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ABSTRACT

Pseudo-labeling (Lee et al., 2013) is one of the powerful Semi-Supervised Learn-
ing (SSL) approaches, which generates confident pseudo-labels of unlabeled data
and leverages them for training. Recently, pseudo-labeling has been further ex-
tended to Graph Neural networks (GNNs) to address the data sparsity problem due
to the nature of graph-structured data. Despite their success in the graph domain,
they have been mainly designed for node-level tasks by utilizing node-level al-
gorithms (e.g., Label Propagation) for pseudo-labeling, which can not be directly
applied to the link prediction task. Besides, existing works for link prediction
only use given edges as positively-labeled data, and there have been no attempts
to leverage non-visible edges for training a model in a semi-supervised manner. To
address these limitations, we revisit the link prediction task in a semi-supervised
fashion and propose a novel pseudo-labeling framework, Pseudo-Edge, that gen-
erates qualified pseudo-labels in consideration of graph structures and harnesses
them for the link prediction. Specifically, our framework constructs distance-
based potential edge candidates and carefully selects pseudo-labels through our
relation-aware pseudo-labels generation, which reflects the comparative supe-
riority of each unlabeled edge over its local neighborhoods in graphs. Also,
we propose uncertainty-aware pseudo-labels generation that can effectively filter
out over-confident samples when the model overfits to specific graph structures.
Extensive experiments show that our method achieved remarkable performance
across five link prediction benchmark datasets and GNN architectures, compared
to state-of-the-art GNN-based semi/self-supervised models.

1 INTRODUCTION

Deep neural networks (DNNs) have shown impressive performance across diverse domains (He
et al., 2015; Silver et al., 2016; Mathis et al., 2018). However, this success usually requires large-
scale labeled datasets, which are typically expensive to obtain. To overcome this challenge, Semi-
Supervised Learning (SSL) (Chapelle et al., 2009) has been widely adopted in learning algorithms
to utilize the vast amount of unlabeled data, given a small mount of labeled data. (Berthelot et al.,
2019; Sohn et al., 2020; Lee et al., 2013; Tarvainen & Valpola, 2017; Zhu & Ghahramani, 2002)
Pseudo-labeling (Lee et al., 2013), one of the powerful SSL approaches, generates pseudo-labels of
unlabeled data by using a model trained on the labeled dataset and leverages these pseudo-labels
for training. Recently, pseudo-labeling has been actively studied in the direction of combining with
other SSL approaches (Xie et al., 2020a; Sohn et al., 2020; Pham et al., 2021) and utilizing advanced
thresholding techniques (Zhang et al., 2021; Wang et al., 2022) in computer vision.

The application of pseudo-labeling has been further extended to graph neural networks (GNNs)
to solve the scarcity of labeled data. As most graph datasets possess incompleteness, i.e. invisi-
ble ground-truth nodes/edges, the performance significantly decreases when the network prediction
relies on sparsely labeled graph. To handle this issue, several works (Li et al., 2018; Sun et al.,
2020; Wang et al., 2021; Dong et al., 2021) employ pseudo-labeling to leverage unlabeled nodes for
training GNNs and achieve promising performance on the node classification task. However, they
have focused only on the node classification not the link prediction task. Specifically, their pseudo-
labeling methods are designed to utilize node-level algorithms (e.g., label propagation, random walk,
k-means) for pseudo-labels selection, which can not be directly applied to the link prediction task.
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In addition, existing works for link prediction only use given edges as positively-labeled data, and
there is no attempt to leverage non-visible edges for training a model in a semi-supervised manner.

In this work, we revisit the link prediction task in a semi-supervised scenario and propose a novel
pseudo-labeling framework, Pseudo-Edge, for semi-supervised link prediction by leveraging unla-
beled edges. To the best of our knowledge, this is the first approach that utilizes unlabeled edges
as pseudo-labels for link prediction. Our Pseudo-Edge generates qualified pseudo-labels of un-
seen edges considering graph structures and harnesses the pseudo-labels for training GNNs for link
prediction. Specifically, Pseudo-Edge first constructs distance-based potential edge candidates and
carefully selects pseudo-labels through our proposed relation-aware pseudo-labels generation that
reflects the comparative superiority of each unlabeled edge over its local neighborhoods in graphs.
Additionally, motivated from Rizve et al. (2021), we propose uncertainty-aware pseudo-labels gen-
eration considering uncertainty in graph structures, which can effectively filter out over-confident
samples when the model overfits to specific graph structures. Our comprehensive experiments show
that Pseudo-Edge achieves strong performance on three standard GNNs over six benchmark datasets
for link prediction compared to state-of-the-art GNN-based semi/self-supervised learning models.

Our contributions are as follows:

• We revisit the link prediction task with GNNs in a semi-supervised scenario and propose a
new training paradigm for link prediction leveraging unlabeled edges for link prediction.

• We propose a novel GNN-based pseudo- labeling framework for link prediction, Pseudo-
Edge, that generates qualified pseudo-labels of unseen edges considering graph structures
and harnesses the pseudo-labels for training GNNs for link prediction.

• We validate the effectiveness of the Pseudo-Edge with extensive experimental results that
our Pseudo-Edge achieves strong performance on three standard GNNs over five graph
datasets for link prediction compared to state-of-the-art approaches for semi-supervised
and self-supervised learning.

2 RELATED WORKS

2.1 PSEUDO-LABELING

Pseudo-labeling has been widely adopted to address semi-supervised learning in a supervised man-
ner by assigning unlabeled data with predicted labels. Lee et al. (2013) treat a class which has the
highest predicted probability on each unlabeled sample as a pseudo-label and Rosenberg et al. (2005)
use this same strategy only when the prediction confidence is higher than the fixed threshold to pre-
vent error propagation by wrongly assigned pseudo-labels. Iscen et al. (2019) assign pseudo-labels
based on a nearest-neighbor graph in the feature space. MixMatch (Berthelot et al., 2019), UDA (Xie
et al., 2020a), and NoisyStudent (Xie et al., 2020b) produce pseudo-labels boosting model robust-
ness with consistency regularization methods such as MixUp (Zhang et al., 2018) and adversarial
perturbations (Miyato et al., 2018). ReMixMatch (Berthelot et al., 2020), FixMatch (Sohn et al.,
2020), and Meta Pseudo-Labels (Pham et al., 2021) utilize the predictions on weak augmentations
of input samples as pseudo-labels for strong augmentations of the same samples. FlexMatch (Zhang
et al., 2021), FreeMatch (Wang et al., 2022), and Curriculum Labeling (Cascante-Bonilla et al.,
2021) employ adaptive thresholding depending on the learning status of models to tackle the limita-
tion of the fixed threshold of pseudo-labels. In this work, we also present a novel adaptive thresh-
olding method that considers the relation between data instances of graph domains.

2.2 PSEUDO-LABELING IN GRAPH NEURAL NETWORKS

Pseudo-labeling has also attracted considerable attention in GNNs which suffer from severe data
sparsity problem due to the nature of graph structure data. Li et al. (2018) select nearest-neighbor
unlabeled nodes of labeled nodes using a random walk model and assign the unlabeled nodes with
the labeled nodes’ class. M3S (Sun et al., 2020) assigns pseudo-labels for unlabeled data by using
the predictions of GNN models and DeepCluster (Caron et al., 2018). PTA (Dong et al., 2021) uses
the Label Propagation algorithm to propagate the known labels along the graph to generate pseudo-
labels for the unlabeled nodes. CaGCN (Wang et al., 2021) applies the confidence calibration to
the predictions to produce more reliable pseudo-labels. However, most pseudo-labeling studies for
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GNNs have focused only on node classification rather than link prediction. On the other hand, we
propose a pseudo-labeling framework for link prediction by leveraging unlabeled edges as pseudo-
labels for training GNNs.

3 PRELIMINARIES

3.1 PSEUDO-LABELING FOR SEMI-SUPERVISED LEARNING

Pseudo-labeling (Lee et al., 2013) is one of the most widely adopted methods in semi-supervised
learning, which generates pseudo-labels of unlabeled data by using a model trained on the labeled
dataset and leverages the pseudo-labels for training. Specifically, suppose we have an unlabeled
dataset U = {x(i)}Ui=1 and a model fθ trained on a labeled datasetD = {(x(i), y(i))}Ni=1, where x(i)

is the input instance and y(i) = [y
(i)
1 , ..., y

(i)
C ] ⊆ {0, 1}C is the corresponding label with C classes.

Then, unlabeled instances x̃(i) whose prediction scores for a certain class are above the predefined
threshold τ are pseudo-labeled as ỹ(i) and added to the labeled dataset D as follows:

D = D ∪ D̃,

D̃ = {(x̃(i), ỹ(i)) | ỹ(i)c = 1[Φ(x̃(i))c > τ ]}Ñi=1

(1)

After the pseudo-labels generation, the new dataset D combined with the additional pseudo-labeled
dataset D̃ is leveraged to train a model Φ in a supervised manner.

3.2 LINK PREDICTION WITH GRAPH NEURAL NETWORKS

Let us define a graph G(V, E) with a set of nodes V = {v1, ..., vN} and a set of observed edges
E = {eij = (vi, vj)|vi, vj ∈ V}, where each node v in G has its own feature vector xv ∈ RF . Given
a graph G and features vectors {xi}Ni=1, Graph Neural Networks(GNNs) learn representations of
each node v via an iterative aggregation of hidden representations of its neighboring nodes in the
previous layer. The hidden representation of the node v in the l-th GNN layer is formulated as
below:

h(l+1)
v = ϕ

(
h(l)v , ψ({h(l)u ,∀u ∈ N (v)})

)
, (2)

where ϕ combines the previous representation of v and its neighborhoods, ψ denotes an aggregation
function, and h0v = xv . For link prediction, node representations h(L) after L GNN layers are used
to predict the existence of each link (vi, vj) using a link predictor fθ, e.g., MLP, as below:

P (Aij = 1) = σ(fθ(h
(L)
i , h

(L)
j )), (3)

where σ is a non-linear activation function that maps the prediction score to the range of [0, 1]. For
simplicity, we denote our model that consists of GNNs and fθ as Φ and link prediction scores of a
link (vi, vj) from Φ as Φ(vi, vj).

4 PSEUDO-EDGE: PSEUDO-LABELING FOR LINK PREDICTION

The goal of our method is to revisit the link prediction task with GNNs in a semi-supervised scenario
and harness a large amount of unlabeled data for link prediction. To be specific, whereas existing
methods for link prediction use only given edges as positively-labeled data, we regard unseen edges
as unlabeled data and propose a novel GNN-based pseudo-labeling framework for link prediction,
Pseudo-Edge, that generates qualified pseudo-labels of unseen edges considering graph-structures
and harnesses the pseudo-labels for training GNNs for link prediction.

4.1 DISTANCE-BASED CANDIDATES CONSTRUCTION

In order to generate pseudo-labels, we need to compute prediction scores for whole potential un-
labeled edges (i.e., all node pairs except given ground-truth edges). This requires substantial com-
putational costs, making it infeasible to compute on large graphs. A naive approach is to construct
a set of potential edge candidates Urand by randomly selecting node pairs from unlabeled edges.
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Figure 1: Overview of our Pseduo-Edge framework. Pseduo-Edge first (a) constructs a distance-
based potential edge candidates Udist for pseudo-labeling. For each iteration t, the GNN model
Φ(t) trained on the labeled dataset D(t) predicts confidence scores of Udist, which are fed into the
Pseduo-Edge framework. Then, in (b) uncertainty-aware pseudo-labels generation, Udist is filtered
to Uu whose uncertainty scores u(ŷ∗), measured through K perturbed graphs, do not exceed τu. In
(c) relation-aware pseudo-labels generation, among Uu, Pseduo-Edge generates D̃(t)

r whose relative
differences g(vi, vj) are higher than τ r and confidence scores Φ(t)(vi, vj) are higher than τmin.
Also, Pseduo-Edge generates D̃(t)

g whose Φ(t)(vi, vj) are higher than τg . Finally, D(t+1) is updated
by adding pseudo-labels D̃(t) composed of D̃(t)

r and D̃(t)
g .

However, this can lead to the selection of node pairs that are far from each other, which constitutes
candidates that are unlikely to be edges. Instead, we construct a set of candidates Udist whose node
pairs are apart from each other in the range of (1, k) distance as follows:

Udist = {(vi, vj)|1 < d(vi, vj) < k, vi, vj ∈ V}, (4)

where d(vi, vj) is a length of the shortest path between vi and vj . For instance, if k equals 4, our
proposed candidate set Udist contains node pairs that are 2 and 3-hop distant from each other. This
candidate formulation gives a chance to preserve more node pairs that are likely to be ground-truth
edges and effectively reduce the search space for pseudo-labeling.

4.2 RELATION-AWARE PSEUDO-LABELS GENERATION

Figure 2: An example of a plausible
candidate (vi, vj) where fixed threshold
τ alone can not capture.

Recent works for pseudo-labeling (Zhang et al., 2021;
Wang et al., 2022) have been proposed to generate high-
quality pseudo-labels with advanced thresholding tech-
niques according to various factors (e.g., classes, learn-
ing status) beyond a fixed threshold. However, there is
no study on pseudo-labeling with advanced thresholds
that considers the characteristic, connection between data
samples, of the graph domain. Specifically, Fig.2 de-
scribes a circumstance that is elusive to generate high-
quality pseudo-labels with only a fixed threshold. Let
us denote the fixed threshold as τ . An edge candidate
(vi, vj) in the figure obtains the confidence score Φ(vi, vj) = 0.94, shown in blue. Although the
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score is slightly lower than τ = 0.95, it shows the highest confidence among local edges. Never-
theless, τ alone is not capable of reflecting underlying connections between samples (edges) in the
graph. Thus, relying exclusively on absolute threshold may fail to capture the relative confidence of
artificial edges to corresponding nearby edges in local regions.

To address the limitation above, we propose a relation-aware threshold τ r which reflects the com-
parative superiority of each unlabeled edge over its local region in graphs, which enables delicate
generation of pseudo-labels along with fixed threshold. In order to compute the relative difference of
each unlabeled edge from respective local region, we first define the local regionRij of an unlabeled
edge (vi, vj) based on a pair of two nodes, vi, vj , and their neighbors, Nvi ,Nvj as follows:

Rij = R(1)
ij ∪R

(2)
ij , (5)

R(1)
ij = {ê|ê ∈ {vi} × Nvj ∪ {vj} × Nvi},

R(2)
ij = {ê|ê ∈ Nvi ×Nvj},

(6)

where × denotes the Cartesian product of two sets. In other words, R(1)
ij involves pairs between

each node in (vi, vj) and neighbors of the other node while R(2)
ij contains pairs between neighbors

of each node. Then the local region score of (vi, vj), denoted as s(Rij), is formulated as the linear
combination between the average score of edges inR(1)

ij and that inR(2)
ij :

s(Rij) = α · E
êmn∈R(1)

ij
[Φ(vm, vn)] + (1− α) · E

êmn∈R(2)
ij
[Φ(vm, vn)], (7)

where α is a hyperparameter controlling the impact of 1-hop local region over 2-hop region. Then,
we calculate the relative difference g(vi, vj) of prediction scores between (vi, vj) andRij as

g(vi, vj) = Φ(vi, vj)− s(Rij). (8)

Now, the relative threshold τ r is defined by the top-Nr largest relative difference g(vi, vj) among
the given unlabeled candidates Udist as

τ r = Top({g(vi, vj)|(vi, vj) ∈ Udist}, Nr), (9)

where Top(·, Nr) returns the Nr-th largest value from a given set of values. Further, since samples
with large relative differences but low confidence scores rather give noise, we generate pseudo-labels
D̃r for each sample x̃ = (vi, vj) whose confidence score is higher than the minimum fixed threshold
τmin and the relative difference is larger than τ r as follows:

D̃r = {(x̃(i), ỹ(i)) | g(x̃(i)) > τ r ∧ Φ(x̃(i)) > τmin}Nr
i=1 (10)

In addition, we generate pseudo-labels D̃g for samples whose confidence scores are higher than the
Ng-th largest confidence scores as

D̃g = {(x̃(i), ỹ(i)) | Φ(x̃(i)) > τg}Ng

i=1, (11)

where τg is fixed global threshold that is the Ng-th highest confidence score among scores of candi-
dates. Finally, we combine the two pseudo-labels D̃r and D̃g to generate the final pseudo-labels D̃
by adjusting the number of D̃r and D̃g to be β% and (1-β%) of the total number as D̃ = D̃r ∪ D̃g .

4.3 UNCERTAINTY-AWARE PSEUDO-LABELS GENERATION

Pseudo-labeling methods are mainly designed to select unlabeled samples with high confidence
scores as pseudo-labels. Even though the selection based on high confidence scores can be effective
for capturing informative samples, there exists another issue with the selection of over-confident
samples. This also applies to our GNN-based pseudo-labeling, especially when the model overfits
to specific graph structures and thereby assigns high prediction scores to only samples with the
specific structures. Such ill-calibrated networks may yield noisy pseudo-labeled samples, which
incurs poor generalization and unstable learning.

In order to alleviate this issue, we present uncertainty-aware pseudo-labels generation considering
uncertainty in graph structures. Specifically, to measure each sample’s uncertainty from the graph
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structure, we first randomly drop out edges in A for K iteration with a probability of pu. That
is, assuming A′(k) as an adjacency matrix with k-th randomly selected edges, the k-th perturbed
adjacency matrix A(k)

drop is expressed as A(k)
drop = A− A′(k). Then we derive the prediction outputs

of a given sample ŷ∗ij with respect to A(1)
drop, ..., A

(k)
drop and an input feature matrix X:

ŷ∗ij = {fθ(zi, zj)|zi, zj ∈ Z(k))}Kk=1,

Z(k) = GNN(A
(k)
drop, X)

(12)

Finally, the uncertainty of the sample u(ŷ∗ij) is measured as the variance of prediction scores derived
from K perturbed graph structures:

u(ŷ∗ij) =
K∑

k=1

(E(ŷ∗ij)− ŷ
∗(k)
ij )2

K
(13)

Here, we measure the uncertainty of every candidates and filter out links which possess higher
uncertainty than a threshold τu at the beginning of pseudo-labeling procedure:

Uu = {(i, j)|u(ŷ∗ij) < τu} (14)

Throughout this process, the network is able to produce more reliable candidates which satisfy
sufficient certainty as well as high confidence. Such pseudo-labeled edges offer appropriate guidance
to the model, hence increase robustness to potential calibration error.

Algorithm 1 The Process of pseudo-label generation in Pseudo-Edge

Input G(V, E), D(0) = {(x(i), y(i))}Ni=1, Φ
(0)

Output D(T+1), Φ(T+1)

1: Construct distance-based edge candidates Udist;
2: for t = 0 . . . T do
3: Train Φ(t) on D(t);
4: Compute prediction scores of Udist from the trained Φ(t);
5: Uu ← {(vi, vj)|u(ŷ∗ij) < τu, (vi, vj) ∈ Udist};
6: D̃(t)

g = {(x̃(i), ỹ(i)) | Φ(x̃(i)) > τg}Ng

i=1;
7: ConstructRij for êij ∈ {(vi, vj) | (vi, vj) ∈ Uu ∧ Φ(t)(vi, vj) < τg}
8: D̃(t)

r = {(x̃(i), ỹ(i)) | g(x̃(i)) > τ r ∧ Φ(t)(x̃(i)) > τmin}Nr
i=1;

9: D̃(t) ← D̃(t)
g ∪ D̃(t)

r ;
10: D(t+1) ← D(t) ∪ D̃(t);
11: Initialize a new model Φ(t+1);
12: end for
13: Train Φ(T+1) on D(T+1);

Overall Framework Our proposed pseudo-labeling framework, Pseudo-Edge, is organized by three
stages: 1) Candidates construction for pseudo-labeling, 2) Relation-aware pseudo-labels generation,
3) Uncertainty-aware pseudo-labels generation. Fig.1 illustrates the proposed framework. Unlabeled
candidates Udist are first constructed in Eq. (4). For each iteration t, we train the model Φ(t) on the
labeled dataset D(t) and candidates Udist are fed into the trained model Φ(t) to generate prediction
scores for each candidate. Then we measure uncertainties of candidates in Eq. (13) and filter out
samples whose the uncertainty u(ŷ∗ij) is higher than τu. Based on these filtered candidates, our

Pseudo-Edge generates two pseudo-labels, D̃(t)
r and D̃(t)

g , and generate a pseudo-label dataset D̃(t)

by combining them. After the t-th generation process, we train a new model, Φ(t+1) on a new
labeled dataset D(t+1) composed of D̃(t) and D(t). Finally, after total generation processes, a final
model Φ(T+1) is trained on D(T+1) and used for evaluation. The complete training algorithm is
described in Alg.1.

6



Under review as a conference paper at ICLR 2023

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed Pseudo-Edge against state-of-the-art
GNN-based semi/self-supervised models on link prediction benchmark datasets.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our proposed method on five benchmark datasets: two Open Graph Bench-
mark(OGB)(Hu et al., 2020) datasets (OGBL-COLLAB, OGBL-DDI) for link prediction and three
citation networks (Bojchevski & Günnemann, 2018) (Cora, Citeseer, Pubmed). For the three ci-
tation networks, we randomly select 5% and 10% of the given edges and the same numbers of
disconnected node pairs as validation and test samples. For OGB datasets, we follow the official
train/validation/test dataset splits (Hu et al., 2020). Detailed data statistics are provided in Tab.1.

Dataset #Nodes #Edges Avg. degree Split ratio
OGBL-COLLAB 235,868 1,285,465 8.2 92/4/4
OGBL-DDI 4,267 1,334,889 500.5 80/10/10
CORA 19,793 107,816 4.49 85/5/10
CITESEER 4,230 9,074 1.77 85/5/10
PUBMED 19,717 75,352 3.15 85/5/10

Table 1: Statistics and evaluation metrics of link prediction datasets.

Baselines. We evaluate Pseudo-Edge on three standard GNNs: GCN(Kipf & Welling, 2016),
GraphSAGE(i.e. SAGE)(Hamilton et al., 2017), and JKNet(Xu et al., 2018). Since GNN-based
semi/self-supervised learning models for link prediction have not been studied, we compare the
performance of our method against state-of-the-arts GNN-based semi/self-supervised learning base-
lines for node classification: MVGRL(Hassani & Khasahmadi, 2020), GRAND(Feng et al., 2020),
and LAGNN(Liu et al., 2022). MVGRL trains GNNs in a self-supervised fashion by maximizing
mutual information between representations of the same node, each derived from different structural
views. GRAND trains GNNs in a semi-supervsied manner by leveraging consistency regulariza-
tion to optimize the prediction consistency of unlabeled nodes across different data augmentations.
Lastly, LAGNN improves GNN representations within self-supervised framework by augmenting
node features via generative model pretrained of neighborhood features distribution.

Evaluation. For all experiments, we evaluate the link prediction performance of models based on
two ranking evaluation metrics, Hits@20 and Hits@50, in (Hu et al., 2020). Specifically, each
model ranks positive test edges against negative test edges and computes the ratio of positive test
edges ranked at K-th place or above (Hits@K). We report averaged test performance with their
standard deviation over 10 runs with different seeds (from 0 to 9).

Implementation details. We implemented GNNs and our method using PyTorch (Paszke et al.,
2019), PyTorch Geometric (Fey & Lenssen, 2019), and OGB (Hu et al., 2020). For each baseline,
we used the implementation in the official github repository for each method. We set the number of
GNN layers to 3 and the hidden dimenstion to 256 for all GNNs. In our method, pseudo-labels are
selected from a set of potential edge candidates, Udist, up to twice as many as the original training
data through up to five iterations. Note that Udist does not contain positive and negative edges in the
validation/test samples. We choose hyperparameters based on the best validation performance. The
experiments are conducted on a RTX 3090 (24GB).

5.2 RESULTS ON LINK PREDICTION

Table2 shows the link prediction performance of our method and baselines on three standard GNNs
and five benchmark datasets. Since LAGNN generates node features conditioned on original input
features of center nodes, LAGNN can not be evaluated on OGBL-DDI owing to the absence of input
features in OGBL-DDI. As shown in Table 2, our Pseudo-Edge consistently achieved state-of-the-
arts performance across four datasets.

Compared to vanilla GNNs, Pseudo-Edge shows significant improvements over all GNNs on
OGBL-COLLAB, OGBL-DDI, Pubmed, and Cora. Especially, Pseudo-Edge remarkably improved
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Dataset OGBL-COLLAB OGBL-DDI PUBMED CORA CITESEER

GNNs Methods Hits@20 Hits@50 Hits@20 Hits@50 Hits@20 Hits@50 Hits@20 Hits@50 Hits@20 Hits@50

GCN

Vanilla 41.76 ± 1.10 48.56 ± 0.72 56.71 ± 7.80 74.99 ± 3.13 31.18 ± 2.34 48.81 ± 1.30 23.06 ± 1.20 33.70 ± 1.21 59.44 ± 2.59 73.31 ± 1.09

MVGRL 27.14 ± 2.36 36.63 ± 1.77 19.78 ± 2.89 32.20 ± 4.18 28.84 ± 1.41 41.50 ± 1.98 21.23 ± 1.12 30.42 ± 1.24 52.62 ± 2.31 67.27 ± 1.97

GRAND 40.09 ± 1.63 47.95 ± 0.93 59.38 ± 4.83 73.12 ± 4.38 35.28 ± 1.70 49.29 ± 1.45 23.49 ± 1.11 33.13 ± 1.48 61.60 ± 2.02 74.47 ± 0.59

LAGNN 44.42 ± 0.68 51.08 ± 0.42 N/A N/A 34.21 ± 1.53 52.55 ± 1.87 23.58 ± 1.76 36.02 ± 1.54 63.01 ± 2.11 74.20 ± 1.78

Ours 46.56 ± 0.96 53.06 ± 0.42 69.27 ± 7.78 82.79 ± 3.10 37.67 ± 1.06 55.78 ± 0.95 25.57 ± 0.78 38.54 ± 0.90 61.23 ± 2.91 73.66 ± 1.42

SAGE

Vanilla 42.22 ± 1.02 50.33 ± 0.58 30.07 ± 9.78 65.38 ± 12.50 23.78 ± 1.74 36.22 ± 1.43 25.36 ± 1.18 38.36 ± 2.51 43.52 ± 1.89 49.86 ± 0.37

MVGRL 25.23 ± 1.91 35.30 ± 1.29 21.62 ± 3.96 34.91 ± 3.56 23.81 ± 1.92 36.01 ± 1.45 23.08 ± 2.40 33.07 ± 2.33 28.12 ± 3.29 43.35 ± 3.22

GRAND 42.05 ± 1.51 50.20 ± 0.79 32.52 ± 10.60 73.00 ± 9.36 22.88 ± 1.40 37.67 ± 1.31 26.25 ± 2.39 39.79 ± 2.39 43.78 ± 0.94 49.64 ± 0.53

LAGNN 44.54 ± 0.63 51.52 ± 0.49 N/A N/A 25.02 ± 1.81 41.44 ± 1.57 25.23 ± 2.17 39.38 ± 1.14 45.40 ± 0.85 49.99 ± 0.48

Ours 46.41 ± 0.90 53.40 ± 0.39 41.93 ± 14.04 87.16 ± 1.11 27.39 ± 2.48 44.22 ± 1.27 26.55 ± 1.99 39.94 ± 1.73 45.56 ± 1.01 50.82 ± 0.25

JKNet

Vanilla 43.75 ± 0.87 51.08 ± 0.86 39.88 ± 11.22 72.53 ± 4.08 29.12 ± 1.91 44.79 ± 1.12 20.73 ± 1.17 30.18 ± 0.83 52.51 ± 3.77 69.33 ± 1.03

MVGRL 30.32 ± 1.22 38.98 ± 0.95 12.67 ± 6.30 21.81 ± 7.08 28.54 ± 1.82 42.86 ± 2.37 20.74 ± 1.15 30.73 ± 1.50 52.71 ± 1.96 68.43 ± 1.09

GRAND 44.42 ± 1.09 51.58 ± 0.98 46.07 ± 9.39 73.94 ± 4.96 29.73 ± 1.57 43.59 ± 1.74 20.08 ± 1.75 29.43 ± 1.38 52.68 ± 3.19 69.57 ± 1.03

LAGNN 44.96 ± 1.08 51.50 ± 0.60 N/A N/A 30.33 ± 1.95 46.30 ± 1.04 20.28 ± 1.32 30.30 ± 0.67 54.09 ± 2.08 70.74 ± 1.4

Ours 47.40 ± 1.05 54.26 ± 1.05 69.33 ± 10.65 88.05 ± 1.08 33.78 ± 1.39 47.54 ± 0.86 23.21 ± 1.44 35.11 ± 1.31 52.40 ± 2.65 67.79 ± 0.69

Table 2: Link prediction performances (Hits@20 and Hits@50) of our Pseudo-Edge and baselines
across three GNN architectures and 5 benchmark datasets. Each number is the average performance
for 10 random initialization of the experiments.

Module OGBL-COLLAB OGBL-DDI PUBMED CORA CITESEER

Udist τ r τu Hits@20 Hits@50 Hits@20 Hits@50 Hits@20 Hits@50 Hits@20 Hits@50 Hits@20 Hits@50

41.00 ± 1.00 49.97 ± 0.49 29.24 ± 10.66 85.77 ± 1.52 22.03 ± 1.49 34.59 ± 1.33 24.04 ± 1.89 35.26 ± 1.65 40.30 ± 1.79 49.54 ± 0.47

✓ 41.40 ± 1.04 50.40 ± 0.85 34.68 ± 8.12 84.69 ± 3.85 26.48 ± 1.46 41.75 ± 1.55 24.81 ± 1.46 38.95 ± 1.19 44.11 ± 1.01 50.23 ± 0.55

✓ ✓ 42.17 ± 1.15 51.52 ± 0.86 39.50 ± 13.26 87.15 ± 1.51 26.48 ± 2.61 45.17 ± 1.25 26.03 ± 2.06 40.32 ± 1.67 45.44 ± 0.94 50.43 ± 1.09

✓ ✓ ✓ 46.41 ± 0.90 53.40 ± 0.39 41.93 ± 14.04 87.16 ± 1.11 27.39 ± 2.48 44.22 ± 1.27 26.55 ± 1.99 39.94 ± 1.73 45.56 ± 1.01 50.82 ± 0.25

Table 3: Ablation study of each module in Pseudo-Edge with SAGE on four datasets.

the link prediction performance (Hits@20) of GNNs on OGBL-DDI by 12.56%, 11.86%, 29.45%
for GCN, SAGE, and JKNet, respectively. Furthermore, Pseudo-Edge consistently outperforms
naive GNNs on other datasets by 3.07 ∼ 4.5%, 2.75 ∼ 8%, 1.58 ∼ 4.93% on OGBL-COLLAB,
Pubmed, and Cora. This shows the effectiveness of leveraging unlabeled edges for pseudo-labels
for GNN-based link prediction. Compared to GNN-based semi/self-supervised learning models, our
Pseudo-Edge consistently outperforms all baselines on 4 out of 5 datasets, where the improvements
over the best baseline are 1.88 ∼ 2.68%, 9.41 ∼ 23.26%, 1.24 ∼ 3.23%, and 0.15 ∼ 4.38%
on OGBL-COLLAB, OGBL-DDI, Pubmed, and Cora. Interestingly, MVGRL and GRAND shows
poor or marginal performances compared to vanila GNNs. This implies that existing node-level
methods for semi/self supervised learning have a difficulty in directly benefiting for link prediction
and there is a need to design semi-supervised learning for link prediction.

5.3 QUANTITATIVE ANALYSIS

Here, we conduct an ablation study of our Pseudo-Edge to demonstrate the effect of each compo-
nent in our method: (1) Construction of distance-based edge candidates ( Udist) (2) Relation-aware
pseudo-labels generation (τ r) (3) Uncertainty-aware pseudo-labels generation (τu). We employ
SAGE as our backbone GNN and conduct 10 runs across all datasets. The default setting (the first
row in Tab.3) is pseudo-labeling with randomly sampled edge candidates Urand and a fixed thresh-
old τg . First, as shown in Table 3, Pseudo-Edge with distance-based candidates Udist consistently
improves the link prediction performance 0.40 ∼ 7.16%, where largely improves the performance
by 7.16% against the randomized strategy in Hits@50 on Pubmed. Second, our relation-aware
pseudo-labels generation (τ r) clearly boosts up the performance compared to the pseudo label-
ing with the only fixed threshold. In particular, adopting τ r greatly increases the evaluation re-
sult by 4.82% on OGBL-DDI and 3.42% on Pubmed, all on the basis of each standard metrics.
Lastly, uncertainty-aware pseudo-labels generation further improves the performance of Pseudo-
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(a) A local region R1,2 of a ground-truth
edge (v1, v2) that belongs to category [1]

(b) A local region R3,4 of a ground-truth
edge (v3, v4) that belongs to category [2]

Figure 3: Visualization of local regions of test edges(red dashed lines) sampled from different
strategies: (a) a test edge (v1, v2) selected as a pseudo-label based on a fixed global threshold
τg = 0.9573, (b) a test edge (v3, v4) selected as a pseudo-label based on our proposed relation-
aware threshold τ r = 0.6109. Blue dashed lines denote node pairs ê in local regions Rij of each
test edge and the intensity is proportional to the prediction score of Φ(ê). The test edge (v3, v4)
can not be selected based on τg since its prediction score Φ(v3, v4) = 0.9482 is slightly below
τg = 0.9573 whereas our relation-aware pseudo-labeling can capture as the prediction score is rel-
atively higher than node pairs in the local regionR3,4, i.e. a large gap g(v3, v4) = 0.7494.

Edge, which significantly enhances the performance on OGBL-COLLAB by 4.24% and 1.88% for
Hits@20 and Hits@50, respectively.

5.4 QUALITATIVE ANALYSIS

We provide qualitative analysis qualitative to understand why our relation-aware pseudo-labels gen-
eration is effective. We visualize local regions of test edges, not included in the original graph,
selected from different strategies. Specifically, a test edge (v1, v2) in Fig.3a is selected as a pseudo-
label based on a fixed global threshold τg = 0.9573 and a test edge (v3, v4) in Fig.3b is selected as a
pseudo-label based on our proposed relation-aware threshold τ r = 0.6109. The visualization results
clearly demonstrates our argument in Fig.2. In case of an edge (v3, v4), it overlooked during the gen-
eration based on τg since its prediction score Φ(v3, v4) = 0.9482 is slightly below τg = 0.9573.
However, (v3, v4) is selected as a pseudo-label when performing relation-aware pseudo-labeling, as
the prediction score is relatively higher than node pairs in the local region R3,4, i.e. a large gap
g(v3, v4) = 0.7494 that is highly above τ r, even (v1, v2) whose score is not noticeable among
R1,2, g(v1, v2) = 0.1439, as illustrated in Fig.3a. Thus, our relation-aware pseudo-lables gener-
ation enables the overall pseudo-labeling process to consider both absolute high confidence scores
and comparative superiority of each sample’s confidence scores over its local region.

6 CONCLUSION

We propose a novel pseudo-labeling framework for link prediction, Pseudo-Edge, that hat generates
qualified pseudo-labels in consideration of graph structures and harnesses them for the link predic-
tion. Pseudo-Edge carefully generates pseudo-labels through our proposed relation-aware pseudo-
labels generation reflecting the comparative superiority of each sample over its local neighborhoods
in graphs. Also, we propose uncertainty-aware pseudo-labels generation that can effectively fil-
ter out over-confident samples when the model overfits to specific graph structures. Our compre-
hensive experiments show that Pseudo-Edge achieves strong performance on three standard GNNs
over six benchmark datasets for link prediction compared to state-of-the-art GNN-based semi/self-
supervised learning models. One limitation of our method is that we do not directly utilize pseudo-
lables by adding them as real edges in the graph for GNNs. We believe future works investigate the
effectiveness of utilizing pseudo-lables as ground-truth edges for GNNs.
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