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Abstract

The exploration of whether agents can align001
with their environment without relying on002
human-labeled data presents an intriguing re-003
search topic. Drawing inspiration from the004
alignment process observed in intelligent organ-005
isms, where declarative memory plays a pivotal006
role in summarizing past experiences, we pro-007
pose a novel learning framework. The agents008
adeptly distill insights from past experiences,009
refining and updating existing notes to enhance010
their performance in the environment. This en-011
tire process transpires within the memory com-012
ponents and is implemented through natural013
language, so we character this framework as In-014
memory Learning. We also delve into the key015
features of benchmarks designed to evaluate the016
self-improvement process. Through systematic017
experiments, we demonstrate the effectiveness018
of our framework and provide insights into this019
problem.020

1 Introduction021

The essential means by which intelligent organ-022

isms align themselves with changing environ-023

ments is through learning and memory, which can024

be categorized into two distinct types in Neuro-025

science: declarative and non-declarative (Squire026

and Zola, 1996). The memory acquired through027

non-declarative means is difficult to express in lan-028

guage, as depicted in Figure 1. Conversely, declar-029

ative memory empowers individuals to convey past030

experiences with language, thus preparing them to031

navigate a wider array of scenarios with greater032

flexibility. When approaching new tasks or envi-033

ronments, humans summarize rules from initial034

experiences, subsequently refining and applying035

these rules to similar problems. This iterative re-036

finement enhances understanding and effectiveness,037

gradually increasing familiarity with the task or en-038

vironment.039

When comes to Deep Neural Networks, if we 040

liken learning through gradient back-propagation 041

to a form of non-declarative learning, it can be ob- 042

served that large language models (Brown et al., 043

2020) benefit from an explicit formulation of their 044

context window. Whether it involves generating 045

the thought process using a Chain of Thought (Wei 046

et al., 2023) approach or providing input-output 047

pairs as examples via In-context learning (Dong 048

et al., 2023), large language models get similar im- 049

provement to those gained through gradient-based 050

methods, reducing the loss value and enhancing 051

their performance in downstream tasks. As shown 052

in Figure 1, this method mirrors declarative learn- 053

ing, where understanding context enhances the net- 054

work’s performance. By leveraging this unique 055

characteristic, agents built upon large language 056

models can comprehend their environment, plan, 057

and make decisions based on organizational con- 058

text (Shridhar et al., 2020; Xi et al., 2023). This 059

approach enables them to tackle a broad spectrum 060

of problems effectively, which attracts the interest 061

of many researchers. 062

Given that LLM-based agents exhibit capabil- 063

ities similar to intelligent organisms, and recog- 064

nizing that these abilities empower them to align 065

with the natural world and enhance cognition, a 066

natural question arises: Can agents develop sim- 067

ilar self-improvement capabilities? Research on 068

the autonomous agent (Qin et al., 2023; Schick 069

et al., 2023) usually incorporates the use of tools 070

to formulate their context window autonomously, 071

including strategies for teaching agents to utilize 072

these tools or the design of processes that involve 073

tools (Wang et al., 2023), such as retrievers. The 074

enhancement in agent performance is significantly 075

influenced by the performance of these tools, which 076

can not improve themselves concurrently. The cen- 077

tral question we are concerned about is whether 078

agents can self-enhance in the absence of human- 079

labeled data, which is the inherent capability of the 080
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Figure 1: Learning Pattern. Non-declarative learning, as illustrated by the left figure, involves skills such as
distinguishing relative pitches in music through practice. It’s a challenge to express verbally. In contrast, declarative
learning, exemplified by the right figure, refers to the acquisition of knowledge that can be explicitly stated, such
as the introduction of the law of universal gravitation. For neural networks, models can develop the capability to
answer questions through a gradient-based approach, as well as complete specific tasks using carefully designed
prompts. This process closely resembles the learning process shown in the left parts.

model itself.081

In this research, we propose a novel perspec-082

tive on the learning process of agents, drawing083

inspiration from declarative learning methods em-084

ployed by humans. We introduce a comprehen-085

sive learning framework, termed In-Memory Learn-086

ing (IML), which encompasses three pivotal com-087

ponents: induction, revision, and inference. The088

learning process is completed in the memory com-089

ponent, which is what the name refers to. In anal-090

ogy to the gradient calculation process in gradient-091

based learning, agents perform note induction from092

their current experience to identify an update di-093

rection, subsequently updating their previous notes.094

Through iterative updates, the rules summarized by095

the agents progressively align to the correct direc-096

tion. Our experiments illustrate that, through ap-097

plying this framework, the model can self-enhance098

without the requirement for human-annotated la-099

bels. The successful implementation of this method100

necessitates three distinct capabilities:101

• Induction: the distillation of general princi-102

ples from current experiences103

• Revision: the refinement of pre-existing104

guidelines105

• Inference: the application of these updated106

rules for logical reasoning.107

It’s worth noting that we do not directly com- 108

pare our framework with those that incorporate 109

tools within agent systems, as our objective is to 110

demonstrate the inherent potential for agents to 111

self-improve. Instead, we further delve into an 112

analysis of the model’s capabilities and the impact 113

of various IML parameters. 114

Our main contribution is: 115

• We discuss the essential properties that 116

a benchmark requires to evaluate self- 117

improvement abilities and have implemented 118

a preliminary version of such a benchmark. 119

• We introduced a novel framework named In- 120

memory Learning and carried out a compre- 121

hensive series of systematic experiments to 122

investigate its effectiveness and capabilities. 123

2 Related Work 124

2.1 LLM-Agent 125

Discussions about agents have erupted, given the 126

capacity of large language models to tackle a va- 127

riety of language tasks, as previously mentioned. 128

A particularly intriguing question arises regarding 129

the self-improvement of these agents. In numer- 130

ous studies, agents have demonstrated the ability to 131

leverage tools to enhance their performance (Yao 132
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et al., 2022b; Schick et al., 2023; Qin et al., 2023;133

Shen et al., 2023; Karpas et al., 2022; Li et al.,134

2023). In the Reflexion (Shinn et al., 2023) frame-135

work, the model takes multiple trials on the same136

question, necessitating specific conditions to deter-137

mine the appropriate moment to stop attempts.138

Similar to the Voyager (Wang et al., 2023), we139

believe that the agent should operate within a stable140

environment over a long period. In practical sce-141

narios, where labels are hard to obtain, the agent142

must develop an understanding of its surroundings143

and enhance its capabilities, diverging from the144

traditional notion of an autonomous agent. We145

later developed the concept of ’lifelong agent’ in146

Voyager, to which our methods are specifically tai-147

lored. It’s worth noting that the common practice148

for agents based on retrievers directly is acquiring149

related experiences and integrating them into the150

context (Wang et al., 2023), which essentially is in-151

context learning. Consequently, we have selected152

in-context learning as our foundational baseline.153

ExpeL (Zhao et al., 2023) also explores a similar154

process. The primary distinction from our work155

is we focus on iterative improvement and conduct156

systematic experiments about it, while ExpeL pri-157

marily emphasizes the benefits of cross-task expe-158

rience.159

2.2 Agent Benchmark160

Existing benchmarks for agents assess model ca-161

pabilities across multiple dimensions, such as the162

ability to function as an agent (Liu et al., 2023),163

the planning skills necessary to address real-world164

issues (Shridhar et al., 2020; Yao et al., 2022a;165

Fan et al., 2022; Ahn et al., 2022) and their abil-166

ity to complete tasks iteratively (Mohanty et al.,167

2023). The methods used to assess agents’ per-168

formance vary widely, encompassing human eval-169

uation through interviews (Park et al., 2023; Lin170

et al., 2023) and subjective assessments (Choi et al.,171

2023). However, there is a lack of benchmarks172

specifically designed to directly evaluate the self-173

improvement ability of agents (Xi et al., 2023). We174

will discuss the characteristics of such a benchmark175

in the next section, which form the basis of our176

proposal for a new benchmark to measure agents’177

progression.178

3 Meta Implementation179

The entire operation of an LLM-based agent180

can be formulated as a Partially Observed181

Notes ∅!"#$%

Revise notes	∅′

∇=
𝜕𝐿
𝜕𝑊

𝑊& = 𝑊 + ∆𝑊

Induction phase

Revision phase

Calculate gradient

Update parameter

Non-declarative case:
Finetune

Declarative case:
In-memory Learning(Ours)

Samples in batch Samples in context window

Figure 2: Backward Process. There is a similar structure
between the gradient-based learning process and In-
memory Learning(Ours)

Markov Decision Process (Carta et al., 2023) 182

(S,V,A, T ,R,G,O, γ) and we briefly introduce 183

here. In this context, S is the state space while V 184

represents the vocabulary of the language model. 185

A ⊂ VN is the action space and G ⊂ VN is 186

the goal space. The transition function is repre- 187

sented by T : S ×A 7→ S , the reward function by 188

R : S ×A×G 7→ R, and the observation function 189

by O : S 7→ VN . 190

Utilizing this definition, we can consequently de- 191

fine the problem of the Life-long Agent in section 192

3.1, discuss the characteristics of the benchmark as- 193

sessing the self-improve capabilities in section 3.2, 194

and define the In-memory Learning Framework in 195

section 3.3. 196

3.1 Self-improved Agent 197

Agents in real-world scenarios are often tasked 198

with consistently performing some specific types 199

of tasks Gspec ⊂ G ⊂ VN over an extended period. 200

The question of the self-improved Agent centers 201

on whether agents can enhance their performance 202

without relying on human-labeled data since it’s 203

difficult to obtain such golden labels. Consequently, 204

the reward function is categorized into two scenar- 205

ios: one that utilizes fabricated labels such as AI 206

feedback and the other in which only the correct- 207

ness of outcomes can be known since it’s often 208

clear whether one solution has completed the task 209

or not. In the implementation discussed below, we 210

focus on the latter scenario. 211

R 7→
{

R, fake labels exist
{0, 1}, else

(1) 212

where R on the right-hand side stands for the real 213

set. The ’else’ condition pertains to the correctness 214
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x y
0 0 0 0 0 0 0 0 0 0 1

… …
0 1 1 0 0 0 1 1 0 1 2
0 1 1 0 0 0 1 1 1 0 2

… …
1 1 1 1 1 1 1 1 1 1 4

“This	creature	is	 in	size,	with	a	 coloration.
….
The	being	could	possibly	be	which	kind	of	being?	Choose	one	from	Creature	A,	Creature	B,	
Creature	C	and	Creature	D."

Template Prompt

“This	creature	is	massive i in	size,	with	a	
dusky coloration	.…

The	being	could	possibly	be	which	kind	of	
being?	Choose	one	from	Creature	A,	Creature	
B,	Creature	C	and	Creature	D."

Question:

Creature	B!

Siz
e
Co
lor

Testing	Data

massive
#

dusky

Size:	
0:	huge	->[“huge”,	“massive”,	“colossal”,	…]
1:	tiny	->[“tiny”,	“minuscule”,	“petite”,	…]

Color:
0:	bright	-> [“vibrant”,	“radiant”,	“dazzling”,	...]
1:	dim-> [“dim”,	“dusky”,	“murky",	…]

...

Adjectives

Figure 3: The construction process of our benchmark. We pre-define a correspondence from the truth table to the
labels (y) and wrap it with natural language. Each column of the truth table represents a dimension of creatures (xi),
corresponding to two lists of adjectives. For instance, the first column stands for the size of the creature, associating
the value 0 with huge and 1 with tiny. A combination of words is randomly selected from the sets of adjectives and
then interconnected with predefined prompts to formulate the final questions.

of the answer, 1 for correct and 0 for wrong.215

3.2 Benchmark216

The benchmark for assessing an agent’s self-217

improvement ability should have certain essential218

characteristics. It should have a stable and clear219

testing goal to ensure that any progress by the220

model is noticeable. Additionally, the relationships221

within the data need to be learnable. Specifically,222

the least effective approach for self-improvement223

involves exhaustively searching through all possi-224

ble solutions, which is meaningless here. There-225

fore, a relationship between the data is necessary.226

This also aligns with real-world scenarios, where227

common rules often exist across different experi-228

ences such as Newton’s law of universal gravitation.229

Moreover, there must be enough data to make the230

problem statistically significant and solvable.231

Since existing benchmarks are not designed to232

assess the ability for self-improvement, most of233

them do not fully align with the required features.234

For example, HotpotQA (Yang et al., 2018), used in235

Reflexion, is primarily intended to evaluate multi-236

hop QA questions. However, upon analyzing er-237

rors made by agents that were tested by Exact238

Match(See AppendixA), we find that many of them239

are due to formatting issues, which are not expected240

and can’t be generalized. As a result, we developed241

a straightforward classification dataset. We estab-242

lished a clear relationship between features and243

labels, making them learnable. The classification244

problem is suitably chosen because each correct245

feature-label match enhances the classifier’s accu-246

racy. The detailed information about the bench- 247

mark is introduced in Section 4.1.1. 248

3.3 In-memory Learning 249

Within a Partially Observable Markov 250

Decision Process (POMDP) trajectory 251

(s0, o0, a0, s1, r1, .., sn, rn), an agent selects 252

an action based on P (a|s, o, θ), where θ represents 253

all the variables, including prompts and parameters. 254

Uniquely in our framework, we use the symbol ϕ 255

to differentiate context notes from parameters of 256

LLMs. The parameters of LLMs are frozen here 257

and will therefore be omitted for simplicity. We 258

will further explore the phases of the In-Memory 259

Learning process in a formulaic manner below and 260

introduce the details of implementation in section 261

4.1. 262

3.3.1 Inference Phase 263

In the inference phase, agents get the observation o 264

about the current state s, and select an action a ∼ 265

P (a|s, o, ϕ). The reward r that the model receives 266

aligns with the concept of the self-improved agent, 267

which was mentioned before. The trajectory τ = 268

(s0, o0, a0, s1, r1) is recorded for later phase. This 269

phase will continue until a specified threshold is 270

reached. 271

3.3.2 Induction Phase 272

After collecting a set of trajectories, the agent aims 273

to derive general notes ϕbatch from them. This 274

process is completed using natural language de- 275

scriptions, similar to calculating the gradient of 276
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Figure 4: Accuracy curve over learning step. The solid lines represent the smoothed curves. Both llama2-70b-
chat and GPT-3.5-turbo show an upward trend. Llama2-13b-chat also shows continuous improvement, but its
performance is limited by its inference capabilities. Llama2-7b-chat initially improved but experienced a decline in
later steps.

batch data in gradient-based learning approaches277

like Figure 2. The size of the batch for this induc-278

tive process is limited by the length of the context279

window, making the topic of long context windows280

particularly significant here.281

3.3.3 Revision Phase282

Like updating the parameter in gradient-based283

learning, the notes ϕ in the context before will be284

updated based on the insights ϕbatch gained during285

the induction phase. The updated notes ϕ′ will then286

be utilized in the subsequent inference phase. The287

correctness of updating direction is ensured by sta-288

tistical properties, that common rules are consistent289

in different experiences.290

4 Experiments291

In this section, we will outline how we imple-292

mented the entire system first in section 4.1 and293

carry out systematic experiments to evaluate its294

performance.295

4.1 Implementation Details296

4.1.1 Benchmark297

To assess the self-improvement capabilities of298

agents, we developed a four-class classification299

problem. This problem involves a question describ-300

ing one creature in 10 dimensions Like Figure 3,301

where every dimension is described by two oppos- 302

ing sets of adjectives. For instance, within the size 303

dimension, one set of adjectives represents "huge" 304

while the other represents "tiny". Each descrip- 305

tion uniquely matches a specific entry in a truth 306

table that spans ten dimensions, thereby directly 307

correlating to a single label. 308

In the real scenario, when hearing the name of 309

a new species, some features can be inferred be- 310

cause the naming process often includes hints about 311

its characteristics. So we use abstract labels, like 312

"Creature A", to avoid bringing in this kind of prior 313

information. For each entry of the truth table, four 314

unique combinations of adjectives are randomly 315

selected and 896 entries are held out for extension 316

in the future. In the end, we get 3200 shuffled 317

samples. The first two features are designed to be 318

the distinguishing features while the others are dis- 319

tractors. The accuracy achieved on this task can 320

significantly demonstrate the extent to which the 321

agents have grasped these rules. 322

4.1.2 Inference Phase Implementation 323

During the inference phase, the agent needs to 324

identify which creature the description refers to. 325

Initially, the notes ϕ are set to "no idea". A task- 326

unrelated example is provided to guide the answer- 327

ing format of the agent and we use Exact Match 328

to assess the accuracy of the agents’ answers. By 329
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Model Inference test(acc) Induction test(acc) Revise test (∆ acc)

llama2-7b-chat 37.11(± 9.46) 43.31(± 5.02) -3.81(± 12.36)
llama2-13b-chat 42.91(± 6.59) 38.19(± 18.67) 17.63(± 8.48)
llama2-70b-chat 58.67(± 9.51) 48.44(± 6.3) 1.063(± 5.09)
GPT-3.5-turbo 92.94(± 7.38) 45.06(± 3.84) 2.75(± 7.05)

Table 1: Ability Test. The inference test applies five distinct formats of oracle notes to assess accuracy on the same
test split. In induction test, agents summarize 80 groups of notes from the same 320 data samples. Using randomly
sampled 5 groups to make inferences on the original 320 data samples and the same model. The revision test
involves merging 5 pairs of notes into single notes. The accuracy differences are calculated between the minimum
accuracy of pairs and their merged version.

default, the agent processes 320 samples in a sin-330

gle step and saves the trajectories for use in the331

induction and revision phases. Following the im-332

plementation of Reflexion (Shinn et al., 2023), we333

instruct the agent to respond with "Finish[Correct334

Answer]".335

4.1.3 Induction Phase Implementation336

After gathering trajectories in the previous phase,337

the agent identifies common features between them338

and summarizes their findings into batch notes339

ϕbatch. Due to the constraint of the context win-340

dow, the induction phase is executed in minibatch341

while the results ϕminibatch are accumulated iter-342

atively, summarizing into ϕbatch. We will delve343

into this process in the next section, demonstrating344

how such accumulation enhances stability, mirror-345

ing the effect of momentum observed in gradient-346

based learning. The notes are summarized for each347

creature individually and are later combined in the348

revision phase.349

4.1.4 Revision Phase Implementation350

Ultimately, the context notes for each creature are351

individually adjusted based on the batch notes and352

are then merged. We illustrate how the degree to353

which your instructions prompt the agent to make354

changes can impact the stability of the optimiza-355

tion process, similar to the momentum in gradient-356

based learning. Both the induction and revision357

phases occur within the agents’ memory, leading358

us to name this approach as In-memory Learning.359

4.2 Compared with In-Context Leaning360

We choose In-context Learning as our baseline and361

the final result is presented in Figure 4. The result362

of in-context learning conducted in llama2-70b-363

chat is slightly better than random guessing. We364

use 4-shot as our benchmark consists of 4 labels,365

and the examples were manually chosen at random,366
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ensuring the correctness of the answers. To vali- 367

date the effectiveness of our approach, we conduct 368

experiments using various models and analyze the 369

outcomes. 370

4.3 Test on Various Models 371

As depicted in Figure 4, the performance of GPT- 372

3.5 and llama2-70b-chat shows a continuous im- 373

provement trend. However, llama2-13b-chat and 374

llama2-7b-chat only improved a little and there 375

is even a downward trend in the later steps for 376

llama2-7b-chat. We analyze this outcome in three 377

dimensions: the ability of inference, induction, and 378

revision. 379
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In summary, the size of …
As we all known, creature A 

is ..

In summary, the distinguishing 
feature combination of Creature 
A includes: large size, dark 
coloration, strong and …

Below are two notes of the 
Batch notes
Creature A is …

Summarize them. Begin with: In summary

Below are two notes of the 
Batch notes
Creature A is …

Summarize them. Modified the previous 
notes: In summary…

Previous notes:
In summary, the distinguishing feature 
combination of Creature …

Below are two notes of the 
Batch notes
Creature A is …

Summarize them.

Previous notes:
In summary, the distinguishing feature 
combination of Creature …

Previous notes:
In summary, the distinguishing feature 
combination of Creature …

No Momentum Partially Momentum Full Momentum

of change decreasing

The Freedom of Changehigh low

Figure 7: Momentum example. In the No Momentum setting, agents have the freedom to create new notes without
any constraints. In the Partially Momentum setting, Agents are required to start with the initial words of the
previous notes, which limits their freedom to make changes. The Full Momentum setting requires agents to make
changes if necessary while appending the previous notes at the end of the prompts. The red underlined part in the
reply represents the modified content compared to the previous notes.

4.3.1 Inference Ability380

We assess the inference ability of agents with Or-381

acle notes, which indicate the upper bounds the382

agents can achieve in the inference phase. Given383

the sensitivity to the format of the prompt, we eval-384

uate the accuracy of 5 different styles and compute385

the statistical result. The results shown in Table386

1 reveal that both the llama2-7b-chat and llama2-387

13b-chat models attain around 40 percent accuracy,388

explaining why the trend of improvement is not389

markedly evident, as the maximum accuracy with390

oracle notes is not high enough.391

4.3.2 Induction Ability392

The induction ability refers to the agent’s capac-393

ity to summarize the common rules across differ-394

ent samples. In our study, four base models are395

tasked with performing induction on the same set396

of 320 samples, generating 80 groups of notes. We397

randomly select 5 of these 80 groups and use the398

llama2-70b-chat model to make inferences on the399

320 samples. The results are presented in Table400

1, indicating that llama2-70b-chat is the best one401

while llama2-13b-chat is the worst unexpectedly.402

The performance of GPT3.5-turbo falls short of403

that achieved by the llama2-70b-chat, providing404

insight into why GPT3.5 did not exhibit superior405

overall performance.406

4.3.3 Revision Ability 407

During the revision phase, the agent is required to 408

summarize two notes into one iteratively. To eval- 409

uate this capability, we devised a targeted experi- 410

ment. Utilizing the notes collected by the llama2- 411

70b-chat model, we randomly select 5 pairs of 412

notes, and the agents need to merge each pair. We 413

assess the agents’ inference accuracy before and 414

after the revision process. The difference in accu- 415

racy, that between the merged notes and the lower 416

accuracy of the original pairs, serves as a measure 417

of the agents’ revision proficiency. The result is 418

presented in Table 1. The llama2-7b-chat model 419

exhibited a decrease in accuracy, which accounts 420

for the model’s declining performance in Figure 4. 421

Conversely, the llama2-13b-chat model is the most 422

superior one in this ability test. 423

4.4 Effect of Parameters 424

In our framework, certain key parameters influence 425

the learning process. To explore these effects fur- 426

ther, we conducted experiments focusing on the 427

momentum and accumulation step, which are cru- 428

cial for the stability of the learning process. We 429

conduct the experiments on the llama2-70b-chat 430

model. 431

4.4.1 Effect of Momentum 432

Although the natural language is discrete, our 433

framework incorporates a momentum mechanism. 434

As illustrated in Figure 7, instructing the model to 435
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initiate responses using the initial words of previ-436

ous notes acts as a form of momentum, constrain-437

ing the generative freedom. Additionally, we in-438

corporated basic statistical information regarding439

the quantity of samples processed by the agents.440

We conducted comparative analyses across differ-441

ent momentum settings, with the results shown in442

Figure 7. In our experiments, the full momentum443

setting yields the most stable performance whereas444

the no momentum leads to the opposite. This sug-445

gests that integrating a momentum-like feature can446

significantly enhance the model’s consistency.

Prompts:
These are some experiences about Creature C:
Sample 33
This creature is minuscule in size, with vivid 
coloration. ... It displays motionless activities. 
...

Sample 34
This creature is diminutive in size, with vibrant 
coloration. ... It displays vigorous activities. ..

Sample 35
This creature is petite in size, with radiant 
coloration. ... It displays lively activities. ...

This is the previous analysis:

First, Let’s identify the consistent characteristics 
for creature C from the new samples:
- Temperature: Described as torrid in all new 
samples
- Activity: Described as lively in all new 
samples.. 
So, the final notes for identifying Creature C 
are:
- Torrid temperature
- Lively activity
Modified the previous notes

Output:
First, Let’s identify the consistent characteristics 
for creature C from the new samples:
- Temperature: Described as torrid in all new 
samples
- Activity: Described as lively in all new
samples
.. So, the final notes for identifying Creature C 
are:
- Torrid temperature
- Lively activity

Figure 8: case study

4.4.2 Effect of Accumulation step 447

Another critical parameter in our framework is the 448

accumulation step count, which can exert influ- 449

ence on the learning process in two distinct ways. 450

As described in the meta-implement section, the 451

optimization process direction is determined by 452

statistical properties, and the accumulation step as- 453

sumes significance due to the fixed minibatch size 454

imposed by the context window. Additionally, our 455

assessments of accuracy during the subsequent in- 456

fluence phase are also influenced by the volume of 457

data. In our experiment, we examined three accu- 458

mulation step values: 128, 200, and 320, with the 459

result presented in Figure 6. As observed, a smaller 460

accumulation step leads to greater instability in the 461

learning process. 462

4.5 Trapped in Local Minimum 463

An interesting observation about the learning pro- 464

cess is the presence of optimization challenges anal- 465

ogous to the occurrence of saddle points in gradient- 466

based learning. When tasked with modifying exist- 467

ing notes based on new experiences, the model may 468

encounter difficulties in updating, even when the 469

new experience contradicts the existing notes. This 470

issue tends to occur more frequently in the interme- 471

diate and advanced stages of the iterative update 472

step. Since we have observed this phenomenon 473

across various models, including GPT-3.5-turbo, 474

we believe that it’s not solely attributed to the diver- 475

sity of training data. Rather, it appears as if the copy 476

mechanism of transformers is triggered with the 477

end-of-sequence token remaining the most likely 478

outcome after repeating the previous notes, even in 479

the presence of changed experiences. We have not 480

identified the minimum support set to delve deeper 481

into this question and leave it for future exploration. 482

Figure 8 shows an simplified examples 483

5 Conclusion 484

In conclusion, we formally define the problem 485

of self-improved agents. We discuss the key 486

properties of a benchmark designed to evaluate 487

agents’ self-improvement capabilities and intro- 488

duce a novel framework called In-memory Learn- 489

ing. Our systematic experiments demonstrate the 490

effectiveness of this method and provide valuable 491

insights into this domain. 492
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Limitations493

Multimodality has the potential to incorporate494

richer information, which can enable agents more495

adaptable to complex situations. In our current496

work, we primarily focus on text and do not incor-497

porate multi-modality situations. This aspect is left498

for future research.499

Due to the constraint of budget, we didn’t con-500

duct experiments with GPT-4, leaving unanswered501

questions about its potential effectiveness as a502

learner and the extent of improvements it can503

achieve.504
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Query: Chicagoland Sports Hall of Fame was founded by the company located in what Washington town,
near the state capital?

Supporting Article: The Chicagoland Sports Hall of Fame, located in the Hawthorne Race Course, in
Stickney/Cicero, near Chicago, Illinois, honors sports greats associated with the Chicago metropolitan
area. It was founded in 1979 as a trailer owned by the Olympia Brewing Company parked at Soldier
Field in Chicago. The Chicago Park District took over the exhibits in 1983. From 1988 the exhibits were
displayed in Mike Ditka’s restaurant until the restaurant closed in 1991. The Hall of Fame moved to
the Maryville Academy in Des Plaines in 1996 and has operated under the guidance of Father John P.
Smyth since that time. As of 2008, it was operating at Hawthorne. The Olympia Brewing Company was a
brewery in the northwest United States, located in Tumwater, Washington, near Olympia. Founded in
1896 by Leopold Friederich Schmidt, it was bought by G. Heileman Brewing Company in 1983. Through
a series of consolidations, it was acquired by Pabst Brewing Company in 1999; the Tumwater brewery was
closed in 2003 but the Olympia brand continues, currently contract brewed by MillerCoors in southern
California.

Answer: Tumwater, Washington

Type: Bridge

Level: Hard

Model Prediction: Tumwater

Query: Roger O. Egeberg was Assistant Secretary for Health and Scientific Affairs during the administra-
tion of a president that served during what years?

Supporting Article: Roger Olaf Egeberg, M.D. (13 November 1902 – 13 September 1997 Washington,
D.C.) was an American medical educator, administrator and advocate of public health. He was General
Douglas MacArthur’s personal physician during World War II in the Pacific theater. His other roles
included Assistant Secretary for Health and Scientific Affairs in the Department of Health, Education,
and Welfare (now the United States Department of Health and Human Services) during the Nixon
administration and Dean of the University of Southern California’s medical school.Milhous Nixon
(January 9, 1913 – April 22, 1994) was the 37th President of the United States from 1969 until 1974,
when he resigned from office, the only U.S. president to do so. He had previously served as the 36th
Vice President of the United States from 1953 to 1961, and prior to that as a U.S. Representative and also
Senator from California.

Answer: 1969 until 1974

Type: Bridge

Level: Hard

Model Prediction:1970s

Query: In regards to the high school that forced Manchester High School to change its name in 1922,
when was its first graduating class?
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Supporting Article: Manchester High School Central is the oldest public high school in the state of New
Hampshire. Located in the heart of Manchester, New Hampshire, approximately 2,100 students attend
from communities such as Candia, Hooksett, and Manchester. The name was changed from Manchester
High School in 1922 when Manchester West High School opened. Including Central, Manchester has a
total of three public high schools.High School West, known as West High or West, is a public high school
located in Manchester, New Hampshire. According to the B̈lue Book: Manchester High School West
Hand Book (̈1940), the school was officially opened in September 1923 as a grade school and high school,
hosting the seventh and eighth grades. In 1924, with an upsurge in enrollment to 136 pupils, the school
became a dedicated high school. The first graduating class was in June 1925.High School West, known as
West High or West, is a public high school located in Manchester, New Hampshire. According to the B̈lue
Book: Manchester High School West Hand Book (̈1940), the school was officially opened in September
1923 as a grade school and high school, hosting the seventh and eighth grades. In 1924, with an upsurge
in enrollment to 136 pupils, the school became a dedicated high school. The first graduating class was in
June 1925.

Answer: June 1925

Type: Bridge

Level: Hard

Model Prediction:1925

Query: When was the British author who wrote the novel on which Ḧere We Go Round the Mulberry
Bushẅas based born?

Supporting Article: Here We Go Round the Mulberry Bush is a 1967 British film made based on the
novel of the same name by Hunter Davies. It was listed to compete at the 1968 Cannes Film Festival, but
the festival was cancelled due to the events of May 1968 in France.Hunter Davies, OBE (born 7 January
1936) is a British author, journalist and broadcaster. He is the author of a number of books, including the
only authorised biography of the Beatles.

Answer: 7 January 1936

Type: Bridge

Level: Hard

Model Prediction:1936

Query: When was the track from which a sample was featured in T̈ake Me to the Clouds Abover̈eleased?

Supporting Article: LMC are a British dance group consisting of producers, Lee Monteverde, Matt
Cadman and Cris Nuttall. They have performed remixes for Scooter, Erasure, Dannii Minogue, Lasgo,
Flip
Fill, Robert Palmer and Shania Twain. LMC is best known for the track T̈ake Me to the Clouds
Aboveẅhich featured a sample from Ḧow Will I Knowb̈y Whitney Houston, and Ẅith or Without Youb̈y
U2 which topped the UK Singles Chart in early 2004, as well as going top 5 in Ireland and top 10 in
Australia.Ẅith or Without Youïs a song by Irish rock band U2. It is the third track from their fifth studio
album, T̈he Joshua Tree(̈1987), and was released as the album’s lead single on 16 March 1987. The song
was the group’s most successful single at the time, becoming their first number-one hit in both the United
States and Canada by topping the B̈illboardḦot 100 for three weeks and the R̈PMn̈ational singles chart for
one week, with a further three weeks at number two.

Answer: 16 March 1987

Type: Bridge

Level: Hard
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Model Prediction:1987
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