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Abstract

It has been widely observed that language mod-001
els (LMs) respond in predictable ways to algo-002
rithmically generated prompts that are seem-003
ingly unintelligible. This is both a sign that we004
lack a full understanding of how LMs work,005
and a practical challenge, because opaqueness006
can be exploited for harmful uses of LMs, such007
as jailbreaking. We present the first thorough008
analysis of opaque machine-generated prompts,009
or autoprompts, pertaining to 3 LMs of differ-010
ent sizes and families. We find that machine-011
generated prompts are characterized by a last012
token that is often intelligible and strongly af-013
fects the generation. A small but consistent014
proportion of the previous tokens are fillers that015
probably appear in the prompt as a by-product016
of the fact that the optimization process fixes017
the number of tokens. The remaining tokens018
tend to have at least a loose semantic relation019
with the generation, although they do not en-020
gage in well-formed syntactic relations with it.021
We find moreover that some of the ablations022
we applied to machine-generated prompts can023
also be applied to natural language sequences,024
leading to similar behavior, suggesting that au-025
toprompts are a direct consequence of the way026
in which LMs process linguistic inputs in gen-027
eral.028

1 Introduction029

An intriguing property of language models (LMs)030

is that they respond in predictable ways to machine-031

generated prompts (henceforth, autoprompts)1 that032

are unintelligible to humans. Shin et al. (2020) first033

showed that autoprompts can outperform human-034

crafted prompts on various tasks. More worry-035

ingly, Wallace et al. (2019) and several other stud-036

ies after them have shown that they can be used037

in adversarial attacks making models, including038

1The term autoprompt was coined by Shin et al. (2020)
to refer to the prompts generated by their algorithm. We
repurpose the term here to refer to machine-generated prompts
in general.

latest-generation aligned LMs, behave in undesir- 039

able ways (e.g., Zou et al., 2023b; Geiping et al., 040

2024). 041

In this paper, we present the first thorough qual- 042

itative analysis of autoprompts. We discover that, 043

despite the superficial impression of opacity they 044

convey, they can to a significant extent be explained 045

in terms of a few general observations. First, in au- 046

toregressive models the last token of the prompts 047

has a disproportionate role in generating the con- 048

tinuation, and this last token is both very important 049

and often quite transparent in autoprompts. Sec- 050

ond, several tokens contributing to the opaqueness 051

of autoprompts act as fillers that are ignored by 052

the model. Third, the non-final tokens that are 053

actually influencing generation might do so in a 054

keyword-like way, and even occasionally display a 055

loose form compositionality, in a sense we’ll make 056

precise below. As we will see, these factors are 057

also at play when LMs are fed natural-language 058

sequences, suggesting that they are core properties 059

of how LMs process linguistic strings. 060

From a theoretical point of view, our study offers 061

new insights into LM language processing in gen- 062

eral. From a practical point of view, it highlights 063

which aspects of LMs we should pay attention to, if 064

we want to make them more robust to harmful auto- 065

prompts (or, conversely, to develop more efficient 066

benign autoprompt generation techniques). 067

2 Related work 068

Starting with the seminal work of Wallace et al. 069

(2019) and Shin et al. (2020), many studies have 070

revealed that, using various discrete gradient- 071

following techniques it is possible to automatically 072

discover prompts that, while unintelligible, let LMs 073

generate a desired target output (e.g., Shin et al., 074

2020; Deng et al., 2022; Wen et al., 2023; Melamed 075

et al., 2024),. Moreover, such prompts are at least 076

to some degree transferable, in the sense that they 077
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can be induced using a LM, but then successfully078

used to prompt a different one, including much079

larger models (Rakotonirina et al., 2023; Zou et al.,080

2023b; Melamed et al., 2024).081

Initially, the interest was mainly in whether082

algorithmically-generated autoprompts could be083

used as alternatives to manually crafted prompts084

in knowledge-extraction tasks or other LM appli-085

cations (e.g., Shin et al., 2020; Deng et al., 2022;086

Rakotonirina et al., 2023). With the recent astound-087

ing progress in LM ability to respond to natural088

language prompts, this goal has become somewhat089

obsolete, but autoprompts are still an important090

concern because they can be used for adversarial091

purposes, for example to bypass LM security filters092

in order to generate offensive or dangerous informa-093

tion (e.g., Zou et al., 2023b; Geiping et al., 2024).094

Even more importantly, the fact that several modern095

LMs are more likely to provide information about096

the star formation process when prompted with the097

string “Produ bundcules cation ofs̀tars efect” than098

when prompted with the question “What leads to099

the creation of new stars?” suggests that there is100

something fundamental we still do not understand101

about how LMs process language.2102

There is relatively little work attempting to char-103

acterize the nature of autoprompts. Geiping et al.104

(2024) present a set of intriguing qualitative ob-105

servations about how autoprompts support various106

types of attacks (e.g., by including instruction frag-107

ments in different languages), as well as an analy-108

sis of tokens commonly appearing in autoprompts.109

Ishibashi et al. (2023) find that autoprompts are110

less robust to token re-arrangement than natural111

prompts, whereas Rakotonirina et al. (2023) report112

that the autoprompts that best transfer across mod-113

els contain a larger proportion of English words114

and, surprisingly, are less order-sensitive than auto-115

prompts that do not transfer. Kervadec et al. (2023)116

analyze the activation paths of autoprompts and117

comparable natural sequences across the layers of118

a LM, finding that often they follow distinct path-119

ways.120

Melamed et al. (2024) study, like us, what they121

call “evil twins”, namely autoprompts that produce122

continuations comparable to those of a reference123

natural sequence. They compare the relative robust-124

ness to token shuffling of autoprompts and natural125

prompts, finding that, depending on the model fam-126

ily, autoprompts might be more, less or comparably127

2Example from Melamed et al., 2024.

robust to shuffling. They also run a substitution ex- 128

periment similar to the one we will describe below 129

(but replacing tokens with a single, fixed, [UNK] 130

token). They find that this ablation strongly affects 131

the autoprompts: we find a more nuanced picture, 132

by considering a large range of possible replace- 133

ments. 134

3 Experimental setup 135

Models We use decoder-only LMs from the 136

Pythia (Biderman et al., 2023) and OLMo (Groen- 137

eveld et al., 2024) families, as these are fully open- 138

source models whose training data are publicly 139

available. Specifically, in the text we discuss the 140

results we obtained with Pythia-1.4B, and we repli- 141

cate the main experiments with Pythia-6.9B and 142

OLMo-1B in Appendix B, reporting similar results. 143

Data collection We sample 25k random English 144

sequences from the WikiText-103 corpus (Merity 145

et al., 2017), such that they contain between 35 146

and 80 (orthographic) tokens, and they are not in- 147

terrupted by sentence boundary markers. We re- 148

fer to these corpus-extracted sequences as original 149

prompts. We also record the original continuation 150

of these sequences in the corpus. We let moreover 151

the LM generate a continuation of each prompt us- 152

ing greedy decoding. The generation process stops 153

after a maximum of 25 tokens or when end-of- 154

sentence punctuation (period, exclamation mark, 155

question mark) is encountered. We filter out se- 156

quences whose generated continuation is less than 157

4 tokens long. As we are interested in genuine 158

model generation, as opposed to cases where the 159

model is simply producing a memorized corpus 160

sequence, we compute the BLEU score (Papineni 161

et al., 2002)3 between the model continuation and 162

the original continuation, removing sequences with 163

BLEU greater than 0.1.4 After completing the fil- 164

tering processes, we are left with a total of 5k se- 165

quences, which we use to train autoprompts. 166

Prompt optimization For each target continu- 167

ation, we want to find a fixed-length autoprompt 168

that makes the model produce that continuation. 169

To achieve that, we maximize the probability of 170

3We use a modified version of BLEU that does not penalize
short sequences. Scores are computed for up to 4-grams using
uniform weights and add-ϵ smoothing.

4Schwarzschild et al. (2024) find that sometimes auto-
prompts act as “keys” to retrieve memorized materials. This is
an intriguing property we don’t further explore here, as we’re
interested in their more general ability to generate natural-
language sequences.
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the target continuation given the prompt. More171

formally, if we denote the target sequence by172

(t1, ..., tm) ∈ Vm, where V is the vocabulary, and173

the n-length autoprompt by (p1, ..., pn) ∈ Vn (in174

our case, n = 10), the optimization problem can175

be formulated as follows:176

minimize
(p1,...,pn)∈Vn

− logPLLM (t1, ..., tm|p1, ..., pn)177

We use a variant of Greedy Coordinate Gradient178

(GCG) (Zou et al., 2023b), a widely used gradient-179

based algorithm that iteratively updates the prompt180

one token at a time (Ebrahimi et al., 2018; Wallace181

et al., 2019; Shin et al., 2020). During each itera-182

tion, we select the top 256 tokens with the largest183

negative gradients for every position, then we uni-184

formly sample 256 candidates across all positions.185

We then compute the loss of each candidate replace-186

ment, and select the one with the lowest loss. In187

our experiments, we run up to 150 iterations of188

this process.5 We discard cases in which, after this189

number of iterations, we have not found an auto-190

prompt that produces the very same continuation191

as the original prompt.192

Data-set statistics The final data-set we use for193

the Pythia-1.4B experiments reported in the main194

text consists of 2473 triples of original prompt,195

autoprompt and continuation. The average original196

prompt length is of 38.6 tokens (s.d. 11.7); that of197

the continuations is of 9.4 tokens (s.d. 2.7).6198

4 Experiments199

4.1 Pruning autoprompts200

We greedily prune the autoprompts in our data-set.201

Starting from the original sequence of n tokens, we202

strip each token in turn, and pick the n-1-length203

sequence that produces the same continuation as204

the original, if any (if there’s more than one such205

sequence, we randomly pick one). We repeat the206

process starting from the shortened sequence, and207

stop where there is no shorter sequence generating208

the original continuation, or when we are down209

to a single-token prompt. It is possible to shorten210

the original autoprompt in a clear majority of the211

cases (60%), with the average pruned autoprompt212

5We set the number of candidates to 256 following Zou
et al. (2023b). We converged on using 150 as the maximum
number of iterations based on a few exploratory runs, without
extended hyperparameter search.

6We include data-sets and code as supplementary materials.
They will be made publicly available upon publication a under
a CC-BY-SA and a CC-BY license, respectively.

having lost 1.9 tokens of 10 (s.d.: 1.1). Table 1 213

shows randomly picked examples of autoprompts 214

with the pruned tokens highlighted in bold. 215

Autoprompt-discovery algorithms fix the num- 216

ber of tokens as a hyperparameter. It is thus reason- 217

able that some tokens in the final autoprompt are 218

just there to fill all the required slots, and can con- 219

sequently be pruned. The view that pruned tokens 220

are filler-like is supported by the following obser- 221

vation. We roughly classified the tokens into the 222

autoprompts into language-like and non-linguistic, 223

such as digits, punctuation, code-fragments and 224

non-ascii characters. We found that the proportion 225

of non-linguistic tokens is decidedly higher among 226

pruned tokens (32.9%) than among kept tokens 227

(24.5%). 228

Table 2 further shows tokens that are most typ- 229

ically kept or removed by the pruning algorithm 230

according to the local mutual information statistics 231

(Evert, 2005). Among the kept ones, we notice a 232

prevalence of content words such as verbs, nouns 233

and adjectives, whereas the typically pruned tokens 234

are function words or word fragments. 235

As expected if they are somewhat filler-like, 236

pruned tokens are easier to ignore when ran- 237

domly interspersed into natural sequences than non- 238

pruned tokens are. To quantify this claim, we ex- 239

tracted the set of tokens that are always pruned in 240

our autoprompt corpus, as well as the set of to- 241

kens that are never pruned. We then inserted in 242

each of the original prompts a random sample of 243

3 always-pruned or always-kept tokens, in random 244

positions. We measured how this affected the con- 245

tinuation by computing the average BLEU scores 246

for the continuations after the insertion, with the 247

original continuations as reference. Not surpris- 248

ingly, in both cases adding 3 new tokens does af- 249

fect generation, but adding pruned tokens has a 250

lower effect than adding kept tokens: the average 251

pruned-token insertion BLEU is at 0.40 ( s.d. 0.39); 252

the kept-token insertion BLEU is at 0.37 (s.d 0.39). 253

The difference is highly significant according to a 254

paired t-test (p < 0.001). 255

Importantly, the likelihood of pruning is not 256

equally distributed across autoprompt positions: 257

as Fig. 1 shows, the last token of the autoprompt 258

is extremely unlikely to be pruned, pointing to the 259

special role it plays in generating the continuation. 260

It seems that, when analyzing autoprompts, we can 261

establish a 3-way distinction, in terms of impor- 262

tance, between pruned tokens, kept tokens in all 263

positions but the last, and the token that occurs in 264
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autoprompt: continuation:
Billboard franchise<EOT> Large venuesIt 1897 comfortablycontained what was then the largest venue in the world.
shareholders discontinued visual impairment schools subsequently allegedly ???atically lead to a decline in the number of visually impaired students.
Scott Brock)<EOT> Magazine ϵ finaleuntil Lisa put the finishing touches on the cover.
California drones operate airlines?? Bigletters** license from the Federal Aviation Administration (FAA).
<EOT><EOT><EOT> Bal sankCCA!" did aircraft regain power and the plane crashed into the sea.

Table 1: Random autoprompts examples with prunable tokens in bold. Difficult to render characters replaced by “?”.

kept: pruned:
represents I
denotes also
premiered they
filmmaker time
Their th
means out
infamous G
guitarist T
His S
soundtrack well

Table 2: Top-10 kept (left) or pruned (right) autoprompt
tokens ranked by local mutual information.

the last position.7265

In support of this analysis, we conducted the266

following experiment. For each autoprompt, we267

measured the proportion of tokens that also occur268

in the corresponding original prompt (and are thus269

likely to be meaningfully related to the continua-270

tion), distinguishing between pruned tokens, kept271

tokens except last, and last tokens. We found a sig-272

nificant difference in overlap between pruned and273

kept-non-last-token overlap: 0.66% (s.d. 6.75%)274

vs. 2.25% (s.d. 5.84%), p < 0.001. However, the275

very last token is much more likely to overlap with276

the last token of the original sequence than the277

other kept tokens are to overlap with any token in278

the latter (11.10% vs. 2.25%).279

By looking qualitatively at typical last tokens280

(see the example in Table 1), we observe indeed281

that often they have a natural link to the beginning282

of the continuation. To confirm this quantitatively,283

in Fig. 2 we report the (log-transformed) corpus284

frequency distributions of the bigrams occurring285

in different contexts, with bigram frequencies es-286

timated on the Pile corpus (Gao et al., 2020) that287

was used to train the Pythia models.288

There’s a clear contrast between the bigram fre-289

quency distribution in natural text, exemplified by290

7This is a somewhat coarse distinction, since, as Fig. 1
shows, the last few tokens before the very last also tend to be
less prunable than earlier tokens.

-9 -8 -7 -6 -5 -4 -3 -2 -1 0
token position
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Kept and pruned tokens - autoprompts

Figure 1: Counts of autoptompt tokens that were pruned
(dark orange) and kept (yellow) by position, where 0 is
the last position.

the natural prompts, and the autoprompts, that are 291

mostly characterized by bigrams that never occur in 292

the Pile. However, strikingly, the distribution at the 293

autoprompt/continuation boundary is very similar 294

to the one of natural text, quantitatively confirming 295

that the last token of the autoprompt has a strong 296

natural-language link to the continuation. 297

4.2 Replacing autoprompt tokens 298

Working from now on with the pruned autoprompts, 299

we replace the token in each position in turn with 300

one of the 10k most frequent tokens from the Pile. 301

We quantify the impact of the ablations in terms 302

of BLEU score with respect to the original con- 303

tinuation. The ablation results are summarized in 304

Fig. 3, where replacements are binned based on the 305

impact they have on the continuation (examples are 306

presented in the tables of Appendix A). 307

First, we confirm that non-pruned tokens in all 308

positions play a significant role in generating the 309

continuation, as shown by the fact that most re- 310

placements have a strong impact on BLEU. How- 311

ever, for all positions except the last, we also see 312

that a non-negligible proportion of replacements do 313

not affect the continuation at all, and in a significant 314

proportion of cases the continuation is only mildly 315

affected (as the examples in Table 8 of Appendix 316

A show, even a BLEU score around 0.2 typically 317
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Figure 2: Pile-based log frequency distributions of bi-
grams in the original prompts, autoprompts and at the
autoprompt/continuation boundary (ap/cont boundary).
Log(0) conventionally set to -1. The red line represents
the median; boxes span interquartile ranges.

corresponds to a continuation that is quite similar318

to the original).319

We confirm moreover the special role of the last320

token, that can almost never be replaced without321

a catastrophic result on the continuation. The im-322

portance of the ending of the autoprompt is further323

shown by the fact that, as we approach the last324

position, it is increasingly more difficult to find325

replacements that do not strongly affect the contin-326

uation.327

Furthermore, by manually inspecting the cases328

that lead to only a moderate change in the continua-329

tion, we observe that sometimes they show a degree330

of “compositionality”, in the sense that the continu-331

ation stays the same except for one or a few tokens332

that are replaced with new tokens that reflect the333

meaning of the replacement, and/or drift away from334

the meaning of the replaced token. Some examples335

are presented in Table 3.336

To make this intuition more quantitative, we ran337

the following experiment. First, to facilitate auto-338

mated similarity analysis, we extracted all cases339

where the replacement leads to the change of a sin-340

gle (typographic) word in the continuation (about341

3% of the total cases). For these cases, we used342

FastText (Bojanowski et al., 2017) to measure the343

semantic similarity of both the original autoprompt344

token and its replacement to the original word in345

the continuation and to the changed one. We found346

that the original token is more similar to the new347

continuation word (vs. the original one) in only348

37% of the cases, whereas the replacement token is349

more similar to the new continuation in 55% of the350

Figure 3: Average proportions of replacement effect
types by position on pruned autoprompts, aligned from
right (whiskers show standard deviations). Null-effect
replacements leave the continuation unchanged. Mod-
erate replacements have BLEU of at least 0.2. Strong
replacements have BLEU below 0.2.

cases. We thus conclude that, indeed, there is a ten- 351

dency for at least this type of replacement to work 352

compositionally, with a small change in the auto- 353

prompt leading to a semantically consistent change 354

in the continuation. This, in turn, suggests that au- 355

toprompts do not function as unanalyzable holistic 356

wholes, but their “meaning” to the model derives, 357

at least partially, from assembling the meaning of 358

its parts, as with natural language sequences. As 359

the examples show, though, this assembling looks 360

nothing like the one performed by natural language 361

syntax. 362

4.3 Shuffling autoprompt tokens 363

The picture we get from the previous studies is one 364

where autoprompts are composed of three types of 365

tokens. A number of tokens are fillers that, being 366

ignored by the LM, can simply be pruned. The final 367

token is extremely important and hard to change, 368

because, in autoregressive prediction, it determines 369

the exact nature of the first token of the continua- 370

tion, and consequently strongly affects the rest of 371

the continuation. The other non-prunable tokens 372

also have an impact on the continuation, but they 373

seem to rather work as single “keywords” that af- 374

fect the semantic content of what follows, without 375

forming a tight syntactic bound with each other and 376

what follows. 377

Previous work has uncovered a somewhat mixed 378

picture in terms of the robustness of autoprompts to 379

token order shuffling (Ishibashi et al., 2023; Rako- 380

tonirina et al., 2023; Melamed et al., 2024). Based 381
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autoprompt: continuation:
cake implies Norman meaning LOVE/radical journalism indicated by the use of the word "love/radical" in the title.
sDad/meal ———— Protection Many mans ruggedally understands the need to protect his family/food
Grad^{ OTHERary soldier}\\}$ indicates auxiliary baggage/work carried/done by the other soldiers.

Table 3: Example autoprompt token replacements leading to a small, interpretable change in the continuation
(replaced/replacement tokens in the autoprompt and changed material in the continuation are highlighted in bold).

on what we just observe, we conjecture that the last382

token will be “rigid”, as moving it around would383

strongly affect the continuation, whereas the pre-384

ceding tokens might be more robust to order ab-385

lations. To test the conjecture, we randomly shuf-386

fled the tokens (10 repetitions per autoprompt) and387

measured the resulting BLEU with respect to the388

original continuation. We either shuffled all tokens389

or left the last one fixed.390

The average BLEU when shuffling all tokens391

is at 0.02 (s.d. 0.03) and at 0.05 (s.d. 0.07) when392

leaving the last token in its slot. This difference is393

highly significant (paired t-test, p < 0.001).8 How-394

ever, the low BLEU values suggest that, contrary395

to our conjecture, the autoprompt tokens before the396

last are not a bag of keywords, since their order397

matters as well. One possibility is that, while auto-398

prompts as a whole do not constitute syntactically399

well-formed sequences, they are composed of tight400

sub-sequences that should not be separated. For401

example, given that modern tokenizers split text402

at the sub-word level, token-level shuffling will403

arbitrarily break words.404

Some support for the view that the catastrophic405

effect of shuffling pre-last tokens is due to short-406

distance dependencies comes by looking at the407

cases in which a bigram in an autoprompt (exclud-408

ing the last position) is also attested in the Pile409

corpus, either in the original or in the inverted or-410

der. In 61.5% of these cases, the Pile frequency411

of the original bigram is larger than that of the in-412

verted one. This suggests that there is at least some413

tendency towards a natural local ordering among414

autoprompt tokens.415

4.4 Making human prompts more416

autoprompt-like417

As a final piece of evidence that the dynamics we418

see at work in autopromts are general properties419

of how LMs process language, we re-ran some420

of the experiments above on the original corpus-421

8The difference stays comparably significant if, in the first
condition, we leave a random non-last token fixed, so that the
same number of tokens is shuffled in the two cases.

extracted natural-language prompts, finding that 422

they respond in similar ways to our ablations. 423

Pruning Applying the same greedy-pruning 424

method to the original prompts, we find that more 425

than 99% can also be pruned, with 21.9 tokens 426

removed on average. Considering the average to- 427

ken length of the original prompts is 38.57, this 428

means that, strikingly, on average 57% of the to- 429

kens can be removed without affecting the continu- 430

ation. Since the prompts are long, one could think 431

that what is removed is primarily material towards 432

the beginning of the sequence, but actually we find 433

that 95% of the prompts also have pruned tokens 434

among the last 10 items. 435

Examples of the latter are in Table 4. Prun- 436

able material often consists of modifiers whose 437

removal does not affect the basic syntactic struc- 438

ture of the fragments (“strategic bomber”, “section 439

of the pipeline”, “replication fork”. . . ), but this is 440

not always the case, and in many examples prun- 441

ing turns well-formed sentences into seemingly 442

unstructured token lists or telegraphic texts at best 443

( “most section, since it”, “fork mobile day but”). 444

Still, like in the case of the autoprompts, the coher- 445

ence of the transition between the prompt and the 446

continuation is generally preserved (“. . . bomber 447

Tu, / which was designed. . . ”, “. . . since it / was the 448

only one. . . ”). 449

Table 5 shows the original-prompt tokens that 450

are most typically kept vs. pruned. As for the au- 451

toprompts (cf. Table 2 above), the highly prunable 452

tokens consist entirely of common function words 453

and punctuation marks. However, the typically 454

kept tokens tend to also consist of (somewhat rarer) 455

function words and punctuation marks. The pres- 456

ence of quotation marks and brackets in this list 457

should not surprise us, because removing these ele- 458

ments from the prompt will strongly affect the con- 459

tinuation (e.g., without the opening bracket in the 460

prompt, the model might fail to close a parentheti- 461

cal, producing a completely different continuation). 462

However, what is the crucial distinction between 463

the typically kept vs. pruned function words is not 464

clear to us, and it deserves further investigation in 465
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prompt: continuation:
. . . Soviet prototype strategic bomber based on the Tu 4, which was designed to replace the Tu-4.
. . . most complex single section of the pipeline, since it was the only one that was not under contract with Fluor.
. . . formers (16–18 year olds) were recruited for the performance.
. . . replication fork and the mobile Holliday junction, but the structure of the DNA duplex was not known.
. . . the 74 gun Theseus, provided an escort and fired a salvo of shells at the enemy’s batteries.

Table 4: Randomly selected examples of original prompts with prunable tokens in bold. Only the last 10 tokens of
each original prompts are shown. In the first example, the last token of the autoprompt is a comma, which is not
pruned. In the third example, the brackets are not pruned, either.

kept: pruned:
" the
), ,
which of
was a
( .
is in
) ’s
when on
film and
with The

Table 5: Top-10 kept (left) or pruned (right) original
prompt tokens ranked by local mutual information.

the future.466

Figure 4 presents pruning proportion by position467

for the last 10 tokens in the original prompts, con-468

firming that, in this case as well, the last token is by469

far the most important one in determining the con-470

tinuation. Interestingly, the contrast is even more471

dramatic than for autoprompts (cf. Figure 1 above).472

Replacement We replicate the token-473

replacement experiment on the pruned original474

prompts, obtaining the results summarized in475

Figure 5, where we used the same BLEU ranges476

as in Figure 3 above. Again, tokens become more477

replaceable as we move away from the end of the478

prompt, confirming the crucial role played by the479

very last token.480

Table 6 show examples in which the original481

prompt, despite pruning and replacement among482

the last 10 tokens, still triggers the same continu-483

ation. We see how the same principles that might484

explain the success of autoprompts are at work here,485

suggesting how autoprompts might take shape dur-486

ing their induction process. For example, both487

“. . . citing the “popular adventure book”, attempted488

the first” and “. . . adventure regression first” trig-489

ger the continuation “ascent of the north face of490

Mount Everest.” The last token is preserved, and491

-9 -8 -7 -6 -5 -4 -3 -2 -1 0
token position

0

500

1000

1500

2000

2500

co
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t

Kept and pruned tokens - original prompts (last 10 positions)

Figure 4: Counts of original prompt tokens that were
pruned (dark orange) and kept (yellow) in the last 10
positions, where 0 is the last position.

determines the fact that the continuation will start 492

with a noun. The term adventure probably con- 493

tributes to determine that the continuation is some- 494

thing adventurous, but, as the materials surround- 495

ing the token have been deleted, it acts more like a 496

keyword than a proper syntactic element. Finally, 497

the irrelevant inserted token regression is ostensibly 498

ignored. 499

Shuffling Shuffling all tokens of the original 500

prompts after pruning leads to an average BLEU of 501

0.02 (s.d. 0.03), comparable to what observed for 502

autoprompts. Leaving the last token in place leads 503

to an average BLEU of 0.03 (s.d. 0.05). This small 504

difference is again highly significant (paired t-test, 505

p < 0.001), confirming the importance of the last 506

token for the subsequent prediction (the difference 507

stays equally significant if we compare shuffling 508

all but the last token to shuffling while keeping one 509

random non-last token fixed). 510

5 Discussion 511

We show that seemingly opaque, machine-induced 512

prompts possess, to some extent, interpretable prop- 513

erties, such as a strong reliance on the last token, 514
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original: . . . one of the best examples of American surrealism and
modified: . . . one of003 and
continuation: one of the best films of the 1990s.
original: . . . I Ever Wanted, and “Already Gone
modified: . . . Ifold, and “Alreadyone
continuation: ” was the first single released from the album.
original: . . . citing the “popular adventure book”, attempted the first
modified: adventure regression first
continuation: ascent of the north face of Mount Everest.

Table 6: Examples where pruning and replacing a token in an original prompt does not affect the continuation. The
original row shows the last 10 tokens of an original prompt; the modified row shows the equivalent prompt suffix
after pruning and replacement.

Figure 5: Average proportions of replacement effect
types by position on pruned original prompts, aligned
from right, limited to the last 10 tokens (whiskers show
standard deviations).

the presence of filler tokens that are ignored by515

the model, and the compositional-like behavior of516

some keyword tokens. We further observe that517

some of these properties are also present in natural518

prompts.519

These findings might shed some light on how520

LMs process language in general. They seem to521

rely on a simplified model of it, where not all to-522

kens have specific syntactic and semantic functions523

in an abstract syntactic tree. We note that the phe-524

nomenon of relying on over-simplified representa-525

tions of the data is not specific to LMs. Convolu-526

tional Neural Network classifiers of visual data527

have also been shown to latch onto superficial528

correlations in the data, leading to poor out-of-529

distribution generalization (Jo and Bengio, 2017;530

Ilyas et al., 2019; Yin et al., 2019; Geirhos et al.,531

2020).532

Identifying and characterizing the features that533

deep learning models respond to are crucial steps534

in understanding their inner workings and making 535

them more robust. In future work, besides address- 536

ing the issues discussed in the Limitations section 537

below, we aim to extend our analysis beyond dis- 538

crete tokens, focusing either on circuits through 539

mechanistic interpretability methods or on repre- 540

sentations using a more top-down approach, such 541

as representation engineering (Zou et al., 2023a). 542

Limitations 543

• Due to the time it takes to induce autoprompts 544

with our computational resources, we could 545

only experiment with 3 models, the largest 546

of which has 6.9B parameters. We make our 547

code available in hope that researchers with 548

bigger resources will run similar experiments 549

on a larger scale. 550

• For analogous reasons, we only experimented 551

with one variant of the autoprompt inducing al- 552

gorithm, and we fixed the number of tokens in 553

the induced prompt to 10. Given that all algo- 554

rithms we are aware of adopt similar gradient- 555

following methods, and based on qualitative 556

inspections of autoprompt examples in other 557

papers, we expect our conclusions to hold for 558

autoprompts independently of how they are in- 559

duced, but this should be verified empirically. 560

• Our autoprompts most closely resemble ad- 561

versarial attack where an obfuscated sequence 562

is used to retrieve one specific piece of infor- 563

mation from the LM. However, autoprompts 564

might be also induced for other purposes, 565

such as to improve factual knowledge retrieval 566

when combined with a query sequence (Shin 567

et al., 2020). It remains to be explored if dif- 568

ferent classes of autoprompts possess signifi- 569

8



cantly different properties.570

• We have now a basic understanding of how an571

autoprompt determines its continuation, but572

we still need a better characterization of which573

tokens are more likely to be pruned, and of the574

means by which randomizing non-last tokens575

affects the continuation so strongly.576

Ethics Statement577

If we do not achieve a genuine understanding of578

how LMs process and generate text, we cannot fully579

control their behaviour and mitigate unintended580

or intentional harm. Opaque autoprompts are an581

indication that there are important aspects of LM582

prompting and generation that are still out of our583

control. Our investigation into the nature of this584

phenomenon contributes to a better understanding585

of how LMs work and, thus, ultimately, to make586

them safer and more predictable.587
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A Token replacement examples 739

We show randomly picked examples of single- 740

token autoprompt replacements that do not affect 741

the continuation, have a moderate effect on it or 742

have a strong effect on it in tables 7, 8 and 9, re- 743

spectively. 744

B Results with other models 745

B.1 Data-set statistics 746

Pythia-6.9B As it is very time-consuming to ex- 747

tract autoprompts for this larger model, we 748

limited the data-set to 208 entries. The aver- 749

age original prompt length is of 39.3 tokens 750

(s.d. 13.4); that of the continuations is of 8.4 751

tokens (s.d. 2.4). 752

OLMo-1B The data-set contains 500 entries. The 753

average original prompt length is of 38.4 to- 754

kens (s.d. 11.2); that of the continuations is of 755

8.5 tokens. 756

B.2 Pruning autoprompts 757

• Proportion of prunable autoprompts and aver- 758

age (s.d.) tokens pruned: 759

Pythia-6.9B 73.2% of autoprompts are 760

pruned, with 2.6 (s.d. 1.6) tokens 761

removed on average. 762

OLMo-1B 60.0% of autoprompts are pruned, 763

with 1.9 (s.d. 1.1) tokens removed on 764

average. 765

• Token pruning distribution by position is 766

shown in Fig. 6 (left: Pythia-6.9B; right: 767

OLMo-1B). 768

B.3 Replacing autoprompt tokens 769

For OLMo, we estimate the top 10k most frequent 770

tokens to be used in the replacement experiments 771

using a sample of approximately 10 billion tokens 772

from the Dolma corpus, which was used to train 773

this model. (Soldaini et al., 2024). 774

Proportions of replacement effect type by po- 775

sition are reported in Figure 7 (left: Pythia-6.9B; 776

right: OLMo-1B). 777
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autoprompt: Processing<EOT> Launch/life},$ Watson saw1949mL bigger wing
continuation: , a new engine, and a new propeller.
autoprompt: really dwarfs/blackados haben send extraordinarily overwhelmingly excessive$]{} abundance
continuation: of heavy elements in their atmospheres.
autoprompt: approachò keep**_ mystery,. novel reportedly/council_** enjoys
continuation: keeping the reader in suspense.
autoprompt: impressive character<EOT> galactic Avengers drops<EOT><EOT>/further comics collected
continuation: in the Marvel Cinematic Universe.
autoprompt: champ241<EOT> GE 1870ista“ Japanese/rick dance art
continuation: form that was popular in the late 19th century.

Table 7: Randomly selected null-effect replacement examples. Replaced tokens and replacements are separated by
“/” and in bold.
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Figure 6: Counts of pruned (dark orange) and kept (yellow) tokens in the autoprompts by position, in Pythia-6.9B
(left) and OLMo-1B (right).

B.4 Shuffling autoprompt tokens778

Average BLEU (s.d.) when shuffling all tokens779

vs. keeping last token fixed:780

Pythia-6.9B shuffling all tokens: 0.03 (s.d. 0.04);781

keeping last fixed: 0.06 (s.d. 0.11); paired t-782

test significant at p < 0.001 (also if last-fixed783

is compared to random-non-last-fixed).784

OLMo-1B shuffling all tokens: 0.02 (s.d. 0.01);785

keeping last fixed: 0.04 (s.d. 0.04); t-test sig-786

nificant at p < 0.001 (also if last-fixed is com-787

pared to random-non-last-fixed).788

B.5 Making prompts more autoprompt-like789

Pruning790

• Proportion of prunable prompts and average791

(s.d.) tokens pruned:792

Pythia-6.9B 99.5% of the original prompts793

are pruned, and the average number of794

pruned tokens is 23.8 (s.d. 13.2); 95.7%795

of the pruned prompts have at least one796

pruned token among the last 10.797

OLMo-1B 100% of the original prompts 798

are pruned, and the average number of 799

pruned tokens is 23.4 (s.d. 12.3); 97% 800

of the pruned prompts have at least one 801

pruned token among the last 10. 802

• Token pruning by position is reported in Fig- 803

ure 8 (left: Pythia-6.9B; right: OLMo-1B). 804

Replacement Proportions of replacement effect 805

type by position are reported in Figure 9 (left: 806

Pythia-6.9B; right: OLMo-1B). 807

Shuffling Average BLEU (s.d.) when shuffling 808

all tokens vs. keeping last token fixed: 809

Pythia-6.9B shuffling all tokens: 0.02 (s.d. 0.02); 810

keeping last fixed: 0.03 (s.d. 0.05); paired t- 811

test significant at p < 0.001 (also if last-fixed 812

is compared to random-non-last-fixed). 813

OLMo-1B shuffling all tokens: 0.02 (s.d. 0.03); 814

keeping last fixed: 0.03 (s.d. 0.05); paired t- 815

test significant at p < 0.001 (also if last-fixed 816

is compared to random-non-last-fixed). 817
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autoprompt: cancer<EOT> están<EOT> Card/Allenropical frig Jamaica describes humid
original continuation: tropical climate of the Caribbean.
modified continuation: tropical climate of the island of Jamaica.
modified continuation BLEU: 0.36
autoprompt: hired locals budget,** climbing destinations PullTown/LR oldest especially
original continuation: popular destination for climbers.
modified continuation: popular with climbers.
modified continuation BLEU: 0.23
autoprompt: schenken clergy?? KosovoABA<EOT> pledge regarding/loop your constant
original continuation: support of the Albanian Orthodox Church.
modified continuation: support for the Albanian Orthodox Church in Kosovo.
modified continuation BLEU: 0.43
autoprompt: <EOT>ITAL<EOT>/Angelesño<EOT> Denote 0̆415perorachusetts as
original continuation: the capital of the United States.
modified continuation: the capital of the United States of America.
modified continuation BLEU: 0.61
autoprompt: everyoneDaily tracking/idea>{{Self calendar??Its. . . exceedingly
original continuation: difficult to keep track of everything.
modified continuation: difficult to keep track of all the things that I want to do.
modified continuation BLEU: 0.28

Table 8: Randomly selected moderate-effect replacement examples (BLEU after replacement is of at least 0.2 but
below 1). Replaced tokens and replacements are separated by “/” and in bold.

C Computing resources818

All experiments were run on a cluster composed819

of 11 nodes with 5 NVIDIA A30 GPUs each. The820

autoprompt search for Pythia-1.4B took approxi-821

mately 600 GPU hours. Pruning, replacement and822

shuffling experiments for Pythia-1.4B took 1500823

GPU hours overall. Compute demand for the other824

models was comparable.825

D Assets826

Besides standard tools such as Python and libraries827

such as NumPy and SciPy, we used the following828

tools and datasets, in accordance with their respec-829

tive terms and licenses.830

• Dolma https://huggingface.co/831

datasets/allenai/dolma; license: ODC-832

By833

• NLTK https://www.nltk.org; license:834

apache-2.0835

• OLMo https://huggingface.co/836

allenai/OLMo-7B; license: apache-2.0837

• The Pile https://pile.eleuther.ai/; li-838

cense: MIT839

• PyTorch https://pytorch.org; license: 840

bsd 841

• Pythia https://huggingface.co/ 842

EleutherAI/pythia-1.4b-deduped; 843

license: apache-2.0 844

• Huggingface Transformers https://github. 845

com/huggingface/transformers; license: 846

apache-2.0 847

• Wikitext https://huggingface.co/ 848

datasets/wikitext; license: Creative 849

Commons Attribution Share Alike 3.0 850

AI use disclosure: we used Copilot and 851

ChatGPT for assistance in code writing and in 852

manuscript typesetting. 853
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autoprompt: laccyt<EOT>ALTHICAN Brown jazz<EOT>/STan indispensable
original continuation: part of the American folk tradition.
modified continuation: to the development of the American style of jazz.
modified continuation BLEU: 0.11
autoprompt: Off"arn careers Birmingham lion2005 ballet/mediated Barry starred
original continuation: in the West End production of The Lion King.
modified continuation: in the film, which was released in the United States in 2005.
modified continuation BLEU: 0.03
autoprompt: Interview’————“ Heisenberg masterpiece/poverty Summer Fire books brand
original continuation: new introduction by the author.
modified continuation: new.
modified continuation BLEU: 0.02
autoprompt: tonnes Catholics/i Which Esc<EOT> have syn survived many factions
original continuation: including the Roman Catholic Church.
modified continuation: and are still in use.
modified continuation BLEU: 0.04
autoprompt: >] Publishingigenous Cemetery Once Anventh century/losing coffin had
original continuation: been buried in a pagan burial ground.
modified continuation: been found in the woods, the family decided to bury it in the family plot.
modified continuation BLEU: 0.01

Table 9: Randomly selected strong-effect replacement examples (BLEU after replacement is below 0.2). Replaced
tokens and replacements are separated by “/” and in bold. Hard-to-render characters replaced by “?”.

Figure 7: Average proportions of replacement effect types in the autoprompts by position, aligned from right for
Pythia-6.9B (left) and OLMo-1B (right) (whiskers show standard deviations). Null-effect replacements leave the
continuation unchanged. Moderate replacements have BLEU of at least 0.2. Strong replacements have BLEU below
0.2.
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Figure 8: Counts of pruned (dark orange) and kept (yellow) tokens in the original prompts, by position, in
Pythia-6.9B (left) and OLMo-1B (right).

Figure 9: Average proportions of replacement effect types in the original prompts by position, aligned from right
(whiskers show standard deviations) for Pythia-6.9B (left) and OLMo-1B (right). Null-effect replacements leave the
continuation unchanged. Moderate replacements have BLEU of at least 0.2. Strong replacements have BLEU below
0.2.
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