, 
they form a green convex hull. How 
many red points fall in the overlapping 
portion of the blue and green convex 
hulls? Answer with only one digit.

Input image CoT image

Q: This is what a clock looks like in a 
mirror. What time will it be in 1 hours 
and 40 minutes?

Input image

CoT image

Q: Which option can be obtained by 
mirroring the original image once?

Input image CoT image step1 CoT image step2

Q: Choose two images from the four images A-D and overlay them according to the 
black coordinate axis borders of each image. This will produce the overlapping 
portion of the shapes in the image. Which combination has the largest overlapping 
area? Output only two letters to represent the combination, such as 'AC'.

Input image

Q: Given three different perspectives of a cube (top left, top right, and bottom left in the left image) and the patterns on its six 
faces (bottom right in the left image), please fill in the corresponding patterns in its unfolded view (right image). Note that 
only the outer surface of the cube has patterns; the inner surface does not. That is, the unfolded view on the right represents 
the outer surface of the cube. The six patterns are represented by 'heart, 'circle,' 'moon,' 'arrow,' 'triangle,' and 'star,'
respectively. The output format is '(number, shape),' with different correspondences separated by semicolons.

Input image CoT image

Q: In the image, a billiards table is shown with its pockets numbered 
1 – 6 in red. If the blue ball rolls in the direction indicated by the 
green arrow—without spin and with unlimited momentum—and is 
guaranteed to drop into a pocket, which pocket will it enter? Please 
answer with the single digit 1 – 6.

Input image CoT image

Q: Tile the square on the right using the solid-outlined puzzle pieces on the left. Use all pieces; the final tiling 
must be exact—no leftovers, no gaps, and no overlaps. Each piece has a circle. After completing the tiling, 
return the coordinates of each circle in numerical order, using the format: [piece ID (e.g., 1), (x, y)]; separate 
entries with semicolons.

Input image CoT image

Q: Analyze the forces acting on the 
topmost positive charge (+Q) and 
indicate the direction of the net force on 
it. Note: the size of each sphere does not 
represent the charge magnitude; use the 
label inside each sphere to determine its 
charge.

Input image

CoT image

Input image CoT image

Q: Which three of the nine pieces on the right can be combined 
to exactly match the shape on the left? Please list the three piece
numbers (comma-separated, ascending order).

Q: Based on the partial folding steps 
shown at the top of the image (ordered 
from left to right, top to bottom), can 
you infer which of the paper airplanes 
below is the final result?

Q: Bomb in a Box — which wire will 
you cut to defuse it? You can’t open the 
box or see beneath the metal slats, and 
the wires only change direction where 
they’re visible.

CoT image step1 CoT image step2 CoT image step3

Input image

CoT image

Input image

CoT step1 CoT step2 CoT step3

Q: If the dice is rolled on the showed path, what will be the 
number on the top?

CoT step4 CoT step5

Input image CoT image

Q: If the first gear in the image rotates 
slightly in the direction of the arrow, 
will the arrow on the final gear point to 
1 or 2? Please answer with a number.Input image

CoT image step1

CoT image step2

Q: Give the image, how many cubes 
are there in the image at most?

Input image

CoT image

Q: Given the object above. There is a 
missing piece in the white area. Which of 
the five pieces (A, B, C, D, or E) fits 
perfectly into the missing part of the object?

Input image

CoT image step1

CoT image step2
Q: Based on the three views, what's the 
maximum number of cubes that could be 
present?

Input image CoT image step1

CoT image step2

Q: When the die is rolled along the black 
and red paths respectively, which path 
yields a higher total sum of the numbers 
on the bottom face at each step (answer 
with \"red\", \"black\" or \"same\")? 
What is the total sum for that path? 
Note: both paths have the same length.

Convex Hull

Cubes Count

Overlap

Rolling Dice: Two 

Unfolded Cube

Electric Charge

Mirror Clock Defuse A Bomb Billiards

Gear Rotation

Puzzle

Trailer Cubes Count

Multi-piece Puzzle

Rolling Dice: Top

Localizer

Paper Airplane

Mirror Pattern 

Figure 1: MIRA categorizes Visual-CoT reasoning tasks into two primary types: Static (Single-Step)
and Dynamic (Multi-Step), with representative examples from each category illustrated in the figure.
The dataset includes 20 types of tasks, 546 input images with manually designed questions, and 936
manually constructed single-step and multi-step intermediate images. For more cases, please refer to
Appendix D.

mands on reasoning. Some datasets, such as ScienceQA [26], include multi-step reasoning hints, but92

those steps remain textual; problems can still be solved via natural-language rationales alone, without93

requiring intermediate images or visual cues. Comprehensive evaluation suites broaden the coverage94

of vision–language tasks but similarly do not require models to generate or manipulate intermediate95

visual cues [33, 48, 49, 50, 16]. Thus, while these benchmarks advanced MLLM evaluation, they96

overlook problems that genuinely need intermediate visual or diagrammatic reasoning — capabilities97

vital for unified generation - understanding models (e.g., [13, 6, 7, 46, 43, 5]).98

Integrating Visual Cues into Reasoning. Bridging the gap between human problem solving (which99

often uses sketches or diagrams) and text-only model reasoning, recent work explores visual chain-100

of-thought techniques. For example, Visual CoT [35] augments textual rationales with intermediate101

visual cues (e.g., bounding boxes on relevant regions) to improve vision–language reasoning. Beyond102

static cues, tool-augmented methods like Visual ChatGPT [42], VisProg [19], and ViperGPT [38]103

allow models to call external drawing or vision tools during reasoning to produce auxiliary visuals104

(sketches, cropped views, highlighted regions). Further, frameworks such as Vision-Augmented105

Prompting [45] and Visual Sketchpad [21] let models execute code (e.g., Python) to generate or update106

diagrams that assist in solving geometry and spatial reasoning tasks. However, these approaches rely107

on external tool orchestration and have not yet been systematically evaluated in open-ended reasoning108

scenarios.109

Unified MLLMs with Image Generation Capabilities. Recent unified-architecture MLLMs110

(e.g., Blip3-o [6], Janus-pro [7], Bagel [13], Show-o [46], OmniGen2 [43]) combine vision and111

language processing to both understand and generate images. By contrast, some open-weight112

MLLMs (Qwen2.5-VL [3], InternVL-X3 [53]) focus only on visual understanding (e.g., recognition,113

grounding, VQA) and do not support general image generation. In principle, generation-capable114

models could produce intermediate sketches or diagrams during reasoning, akin to a human’s scratch115

paper. Yet most image-generating MLLMs are optimized for photorealistic synthesis or descriptive116

captioning, not for creating abstract, task-specific diagrams; even advanced systems like Gemini [11]117

and GPT-5 [22] have not demonstrated robust “think-while-drawing” abilities. This gap highlights118

the need for benchmarks explicitly evaluating a model’s ability to generate and use intermediate119

visual representations during reasoning precisely what our proposed MIRA benchmark is designed120

to assess.121
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3 MIRA: Multimodal Imagination for Reasoning Assessment122

In this section, we introduce MIRA a comprehensive benchmark designed to evaluate capacities of123

MLLMs for Visual-CoT reasoning across a broad scope of tasks. MIRA consists of 546 curated124

samples spanning four challenging domains: Euclidean Geometry (EG), Physics-Based Reasoning125

(PBR), Abstract Spatial & Logical Puzzles (ASLP), and Causal Transformations (CT). Each instance126

is meticulously designed through a pipeline involving extensive human annotations to ensure high127

quality and a unique ground-truth answer. Except the data content itself, our evaluation extends128

beyond the vanilla direct input evaluation by requiring models to engage in complex, multi-step visual129

reasoning, which is further analyzed through a novel three-level diagnostic protocol with provided130

sequences of visual clues.131

3.1 Benchmark Data Design and Construction Details132

Prototype Questions & 
Generate Images

Construction and 
Validation

Manual Refinement

Feasibility Verification

Final 
Benchmark

Benchmark Task Distribution

Figure 2: A high-level overview of the MIRA data
design and construction pipeline.

The design of MIRA data is built around133

three core principles to ensure the data re-134

quires visual-CoT to solve, paired with ar-135

tificial visual reasoning clues, and is of136

high-quality, respectively. First, our data137

design emphasizes the need of intermedi-138

ate visual information (i.e., Visual-CoT) to139

solve questions. This intermediate process140

is analogous to the scratchpad diagrams hu-141

mans create when solving difficult problems.142

For instance, to determine the direction of143

force on a positive charge, one might draw144

a force-body diagram to visualize the net145

force. This approach is a complement to tra-146

ditional text-based CoT and other prompt-147

ing paradigms that simulate model think-148

ing merely as attention-grounding bounding149

boxes or textual descriptions of visual con-150

cepts.151

Second, to probe the capacities of models152

to process visual CoT information, we pa-153

rameterize the complexity of our data by the154

number of reasoning steps and intermedi-155

ate visuals. Specifically, MIRA evaluates156

this capability across either single-step or157

multi-step visual reasoning - requiring either158

one pivotal intermediate visual clue or a se-159

quential of visual trajectories during model160

inference.161

Third, diving into detailed data implementation, we employed a hybrid construction pipeline by162

integrating the manual labeling, human inspection and programmatic generations. All manually163

created problems were authored by graduate-level researchers, drawing inspiration from Reddit’s164

visual-puzzle and puzzle-game communities, as well as various exercise repositories and brain-teaser165

websites [34, 4, 37, 25], while ensuring novel formulations and original content. To complement166

these, additional problems were programmatically generated via Python scripts, enabling fine-grained167

control over difficulty. These initial image inputs are then refined for better visual quality and clarity168

using image editing tools (e.g., GPT-4o, Gemini 2.5 Flash). The final stage involves a rigorous quality169

control with cross-review and conflict resolve, to ensure each problem has a single, unambiguous170

ground-truth answer and a reliable visual reasoning trajectory for the input. Figure 2 summarizes the171

detailed data pipeline.172
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3.2 Evaluation Protocol173

Visual-CoT tasks are difficult in nature, as they favor intermediate visual clues for answering faithfully.174

A key contribution of MIRA is its three-level diagnostic evaluation protocol, designed to move beyond175

a single accuracy score and provide insights into why a model fails:176

• Level 1: Direct Evaluation. The standard end-to-end setting where the model receives only177

the initial problem (Iq, Tq) and must produce the final answer directly, where the Iq and178

Tq mean the input images and text, respectively. This measures overall problem-solving179

capability.180

• Level 2: Text-CoT Reasoning. The model is prompted to first generate a textual chain181

of thought and then provide the final answer. This level tests the model’s ability to solve182

problems in MIRA using text-based reasoning.183

• Level 3: Simulated Visual-CoT Reasoning. Considering that current models, both open184

weight and commercial, cannot accurately generate or interleave the use of intermediate185

images and tool-generated auxiliary visuals, we provide manually annotated intermediate186

images for every task in MIRA. In Level 3, we evaluate the benefits of these intermediate187

visuals by providing them to the model and prompting it to reason based on them before188

giving the final answer.189

Together, this evaluation paradigm allows us to assess the model abilities to understand and think190

over visual-reasoning-intensive situations. We provide detailed prompt templates in the evaluation191

process for these three levels in Appendix B.192

4 Evaluation193

This chapter aims to provide a comprehensive empirical evaluation of the performance of current194

mainstream MLLMs on the MIRA benchmark. We have three core objectives: (1) to quantify the195

performance of state-of-the-art models on tasks that require intermediate visual reasoning; (2) to196

systematically measure the performance improvements brought by an explicit visual chain-of-thought,197

thereby isolating and evaluating the actual contribution of visual cues; and (3) to conduct a fine-198

grained analysis of the models’ various capabilities and failure modes, providing deep insights into199

the key challenges in achieving a human-like “thinking by drawing” reasoning process and how to200

overcome them.201

4.1 Experimental Setup202

This subsection provides a detailed account of the methodological framework for our evaluation,203

covering model selection, implementation of the diagnostic evaluation protocol, and the evaluation204

metrics, to ensure that our results are reproducible and clear.205

Baseline Models. To provide a comprehensive snapshot of the current landscape, we selected a206

diverse and representative cohort of MLLMs and these models are grouped into three key categories.207

• Closed-Source MLLMs: These models represent the pinnacle of multimodal capabilities208

and serve as an upper-bound reference. We evaluate a range of leading models, including209

GPT-5 and GPT-5-mini [31], GPT-4.1 [15], GPT-4.1-mini [15], GPT-4o [30], GPT-4o-210

mini [29], Claude 4 Opus [1], Claude 4 Sonnet [1], o4-mini [32], o3 [32], Seed1.5-VL [18],211

Seed1.6 Vision Pro [18], Qwen-VL-Max [3] and Gemini 2.5 Flash and Pro [12].212

• Open-Weight MLLMs (Understanding): This class of models exhibits strong visual213

understanding capabilities, but typically lacks native, general-purpose image generation214

abilities. Considering the overall difficulty of the task, we only selected flagship models with215

large parameter counts from open-weight models for evaluation. We evaluate s Qwen2.5-216

VL (73B) [3], and GLM 4.5 V (106B) [20]. This category helps us assess the reasoning217

limitations of models that are primarily geared towards perception tasks.218

• Open-Weight Unified MLLMs (Understanding & Generation): This emerging class of219

models possesses both understanding and generation capabilities, making them the most220
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Table 1: Main results of various models on MIRAṪhe models are grouped into three categories:
Closed-Source SOTA MLLMs, Open-Weight MLLMs, and Open-Weight Unified MLLMs. We report
model results under three different inputs: D for direct input, T for Text-Cot, and V for Visual-CoT.
Detailed results on each sub-category can be found on Tables 4-10. We highlight the top-three
performing models in each column with varying shades of blue, where a darker shade indicates a
higher rank.

Model EG (Geometry) PBR (Physics) ASLP (Puzzles) CT (Causal) Overall
D T V D T V D T V D T V D T V

Closed-Source SOTA MLLMs

Gemini 2.5 Flash 9.4 11.7 15.6 19.7 22.9 46.7 6.5 5.9 7.1 14.0 12.0 14.1 11.3 11.7 17.3
Gemini 2.5 Pro 10.6 11.1 15.0 41.1 27.1 59.5 11.0 7.1 9.7 17.2 17.0 10.1 16.9 13.8 18.9
GPT-5 14.5 14.4 15.6 29.9 22.2 53.7 10.8 15.7 19.9 17.9 19.3 28.6 16.5 17.2 25.9
GPT-5-mini 10.0 10.6 20.0 28.1 21.3 39.8 7.2 10.8 16.9 17.2 13.1 24.6 13.7 12.9 23.2
GPT-4.1 16.1 17.8 16.7 12.2 16.5 39.4 6.6 7.9 10.5 13.2 17.9 15.3 11.9 14.7 17.9
GPT-4.1-mini 5.5 8.9 11.7 9.5 22.2 31.1 12.4 12.5 10.9 10.3 15.4 14.8 9.4 13.6 15.1
GPT-4o 17.2 11.1 11.7 8.0 11.1 38.1 4.6 3.2 9.7 14.1 12.1 9.1 11.2 9.0 14.4
GPT-4o-mini 7.2 13.9 11.1 14.3 5.9 17.5 7.8 6.6 9.2 15.6 17.3 15.2 10.5 11.3 12.5
o3 15.2 13.3 18.3 22.4 16.9 47.6 11.5 8.5 12.9 20.1 20.2 27.5 16.4 14.1 23.4
o4-mini 14.0 13.1 14.0 18.8 30.5 44.0 14.6 11.4 11.7 16.6 14.4 24.4 15.6 15.5 20.4
Claude 4 Opus 12.8 15.6 15.0 19.0 22.2 28.6 7.8 7.8 10.5 12.7 11.6 12.1 12.2 13.3 14.9
Claude 4 Sonnet 12.2 10.0 15.0 19.7 18.6 27.6 10.3 11.0 8.5 12.6 15.1 9.6 12.9 12.9 13.6
Seed1.5-VL 11.1 10.6 16.1 20.6 28.6 43.7 8.6 11.2 3.9 14.0 18.0 12.6 12.5 15.3 15.7
Seed1.6 Vision Pro 13.3 11.1 21.7 20.7 22.2 51.6 8.6 8.5 4.6 16.9 10.2 11.2 13.9 11.8 18.4
Qwen-VL-Max 11.7 12.8 17.8 24.5 22.2 31.7 13.5 9.1 11.7 13.8 7.6 20.2 14.7 11.8 18.7

Average 12.1 12.4 15.7 20.6 20.7 40.0 9.5 9.1 10.5 15.1 14.7 16.6 13.3 13.3 18.0

Open-Weight MLLMs (Understanding)

Qwen2.5-VL (32B) 4.4 3.9 5.6 4.8 6.4 4.3 1.3 3.9 4.5 3.9 10.7 4.7 3.4 6.0 4.9
Qwen2.5-VL (72B) 14.5 13.9 14.5 21.7 19.0 42.4 11.1 6.5 10.4 8.6 10.1 9.6 13.1 11.5 16.2
GLM 4.5 V (106B) 15.0 13.9 16.1 17.5 20.6 23.8 8.9 7.8 10.5 13.3 13.6 25.9 13.1 13.0 18.0

Average 11.3 10.6 12.1 14.7 15.3 23.5 7.1 6.1 8.5 8.6 11.5 13.4 9.9 10.2 13.0

Open-Weight Unified MLLMs (Understanding & Generation)

Bagel (7B) 9.7 5.0 11.2 7.9 0.0 7.9 3.5 5.3 4.4 12.3 4.8 13.5 7.5 4.7 8.8
Janus-Pro (7B) 2.5 11.2 9.0 0.0 4.8 0.0 4.0 8.8 6.2 11.2 5.3 6.9 4.9 8.9 7.2

promising candidates for future autonomous Visual-CoT. We evaluate Bagel [13] and Janus-221

pro [7]. Their performance in the simulated Visual-CoT setting provides a proxy for their222

potential to leverage self-generated visual aids.223

For transparency, for all models, we will report the specific version or API endpoint used in Ap-224

pendix A (e.g., gpt-4o-2024-11-20), a standard practice for reproducibility in benchmark papers.225

Here, the division of models into “understanding-focused" versus “unified" is not merely descriptive;226

it constitutes an implicit experimental axis. It is plausible to hypothesize that unified models, even227

without explicit fine-tuning for such tasks, may demonstrate a greater ability to integrate new visual228

information in the simulated Visual-CoT setting, as their architectures are designed for tighter cou-229

pling between vision and language generation. Thus, by comparing the performance gain between230

Text-CoT and Visual-CoT for these two classes of open-weight models, we can uncover architectural231

nuances that favor Visual-CoT-style reasoning.232

Evaluation. We use micro-averaged accuracy as our metric and employ a tiered pipeline to robustly233

extract answers from outputs containing lengthy reasoning. Our process prioritizes a fast, rule-based234

extraction, first attempting to parse a definitive answer from within an <answer></answer>tag, and235

then falling back to a set of heuristic regular expressions for common answer phrasings. For any236

remaining ambiguous outputs that elude these deterministic methods, we use a powerful LLM (gpt-237

4o-2024-11-20) as a semantic judge to analyze the full response and determine the correctness of the238

final answer against the ground truth. For the LLM evaluation prompts, please refer to Appendix B.239

4.2 Main Results240

In this section, we present a comprehensive comparison of various MLLMs on MIRA benchmark,241

with detailed results in Table 1. Our observations are threefold, which are detailed as follows.242
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Figure 3: A comprehensive performance comparison of leading models across three evaluation
settings: Direct Evaluation (D), Text-CoT Reasoning (T), and Simulated Visual-CoT Reasoning
(V). This stacked bar chart shows performance scaling: the base indicates pass@1 accuracy, with
segments above capturing gains from pass@2, pass@4, and pass@8. The red horizontal marks show
majority voting scores over 8 responses.

MIRA is challenging, with some categories proving toughest. Our results show that MIRA243

poses substantial difficulty even for the strongest MLLMs. For example, the latest OpenAI’s GPT-5244

achieves only average 16.5% accuracy with direct inputs, while there is no a single model achieves245

accuracy over 20% with only the image and question input. Interestingly, MLLMs generally lags246

behind on tasks in the Puzzles category, a category that requires meticulous visual understanding247

and reasoning abilities, compared to other task categories (i.e., average 9.5% on Puzzles vs. 16.1%248

on other categories with the direct input). These observations indicate that the intrinsic challenging249

nature of MIRA and confirm that current MLLMs are adapted for broad general-purpose reasoning250

but remain poor in handling tasks that demand fine-grained visual comprehension and reasoning.251

Text-CoT alone is not enough for solving MIRA. Although Text-CoT has proven beneficial on252

various reasoning benchmarks, our analysis reveals it offers little to no advantage in MIRA. In fact,253

for strong models like Gemini 2.5 Pro and o3, Text-CoT actually degrades performance by a relative254

percentage of 18.3% and 14.0%, respectively. This trend suggests that stronger models with inherent255

reasoning capabilities may be adversely impacted by the standard Text-CoT approach. Moreover, on256

harder categories such as Puzzles and Causal, which evaluate a model’s capacity for detailed visual257

reasoning, Text-CoT harms the accuracy of proprietary models by a relative average proportion of258

4.2% and 2.6% severally. These findings not only highlight the limitations of relying exclusively on259

Text-CoT when problems in MIRA demand auxiliary visual processes but also establish the need for260

a more solid and effective visual reasoning framework.261

The annotated Visual-CoT might be the (temporary) solution. One solution we proposed for262

examples that require visual thinking is incorporating human annotated visual demonstrations, which263

yields substantial improvements across nearly all models. GPT-5-mini, for instance, improves264

markedly from 13.7% to 23.2%, while all models achieve notable gains with an average relative265

33.7% score boost (e.g., 12.2% to 16.3%). Importantly, Visual-CoT particularly benefits challenging266

categories: Puzzle tasks see a modest increase of 1.0% over the original 9.5% accuracy for private267

models, whereas Physics tasks experience a striking jump from 20.7% to 40.0% when our visual268

reasoning patterns are introduced. Open-weight models such as the Qwen2.5-VL family and GLM-269

4.5V also improve with Visual-CoT (e.g., average 9.9% with direct input vs. 13.0% with Visual-CoT),270

though their gains are more limited. This relatively weak performance is likely due to smaller271

parameter scales and the lack of extensive training on interleaved Visual-CoT data. Although current272

unified models like Bagel and Janus-Pro can generate both images and text, they cannot produce273

images while answering questions. Visual-CoT helps them better understand the question and reason274

effectively, yielding relative gains of 17.3% and 46.9% for Bagel and Janus-Pro. Overall, while our275

findings highlight the promise of Visual-CoT as an effective means of enhancing MLLM performance,276
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Table 2: Comparison of Text-CoT reasoning performance: General Template (Tgen) vs. Specialized
Template (Tspec). The ∆ (Gain) column indicates the performance improvement when using a
specialized template over a general one.

Model EG (Geometry) PBR (Physics) ASLP (Puzzles) CT (Causal) Overall
Tgen Tspec ∆ Tgen Tspec ∆ Tgen Tspec ∆ Tgen Tspec ∆ Tgen Tspec ∆

Closed-Source SOTA MLLMs

Claude 4 Opus 15.6 18.0 +2.4 22.2 19.0 -3.2 7.8 14.5 +6.7 11.6 14.2 +2.6 14.3 16.4 +2.1
Claude 4 Sonnet 10.0 16.5 +6.5 18.6 15.9 -2.7 11.0 11.8 +0.8 15.1 11.8 -3.3 13.7 14.0 +0.3
Gemini 2.5 Flash 11.7 11.7 0.0 22.9 28.2 +5.3 5.9 9.8 +3.9 12.0 14.0 +2.0 13.1 15.9 +2.8
Gemini 2.5 Pro 11.1 12.0 +0.9 27.1 28.0 +0.9 7.1 8.0 +0.9 17.0 17.6 +0.6 15.6 16.4 +0.8
GPT-4.1-mini 8.9 10.6 +1.7 22.2 31.4 +9.2 12.5 10.2 -2.3 15.4 19.8 +4.4 14.8 18.0 +3.2
GPT-4.1 17.8 16.1 -1.7 16.5 17.5 +1.0 7.9 15.6 +7.7 17.9 13.9 -4.0 15.0 15.8 +0.8
GPT-4o 11.1 11.1 0.0 11.1 6.3 -4.8 3.2 6.4 +3.2 12.1 12.9 +0.8 9.4 9.2 -0.2
GPT-5 14.4 15.6 +1.2 22.2 33.8 +11.6 15.7 13.7 -2.0 19.3 19.1 -0.2 17.9 20.6 +2.7
GPT-5-mini 10.6 15.6 +5.0 21.3 28.6 +7.3 10.8 9.3 -1.5 13.1 12.4 -0.7 14.0 16.5 +2.5
o3 13.3 12.2 -1.1 16.9 21.9 +5.0 8.5 8.8 +0.3 20.2 18.1 -2.1 14.7 15.3 +0.6
o4-mini 13.1 13.3 +0.2 30.5 22.6 -7.9 11.4 18.8 +7.4 14.4 16.3 +1.9 17.4 17.8 +0.4
Seed1.5-VL 10.6 11.7 +1.1 28.6 29.4 +0.8 11.2 11.8 +0.6 18.0 18.5 +0.5 17.1 17.9 +0.8
Seed1.6 Vision Pro 11.1 12.0 +0.9 22.2 23.0 +0.8 8.5 9.2 +0.7 10.2 10.8 +0.6 13.0 13.8 +0.8

Average 12.2 13.6 +1.4 21.0 23.6 +2.6 9.2 10.8 +1.6 15.2 15.3 +0.1 14.4 15.8 +1.4

Open-Weight MLLMs (Understanding)

Qwen2.5-VL (32B) 3.9 8.0 +4.1 6.4 5.6 -0.8 3.9 1.9 -2.0 10.7 18.6 +7.9 6.0 7.8 +1.8
Qwen2.5-VL (72B) 13.9 11.5 -2.4 19.0 16.7 -2.3 6.5 8.9 +2.4 10.1 13.4 +3.3 11.5 11.8 +0.3
GLM 4.5 V (106B) 13.9 18.1 +4.2 20.6 25.0 +4.4 7.8 8.3 +0.5 13.6 14.4 +0.8 13.0 15.3 +2.3

Average 10.6 12.5 +2.0 15.3 15.8 +0.4 6.1 6.4 +0.3 11.5 15.5 +4.0 10.2 11.6 +1.5

they also suggest it is only a temporary solution. Closing this gap will require new training paradigms277

and datasets that seamlessly integrate visual and textual reasoning.278

4.3 Attempts to Probe the Model Upper-Bound279

To evaluate models’ “best-case potential” beyond single-answer accuracy to determine whether their280

failures are due to accidental reasoning errors or a fundamental lack of capability. We broaden the281

decoding search space using Pass@k and majority voting [39], and further explore model inputs with282

task-specific prompts aligned to our Visual-CoT.283

Broaden the searching space by Pass@k and majority voting scores. We employ Pass@k (e.g.,284

k=1,2,4,8) to aggregate sampled model answers. where the model generates k different reasoning285

paths and answers for the same problem, and is considered successful if at least one is correct. We286

found that while performance increases with k from 1 to 4 with an average 15.3% improvement287

over all models, the gains nearly converge between k=4 and k=8 (i.e., only average 3.0%). More288

concretely, models like Gemini 2.5 Flash and GPT-5 exhibit only marginal gains from pass@4 to289

pass@8 (e.g., 1.3% and 0.6%, respectively). These results prove that tasks in MIRA are highly290

challenging for these models even with wider search spaces.291

We also perform majority voting [39] on the eight sampled responses, with the results presented292

inside red bars in Figure 3. It is noteworthy that, both Pass@k and majority voting see fewer293

performance gains for models with stronger reasoning abilities — e.g., the stronger GPT-5 shows a294

20.4% improvement from Pass@1 to Pass@8, while the slightly less powerful GPT-4o gains more at295

23.6%. Similarly, majority voting improves Gemini 2.5 Flash’s score by 5.1%, whereas the more296

advanced Gemini 2.5 Pro only sees a minimal 0.3% increase. While a wider search space benefits297

weaker models by offering more chances to succeed, stronger models show that their failures are not298

due to simple reasoning errors but rather a fundamental lack of capability on MIRA. This suggests299

that MIRA requires a core reasoning skill that is absent, regardless of how many attempts are made.300

Design Text-CoT to align with Visual-CoT. While vanilla Text-CoT prompts only instruct models301

to “think step-by-step”, the proposed Visual-CoT provides richer and more explicit reasoning paths302

for MLLMs to follow. To bridge the gap between Text-CoT and Visual-CoT, we design task-specific303

CoT prompts that better align with the guidance provided by Visual-CoTs across different tasks (see304

Appendix B for details). As shown in Table 2, replacing generic prompts with specialized ones leads305

to consistent improvements, yielding an average gain of 1.4% over closed-source models and 1.5%306

over three open-weight MLLMs. However, these gains remain modest or even negative with a range307

from -0.2% to +3.2% compared to the stronger improvements brought by Visual-CoT, which achieves308
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Q: Given 10 blue points, they form a blue convex 
hull. Given 10 green points, they form a green 
convex hull. How many red points fall in the 
overlapping portion of the blue and green convex 
hulls? Answer with only one digit.

Visual CoT Image

Step-by-step reasoning
(1) Locate the blue points (10 of them) and imagine (or sketch) the 
convex hull that encloses all of them. The extreme blue points are 
roughly at (0.10,0.40), (0.10,0.62), (0.18,0.95), (0.53,0.90), (0.66,0.69) 
and the single low point at (≈0.47,0.03). This hull therefore spans an x-
range of ≈ 0.10 – 0.66 and a y-range of ≈ 0.03 – 0.95, with its right edge 
slanting up from (0.47,0.03) to (0.66,0.69).
(2) Locate the green points (10 of them) and imagine their convex hull. 
The green hull is larger: it reaches the far left (≈0.02,0.35), the top 
(≈0.79,0.97), and down to (≈0.45,0.10). Hence, the green hull almost 
covers the entire square, especially for x ≤ 0.85.
(3) The overlap (intersection) of the two hulls is therefore the part of the 
blue hull that is also inside the green hull – effectively the whole blue 
hull, except possibly for a tiny slice near its lowest right edge (because the 
green hull already contains almost all of it).
(4) Check each red point (20 of them) against that overlapping zone. Red 
points with x > 0.66 are automatically outside the blue hull and are not 
counted; these are the tight cluster of points on the far right (about nine 
points). For red points with x ≤ 0.66, one only needs to check if they are 
inside the slanted right-hand edge from (0.47,0.03) to (0.66,0.69). After 
inspection, the following seven red points lie inside that edge (and are 
also within the green hull): (≈0.18,0.83), (≈0.26,0.79), (≈0.24,0.67), 
(≈0.36,0.58), (≈0.28,0.55), (≈0.30,0.38), (≈0.53,0.44). All other red points 
are either to the far right or outside this slanted edge and therefore fail the 
blue-hull test.
(5)Thus, 7 red points fall inside the region common to both the blue and 
green convex hulls.
<answer>7</answer>

Input Image

GPT-5's Reasoning Based on Plain Text GPT-5's Reasoning Based on Text and

(1) Identifying the Blue Convex Hull:

First, we observe the blue polygon formed by the 10 blue 
points. This polygon represents the minimum convex hull 
that encloses all the blue points.

(2) Identifying the Green Convex Hull:

Similarly, we look at the green polygon formed by 10 green 
points. This is the minimum convex hull that encloses all the 
green points.

(3) Determining the Overlapping Region:

In the "Visual CoT Image", the blue and green convex hulls 
partially overlap. This overlapping region appears as the 
darkest area in the image—where the blue and green colors 
are combined.

(4) Counting the Red Dots:

Our goal is to count how many red dots fall within this 
specific overlapping region. By carefully examining the area, 
we can clearly see that 4 red dots lie within it.

<answer>4</answer>

Figure 4: A representative failure case of Text-CoT on a Euclidean Geometry (EG) reasoning task.
Even the strongest model (GPT-5) struggles to correctly reason through the problem using plain text,
due to its inability to manipulate intermediate visual states. In contrast, the Visual-CoT approach,
which leverages intermediate visualizations, enables more accurate localization of the overlapping
region and correct counting of red points.

an average gain of 4.7% on closed models. This observation underscores the inherent limitation of309

text-only guidance: certain reasoning steps require visual information that text alone cannot fully310

capture. These findings further highlight the importance of developing models capable of true visual311

reasoning and shed light on promising directions for advancing MLLMs.312

4.4 Case Study313

To illustrate the limitations of Text-CoT on MIRA tasks, we conduct a case study from the Euclidean314

Geometry (EG) category (Figure 4). The task asks the model to identify convex hulls of two point315

sets, locate their overlapping region, and count red dots within it: a process requiring complex spatial316

reasoning that is nearly impossible to convey in language alone. Even GPT-5 struggles: its text-only317

reasoning (brown section) attempts to verbally construct and intersect geometric shapes, resulting in318

vague and unreliable logic. Without visual grounding, it cannot accurately delineate the overlap, often319

resorting to words like “imagine” (red section), which highlight the inadequacy of purely textual320

reasoning. In contrast, supplying a simple “Visual-CoT Image” with hand-drawn hulls transforms the321

task. As shown on the right of Figure 4, the visual cue shifts reasoning from abstract descriptions to322

direct analysis: GPT-5 clearly identifies the two hulls, marks their intersection, and correctly counts323

the 4 red dots inside. This case clearly proves that for many visual reasoning tasks, visual grounding324

is indispensable, and a drawing on a scratchpad can potentially allow the model to reason more325

accurately.326

5 Conclusion327

This paper introduces the MIRA benchmark for systematically evaluating the capabilities of MLLMs328

in complex reasoning scenarios that require the generation of intermediate visual images. The329

experiments demonstrate three key findings. First, the purely Text-CoT has an intrinsic, medium-level330

limitation on visually-intensive tasks that is difficult to overcome with prompt engineering, and gains331

for even state-of-the-art models are very limited. Second, Visual-CoT, which provides intermediate332

visual clues, yields significant gains across various tasks, with an average relative improvement of over333

33%, highlighting the critical role of visual information in complex reasoning. Third, a significant gap334

remains between closed-source and open-weight models in their ability to effectively utilize visual335

clues. Overall, MLLMs that rely solely on textual reasoning struggle to address many real-world336

problems. There is an urgent need for a unified multimodal paradigm geared towards “thinking while337

drawing" one that generates high-quality intermediate visual states during the reasoning process and338

tightly couples them with subsequent language-based reasoning, while also pushing for open-weight339

models to catch up in capability. MIRA provides a reproducible evaluation platform and metric340

system for the development and comparison of such methods.341
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504

A Experimental Model Settings505

This section details the configurations for all models evaluated in our experiments. For all API-based506

models, we utilized the default decoding settings provided by each endpoint, with the maximum507

output length set to 16,384 tokens. The specific versions and checkpoints are organized in Table 3.508

For a specific subset of models, we used tailored generation parameters. Specifically, for Qwen-VL-509

Max (325B), GLM-4.5V (106B), and both variants of Qwen2.5-VL (32B/72B), we set the maximum510

output length to 8,192 tokens and used a topp value of 1.0. For the Bagel (operating in thinking mode)511

and Janus-Pro models, we followed the official inference configurations from their respective code512

repositories to ensure faithful evaluation.513

Table 3: A comprehensive list of the models evaluated in our experiments. For all API-based models,
the default decoding settings were used, as no specific sampling parameters (e.g., temperature) were
set.

Model Creator Version / Checkpoint
GPT-5 OpenAI gpt-5-2025-08-07
GPT-5-mini OpenAI gpt-5-mini-2025-08-07
GPT-4.1 OpenAI gpt-4.1-2025-04-14
GPT-4.1-mini OpenAI gpt-4.1-mini-2025-04-14
GPT-4o OpenAI gpt-4o-2024-11-20
GPT-4o-mini OpenAI gpt-4o-mini-2024-07-18
o3 OpenAI o3-2025-04-16
o4-mini OpenAI o4-mini-2025-04-16
Claude 4 Opus Anthropic claude4-opus
Claude 4 Sonnet Anthropic claude4-sonnet
Gemini 2.5 Pro Google gemini-2.5-pro
Gemini 2.5 Flash Google gemini-2.5-flash-preview-05-20
Seed1.6 Vision Pro ByteDance doubao-seed-1.6-vision-250815
Seed1.5-VL ByteDance doubao-1.5-vision-pro-250328
Qwen-VL-Max Alibaba qwen-vl-max-0813
Qwen-2.5-VL (32B) Alibaba qwen2.5-vl-32b-instruct
Qwen-2.5-VL (72B) Alibaba qwen2.5-vl-70b-instruct
GLM 4.5V (106B) ZAI glm-4.5v

B Prompt Settings514

This section provides the specific prompt templates used for the three evaluation levels described in515

Section 3.2, as well as the specialized templates used for the upgraded Text-CoT analysis in Section516

4.3. We also include, at the end, the prompt provided to gpt-4o-2024-11-20 during our evaluation.517
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Level 1: Direct Evaluation. For the direct evaluation setting, a straightforward prompt was used to518

ask the model for the final answer without requesting intermediate reasoning steps. The template519

was:520

[Input Image]
prompt = “‘Question: {question}
Please provide the final answer directly. The final answer is placed in <answer></answer>.”’

521

Level 2: Text-CoT Reasoning. This level tested the models’ ability to use text-based reasoning on522

MIRA tasks. The model is prompted to first generate a textual chain of thought and then provide the523

final answer. Two types of templates were employed to investigate the efficacy of this approach:524

• General Template (Tgen): This approach used a generic CoT prompt for all tasks. It served as a525

baseline to measure the general applicability of text-based reasoning.526

[Input Image]
prompt = “‘Question: {question}
Please first conduct step-by-step reasoning, and then provide the final answer. The final
answer is placed in <answer></answer>.”’

527

• Specialized Template (Tspec): To test the upper-bound performance of text-only reasoning,528

dedicated and task-specific CoT prompt templates were designed for each of the 20 tasks in the529

MIRA dataset. Below are the specific prompts used for each task, organized by category.530

(1) Euclidean Geometry (EG)531

Task: Convex Hull532

[Input Image]
prompt = “‘This is a convex hull problem. Analyze the points and determine the vertices
of the convex hull. Question: {question}
Please reason step-by-step: 1. Start with one color (e.g., Red): - Visually/algorithmically
assess which Red points are extreme (cannot be expressed as a convex combination of
other points). - Count how many target points this Red convex hull would contain (on the
boundary or strictly inside). Note any collinear runs along edges and whether intermediate
collinear points should be kept or skipped per the task convention. 2. Switch to the other
color (e.g., Blue): - Repeat the same analysis: identify extreme Blue points and count
how many target points the Blue convex hull contains. 3. Cross-check and reconcile: -
Compare Red- and Blue-based findings; verify no interior point is mistakenly classified
as a hull vertex. - Use supporting checks (orientation tests/cross products) to confirm
each candidate vertex lies on the outer boundary; handle collinearity consistently (keep
only endpoints unless the problem requires listing all boundary points). 4. Construct
the final hull: - Order vertices counterclockwise starting from the leftmost-lowest point
(or another clear anchor) and ensure the polygon is simple and closed. - Provide the
set/list of hull vertices (by labels or coordinates) and the total count. 5. Briefly justify:
- Summarize why each listed vertex is extreme and why excluded points are interior or
collinear intermediates.
The final answer is placed in <answer></answer>.”’

533

Task: Overlap534

[Input Image]
prompt = “‘Choose two images from A–D and overlay them by aligning their black
coordinate-axis borders. This produces the overlapping region of the two shapes. Which
pair has the largest overlapping area? Output only two letters like ’AC’. Please reason
step-by-step: 1. Normalize: confirm all four tiles share the same scale and origin; treat
overlays as perfect border-to-border alignment with no extra rotation/translation. 2. For

535
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each pair (AB, AC, AD, BC, BD, CD): - Compare centers and orientations; note how much
their silhouettes intersect (heart/square/star/arrow) when placed at identical coordinates. -
Use bounding boxes as a quick upper bound; then refine with edge/vertex relationships to
judge whether overlap is large (broad interior intersection), medium (partial edge/vertex
overlap), or small (mostly disjoint). 3. Track the estimated overlap area (qualitatively or
numerically if obvious from symmetry/containment). Resolve ties by preferring the pair
with broader interior overlap rather than thin edge contact. 4. State the chosen pair and
a 1–2 sentence justification referencing the relative placements/orientations that cause
maximal intersection.
The final answer is placed in <answer></answer>.”’

536

Task: Localizer537

[Input Image]
prompt = “‘Tile the square on the right using the solid-outlined puzzle pieces on the
left. Use all pieces; the tiling must be exact—no leftovers, no gaps, no overlaps. Each
piece has a circle. After completing the tiling, return the circle coordinates in numerical
order using the format: [pieceID, (x, y)]; separate entries with semicolons. Assumptions:
use the same unit grid as shown; coordinates are 1-indexed with (x,y) labeled along the
top/left axes; rotations and flips are allowed unless forbidden by outlines. Please reason
step-by-step: 1. Parse the target grid: record its outer size (width × height) and axes labels.
2. Catalog each piece (1–4): sketch its unit-square footprint, edge types (axis-aligned vs
diagonal), and the circle’s offset in the piece’s local coordinates. 3. Area & boundary
check: verify the sum of piece areas equals the target area; note unique constraints (e.g.,
long diagonals, notches) that can only fit specific borders/corners. 4. Plan placements:
anchor the largest/most constrained piece(s) to borders/corners first; ensure diagonals
match the grid diagonals; avoid creating unreachable cavities. 5. Place all pieces: finalize
positions and orientations so the region is fully covered; confirm no overlaps and all
borders align with grid lines/diagonals. 6. Convert circle positions: for each placed piece,
transform the circle’s local offset to global grid coordinates (x, y) and round to exact grid
intersections if applicable. 7. Output strictly in the required order and format: [1, (x1,
y1)]; [2, (x2, y2)]; [3, (x3, y3)]; [4, (x4, y4)].
The final answer is placed in <answer></answer>.”’

538

Task: Mirror Pattern539

[Input Image]
prompt = “‘Which option (A–D) can be obtained by mirroring the original image once?
You may follow these steps to reason: 1) Horizontally mirror the original image. 2)
After the reflection, allow an arbitrary in-plane rotation and critically compare against
each option A–D (match landmark positions/orientations; rule out any option that would
require a second reflection or non-rigid warping).
The final answer is placed in <answer></answer>.”’

540

Task: Cubes Count541

[Input Image]
prompt = “‘What’s the number of cubes presented in the image? Please follow these steps:
1. Identify each layer from bottom to top. 2. For each layer, count how many cubes are
present. 3. Add up the counts to get the total number of cubes.
The final answer is placed in <answer></answer>.”’

542

Task: Cubes Missing543
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[Input Image]
prompt = “‘What is the number of cubes needed to fill in the structure so that it becomes
a solid block with no internal gaps? Please follow these steps: 1. Identify the full
dimensions of the solid block (length × width × height). 2. For each layer (from top to
bottom), count: - Maximum possible cubes in that layer if solid - Actual cubes present -
Missing cubes = (full layer) – (present layer) 3. Add the missing cubes across all layers.
The final answer is placed in <answer></answer>.”’

544

(2) Physics-Based Reasoning (PBR)545

Task: Billiards546

[Input Image]
prompt = “‘In the image, a billiards table has pockets labeled 1–6. The blue ball rolls
along the green arrow, with no spin, perfectly elastic cushion bounces, and unlimited
momentum. Which numbered pocket will it finally enter? Answer with a single digit
1–6. You may follow these steps to reason: 1) Normalize the table: record the ball’s
starting point and the arrow’s direction; pockets are fixed at labels 1–6. 2) Use the mirror
(unfolding) method: virtually reflect the table across a cushion each time the path would
bounce. Extend the initial ray straight through these mirrored copies until it hits the
center of a mirrored pocket. 3) Map that hit back to the original table to identify the real
pocket number; equivalently, enforce equal-angles for each bounce and verify the same
destination. 4) Output only the pocket label (1–6).
The final answer is placed in <answer></answer>.”’

547

Task: Electric Charge548

[Input Image]
prompt = “‘Question: {question}

You may follow these steps to reason:
1. Parse the setup: list each charge with sign, magnitude, and coordinates; identify the

target object (which charge/point the net force is asked about).
2. For each source charge, determine the force direction on the target (attraction if

opposite sign, repulsion if same sign); sketch/describe the vector qualitatively.
3. Compute each force’s magnitude with Coulomb’s law

|Fi| = k
|qiqt|
r2i

,

and compute vector components using the displacement unit vector from source to
target.

4. Apply superposition: sum the components Fx and Fy to obtain the net force vector;
use symmetry to simplify whenever possible.

5. Report the net magnitude √
F 2
x + F 2

y

and direction (angle or cardinal description), and check limiting/special cases (e.g.,
r = 0 excluded, equal/opposite charges cancel along symmetry axes).

The final answer is placed in <answer></answer>.”’
549

Task: Mirror Clock550
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[Input Image]
prompt = “‘Question: {question}

You may reason as follows:
1. First mirror the clock face (by default, a left–right reflection about the vertical axis).
2. Record the hands’ angles relative to 12 o’clock after mirroring. The angles transform

as
θ′ = 360◦ − θ,

i.e. clockwise and counterclockwise directions swap.
3. If required to match choices/diagram, you may then apply an in-plane rotation (0°,

90°, 180°, 270°), but do not perform a second reflection.
4. Convert the mirrored angles back to time and handle hour-minute carry. For minutes

m and hours h (12-hour clock, with h ∈ {1, . . . , 12}):

m′ ≡ (60−m) (mod 60),

and define the borrow/carry as

carry =

{
1, m ̸= 0,

0, m = 0.

Then compute the mirrored hour

h′ ≡ (12− h− carry) (mod 12).

When presenting the result convert hour 0 to 12 for human-readable 12-hour time.
5. Compare with the choices, state the final time/option, and explain the key correspon-

dences in 1–2 sentences.
The final answer is placed in <answer></answer>.”’

551

(3) Abstract Spatial & Logical Puzzles (ASLP)552

Task: Unfolded Cube553

[Input Image]
prompt = “‘This is a cube unfolding problem. Determine which of the options can be
folded into the given cube, or what the unfolded pattern looks like. Explain your spatial
reasoning.
Question: {question}
The final answer is placed in <answer></answer>.”’

554

Task: Defuse A Bomb555

[Input Image]
prompt = “‘Question: {question} You can first connect the lines to the obstructed area
and then go through each option one by one to determine which wire to cut.
The final answer is placed in <answer></answer>.”’

556

Task: Multi-piece Puzzle557

[Input Image]
prompt = “‘Question: {question} You can carefully consider the details of each option
before making your choice.
The final answer is placed in <answer></answer>.”’

558

Task: Puzzle559
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[Input Image]
prompt = “‘Given the object above. There is a missing piece in the white area. Which
of the five pieces (A, B, C, D, or E) fits perfectly into the missing part of the object?
Please examine the immediate surroundings first and work step-by-step: 1. Describe
the boundary shape (angles, curves) of the hole. 2. Describe any pattern/stripe/texture
crossing the boundary. 3. Note lighting/shading and relative scale. 4. Compare each
candidate to steps 1–3 and rule out mismatches. 5. State final choice and a brief
justification (3–5 short sentences).
The final answer is placed in <answer></answer>.”’

560

Task: Trailer Cubes Count561

[Input Image]
prompt = “‘Based on the three views, what’s the maximum number of cubes that could
be present? Steps: 1. For each column (grid position in the top view), determine the
maximum possible height consistent with front and side views. 2. Count cubes in each
column = column height. 3. Sum across all columns for the total.
The final answer is placed in <answer></answer>.”’

562

Task: Trailer Cubes Missing563

[Input Image]
prompt = “‘Given the three views, what is the minimum number of cubes needed to fill in
the structure so that it becomes a solid block with no internal gaps?
Procedure the model must use:
1. Read the top view to list allowed (r,c) column positions.
2. Let Hfull be the required cuboid height (the maximum height implied by front/side).
3. To produce a minimal current 3D consistent with views.
4. For each allowed (r,c) column, compute missing = Hfull − assigned_height.
5. Sum missing cube values.
The final answer is placed in <answer></answer>.”’

564

(4) Causal Transformations (CT)565

Task: Paper Airplane566

[Input Image]
prompt = “‘Question: {question}
Please note the differences between the folding positions of the wings, center, and nose
of the aircraft in each option, and then choose the appropriate option.
The final answer is placed in <answer></answer>.”’

567

Task: Gear Rotation568

[Input Image]
prompt = “‘Question: {question}
You can answer this question based on the fact that two connected gears rotate in opposite
directions, a conveyor belt rotates in the same direction as the gears, and a crossed
conveyor belt rotates in the opposite direction as the gears.
The final answer is placed in <answer></answer>.”’

569

Task: Rolling Dice (Top)570
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[Input Image]
prompt = “‘Question: {question}
You can list the situation of each side of the dice after each roll, mark the top and bottom,
and then after you have reasoned through each step, combine each step with the final
result and choose the correct option.
The final answer is placed in <answer></answer>.”’

571

Task: Rolling Dice (Two)572

[Input Image]
prompt = “‘Question: {question}
You can list the situation of each side of the dice after each roll, mark the top and bottom,
and then after you have reasoned through each step, combine each step with the final
result and choose the correct option.
The final answer is placed in <answer></answer>.”’

573

Task: Rolling Dice (Sum)574

[Input Image]
prompt = “‘Question: {question}
You can list the situation of each side of the dice after each roll, mark the top and bottom,
and then after you have reasoned through each step, combine each step with the final
result and choose the correct option.
The final answer is placed in <answer></answer>.”’

575

Level 3: Simulated Visual-CoT Reasoning. This level evaluates the model’s ability to utilize visual576

information in its reasoning process. Given that current MLLMs are unable to generate their own577

intermediate visual steps, this setting simulates a Visual-CoT process. The model is provided with578

the initial problem image along with a sequence of manually annotated intermediate images that act579

as visual clues. The prompt then directs the model to reason based on this sequence of visuals to580

arrive at the final answer. This approach is designed to measure the performance improvement gained581

from visual aids and to understand the potential of a true “think while drawing" capability.582

[Input Image] [CoT Image 1] [CoT Image 2] ...
prompt = “‘Based on the question image and the intermediate reasoning image(s) provided,
please continue the reasoning to solve the problem.
Question: {question}
The final answer is placed in <answer></answer>.”’

583

Evaluation Prompt. This prompt is used by an evaluator model to judge the correctness of the584

primary model’s response.585

[Input Image]
Judge prompt = “‘You are a strict and precise evaluator. Your task is to determine whether
the model’s final answer is correct based on the ground truth.
Your evaluation must focus exclusively on the answer contained within the <an-
swer></answer>tags, as well as the final answer portion at the end of the model’s response.
Ignore all reasoning, explanations, or any other text outside of these sections. The correctness
of the reasoning process is not part of your evaluation.
Here is the data:
Question: “{question}"
Ground Truth Answer: “{ground truth}"
Model’s Full Response: “{model response}"
Based on the ground truth, is the answer inside the <answer>tag correct?
Please respond with only one word: “Correct" or “Incorrect". ”’

586
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C Detailed Experimental Tables587

This section provides a detailed breakdown of model performance across all sub-categories within588

the MIRA benchmark, supplementing the main results presented in Table 1. The following tables589

correspond to Tables 4-10 as referenced in the main paper.590

Table 4: Detailed Results for Euclidean Geometry (Convex Hull, Mirror Pattern) and Physics-Based
Reasoning (Mirror Clock) Tasks.

Model Convex Hull Mirror Pattern Mirror Clock
D T V D T V D T V

GPT-5 16.7 16.7 20.0 26.7 33.3 26.7 23.3 33.3 46.7
GPT-5-mini 10.0 16.7 23.3 30.0 10.0 16.7 3.33 6.67 43.3
GPT-4.1 13.3 16.7 10.0 20.0 36.7 26.7 3.33 6.67 13.3
GPT-4.1-mini 3.33 13.3 20.0 23.3 20.0 30.0 0.00 16.7 13.3
GPT-4o 6.67 3.33 16.7 36.7 23.3 20.0 0.00 0.00 0.00
GPT-4o-mini 6.67 10.0 16.7 13.3 30.0 20.0 0.00 3.33 0.00
o4-mini 13.8 11.5 3.33 33.3 20.0 16.7 16.7 13.3 33.3
o3 17.9 0.00 16.7 26.7 26.7 23.3 10.0 6.67 33.3
Claude 4 Opus 6.67 13.3 13.3 30.0 36.7 30.0 0.00 0.00 0.00
Claude 4 Sonnet 16.7 10.0 13.3 26.7 23.3 20.0 6.67 3.33 6.67
Seed1.5-VL 13.3 13.3 16.7 16.7 16.7 26.7 0.00 0.00 16.7
Seed1.6 Vision Pro 10.0 3.33 40.0 26.7 30.0 26.7 0.00 0.00 16.7
Gemini 2.5 Flash 0.00 0.00 3.33 13.3 30.0 30.0 6.67 6.67 40.0
Gemini 2.5 Pro 6.67 10.0 10.0 20.0 30.0 16.7 23.3 10.0 50.0
Qwen-VL-max-latest (325B) 3.33 0.00 23.3 13.3 33.3 33.3 6.67 0.00 0.00

Qwen2.5-VL (32B) 0.00 0.00 10.0 13.3 3.33 13.3 0.00 0.00 3.33
Qwen2.5-VL (72B) 16.7 20.0 16.7 20.0 20.0 30.0 3.33 0.00 3.33
GLM 4.5 V (106B) 16.7 13.3 20.0 30.0 33.3 26.7 0.00 0.00 0.00

Bagel (7B) 0.00 0.00 10.0 30.0 16.7 30.0 0.00 0.00 0.00
Janus-pro (7B) 0.00 16.7 0.00 3.33 13.3 23.3 0.00 0.00 0.00

Table 5: Detailed Results for Euclidean Geometry (Overlap), Abstract Puzzles (Unfolded Cube), and
Physics-Based Reasoning (Billiards) Tasks.

Model Overlap Unfolded Cube Billiards
D T V D T V D T V

GPT-5 36.7 36.7 46.7 8.70 27.3 45.8 23.8 9.50 85.7
GPT-5-mini 20.0 36.7 80.0 0.00 13.6 50.0 9.52 9.52 61.9
GPT-4.1 56.7 50.0 63.3 0.00 0.00 3.85 9.52 14.3 76.2
GPT-4.1-mini 3.33 13.3 20.0 23.3 20.0 30.0 0.00 16.7 13.3
GPT-4o 53.3 36.7 30.0 0.00 0.00 0.00 4.76 14.3 57.1
GPT-4o-mini 13.3 40.0 16.7 0.00 0.00 0.00 19.1 9.52 38.1
o4-mini 33.3 43.3 56.7 14.3 0.00 23.1 15.8 21.1 70.0
o3 36.7 43.3 66.7 10.0 0.00 23.5 9.52 25.0 90.5
Claude 4 Opus 36.7 43.3 43.3 0.00 0.00 7.69 9.52 23.8 42.9
Claude 4 Sonnet 23.3 26.7 53.3 0.00 0.00 0.00 9.52 9.52 42.9
Seed1.5-VL 36.7 33.3 46.7 0.00 7.69 3.85 9.52 23.8 52.4
Seed1.6 Vision Pro 43.3 33.3 56.7 0.00 7.69 7.69 19.1 19.1 85.7
Gemini 2.5 Flash 36.7 30.0 46.7 0.00 3.85 0.00 9.52 14.3 52.4
Gemini 2.5 Pro 36.7 20.0 63.3 19.2 3.85 7.69 28.6 14.3 61.9
Qwen-VL-max-latest (325B) 46.7 43.3 46.7 6.67 0.00 3.33 14.3 19.1 57.1

Qwen2.5-VL (32B) 13.3 20.0 10.0 0.00 0.00 0.00 14.3 19.1 9.52
Qwen2.5-VL (72B) 40.0 43.3 40.0 0.00 0.00 0.00 4.76 9.52 76.2
GLM 4.5 V (106B) 40.0 33.3 46.7 0.00 3.85 0.00 9.52 9.52 38.1

Bagel (7B) 10.0 13.3 16.7 0.00 0.00 0.00 19.1 0.00 19.1
Janus-pro (7B) 0.00 20.0 20.0 0.00 0.00 0.00 4.76 4.76 0.00

D Dataset Showcase591

The MIRA benchmark is composed of 546 multimodal problems spanning 20 distinct task types.592

These tasks are curated to be challenging and require intermediate visual reasoning, a process593

analogous to how humans “draw to think" to solve complex problems. The tasks fall into four594

challenging domains: Euclidean Geometry (EG), Physics-Based Reasoning (PBR), Abstract Spatial595

& Logical Puzzles (ASLP), and Causal Transformations (CT).596
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Table 6: Detailed Results for Euclidean Geometry (Localizer), Causal Transformations (Paper
Airplane), and Abstract Puzzles (Defuse A Bomb) Tasks.

Model Localizer Paper Airplane Defuse A Bomb
D T V D T V D T V

GPT-5 0.00 0.00 0.00 32.0 32.0 28.0 32.0 28.0 32.0
GPT-5-mini 0.00 0.00 0.00 12.0 16.0 36.0 16.0 28.0 16.0
GPT-4.1 0.00 0.00 0.00 28.0 16.0 16.0 24.0 28.0 40.0
GPT-4.1-mini 0.00 0.00 0.00 24.0 20.0 28.0 28.0 32.0 20.0
GPT-4o 0.00 0.00 0.00 20.0 20.0 24.0 16.0 8.00 24.0
GPT-4o-mini 0.00 0.00 0.00 20.0 12.0 20.0 8.00 24.0 32.0
o4-mini 0.00 0.00 0.00 20.0 12.0 40.0 24.0 24.0 28.0
o3 0.00 0.00 0.00 28.0 32.0 28.0 28.0 24.0 12.0
Claude 4 Opus 0.00 0.00 0.00 28.0 20.0 12.0 20.0 24.0 32.0
Claude 4 Sonnet 0.00 0.00 0.00 16.0 12.0 12.0 28.0 36.0 28.0
Seed1.5-VL 0.00 0.00 0.00 4.00 24.0 16.0 32.0 40.0 8.00
Seed1.6 Vision Pro 0.00 0.00 0.00 20.0 24.0 24.0 28.0 20.0 8.00
Gemini 2.5 Flash 0.00 0.00 0.00 16.0 12.0 24.0 16.0 16.0 12.0
Gemini 2.5 Pro 0.00 0.00 0.00 28.0 32.0 20.0 20.0 16.7 28.0
Qwen-VL-max-latest (325B) 0.00 0.00 0.00 20.0 4.00 20.0 32.0 16.0 36.0

Qwen2.5-VL (32B) 0.00 0.00 0.00 12.0 12.0 16.0 0.00 0.00 4.00
Qwen2.5-VL (72B) 0.00 0.00 0.00 20.0 4.00 20.0 32.0 16.0 36.0
GLM 4.5 V (106B) 0.00 0.00 0.00 4.00 12.0 12.0 30.4 20.0 28.0

Bagel (7B) 0.00 0.00 0.00 28.0 12.0 12.0 16.0 0.00 20.0
Janus-pro (7B) 0.00 0.00 0.00 4.00 8.00 12.0 16.0 0.00 8.00

Table 7: Detailed Results for Abstract Puzzles (Multi-piece Puzzle), Physics-Based Reasoning
(Electric Charge), and Causal Transformations (Rolling Dice: Top) Tasks.

Model Multi-piece Puzzle Electric Charge Rolling Dice: Top
D T V D T V D T V

GPT-5 0.00 0.00 6.67 42.7 23.8 28.6 30.8 30.8 92.3
GPT-5-mini 0.00 0.00 0.00 71.4 47.6 14.3 38.7 26.9 73.1
GPT-4.1 0.00 0.00 0.00 23.8 28.6 28.6 11.5 26.9 26.9
GPT-4.1-mini 0.00 3.33 0.00 28.6 33.3 66.7 3.85 23.1 23.1
GPT-4o 0.00 0.00 3.33 19.1 19.1 57.1 15.4 7.69 11.5
GPT-4o-mini 0.00 0.00 0.00 23.8 4.76 14.3 19.2 26.9 30.8
o4-mini 6.90 3.57 0.00 23.8 57.1 28.6 21.1 15.0 57.7
o3 0.00 0.00 3.57 47.6 19.1 19.1 30.8 26.9 76.9
Claude 4 Opus 3.33 0.00 0.00 47.6 42.9 42.9 11.5 15.4 23.1
Claude 4 Sonnet 3.33 3.33 0.00 42.9 42.9 33.3 15.4 34.6 30.8
Seed1.5-VL 0.00 0.00 0.00 52.4 61.9 61.9 23.1 38.5 19.2
Seed1.6 Vision Pro 0.00 3.33 0.00 42.9 47.6 52.4 15.4 26.9 26.9
Gemini 2.5 Flash 0.00 0.00 3.33 42.9 47.6 47.6 11.5 19.2 11.5
Gemini 2.5 Pro 3.33 6.67 3.33 71.4 57.1 66.7 7.69 23.1 15.4
Qwen-VL-max-latest (325B) 3.33 0.00 0.00 52.4 47.6 38.1 19.2 19.2 38.5

Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 0.00 7.69 11.5 7.69
Qwen2.5-VL (72B) 0.00 0.00 3.33 57.1 47.6 47.6 23.1 11.5 23.1
GLM 4.5 V (106B) 0.00 3.33 0.00 42.9 52.4 33.3 19.2 26.9 61.5

Bagel (7B) 0.00 0.00 0.00 4.76 0.00 0.00 15.4 3.85 19.2
Janus-pro (7B) 0.00 0.00 0.00 0.00 14.3 0.00 11.5 3.85 11.5

To supplement the overview provided in Figure 1 and offer a more intuitive understanding of the597

dataset, we showcase several representative examples for each category below (Figure 5- 14).598

E Disclosure of Large Language Model Use599

As required by ICLR 2026 policy, we report that a large language model (ChatGPT) was used for600

language refinement of this paper, including improvements to grammar, phrasing, and style.601

All research concepts, methods, analyses, and conclusions were conceived and executed solely by the602

authors. The model’s role was confined to copy-editing and it made no contribution to the scientific603

content. The authors are fully responsible for the final manuscript.604
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Table 8: Detailed Results for Causal Transformations Tasks (Rolling Dice: Sum, Rolling Dice: Two,
Gear Rotation).

Model Rolling Dice: Sum Rolling Dice: Two Gear Rotation
D T V D T V D T V

GPT-5 11.5 3.85 7.96 0.00 0.00 0.00 15.0 30.0 15.0
GPT-5-mini 15.4 7.69 3.85 0.00 0.00 0.00 20.0 15.0 10.0
GPT-4.1 11.5 11.5 3.85 0.00 0.00 0.00 15.0 35.0 30.0
GPT-4.1-mini 3.85 3.85 7.69 0.00 0.00 0.00 20.0 30.0 15.0
GPT-4o 0.00 7.69 0.00 0.00 0.00 0.00 35.0 25.0 10.0
GPT-4o-mini 3.85 7.69 0.00 0.00 0.00 0.00 35.0 40.0 25.0
o4-mini 11.8 5.00 4.17 0.00 0.00 0.00 30.0 40.0 20.0
o3 11.5 12.0 7.69 0.00 0.00 0.00 30.0 30.0 25.0
Claude 4 Opus 3.85 7.69 15.4 0.00 0.00 0.00 20.0 15.0 10.0
Claude 4 Sonnet 11.5 3.85 0.00 0.00 0.00 0.00 20.0 25.0 5.00
Seed1.5-VL 7.69 7.69 7.69 0.00 0.00 0.00 35.0 20.0 20.0
Seed1.6 Vision Pro 3.85 0.00 0.00 0.00 0.00 0.00 45.0 0.00 5.00
Gemini 2.5 Flash 7.69 3.85 0.00 0.00 0.00 0.00 35.0 25.0 35.0
Gemini 2.5 Pro 15.4 0.00 0.00 0.00 0.00 0.00 35.0 30.0 15.0
Qwen-VL-max-latest (325B) 0.00 0.00 0.00 0.00 0.00 7.69 30.0 15.0 35.0

Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.0 0.00
Qwen2.5-VL (72B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.0 5.00
GLM 4.5 V (106B) 15.4 3.85 11.5 7.69 0.00 34.6 20.0 25.0 10.0

Bagel (7B) 3.85 0.00 0.00 3.33 3.33 3.33 15.4 23.1 11.5
Janus-pro (7B) 3.85 7.69 0.00 0.00 0.00 0.00 25.0 10.0 5.00

Table 9: Detailed Results for Euclidean Geometry (Cubes Count, Cubes Missing) and Abstract
Puzzles (Puzzle) Tasks.

Model Cubes Count Cubes Missing Puzzle
D T V D T V D T V

GPT-5 3.33 0.00 0.00 3.33 0.00 0.00 3.85 34.6 30.8
GPT-5-mini 0.00 0.00 0.00 0.00 0.00 0.00 19.2 19.2 23.1
GPT-4.1 0.00 0.00 0.00 6.67 3.33 0.00 11.5 15.4 15.4
GPT-4.1-mini 0.00 0.00 0.00 3.33 6.67 0.00 23.1 15.4 15.4
GPT-4o 3.33 0.00 3.33 3.33 3.33 0.00 11.5 11.5 30.8
GPT-4o-mini 3.33 0.00 6.67 6.67 3.33 6.67 34.6 15.4 23.1
o4-mini 3.57 4.00 7.14 0.00 0.00 0.00 30.8 23.1 19.2
o3 3.33 6.67 0.00 6.67 3.33 3.33 26.9 23.1 34.6
Claude 4 Opus 0.00 0.00 0.00 3.33 0.00 3.33 19.2 23.1 23.1
Claude 4 Sonnet 3.33 0.00 3.33 3.33 0.00 0.00 30.8 26.9 23.1
Seed1.5-VL 0.00 0.00 3.33 0.00 0.00 3.33 3.85 7.69 7.69
Seed1.6 Vision Pro 0.00 0.00 3.33 0.00 0.00 3.33 11.5 0.00 3.85
Gemini 2.5 Flash 3.33 0.00 0.00 3.33 10.0 13.3 19.2 15.4 19.2
Gemini 2.5 Pro 0.00 6.67 0.00 0.00 0.00 0.00 11.5 11.5 19.2
Qwen-VL-max-latest (325B) 6.67 0.00 3.33 0.00 0.00 0.00 30.8 34.6 23.1

Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 0.00 7.69 23.1 19.2
Qwen2.5-VL (72B) 6.67 0.00 0.00 3.33 0.00 0.00 30.8 23.1 23.1
GLM 4.5 V (106B) 0.00 0.00 0.00 3.33 3.33 3.33 19.2 15.4 23.1

Bagel (7B) 0.00 0.00 3.33 3.33 3.33 3.33 15.4 23.1 11.5
Janus-pro (7B) 0.00 0.00 0.00 10.0 0.00 6.67 0.00 34.6 26.9

Q: Given 10 blue points, they form a blue convex hull. 
Given 10 green points, they form a green convex hull. 
How many red points fall in the overlapping portion of 
the blue and green convex hulls? Answer with only one 
digit.

Visual CoT ImageInput Image Input Image Visual CoT Image 1 Visual CoT Image 2

Q: What's the number of cubes presented in the image?

Convex Hull Cubes Count

Figure 5: Illustrative cases for Convex Hull task (left) and Cubes Count task (right).

23



Table 10: Detailed Results for Abstract Puzzles Tasks (Trailer Cubes Count, Trailer Cubes Missing).

Model Trailer Cubes Count Trailer Cubes Missing
D T V D T V

GPT-5 16.0 4.00 4.00 4.00 0.00 0.00
GPT-5-mini 4.00 4.00 8.00 4.00 0.00 4.00
GPT-4.1 0.00 0.00 4.00 4.00 4.00 0.00
GPT-4.1-mini 0.00 0.00 0.00 0.00 4.00 0.00
GPT-4o 0.00 0.00 0.00 0.00 0.00 0.00
GPT-4o-mini 0.00 0.00 0.00 4.00 0.00 0.00
o4-mini 11.8 17.7 0.00 0.00 0.00 0.00
o3 4.00 0.00 0.00 0.00 4.00 4.00
Claude 4 Opus 0.00 0.00 0.00 4.00 0.00 0.00
Claude 4 Sonnet 0.00 0.00 0.00 0.00 0.00 0.00
Seed1.5-VL 16.0 12.0 0.00 0.00 0.00 4.00
Seed1.6 Vision Pro 4.00 12.0 8.00 8.00 8.00 0.00
Gemini 2.5 Flash 0.00 0.00 4.00 4.00 0.00 4.00
Gemini 2.5 Pro 8.00 0.00 0.00 4.00 4.00 0.00
Qwen-VL-max-latest (325B) 4.00 0.00 4.00 4.00 4.00 4.00

Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 4.00
Qwen2.5-VL (72B) 0.00 0.00 0.00 4.00 0.00 0.00
GLM 4.5 V (106B) 4.00 4.00 4.00 0.00 0.00 8.00

Bagel (7B) 0.00 16.0 0.00 0.00 4.00 4.00
Janus-pro (7B) 0.00 0.00 0.00 4.00 0.00 4.00

Q: This is what a clock looks like in a mirror. What 
time will it be in 3 hours and 5 minutes?

Visual CoT ImageInput Image Input Image Visual CoT Image 1 Visual CoT Image 2

Q: What is the number of cubes needed to fill in the 
structure so that it becomes a solid block with no internal 
gaps?

Mirror Clock Cubes Missing

Figure 6: Illustrative cases for Mirror Clock task (left) and Cubes Missing task (right).

Q: Which option can be obtained by mirroring the 
original image once?

Visual CoT ImageInput Image Input Image Visual CoT Image 1 Visual CoT Image 2

Q: Choose two images from the four images A-D and overlay them 
according to the black coordinate axis borders of each image. This will 
produce the overlapping portion of the shapes in the image. Which 
combination has the largest overlapping area? Output only two letters to 
represent the combination, such as 'AC'.

Mirror Pattern Overlap

Figure 7: Illustrative cases for Mirror Pattern task (left) and Overlap task (right).
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Q: Given the object above. There is a missing piece 
in the white area. Which of the five pieces (A, B, C, 
D, or E) fits perfectly into the missing part of the 
object?

Visual CoT ImageInput Image

Input Image Visual CoT Image 1 Visual CoT Image 2

Q: Based on the three views, what's the maximum 
number of cubes that could be present?

Puzzle Trailer Cubes Count

Figure 8: Illustrative cases for Puzzle task (left) and Trailer Cubes Count task (right).

Q: In the image, a billiards table is shown with its pockets 
numbered 1 – 6 in red. If the blue ball rolls in the direction 
indicated by the green arrow—without spin and with 
unlimited momentum—and is guaranteed to drop into a 
pocket, which pocket will it enter? Please answer with the 
single digit 1 – 6.

Visual CoT ImageInput Image
Input Image Visual CoT Image 1 Visual CoT Image 2

Q: Given the three views, what is the minimum 
number of cubes needed to fill in the structure so 
that it becomes a solid block with no internal gaps?

Billiards Trailer Cubes Missing

Figure 9: Illustrative cases for Puzzle task (left) and Trailer Cubes Count task (right).

Q: Given three different perspectives of a cube (top left, top right, and bottom left in 
the left image) and the patterns on its six faces (bottom right in the left image), please 
fill in the corresponding patterns in its unfolded view (right image). Note that only 
the outer surface of the cube has patterns; the inner surface does not. That is, the 
unfolded view on the right represents the outer surface of the cube. The six patterns 
are represented by 'heart, 'circle,' 'moon,' 'arrow,' 'triangle,' and 'star,' respectively. 
The output format is '(number, shape),' with different correspondences separated by 
semicolons.

CoT Image 1Input Image Input Image Visual CoT Image

Q: Tile the square on the right using the solid-outlined puzzle 
pieces on the left. Use all pieces; the final tiling must be exact no 
leftovers, no gaps, and no overlaps. Each piece has a circle. After 
completing the tiling, return the coordinates of each circle in 
numerical order, using the format: [piece ID (e.g., 1), (x, y)]; 
separate entries with semicolons.

Unfolded Cube Localizer 

CoT Image 2 CoT Image 3

Figure 10: Illustrative cases for Unfolded Cube task (left) and Localizer task (right).

Q: Based on the partial folding steps shown at the 
top of the image (ordered from left to right, top to 
bottom), can you infer which of the paper airplanes 
below is the final result?

Input Image Visual CoT Image

Q: Bomb in a Box — which wire will you cut to defuse it? You 
can’t open the box or see beneath the metal slats, and the wires 
only change direction where they’re visible.

Paper Airplane Defuse A Bomb

Input Image Visual CoT Image

Figure 11: Illustrative cases for Paper Airplane task (left) and Defuse A Bomb task (right).
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Q: Which three of the nine pieces on the right can be 
combined to exactly match the shape on the left? 
Please list the three piece numbers (comma-separated, 
ascending order).

Input Image Visual CoT Image

Q: Analyze the forces acting on the topmost positive charge (+Q) 
and indicate the direction of the net force on it. Note: the size of 
each sphere does not represent the charge magnitude; use the label 
inside each sphere to determine its charge.

Multi-piece Puzzle Electric Charge

Input Image Visual CoT Image

Figure 12: Illustrative cases for Multi-piece Puzzle task (left) and Electric Charge task (right).

Q: If the dice is rolled on the showed path, what will be 
the number on the top?

Input Image Visual CoT Image

Q1: If the first gear in the image rotates slightly in the direction of the arrow, 
will the arrow on the final gear point to 1 or 2? Please answer with a number.

Rolling Dice: Top Gear Rotation

Input Image CoT Image 1 CoT Image 2 CoT Image 3 CoT Image 4

Q2: If the first gear in the image rotates slightly in the direction opposite to 
the arrow, will the arrow on the final gear point to 1 or 2? Please answer with 
a number.

Figure 13: Illustrative cases for Rolling Dice: Top task (left) and Gear Rotation task (right).

Q: If the die is rolled along the shown path, what is the 
total sum of the numbers on the bottom face that touches 
the path at each step?

Q: When the die is rolled along the black and red paths 
respectively, which path yields a higher total sum of the numbers 
on the bottom face at each step (answer with \"red\", \"black\" or 
\"same\")? What is the total sum for that path? Note: both paths 
have the same length.

Rolling Dice: Sum Rolling Dice: Two

Input Image CoT Image 1 CoT Image 2 CoT Image 3 CoT Image 4 Input Image CoT Image 1 CoT Image 2

Figure 14: Illustrative cases for Rolling Dice: Sum task (left) and Rolling Dice: Two task (right).
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