
Learning from Demonstrations via Capability-Aware
Goal Sampling

Yuanlin Duan
Rutgers University

yuanlin.duan@rutgers.edu

Yuning Wang
Rutgers University

yw895@cs.rutgers.edu

Wenjie Qiu
Rutgers University

wq37@cs.rutgers.edu

He Zhu
Rutgers University

hz375@cs.rutgers.edu

Abstract

Despite its promise, imitation learning often fails in long-horizon environments
where perfect replication of demonstrations is unrealistic and small errors can
accumulate catastrophically. We introduce Cago (Capability-Aware Goal Sam-
pling), a novel learning-from-demonstrations method that mitigates the brittle
dependence on expert trajectories for direct imitation. Unlike prior methods that
rely on demonstrations only for policy initialization or reward shaping, Cago dy-
namically tracks the agent’s competence along expert trajectories and uses this
signal to select intermediate steps—goals that are just beyond the agent’s current
reach—to guide learning. This results in an adaptive curriculum that enables steady
progress toward solving the full task. Empirical results demonstrate that Cago
significantly improves sample efficiency and final performance across a range of
sparse-reward, goal-conditioned tasks, consistently outperforming existing learning
from-demonstrations baselines.

1 Introduction

Imitation Learning (IL) provides a powerful paradigm for training agents using expert demonstra-
tions, effectively alleviating the exploration challenges common in Deep Reinforcement Learning
(DRL) (Arulkumaran and Lillrank, 2024). The simplest form of IL is Behavior Cloning (BC), which
directly supervises policy actions based on the states visited by the expert (Bain and Sammut, 1995;
Torabi et al., 2018). However, BC often suffers from compounding errors when the learned policy
deviates from expert trajectories. To overcome this limitation, modern approaches such as GAIL (Ho
and Ermon, 2016), PWIL (Dadashi et al., 2020), and AdRIL (Eysenbach et al., 2021) seek to align
the state–action distributions of the agent and the expert through adversarial or distribution-matching
objectives. In parallel, Inverse Reinforcement Learning (IRL) methods (Ziebart et al., 2008) aim
to infer underlying reward functions from demonstrations, which can then guide reinforcement
learning. More recently, advances in offline and offline-to-online RL, such as CQL (Kumar et al.,
2020) and Cal-QL (Nakamoto et al., 2023), integrate demonstrations as anchors to regularize policy
learning. These methods penalize value estimates that diverge from demonstrated behavior, mitigating
overestimation and instability caused by out-of-distribution actions.

However, existing IL methods often struggle with complex, long-horizon tasks because they fail to
reason about which parts of the task the agent has already mastered and which remain challenging. In
particular, distribution-matching approaches perform flat matching—attempting to align occupancy
measures over the entire trajectory distribution without considering the agent’s evolving capabilities.
This leads to poor exploration guidance, especially in the early stages of training when the agent

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

seldom reaches meaningful parts of the state space. As a result, the learned reward function tends
to assign uniformly low rewards, yielding uninformative gradients and hindering effective policy
improvement. Some prior work proposes demonstration-guided curriculum learning that trains agents
to solve tasks by starting near the goal or high-reward states and gradually expanding to earlier parts
of the trajectories (Resnick et al., 2018; Salimans and Chen, 2018; Tao et al., 2024). However, these
approaches rely on the ability to reset the agent to arbitrary demonstration states—an assumption
impractical in real-world settings due to challenges in replicating physical conditions like joint
velocities and angular momentum.

We propose Cago (Capability-Aware Goal Sampling), a new learning-from-demonstrations framework
that explicitly aligns the agent’s learning process with its evolving capabilities. Unlike prior methods
that use demonstrations for direct imitation, reward shaping, or offline pretraining, Cago treats
demonstrations as structured roadmaps. It continuously monitors which parts of a demonstration
the agent can already reach and leverages this signal to sample intermediate goal states in the
demonstration, those at the boudary of the agent’s current goal-reaching capabilities. At each episode,
a goal-conditioned agent (Liu et al., 2022; Plappert et al., 2018) first attempts to reach the sampled goal
and then explores forward from it, generating informative, task-relevant data for policy optimization.
This iterative process of capability-aware goal selection and curriculum-aligned exploration enables
steadily progress toward solving the full task.

We evaluate Cago across several sparse-reward environments and demonstrate substantial improve-
ments in both sample efficiency and final task performance over existing imitation-based baselines.
Our experiments highlight that capability-aware goal sampling provides a powerful signal for struc-
turing learning, particularly in long-horizon tasks.

2 Background and Problem Setup

Reinforcement learning (RL) aims to enable agents to learn optimal behaviors through trial-and-error
interactions with an environment. An RL problem is formulated as a Markov Decision Process (MDP),
represented as a tuple (S,A, T ,G, η, R, ρ0). The agent operates within a state space S and takes
actions from an action space A, transitioning between states according to the dynamics T (s′|s, a).
R(s, a) ∈ R is the reward function and ρ0 is the initial state distribution. Given a policy π, consider the
trajectory τ = {s0, a0, s1, a1, . . .} sampled by π, i.e., s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼ T (·|st, at).
The goal of RL is to learn a return-maximizing policy π∗ = argmaxπ Eτ∼π(at|st) [

∑∞
t=0 γ

tr(st, at)]
where γ ∈ (0, 1] is the discount factor.

Learning from Demonstrations. In imitation learning, the agent is provided a dataset of demon-
strations Ddemo collected from some expert policy πexpert. The objective is to learn a policy π that
reproduces the expert’s behavior by generalizing from these demonstrations. The simplest approach,
behavioral cloning (BC), treats this as a supervised learning problem, minimizing the discrepancy
between the agent’s predicted actions and the expert’s. Another line of work, inverse reinforcement
learning (IRL) (Abbeel and Ng, 2004), aims to infer an underlying reward function that explains the
expert’s behavior and then optimizes a policy through RL on this learned reward, thus decoupling
reward inference from policy optimization. Building on ideas from IRL, Generative Adversarial
Imitation Learning (GAIL) (Ho and Ermon, 2016) bypasses explicit reward recovery by training a
policy and a discriminator in an adversarial game: the discriminator distinguishes expert from agent
trajectories, while its output serves as an implicit, learned reward signal guiding the policy. More
broadly, many recent imitation learning algorithms can be interpreted as minimizing a divergence
between the expert and agent occupancy measures.

State Reset. Several methods attempt to mitigate the exploration challenge in sparse-reward RL
environments by resetting the agent to states from expert demonstrations, thereby bypassing the need
to discover those states through the agent’s own exploration. These strategies include initializing the
agent to states sampled uniformly from demonstration trajectories (Nair et al., 2018; Peng et al., 2018;
Hosu and Rebedea, 2016), employing a hand-crafted curriculum (Zhu et al., 2018), or using a reverse
curriculum that progressively trains the agent from goal or high-reward states backward (Resnick
et al., 2018; Salimans and Chen, 2018; Tao et al., 2024). These approaches assume the ability to reset
the agent to arbitrary demonstration states—an assumption that is unrealistic in real-world settings.

Goal-Conditioned RL (GCRL) extends the standard RL framework by conditioning policies
on specific target goals, guiding agents toward desired goals. The MDPs are augmented with

2

a goal space G and are associated with states via a mapping η : S → G, ensuring that each
state corresponds to an achieved goal. In GCRL, the reward signal from the environment is typ-
ically sparse and is defined as: R(s, a, s′, g) = 1{η(s′) = g}. We assume that each episode
has a fixed horizon T and S = G. The agent’s objective is to train a goal-conditioned policy
πG(·|st, g) to achieve a given goal g ∈ G through maximizing the expected cumulative reward
J(π) = Eg∼pg,τ∼πG(at|st,g)

[∑T−1
t=0 γt ·R(st, at, st+1, g)

]
where pg is the goal distribution.

This Paper. We introduce Cago, a novel approach that leverages demonstrations as a scaffold for
goal-directed reinforcement learning. Rather than direct imitation, Cago uses demonstrations to
guide exploration by training a goal-conditioned policy πG(a | s, g) that learns to progressively
reach intermediate states g along demonstration trajectories, effectively inducing a curriculum that
facilitates steady progress toward solving the full task. In addition, Cago learns a goal predictor P(s)
that infers the final goal state gT from the current state s. The resulting task policy is defined as
π(s) = πG(s,P(s)) that enables automatic inference of goal conditions at test time for previously
unseen situations.

3 Method

The main idea of Cago is to continuously monitor the agent’s evolving capabilities to reach various
stages of demonstration trajectories during training. It dynamically selects the most appropriate goal
from the demonstrations, conditioned on the agent’s current performance ceiling. The selected goal
guides online exploration, with the agent first attempting to reach it using its current policy. From
there, it continues to explore, collecting task-relevant trajectories in an Go-Explore style (Ecoffet et al.,
2019). By anchoring exploration in achievable yet progressively harder goals, this process effectively
constructs an implicit curriculum, where the agent is gradually exposed to more challenging states
aligned with its growing competence.

3.1 Observation Visit Tracking with Demonstration Alignment

Cago assumes the existence of a limited amount of expert demonstrations Ddemo : {τ (i) =
{(s0, a0)(i), . . . , (sLi

, aLi
)(i)}}Mi=1 where M is the number of the demonstrations and Li is the

length of i-th demonstration τ (i). To select goals at the boundary of the agent’s current reaching
capabilities, It is crucial to determine the stage at which the agent can accomplish its task completion.
Central to our method is maintaining a dictionary Dictvisit that tracks the visitation frequencies of
observations si across demonstrations. For each demonstration τ (i), we initialize an all-zero list of
the same length as its steps. Each element in this list records the visitation count of the corresponding
observation in the demonstration. At each environment step, the record list is updated to reflect
whether the agent has visited observations from the demonstration, based on similarity metrics
sim(·, ·) such as L2 distances for state-based environments or mean squared errors (MSE) between
images in visual environments. Formally, we define the visitation record dictionary as:

Dictvisit = τ (i) : [0, 0, . . . , 0] ∈ NLi | i = 1, 2, . . . ,M (1)

During online exploration, for each new episode, we first sample a demonstration τ (i) fromDdemo and
reset the environment to the initial state of τ (i). Our strategy is more practical in the real-world
setting than related methods (e.g. (Tao et al., 2024; Nair et al., 2018)) that reset the environment
to intermediate demonstration states, which are often infeasible to reproduce due to unobservable
or difficult-to-control physical factors such as velocity and angular momentum. Given a rollout
τ = (s0, s1, . . .) from the environment, we update Dictvisit[τ

(i)] as follows:

Dictvisit[τ
(i)][j] += 1 if sim(st, s

(i)
j) ≤ ϵ, ∀t ∈ 1, . . . , Lτ ,∀j ∈ 1, . . . , Li (2)

where st is the agent’s observation state at timestep t, Lτ is the total length of the rollout τ , s(i)j is
the j-th observation state in the i-th demonstration τ (i), sim(·, ·) is the similarity metric (e.g., L2
distance for state-based environments or MSE for image-based environments), and ϵ is a matching
threshold. This simple record dictionary effectively tracks the agent’s progress and helps identify its
goal-reaching capability limits along task demonstrations.

3

𝑔1

𝑔𝑓𝑖𝑛𝑎𝑙

Dictvisit 𝑔𝑖

Too hard for my capability.
Challenging but attainable goal.

𝑔2
𝑔3

𝑔4
𝑔5

𝑔6

𝑔1

𝑔2
𝑔3

𝑔4

𝑔5

𝑔6

Expert Trajectory
Go Phase
Explore Phase

𝜋 ⋅ | ⋅, 𝑔5

𝑔𝑓𝑖𝑛𝑎𝑙

Where is the limit of my capability?

𝜋𝐺(⋅ | ⋅, 𝑔𝑓𝑖𝑛𝑎𝑙)

Figure 1: Illustration of the Cago. Left: Directly setting the final goal as the agent’s target often
leads to failure, as the current policy πG may not yet be capable of reaching it. The shaded region
illustrates the set of states currently reachable under πG. Attempting to reach gfinal (i.e., executing
πG(·|·, gfinal)) causes the agent to diverge from the demonstration trajectory. Right: Cago improves
learning by leveraging a visitation frequency dictionary Dictvisit built from demonstrations. Given
a demonstration trajectory with subgoals g1, g2, . . . , gn, the agent selects the furthest subgoal gi
that remains within its current capabilities for Go-Explore sampling, enabling a curriculum of
progressively more challenging goals aligned with the demonstration.

3.2 Capability-Aware Goal Sampling

Cago leverages demonstration-based visitation counts to guide goal selection and trajectory collection
in a capability-aware manner. Figure 1 illustrates our method. After resetting the environment to the
initial state of a randomly sampled demonstration τ (i), we select a goal g for the agent to explore:

g ∼ Gcap(π
G, τ (i)), (3)

where Gcap(πG, τ (i)) denotes a capability-aware goal sampling distribution over subgoals whose
reachability is aligned with the current goal-reaching capability of the policy πG. Cago examines the
visitation frequency list to identify the last index where the frequency exceeds a predefined threshold:

j∗ = max
{
j | Dictvisit[τ

(i)][j] ≥ λvisit

}
, (4)

Algorithm 1 Capability-Aware Goal Sampling (Cago)

1: Input: Demonstration τ (i), Visitation record Dictvisit
2: Output: capability-aware goal g
3: Identify capability-aware upper limit point gi using visitation thresh-

old λvisit (Eq. (4))
4: Define sampling region Gcap(πG, τ (i)) centered around gi (Eq. (5))
5: Sample subgoal g ∼ Gcap(πG, τ (i))
6: return g

where Dictvisit[τ
(i)][j] denotes the vis-

itation frequency of j-th observation
sj of τ (i) under policy πG and λvisit
is a frequency threshold (e.g. 100).
This index indicates the latest point
in the demonstration that the agent
is sufficiently competent at reach-
ing—effectively serving as a proxy for
the limit of the agent’s current goal-
reaching capability. Cago constructs a goal sampling range centered around j∗. The sampled goal
is drawn from this range, which allows the agent to either revisit familiar goals or attempt slightly
more challenging ones that are just beyond its current capability. This capability-aware goal sampling
strategy introduces controlled diversity into the training process and encourages progressive learning,
while also avoiding excessively difficult goals that could derail training. The corresponding goal
sampling region is defined as:

Gcap(πG, τ (i)) =
{
sk ∈ τ (i) | |k − j∗| ≤ δ · Li

}
, (5)

where Li is the length of τ (i) and δ ∈ (0, 1] controls the window size for goal sampling (e.g., 10% of
the demonstration length). Goals are then sampled at random from this set. Our capability-aware goal
sampling scheme introduces a curriculum-aligned learning signal that progressively guides the agent
with steady improvement toward successful task completion. The overall goal sampling process in
Cago is described in Algorithm 1.

3.3 Learning Framework

Go-Explore. Cago trains a goal-conditioned agent following the Go-Explore paradigm (Ecoffet et al.,
2019), which divides each episode into two sequential phases: the Go-phase and the Explore-phase.

4

In the Go phase, the agent is guided towards a sampled goal state g using the goal-conditioned policy
πG(·|·, g), reaching an intermediate state sE . To improve environment exploration beyond the agent’s
current capabilities, the Explore-phase takes over from sE , where an exploration policy πE is used
for the remaining time steps. Since we have access to a limited set of task demonstrations Ddemo,
we implement πE as a Behavior Clone (BC) Explorer trained on Ddemo. The BC Explorer outputs
a stochastic action distribution that enables the agent to balance between exploration and imitation.
This two-phase strategy ensures that collected trajectories stay anchored near the demonstration
distribution in Ddemo, while encouraging exploration. We further analyze the impact of the BC
Explorer through ablation studies, detailed in Section 4.

As Cago actively resets environments to initial states drawn from the demonstration set Ddemo, a key
question is how the agent generalizes beyond Ddemo. Our solution is to train the goal-conditioned
agent πG using a richer set of imagined rollouts generated by a world model via model-based RL.

Algorithm 2 The main training framework of Cago

1: Input: GC Policy πG, World Model M̂, Demonstrations Ddemo
2: Initialize replay buffer Dcap and Dictvisit (Eq. (1))
3: Train explorer policy πE using Behavior Cloning on Ddemo
4: Train goal predictor Pϕ on Ddemo (Eq. (7))
5: for n = 1 to Ntrain do
6: Initialize empty trajectory τ
7: Randomly sample a demonstration τ (i) ∈ Ddemo

8: Initialize the environment to the initial state of τ (i)
9: Sample a capability-aware goal g by Algorithm 1

10: for t = 0 to Lτ do
11: if agent has not reached g and t < Tgo then
12: π = πG(s, g)
13: else
14: π = πE(s)

15: Step in the real environment using π and add this step to τ
16: Update Dictvisit[τ

(i)] (Eq. (2))
17: Dcap ← Dcap ∪ {τ}
18: Update M̂ with Dcap

19: Update πG using imagined rollouts with M̂

World Model and Policy Training.
Cago stores the trajectories generated
under the Go-Explore paradigm with
capability-aware goal sampling in a
dataset Dcap = {(st, at, st+1)

T
t=1} for

world model and policy training. A pre-
dictive world model M̂ approximates
the transition dynamics T (s′|s, a) in
the real world M as T̂ (s′|s, a). Our
model learning algorithm is based on
the Dreamer backbone (Hafner et al.,
2019, 2020, 2023), which updates
the world model M̂ via supervised
learning using Dcap. Once the world
model is updated, we train the goal-
conditioned policy πG using imagined
trajectories generated by the world
model M̂. Intuitively, since Dcap is
collected by exploring around demon-
stration states in Ddemo, the learned model enables the agent to generate imagined trajectories that
remain grounded in task-relevant regions of the state space. Each imagined trajectory from the
learned world model M̂ begins at s0, a state randomly sampled from a trajectory τ in Ddemo ∪ Dcap,
and is rolled out for H steps using the goal-conditioned policy πG(at|st, g). The goal state g is
selected as a future state sH from the same trajectory τ . The objective is to train πG to reinforce
trajectories that efficiently reach g in the imagined rollouts from s0 under the learned dynamics M̂.
To achieve this, we adopt an actor-critic algorithm that leverages a self-supervised temporal distance
function Dt(s, g) (Mendonca et al., 2021), which estimates the number of steps required to transition
from state s to goal g. The reward function is defined as: rG(s, g) = −Dt(s, g). This formulation
encourages the policy to generate actions that minimize the estimated temporal distance to the goal.
The temporal distance estimator Dt is trained by extracting state pairs (st, st+k) from simulated
trajectories generated by the world model. The function learns to predict the normalized temporal
difference between two states: Dt

(
Ψ(st),Ψ(st+k)

)
≈ k

H , where Ψ denotes a transformation applied
to states (e.g., embedding them into the world model’s latent space), and H is the length of the
generated rollout. More details on the model-based learning algorithm and the full training procedure
for Dt can be found in Appendix B.1 and Appendix B.2.

𝑠0 ො𝑔

Figure 2: The workflow of the goal
predictor Pϕ.

Goal Predictor. At training time, the goal-conditioned policy
πG(· | ·, g) is trained using intermediate states from demon-
stration trajectories as goal conditions (recall S = G). This
assumes access to demonstrations, with the final states used as
the target goal condition. However, at test time, this assumption
no longer holds: for unseen scenarios, the true final goal state
is not available. This raises the challenge of how to specify an
appropriate goal condition based solely on the agent’s current
observation. We introduce a goal predictor Pϕ, a learned model

5

that infers a goal state ĝ given the current observation s:

Pϕ : s 7→ ĝ, where ĝ = Pϕ(s) (6)

The mapping learned by Pϕ is illustrated in Figure 2. It is trained using demonstration trajecto-
ries Ddemo, by minimizing the mean squared error between the predicted goal and the true final
observation:

min
ϕ

E
(τ(i)=s

(i)
0 ,...,s

(i)
L)∼Ddemo

∥∥∥Pϕ(s
(i)
t)− s

(i)
L

∥∥∥2
2

(7)

Once trained, the goal predictor enables πG to generalize to new tasks. Given a test-time state stest,
the predicted goal ĝtest = Pϕ(s

test) serves as the planning target for the agent π = πG(· | stest, ĝtest).
The complete training pipeline of Cago is detailed in Algorithm 2.

Rationale Behind Cago’s Design. Let J (π,M) and J (πe,M) be the expected return of the agent’s
policy π and expert policy πe in the real-world MDPM. We want to bound their return difference:

min
π
|J (πe,M)− J (π,M)| , (8)

Let Rmax be the maximum of the reward with unknown dynamics: Rmax = max(s,a)R(s, a) and
ρπM(s, a) = (1− γ)

∑∞
t=0 γ

tP (st = s, at = a) be the discounted state-action visitation distribution
of a policy π in the real world MDPM. Suppose that the total variation of learned dynamics model
M̂ from the true transitions M is bounded such DTV(T (s, a), T̂ (s, a)) ≤ α ∀(s, a) ∈ S × A.
According to previous work (Rafailov et al., 2021; DeMoss et al., 2023; Kolev et al., 2024), we have:

|J (πe,M)− J (π,M)| ≤ α
Rmax

(1− γ)2︸ ︷︷ ︸
model prediction error

+
Rmax

1− γ
DTV

(
ρπ

e

M, ρπM̂

)
︸ ︷︷ ︸

adaptation error

(9)

where ρπ
e

M is the discounted visitation distribution of the expert policy and DTV denote total variation
distance. The model prediction error with respect to the true environment dynamics can be reduced
by collecting more real-world data. In contrast, the adaptation error depends on the total variation
distance between the distribution of trajectories generated by policy π under the learned world model
M̂ and the expert distribution under the true dynamicsM. Thus, the learning problem reduces to
bounding the deviation between the behavior of the learned policy π under the learned model and the
expert behavior under the true environment. To this end, given any H-step trajectory (s0, s1, . . . , sH)
sampled from expert demonstrations Ddemo, Cago encourages the agent to match expert behavior by
rewarding it for reaching the final state g = sH starting from s0 under the learned dynamics model
M̂ (Line 19 in Algorithm 2).

We further show that Cago effectively reduces the model prediction error by leveraging the BC
explore policy πE = πBC for data collection. In the following, we use dM,π

t to denote the marginal
state-action distribution at time t induced by policy π in the environmentM. We assume dDdemo

t ≈
dM,πe

t , where Ddemo is the dataset of demonstrations generated by the expert πe, and is sufficiently
representative to approximate the true marginal distributions at each timestep. Assuming: (1) πBC

accurately approximates the expert policy in Ddemo, (2) the world model M̂ is accurately trained on
state transitions induced by πBC, and (3) the learned policy π generates trajectories in M̂ that closely
match the expert’s behavior, we can bound the model prediction error along the imagined rollouts
generated by π under M̂:

Theorem 1. Let M denote the true dynamics model and M̂ the learned model. Let πBC

be a behavior-cloned policy, and π a new policy. Let Ddemo be a dataset of expert demon-
strations from an unknown expert policy. Suppose that, for all t = 0, 1, . . . , T , (1) Close-
ness of behavior cloning: DTV

(
dM,πBC

t , dDdemo
t

)
≤ κ, (2) Model learning error under BC:

E
(s,a)∼d

M,πBC
t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ µ, and (3) Trajectory distribution closeness:

DTV

(
ρπ

e

M, ρπ
M̂

)
≤ ν. Then for all t = 0, 1, . . . , T , we have:

E
(s,a)∼dM̂,π

t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ µ+ 2κ+ 2ν.

6

4 Experiments

We evaluate Cago across a diverse set of challenging robotic manipulation environments to address
the following research questions: (Q1) Does Cago outperform existing imitation learning baselines
that leverage demonstrations in alternative ways? (Q2) Can Cago effectively realize capability-aware
goal sampling that aligns with the agent’s learning progress? (Q3) How essential are the proposed
capability-aware goal sampling and BC-Explorer components to the overall performance of Cago?

Environments. For our experiments, we evaluate and compare Cago against several baselines across
three robot environment suites with sparse rewards: MetaWorld (Yu et al., 2020), Adroit (Rajeswaran
et al., 2017), and Maniskill (Gu et al., 2023; Tao et al., 2025). We adopt the five "very hard" level
environments from MetaWorld, as categorized by Seo et al. (2023): Shelf Place, Disassemble, Stick
Pull, Stick Push, Pick Place Wall. These environments are considered the most challenging tasks in
Metaworld, requiring precise robotic arm control with only sparse task completion rewards. We also
use three dexterous hand manipulation tasks from the Adroit suite: Door, Hammer, Pen. To succeed
in these three environments, the agent must perform fine-grained and intricate finger manipulations,
enabling the grasping and movement of different objects. We also selected three challenging tasks
from the ManiSkill benchmark: PegInsertionSide, StackCube, and PullCubeTool. The sparse-reward
ManiSkill environments are the most difficult tasks in our benchmarks due to their high-dimensional
state and action spaces. During training, we used only 10 demonstration trajectories per task for the
MetaWorld and Adroit environments, and 20 demonstration trajectories per task for the ManiSkill
environments. More details about each task can be found in Appendix E.

Baselines. Our approach is developed on top of the Dreamer framework (Hafner et al., 2019, 2020;
Hu et al., 2023; Duan et al., 2024a,b), making it a key model-based RL baseline for evaluating the
performance gains of Cago. Jump-Start Reinforcement Learning (JSRL) (Uchendu et al., 2023)
is a curriculum-based approach that leverages a guide-policy pretrained from offline data to guide
early-stage exploration during online training. At the beginning of each training episode, the agent
follows the guide-policy for a number of steps determined by curriculum progression, after which
control is handed over to the online policy. In our JSRL implementation, due to the limited number
of demonstrations available, training a reliable guide-policy becomes challenging. Therefore, we
directly use the demonstration trajectories as the guide-policy. Specifically, we reset the environment
to a demonstration initial state, enabling the agent to replicate expert behavior during the initial
phase of each episode before switching to the online policy. Our JSRL implementation is also
built on top of the Dreamer framework. MoDem (Hansen et al., 2022) represents one of the most
efficient frameworks in the model-based RL literature. It pretrains its policy using a small set of
demonstrations and repeatedly oversamples the demonstrations to train both the world model and the
policy. We consider MoDem to be the strongest baseline due to its fast convergence and low data
requirements. Cal-QL (Nakamoto et al., 2023) is a state-of-the-art algorithm following the offline-
to-online RL paradigm. It uses demonstrations to pretrain the Q-function and applies calibration to
mitigate performance drop when transitioning from offline to online learning phases. In addition to
these representative baselines, we compare against four more imitation learning baselines: GAIL (Ho
and Ermon, 2016), PWIL (Dadashi et al., 2020), SQIL (Reddy et al., 2019), ValueDice (Kostrikov
et al., 2019), and RLPD (Ball et al., 2023), a well-tuned variant of SAC that leverages offline data
when learning online, in the Appendix F.1.

Main Results. During training, we uniformly sample a demonstration and reset the environment
using the same seed that was used to collect it. All baselines share the same seeds and demonstration
data. To evaluate generalization, we test on unseen environment seeds. For these, Cago uses the goal
predictor (Section 3.3) to infer goal conditions for the goal-conditioned policy πG. Each method is
evaluated on 100 held-out seeds, and we report the average success rate over these episodes. Figure 3
depicts the mean learning performance of Cago and all baselines in terms of the agent’s task success
rate averaged over 5 training seeds. On the MetaWorld very hard tasks, Cago consistently outperforms
all the baselines in both final performance and learning efficiency. In the Adroit suite, although
Modem exhibits rapid early learning due to its behavior cloning (BC) pretraining and oversampling
strategy, Cago surpasses it in final performance after 1e6 environment interaction steps. Notably,
Dreamer, which shares the same world model and policy architecture as Cago, performs significantly
worse, underscoring the effectiveness of the capability-aware goal sampling strategy. Our JSRL
baseline, based on the same world model architecture, adopts a uniform curriculum to reduce the
guide-steps from demonstrations. It lags behind Cago in both learning speed and final success rate,

7

(a) Disassemble (b) PickPlaceWall (c) ShelfPlace (d) StickPull

(e) StickPush (f) Door (g) Hammer (h) Pen

(i) PullCubeTool (j) PegInsertionSide (k) StackCube

Figure 3: Experiment results comparing Cago with the baselines over 5 random seeds. The solid
line denotes the average success rate in evaluation, while the shaded region signifies the standard
deviation.

further underscoring the benefits of our goal sampling strategy that adapts to the agent’s evolving
capabilities. In the ManiSkill environments, given the limited demonstrations, Cago stands out as the
only method capable of attaining high success rates.

Capability-Aware Goal Distribution. To answer Q2, we visualize the progression of capability-
aware goal sampling throughout the training process in the StickPush environment in Figure 4(d).
Each red dot represents the normalized position of a sampled goal within a demonstration trajectory,
with 0 indicating the start and 1.0 indicating the final demonstration state. Early in training, the agent
predominantly samples goals at lower normalized positions, focusing on subgoals near the beginning
of the trajectory that are within its current capabilities. As training advances, goal sampling gradually
shifts toward higher normalized positions, indicating the agent’s increasing ability to pursue more
challenging goals closer to task completion. By continuously targeting goals just at the boundary of
the agent’s current capability, Cago facilitates efficient learning in sparse-reward, long-horizon tasks.

Ablation Study. To answer Q3, we assess the individual contributions of (a) capability-aware goal
sampling and (b) the BC-Explorer component to the overall performance. The first ablation, Cago-
FinalGoal, retains only (b): it uses BC-based exploration but always selects the final observation from
a demonstration in the goal phase of our Go-Explore sampling paradigm, ignoring the agent’s current
goal-reaching capability. The BC Explorer takes control from the goal-conditioned policy halfway
through each rollout. The second ablation, Cago-StepBased, also retains (b), but samples goals
from demonstrations in proportion to training steps (current training step / predefined total training
steps). However, it does not assess the agent’s actual capabilities, and may therefore sample goals
that are either too easy or too difficult for the agent at its current learning stage. The third ablation,

8

(a) Disassemble (b) StickPush (c) Pen

Episode Number

N
o

rm
al

iz
ed

 p
o

si
ti

o
n

(d) Sampling Progress

Figure 4: Figure(a),(b),(c) are the results of ablation study on the importance of each component of
Cago over 5 seeds. Figure(d) shows the progress of capability-aware goal sampling in Stickpush.

Cago-NoExplorer, keeps only (a): it uses capability-aware goal sampling, but does not explore beyond
the sampled goal with the BC Explorer. The fourth ablation, Cago-RandomExplorer, replaces the BC
Explorer with a uniformly random policy during the exploration phase of our Go-Explore-style rollout
strategy. We conduct the ablation study on the Disassemble and StickPush tasks from MetaWorld,
and the Pen task from Adroit. As shown in Figure 4, removing capability-aware goal sampling
significantly degrades performance. Without it, the agent often enters the Explore phase from states
far outside the demonstration region, making it difficult for the BC-Explorer to make meaningful
progress. The BC-Explorer itself is also crucial, as it accelerates learning by generating high-quality
exploratory rollouts. We further examine how the number and quality of demonstrations (including
suboptimal ones), as well as the hyperparameter λvisit and δ, affect performance; see Appendix F for
details.

Visual-input Environments. We further assess Cago’s applicability in high-dimensional visual
settings. Specifically, we extend our framework to raw pixel observations by replacing the vector-
based states and goals with RGB image inputs of size (64, 64, 3), resulting in a variant referred
to as Cago-Visual. In this setting, both the policy and the goal predictor Pϕ operate on image
representations. We benchmark Cago-Visual against Modem-Visual, a strong model based baseline
that similarly utilizes image-based observations and demonstration. As shown in Figure 5, Cago-
Visual not only retains performance similar to the original Cago, but also consistently outperforms
Modem-Visual, highlighting the robustness of our method in visual domains. Details of the goal
predictor employed in our visual-input experiments are provided in Appendix F.2.

(a) Door (b) Hammer (c) Pen

Figure 5: Visual input experiment results over 5 random seeds.

5 Related Work

Imitation Learning. Demonstrations are a key tool for improving the efficiency of RL, with prior
work integrating them across various stages of the RL pipeline (Arulkumaran and Lillrank, 2024;
Nair et al., 2018; Cui et al., 2025). A prominent approach uses demonstrations for direct learning
via Behavior Cloning (BC) and its variants (Bain and Sammut, 1995; Torabi et al., 2018). The
introduction of the Generative Adversarial Imitation Learning (GAIL) algorithm (Ho and Ermon,

9

2016) has driven significant advances in scalable deep imitation learning methods (Fu et al., 2017;
Ghasemipour et al., 2020; Kostrikov et al., 2018; Jena et al., 2020; Finn et al., 2016; Blondé and
Kalousis, 2019; Orsini et al., 2021; Eysenbach et al., 2021). Beyond adversarial approaches, sev-
eral imitation learning algorithms aim to match the state action distributions of the expert and the
agent through non-adversarial techniques, such as non-parametric models (Kim and Park, 2018),
random network distillation (Wang et al., 2019), support estimation (Brantley et al., 2020), Wasser-
stein distance minimization (Dadashi et al., 2020), and moment matching (Swamy et al., 2021).
Demonstrations have also been the bridge between imitation learning and offline RL. Conservative
Q-learning (CQL) (Kumar et al., 2020) and Cal-QL (Nakamoto et al., 2023) regularize Q-values
using demonstration data to better estimate out-of-distribution actions. Traditional imitation learning
typically requires direct learning from demonstrations, either by recovering a reward function from
demonstrations, or matching expert and agent state-action distributions (e.g. GAIL(Ho and Ermon,
2016)), or incorporating demonstrations as anchors to mitigate overestimation and instability caused
by out-of-distribution actions (e.g. Cal-QL(Nakamoto et al., 2023)). In contrast, Cago introduces
a novel use of demonstrations by treating them as a structured roadmap for building an adaptive
curriculum, scaffolding the agent’s learning to enable steady progress toward solving the full task.

Curriculum for Learning from Demonstrations. Several prior works have explored curriculum
design using demonstration. Yengera et al. (2021); Tao et al. (2024) introduce difficulty scores to rank
demonstrations, offering a theoretical framework for selecting optimal trajectories to scaffold learning.
Task Phasing (Bajaj et al., 2023) automatically extracts curriculum phases from demonstrations and
dynamically transitions the agent through them during training. JSRL (Uchendu et al., 2023) design
a curriculum-based approach that leverages a guide-policy pretrained from demonstration to guide
early-stage exploration during online training. Compared to these curriculum learning methods using
demonstration, Cago employs a goal-level curriculum that incrementally samples intermediate goals
from demonstrations based on the agent’s evolving capabilities. A number of methods have explored
the use of expert demonstration states as informative priors for guiding agent learning. A common
strategy involves resetting the agent from states sampled along demonstration trajectories (Nair
et al., 2018; Peng et al., 2018; Hosu and Rebedea, 2016), enabling the agent to experience these
expert regions of the state space without exhaustive exploration. Some approaches employ structured
curricula to sequence these resets, either through manually designed progressions (Zhu et al., 2018)
or automated strategies such as reverse curricula, which gradually increase the exploration horizon
by training the agent from goal states backward (Resnick et al., 2018; Salimans and Chen, 2018;
Tao et al., 2024). While effective in simulation, these methods rely on the ability to precisely reset
the environment to arbitrary demonstration states—a requirement that poses significant challenges
in physical systems, where replicating exact configurations, including latent dynamics like joint
velocities, is often infeasible. Rather than forcibly placing the agent into expert states—a strong form
of intervention—Cago encourages the agent to actively reach intermediate goals that are sampled
to match its current competence. This self-directed learning process allows the agent to internalize
problem-solving skills more effectively, promoting deeper understanding through its own attempts
rather than directly resetting. While demonstrations provide useful guidance, true mastery requires
the agent to explore and overcome challenges through trial and error.

6 Conclusion

We introduce Cago, a novel method that leverages demonstrations in a dynamic, goal-guided manner
to tackle exploration challenges in sparse-reward environments. By continuously monitoring the
agent’s capabilities, Cago constructs an adaptive curriculum that incrementally samples intermediate
goals from demonstrations, effectively scaffolding learning and enabling steady progress toward
solving the full task. Extensive experiments show consistent improvements over baselines. A key
limitation of Cago lies in its reliance on resetting environments to the initial states specified in the
demonstrations. Appendix C provides a discussion on how this requirement could be relaxed to
improve applicability in real-world settings.

Reproducibility Statement

The code for Cago is available at https://github.com/RU-Automated-Reasoning-Group/Cago.
For hyperparameter settings, please refer to Appendix H.

10

https://github.com/RU-Automated-Reasoning-Group/Cago

Acknowledgements

We thank the anonymous reviewers for their comments and suggestions. This work was supported by
NSF Award #CCF-2124155.

References
Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In

Brodley, C. E., editor, Machine Learning, Proceedings of the Twenty-first International Conference
(ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM International Conference
Proceeding Series. ACM.

Arulkumaran, K. and Lillrank, D. O. (2024). A pragmatic look at deep imitation learning. In Asian
Conference on Machine Learning, pages 58–73. PMLR.

Bain, M. and Sammut, C. (1995). A framework for behavioural cloning. In Machine intelligence 15,
pages 103–129.

Bajaj, V., Sharon, G., and Stone, P. (2023). Task phasing: Automated curriculum learning from
demonstrations. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 33, pages 542–550.

Ball, P. J., Smith, L., Kostrikov, I., and Levine, S. (2023). Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pages 1577–1594. PMLR.

Blondé, L. and Kalousis, A. (2019). Sample-efficient imitation learning via generative adversarial
nets. In Chaudhuri, K. and Sugiyama, M., editors, The 22nd International Conference on Artificial
Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of
Proceedings of Machine Learning Research, pages 3138–3148. PMLR.

Brantley, K., Sun, W., and Henaff, M. (2020). Disagreement-regularized imitation learning. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Cui, G., Wang, Y., Mao, W., Duan, Y., and Zhu, H. (2025). Abstraction refinement-guided program
synthesis for robot learning from demonstrations. Proceedings of the ACM on Programming
Languages, 9(OOPSLA2):555–583.

Dadashi, R., Hussenot, L., Geist, M., and Pietquin, O. (2020). Primal wasserstein imitation learning.
arXiv preprint arXiv:2006.04678.

Dai, S., Hofmann, A., and Williams, B. (2021). Automatic curricula via expert demonstrations. arXiv
preprint arXiv:2106.09159.

DeMoss, B., Duckworth, P., Hawes, N., and Posner, I. (2023). Ditto: Offline imitation learning with
world models. arXiv preprint arXiv:2302.03086.

Duan, Y., Cui, G., and Zhu, H. (2024a). Exploring the edges of latent state clusters for goal-
conditioned reinforcement learning. arXiv preprint arXiv:2411.01396.

Duan, Y., Mao, W., and Zhu, H. (2024b). Learning world models for unconstrained goal navigation.
Advances in Neural Information Processing Systems, 37:59236–59265.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019). Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Eysenbach, B., Levine, S., and Salakhutdinov, R. R. (2021). Replacing rewards with examples:
Example-based policy search via recursive classification. Advances in Neural Information Process-
ing Systems, 34:11541–11552.

Finn, C., Christiano, P. F., Abbeel, P., and Levine, S. (2016). A connection between generative adver-
sarial networks, inverse reinforcement learning, and energy-based models. CoRR, abs/1611.03852.

11

Fu, J., Luo, K., and Levine, S. (2017). Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248.

Ghasemipour, S. K. S., Zemel, R., and Gu, S. (2020). A divergence minimization perspective on
imitation learning methods. In Conference on robot learning, pages 1259–1277. PMLR.

Gu, J., Xiang, F., Li, X., Ling, Z., Liu, X., Mu, T., Tang, Y., Tao, S., Wei, X., Yao, Y., et al.
(2023). Maniskill2: A unified benchmark for generalizable manipulation skills. arXiv preprint
arXiv:2302.04659.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2019). Dream to control: Learning behaviors by
latent imagination. arXiv preprint arXiv:1912.01603.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. (2020). Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023). Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104.

Hansen, N., Lin, Y., Su, H., Wang, X., Kumar, V., and Rajeswaran, A. (2022). Modem: Accelerating
visual model-based reinforcement learning with demonstrations. arXiv preprint arXiv:2212.05698.

Hermann, L., Argus, M., Eitel, A., Amiranashvili, A., Burgard, W., and Brox, T. (2020). Adaptive
curriculum generation from demonstrations for sim-to-real visuomotor control. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 6498–6505. IEEE.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. Advances in neural informa-
tion processing systems, 29.

Hosu, I. and Rebedea, T. (2016). Playing atari games with deep reinforcement learning and human
checkpoint replay. CoRR, abs/1607.05077.

Hu, E. S., Chang, R., Rybkin, O., and Jayaraman, D. (2023). Planning goals for exploration. arXiv
preprint arXiv:2303.13002.

Jena, R., Agrawal, S., and Sycara, K. P. (2020). Addressing reward bias in adversarial imitation
learning with neutral reward functions. CoRR, abs/2009.09467.

Kim, K. and Park, H. S. (2018). Imitation learning via kernel mean embedding. In McIlraith, S. A.
and Weinberger, K. Q., editors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages 3415–3422. AAAI Press.

Kolev, V., Rafailov, R., Hatch, K., Wu, J., and Finn, C. (2024). Efficient imitation learning with
conservative world models. In 6th Annual Learning for Dynamics & Control Conference, pages
1777–1790. PMLR.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and Tompson, J. (2018). Discriminator-actor-
critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. arXiv
preprint arXiv:1809.02925.

Kostrikov, I., Nachum, O., and Tompson, J. (2019). Imitation learning via off-policy distribution
matching. arXiv preprint arXiv:1912.05032.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191.

Liu, M., Zhu, M., and Zhang, W. (2022). Goal-conditioned reinforcement learning: Problems and
solutions. arXiv preprint arXiv:2201.08299.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and Pathak, D. (2021). Discovering and
achieving goals via world models. Advances in Neural Information Processing Systems, 34:24379–
24391.

12

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 6292–6299. IEEE.

Nakamoto, M., Zhai, S., Singh, A., Sobol Mark, M., Ma, Y., Finn, C., Kumar, A., and Levine, S.
(2023). Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. Advances in
Neural Information Processing Systems, 36:62244–62269.

Orsini, M., Raichuk, A., Hussenot, L., Vincent, D., Dadashi, R., Girgin, S., Geist, M., Bachem, O.,
Pietquin, O., and Andrychowicz, M. (2021). What matters for adversarial imitation learning? In
Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W., editors, Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 14656–14668.

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). Deepmimic: example-guided deep
reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4):143.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464.

Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. (2021). Visual adversarial imitation learning using
variational models. Advances in Neural Information Processing Systems, 34:3016–3028.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., and Levine, S. (2017).
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087.

Reddy, S., Dragan, A. D., and Levine, S. (2019). Sqil: Imitation learning via reinforcement learning
with sparse rewards. arXiv preprint arXiv:1905.11108.

Resnick, C., Raileanu, R., Kapoor, S., Peysakhovich, A., Cho, K., and Bruna, J. (2018). Backplay:
"man muss immer umkehren". CoRR, abs/1807.06919.

Salimans, T. and Chen, R. (2018). Learning montezuma’s revenge from a single demonstration.
CoRR, abs/1812.03381.

Seo, Y., Hafner, D., Liu, H., Liu, F., James, S., Lee, K., and Abbeel, P. (2023). Masked world models
for visual control. In Conference on Robot Learning, pages 1332–1344. PMLR.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, S. (2021). Of moments and matching: A game-
theoretic framework for closing the imitation gap. In Meila, M. and Zhang, T., editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 10022–10032. PMLR.

Tao, S., Shukla, A., Chan, T., and Su, H. (2024). Reverse forward curriculum learning for extreme
sample and demo efficiency. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.

Tao, S., Xiang, F., Shukla, A., Qin, Y., Hinrichsen, X., Yuan, X., Bao, C., Lin, X., Liu, Y., kai Chan,
T., Gao, Y., Li, X., Mu, T., Xiao, N., Gurha, A., Rajesh, V. N., Choi, Y. W., Chen, Y.-R., Huang,
Z., Calandra, R., Chen, R., Luo, S., and Su, H. (2025). Maniskill3: Gpu parallelized robotics
simulation and rendering for generalizable embodied ai. Robotics: Science and Systems.

Torabi, F., Warnell, G., and Stone, P. (2018). Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954.

Uchendu, I., Xiao, T., Lu, Y., Zhu, B., Yan, M., Simon, J., Bennice, M., Fu, C., Ma, C., Jiao, J., et al.
(2023). Jump-start reinforcement learning. In International Conference on Machine Learning,
pages 34556–34583. PMLR.

13

Wang, R., Ciliberto, C., Amadori, P. V., and Demiris, Y. (2019). Random expert distillation: Imitation
learning via expert policy support estimation. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6536–6544. PMLR.

Yengera, G., Devidze, R., Kamalaruban, P., and Singla, A. (2021). Curriculum design for teaching
via demonstrations: theory and applications. Advances in Neural Information Processing Systems,
34:10496–10509.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. (2020). Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on robot
learning, pages 1094–1100. PMLR.

Zhu, Y., Wang, Z., Merel, J., Rusu, A. A., Erez, T., Cabi, S., Tunyasuvunakool, S., Kramár, J.,
Hadsell, R., de Freitas, N., and Heess, N. (2018). Reinforcement and imitation learning for diverse
visuomotor skills. In Kress-Gazit, H., Srinivasa, S. S., Howard, T., and Atanasov, N., editors,
Robotics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
June 26-30, 2018.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse
reinforcement learning. In Fox, D. and Gomes, C. P., editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008,
pages 1433–1438. AAAI Press.

14

Appendix
A Proof of Theorem 1

Theorem 1. Let M denote the true dynamics model and M̂ the learned model. Let πBC

be a behavior-cloned policy, and π a new policy. Let Ddemo be a dataset of expert demon-
strations from an unknown expert policy. Suppose that, for all t = 0, 1, . . . , T , (1) Close-
ness of behavior cloning: DTV

(
dM,πBC

t , dDdemo
t

)
≤ κ, (2) Model learning error under BC:

E
(s,a)∼d

M,πBC
t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ µ, and (3) Trajectory distribution closeness:

DTV

(
ρπ

e

M, ρπ
M̂

)
≤ ν. Then for all t = 0, 1, . . . , T , we have:

E
(s,a)∼dM̂,π

t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ µ+ 2κ+ 2ν.

Proof. By triangle inequality on expectations and total variation:

E
(s,a)∼dM̂,π

t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ E

(s,a)∼d
Ddemo
t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
+ 2 DTV

(
dM̂,π
t , dDdemo

t

)
.

We now bound each term separately:

• For the first term, apply triangle inequality again:

E
(s,a)∼d

Ddemo
t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ E

(s,a)∼d
M,πBC
t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
+ 2 DTV

(
dDdemo
t , dM,πBC

t

)
≤ µ+ 2κ,

using assumptions (1) and (2).

• For the second term, use that marginal total variation is bounded by trajectory total variation:

DTV

(
dM̂,π
t , dDdemo

t

)
≤ DTV

(
ρM̂,π, ρM,πe

)
≤ ν,

by assumption (3).

Combining:
E
(s,a)∼dM̂,π

t

[
DTV

(
M(· | s, a),M̂(· | s, a)

)]
≤ µ+ 2κ+ 2ν.

B Extended Background

B.1 Dreamer World Model

The RSSM consists of an encoder, a recurrent model, a representation model, a transition predictor,
and a decoder, as formulated in Equation 10. And it employs an end-to-end training methodology,
where its parameters are jointly optimized based on the loss functions of various components,
including dynamic transition prediction, reward prediction, and observation encoding-decoding.
These components often operate in a latent space rather than the original observation space, as
encoded by the World Model. Therefore, during end-to-end training, the losses of all components
indirectly optimize the latent space.

The encoder fE encodes the input state xt into a embed state et, which is then fed with the deter-
ministic state ht into the representation model qφ to generate the posterior state zt. The transition

15

predictor pφ predicts the prior state ẑt based on the deterministic state ht without access to the current
input state xt. Using the concatenation of either (ht, zt) or (ht, ẑt) as input, the recurrent transition
function fφ iteratively updates the deterministic state ht with given action at.

Encoder: et = fE(et|xt)

Recurrent model: ht = fφ(ht−1, zt−1, at−1)

Representation model: zt ∼ qφ(zt|ht, et)

Transition predictor: ẑt ∼ pφ(ẑt|ht)

Decoder: x̂t ∼ fD(x̂t|ht, zt)

(10)

B.2 Temporal Distance Training in LEXA

The goal-reaching reward rG is defined by the self-supervised temporal distance objective (Mendonca
et al., 2021) which aims to minimize the number of action steps needed to transition from the current
state to a goal state within imagined rollouts. We use bt to denote the concatenate of the deterministic
state ht and the posterior state zt at time step t.

bt = (ht, zt) (11)

The temporal distance Dt is trained by sampling pairs of imagined states bt, bt+k from imagined
rollouts and predicting the action steps number k between the embedding of them, with a predicted
embedding êt from bt to approximate the true embedding et of the observation xt.

Predicted embedding: emb(bt) = êt ≈ et, where et = fE(xt) (12)

Temporal distance: Dt(êt, êt+k) ≈ k/H where êt = emb(bt) êt+k = emb(bt+k) (13)

rGt (bt, bt+k) = −Dt(êt, êt+k) (14)

C Discussion

In this section, we discuss several key questions and extensions regarding the design, applicability,
and limitations of Cago. Our goal is to clarify how Cago fundamentally differs from existing
imitation learning paradigms, what design choices drive its effectiveness, and how it can be adapted
or extended to broader settings. We also explain and clarify its current assumptions—such as initial
state resetting and model-based training. Through this discussion, we aim to provide deeper insights
into the generality, scalability, and future potential of Cago as a new framework for learning from
demonstrations.

1. How does Cago differ from traditional imitation learning methods?

Cago is fundamentally different from traditional Imitation Learning (IL) methods, both in methodol-
ogy and motivation. IL typically requires direct learning from demonstrations, either by recovering a
reward function from demonstrations, or matching expert and agent state-action distributions (e.g.
GAIL(Ho and Ermon, 2016)), or incorporating demonstrations as anchors to mitigate overestimation
and instability caused by out-of-distribution actions (e.g. Cal-QL(Nakamoto et al., 2023)). In contrast,
Cago presents a new paradigm to utilize demonstrations: it dynamically tracks the agent’s competence
along demonstrated trajectories and uses this signal to select intermediate states in the demonstrations
that are just beyond the agent’s current reach as goals to guide online trajectories collecting. To
evaluate this novel perspective, we compared Cago against state-of-the-art baselines that represent
diverse strategies for learning from demonstrations, including distribution mathcing (e.g. GAIL(Ho
and Ermon, 2016) and PWIL(Dadashi et al., 2020)), curriculum learning (e.g. JSRL(Uchendu et al.,
2023)), model-based exploration (e.g. MoDem(Hansen et al., 2022)), and offline-to-online fine-tuning
(e.g. CalQL(Nakamoto et al., 2023) and RLPD(Ball et al., 2023)).

16

2. Can Cago be extended with sophisticated similarity metrics to handle complex tasks?

In our implementation of Cago, we use the observation space as the goal space and adopt simple
similarity metrics such as MSE or L2 distance to demonstrate the applicability and robustness of
Cago’s curriculum strategy in both state-based and pixel-based environments. Cago can be naturally
extended to support more complex settings. For example, in high-dimensional visual environments,
Cago could adopt more expressive similarity metrics such as SSIM (Structural Similarity Index) or
FSIM (Feature Similarity Index). In tasks involving semantic or language-conditioned goals, one
could compute a scalar score function that estimates how well a visual state satisfies a goal, and
then compare states based on the difference in their scores with respect to the same goal. This score
function can be instantiated using pretrained vision-language models, allowing goal representations to
move beyond raw states to language embeddings or other semantic forms. Our main contribution is a
general framework for goal sampling from demonstrations—based on the agent’s capability—which
can be paired with any goal space and similarity metric appropriate to the domain.

3. How does Cago perform relative to curriculum learning baselines?

In our experiments, we included Jump-Start Reinforcement Learning (JSRL(Uchendu et al., 2023)),
a recent and strong curriculum learning baseline. JSRL pretrains a guide policy on offline data to
provide a curriculum of starting states for the RL policy, which significantly simplifies the exploration
problem. As the RL policy improves, the effect of the guide-policy is gradually diminished, leading
to an RL-only policy that is capable of further autonomous improvement. We discuss four additional
curriculum learning baselines: Yengera et al. (2021); Bajaj et al. (2023); Dai et al. (2021); Hermann
et al. (2020). Yengera et al. (2021) constructs a personalized demonstration curriculum by computing
task-specific difficulty scores based on the teacher’s and learner’s policies. In contrast, Cago does
not require hand-crafted difficulty metrics—instead, it extracts intermediate goals directly from the
demonstration, and guides the agent to reach them progressively based on its own learning progress.
This avoids the challenge of designing difficulty metrics for complex manipulation tasks, which is
non-trivial without expert knowledge. Bajaj et al. (2023) assumes access to a demonstrator policy,
either via imitation learning or inverse reinforcement learning. However, our experiments show
that standard imitation learning performs poorly on our benchmarks, limiting the effectiveness of
such approaches in our domain. Dai et al. (2021); Hermann et al. (2020) segment demonstrations
and construct a curriculum by resetting episodes to intermediate states along the demonstration
trajectory, starting from the end and moving backward as learning progresses. Cago explicitly
avoids such state resets, which are often unrealistic in real-world robotic settings without simulator
support. we conducted additional experiments comparing Cago to ACED(Dai et al., 2021) and Task
phasing(Bajaj et al., 2023) on the Fetch-PickPlace and Fetch-Slide environments that they were
evaluated on. The tables 1 below report the final success rates after 1M training steps, averaged over
5 random seeds (We were unable to run ACED on Fetch-Slide).

Table 1: Comparison of Cago and ACED, Task phasing across Fetch-PickPlace and Fetch-Slide tasks.
Task Cago (Ours) ACED (Dai et al., 2021) Task phasing (Bajaj et al., 2023)

Fetch-PickPlace 1.00 0.93 0.75
Fetch-Slide 0.48 – 0.20

4. Is the need for environment resets in Cago a fundamental limitation?

Indeed, resetting to specific initial states is a limitation of Cago, but as we mentioned in the Section 5,
it is already a substantial improvement over arbitrary state resets, which are often infeasible in real-
world robotics. Importantly, Cago does not require exact resets to the full demonstration initial states.
For instance, in the Peg Insertion task, the peg’s initial position can differ from the demonstration,
and Cago can learn to reach states within the early portion of the demonstration. However, some
elements—like the hole and the box—are non-movable and randomly initialized by the environment.
Since the agent cannot manipulate these objects, we have to reset them to match the demonstration
configuration to ensure goal reachability. The constraint over other controllable components, such as
the robot arm and peg, can be relaxed. This partial reset strategy reduces the burden and makes Cago
more practical for real-world settings.

17

5. What motivates the choice of a model-based RL formulation for Cago, rather than a
model-free alternative?

In early experiments, we attempted to train Cago in a model-free manner by learning the goal-
conditioned policy directly from real environment rollouts. But we further find that instead of directly
using Dcap to train πG in Model-free manner, the world model can offer a richer set of imagined roll-
outs to train the πG, which improves the learning efficiency. In our setting, the simulated trajectories
have starting states and goal states randomly sampled from the same trajectory in Dcap. As a result,
the simulated trajectories still resemble segments from Dcap, while significantly increasing trajectory
diversity and data richness. The MBRL—leveraging simulated trajectories allows us to generate
more diverse and abundant training data. This promotes generalization across the environment. Cago
builds upon the Dreamer framework (Hafner et al., 2019, 2020; Hu et al., 2023; Duan et al., 2024a,b),
which serves as the model-based cornerstone of our approach. Dreamer learns a latent world model
and trains a goal-conditioned policy using an actor-critic algorithm. It samples trajectories by set-
ting the final observation of a demonstration as the goal, while resetting the environment using the
same seed as the corresponding demonstration. PEG (Hu et al., 2023) introduces an alternative
goal-selection strategy that enhances exploration within the Dreamer framework. To demonstrate the
improvement brought by Cago over its cornerstone, we conduct comparisons against both Dreamer
and PEG. Table 2 presents the performance comparison of Cago against Dreamer and PEG across
three environments(results are averaged over 5 random seeds). Cago clearly surpasses its model-based
cornerstone, Dreamer, as well as the competitive goal-picking strategy, PEG, across all environments.

Table 2: Performance comparison of Cago against Dreamer and PEG.
Environment Cago (Ours) Dreamer PEG

Stick-Push 0.99 0.68 0.76
Disassemble 0.80 0.02 0.04
Adroit-Pen 0.82 0.52 0.54

6. Can Cago be applied to broader scenarios—such as real-world settings with diverse initial
states and uncertain dynamics?

Cago can be extended to support diverse initial states and uncertain dynamics. For diverse initial
states in real-world settings, Cago can gradually prioritize those where the agent has the most learning
potential—starting from demonstration initial states and expanding to nearby ones where the agent
can still benefit from the demonstration trajectories for dynamic capability tracking and progressive
goal selection. As training progresses, we incorporate successful rollouts from these nearby initial
states into the demonstration set, broadening its coverage. This enables a natural curriculum that
eventually transitions to diverse, real-world initial states. For uncertain, stochastic dynamics, Cago
remains robust by not requiring exact reproduction of actions in demonstration trajectories. Instead,
it adapts goals based on observed agent successes, making the curriculum self-correcting in the face
of noise or variability. If the agent consistently fails to reach a specific demonstration state, Cago’s
capability metric naturally shifts goal sampling toward more achievable targets. Additionally, goal
selection can be extended with probabilistic estimates—such as goal-reaching likelihood or future
state predication uncertainty from an ensemble of world models—which we view as a promising
direction for high-stochasticity domains.

7. Does Cago risk overfitting to a limited number of demonstrations?

Cago mitigates overfitting to a small number of demonstrations by training its goal-conditioned policy
πG within a world model. Rather than training πG to reach states solely from demonstrations, Cago
instructs πG to learn to reach diverse states sampled from real rollouts in Dcap, which records the
trajectories generated under our Go-Explore paradigm with capability-aware goal sampling, in its
world model. This promotes generalization across the environment. To evaluate the generalization
capability, we tested Cago on 500 unseen initial states generated from random seeds, each differing
from those in the demonstrations. We report both the average L2 deviation from demonstration initial
states and the average success rate across 500 unseen seeds across three environments in Table 3. The
results are consistent with Figure 3.

18

Table 3: Initial demo observation deviation and average success rate across 500 unseen seeds.
Environment Average Initial Observation Deviation Average Success Rate(500 seeds)

Stick-Push 0.0547 0.982
Disassemble 0.1405 0.806
Adroit-Pen 1.2749 0.824

D Limitations and Future Work

While Cago shows promising results in leveraging demonstrations to improve exploration and learning
efficiency in sparse-reward, long-horizon tasks, several limitations remain. In our experiments, we
employ image MSE similarity(or L2 distance for state) and a simple counting scheme, which are
generalizable and applicable across diverse environments, as illustrative measures of evaluating agent
capability in Cago. However, in much more complex environments, such simple approaches may
not constitute the optimal strategy. In the future, incorporating uncertainty-aware models for both
agent capability estimation and subgoal selection could improve robustness and adaptability of Cago
framework. Extending Cago to multi-agent or real-world robotics scenarios is another promising
direction, where the complexity of coordination and physical constraints introduces new challenges
for efficient demonstration utilization and goal guidance.

E Environment Detail

We evaluate and compare Cago against several baselines across three robot environment suites using
sparse rewards: MetaWorld (Yu et al., 2020), Adroit (Rajeswaran et al., 2017), and Maniskill (Gu
et al., 2023; Tao et al., 2025). In this section, we provide more details about each benchmark and the
specific experimental setup.

E.1 MetaWorld

Disassemble PickPlaceWall ShelfPlace StickPull StickPush

Figure 6: 5 very hard level environments from MetaWorld

MetaWorld (Yu et al., 2020) is a widely used benchmark suite designed to evaluate the generalization
and manipulation capabilities of reinforcement learning algorithms in robotic control tasks. It consists
of a diverse collection of continuous control environments simulated using the MuJoCo physics
engine. Each task requires a robotic arm to interact with objects in the scene to achieve goal-directed
behavior under sparse or dense reward settings. MetaWorld includes 50 distinct tasks of varying
difficulty, ranging from simple reaching to complex object manipulation. In our experiments, we focus
on the "very hard" subset of tasks identified in prior studies (Seo et al., 2023; Hansen et al., 2022),
which are characterized by sparse rewards, delayed feedback, and the need for precise low-level
control, making them particularly suitable for benchmarking sample efficiency and generalization in
demonstration-augmented learning frameworks. The five very hard tasks we choose are: Shelf Place,
Disassemble, StickPull, Stick Push, Pick Place Wall. Shelf Place: The agent must grasp an object
and place it accurately onto a shelf, requiring precise vertical and lateral arm control. Disassemble:
The task involves picking a nut out of the a peg, demanding a strong grasp and directional pulling
motion. Stick Pull: The robot needs to grasp a stick and pull a bottle, requiring fine force control
and coordinated motion. Stick Push: The goal is to grasp a stick and push a bottle, emphasizing

19

controlled contact and alignment with the target location. Pick Place Wall: The agent must pick up an
object and place it over a wall barrier onto a specified target location, combining lifting, positioning,
and obstacle avoidance. We use the L2-distance to calculate the similarity between observations to
judge if the agent has reached the demonstration observation. The threshold for similarity is 0.05. We
use 10 demonstrations for training.

E.2 Adroit

Hammer Pen Door

Figure 7: 3 environments from Adroit Suite

The Adroit Suite (Rajeswaran et al., 2017) is a set of high-dimensional dexterous hand manipulation
tasks that emphasize fine motor control, contact-rich interactions, and sparse-reward learning. It is
built upon a 24-DoF ShadowHand robotic hand, presenting significant challenges in both control and
generalization. Each task requires the agent to coordinate multiple fingers and joints to manipulate
objects with high precision under partial observability and complex dynamics. We use three envi-
ronments from this suit. Hammer: The agent must grasp a hammer and use it to drive a nail into
a box. This task demands stable object manipulation, precise tool orientation, and effective force
transmission. Pen: The objective is to reorient and position a pen in an assigned direction. It requires
careful control of finger articulation and rotational dexterity. Door: The task involves unlatching
and opening a door by manipulating the handle and applying a pulling motion. It tests the agent’s
ability to perform multi-stage interactions and coordinate wrist and finger movement to exert torque
in the correct direction. We use the Mean square error between images rendered to calculate the
similarity to judge if the agent has reached the demonstration observation. Each rendered image will
be reshaped to a size (100,100,3). We use 10 demonstrations for training.

E.3 Maniskill

StackCube PegInsertionSide PullCubeTool

Figure 8: 3 environments from Maniskill

ManiSkill (Gu et al., 2023; Tao et al., 2025) is a comprehensive benchmark suite designed to evaluate
generalizable robotic manipulation skills in simulation, emphasizing real-world task diversity, object
variety, and generalization across instances. It provides high-quality 3D environments with continuous
control, supporting both visual and proprioceptive observations. The benchmark is particularly
challenging under sparse reward settings, as tasks often require multi-step reasoning, long-horizon

20

planning, and precise control to accomplish. We pick three environments from this benchmark.
PullCubeTool: Given an L-shaped tool that is within the reach of the robot, the agent needs to
leverage the tool to pull a cube that is out of it’s reach. PegInsertionSide: The robot must align
and insert a peg into a side-entry slot. The task demands precise pose estimation, spatial reasoning,
and careful control to avoid misalignment or jamming. StackCube: This task involves picking up
a cube and accurately stacking it on top of another. We use the Mean square error between images
rendered to calculate the similarity to judge if the agent has reached the demonstration observation.
Each rendered image will also be reshaped to a size (100,100,3). We use 20 demonstrations for
training. On StackCube and PegInsertionSide, we scale up the position(x,y,z) 10 times and normalize
the degree of griper opening for more stable learning. We set the clearance of the hole to 0.01 in
PegInsertionSide so that the peg could be inserted more easily.

F More Experiments

F.1 More Baselines

Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016; Arulkumaran and Lillrank,
2024) adopts an adversarial learning framework where a discriminator is trained to differentiate
between expert and agent trajectories; the discriminator’s output is then used as the reward signal for
the agent. Primal Wasserstein Imitation Learning (PWIL) (Dadashi et al., 2020; Arulkumaran and
Lillrank, 2024) formulates imitation as a primal optimization problem that minimizes the Wasser-
stein distance between expert and agent trajectory distributions. It constructs a shaped reward
function directly from this distance, encouraging the agent to produce expert-like behaviors. Soft
Q Imitation Learning (SQIL) (Reddy et al., 2019) simplifies imitation learning by assigning fixed
rewards to expert and agent transitions, effectively transforming imitation into a standard reinforce-
ment learning problem with sparse binary rewards. Value-based Distribution Correction Estimation
(ValueDice) (Kostrikov et al., 2019) takes a distribution-matching perspective by minimizing a
divergence between expert and agent state-action occupancy measures, providing a principled con-
nection between imitation and value-based reinforcement learning. Reinforcement Learning with
Prior Data (RLPD) (Ball et al., 2023) is a state-of-the-art baseline improving the efficiency of online
reinforcement learning by leveraging offline data. We run these baselines over 5 random experimental
seeds and report the average success rate.

As the results shown in Figure 9, Cago generally outperforms all additional baseline approaches across
a diverse set of manipulation tasks. In tasks such as Disassemble, StickPull, Hammer, and Pen, Cago
demonstrates significantly faster convergence and higher final success rates, indicating its superior
learning efficiency and robustness. Particularly in Maniskill environments, Cago is the only method
that achieves meaningful learning progress, while all baselines fail to get any success, highlighting the
importance of capability-aware goal sampling in challenging, sparse-reward environments. Although
GAIL achieves the best performance in the ShelfPlace environment, this success is not representative
of its overall effectiveness. In all other tasks, GAIL performs poorly, exhibiting highly unstable
learning process and low final success rates.

F.2 Visual goal predictor

To evaluate the generalization ability of our visual goal predictor Pϕ, we visualize its predicted goal
images given initial observations at test time in Figure 10. For each task, we compare the predicted
goal (middle column) to the ground-truth final observation from a demonstration trajectory (right
column). Importantly, these demonstrations are collected from unseen seeds that were never used
during training. These results show that Pϕ is capable of accurately inferring the final goal state
purely from a single initial image observation, even in unseen evaluation seeds. This predictive
capability allows the goal-conditioned policy πG to finish tasks effectively for any environment seeds.

21

(a) Disassemble (b) PickPlaceWall (c) ShelfPlace (d) StickPull

(e) StickPush (f) Door (g) Hammer (h) Pen

(i) PullCubeTool (j) PegInsertionSide (k) StackCube

Figure 9: Experiment results comparing Cago with the additional baselines over 5 random seeds.

Initial Observation Predicted Goal True Goal

P
en

H

am
m

er

D

o
o

r

Figure 10: Visual goal prediction results from our learned goal predictor Pϕ. Each row corresponds
to a different task (Door, Hammer, Pen). From left to right: the agent’s initial observation at test
time, the goal image predicted by Pϕ, and the ground-truth final observation from a demonstration
trajectory. Notably, these demonstrations are drawn from unseen seeds not used during training. The
predicted goals closely match the actual final states, illustrating strong generalization of Pϕ to novel
environment seeds. 22

F.3 Ablation on Number of Demonstration

This section investigates how the number of demonstration trajectories used for training influences the
performance of Cago across various tasks. We present success rate curves under different numbers
of demonstrations for four representative environments from Metaworld, Adroit, and ManiSkill.
The results show that Cago maintains strong performance even with a limited amount of expert
data (as few as 5 demonstrations), particularly in tasks such as Disassemble, StickPush, and Pen,
demonstrating its robustness and stability under data-scarce conditions. Increasing the number of
demonstrations in general yield higher final success rates. This effect is especially evident in more
challenging tasks, such as the PegInsertion task in Maniskill. These findings suggest that Cago’s
performance can be further improved with sufficient expert demonstrations.

(a) MetaWorld Disassem-
ble

(b) MetaWorld StickPush (c) Adroit Pen (d) Maniskill PegInsertion

Figure 11: Success rates under different numbers of demonstrations. Results are averaged over 5
random seeds.

F.4 Ablation on Demonstration Quality

A common concern in demonstration-based reinforcement learning is the reliance on high-quality
trajectories that adequately cover the task space. While our theoretical analysis (Theorem 1) assumes
such demonstrations in order to establish guarantees, real-world data are often noisy, incomplete,
or even contain failed attempts. To evaluate the robustness of Cago under such imperfections, we
conducted ablation studies on both suboptimal and failed demonstrations.

Suboptimal Demonstrations. We first constructed three types of perturbed demonstrations: (i)
Missing Observations: We randomly removed 20% of the observations from each original demon-
stration trajectory to simulate incomplete data. (ii) Noisy Actions: We added Gaussian noise (scaled
by 0.1) to each action output by the expert policy during expert trajectory collection. (iii) Random
Actions: We replaced the expert’s action with a randomly sampled action with a probability of 20%
at each timestep during expert trajectory collection.

These settings simulate three kinds of suboptimality: missing state information, noisy expert behavior,
and corrupted decision-making. Using these demonstrations, we re-evaluated Cago on three bench-
mark environments: AdroitPen, Stick-Push, and Disassemble. Because we do not have the expert
policy for Adroit, we only conducted the "Missing Obs" experiment for Adroit-Pen. Table 4 reports
the final success rates after 1M training steps, averaged over 5 random seeds (each evaluated over
100 test episodes). The results suggests that Cago is robust to the suboptimality in demonstrations.
This is because: First, Cago only uses demonstration trajectories to extract sequences of observations
that serve as curriculum goals. It does not attempt to imitate the demonstration directly, nor does it
rely on demonstrations to infer a reward function. This significantly reduces Cago’s dependency on
high-quality demonstrations. Second, even when the demonstration trajectories are suboptimal—as
long as they represent a successful sequence of observations—Cago can still learn well. We observe
that in the Disassemble environment, Cago achieves significantly higher success rates when using the
"Random Actions" type of suboptimal demonstrations compared to using the original demonstrations.
Those imperfect demonstrations—with pauses or detours—cover a broader region of the task space,
thereby improving the final policy’s generalization. More importantly, Cago is guided by a reward
function shaped using a Temporal Distance Network, which estimates how many steps are needed
to reach a goal state. This enables Cago to discover more efficient, often shorter, alternative paths

23

for goal reaching. Therefore, even when the demonstration are suboptimal, Cago may still learn the
optimal paths.

Table 4: Success rates under suboptimal demonstrations (after 1M steps, averaged over 5 seeds).

Environment Original Demo Missing Obs Noisy Actions Random Actions

Stick-Push 0.99 0.99 0.97 0.96
Disassemble 0.80 0.77 0.88 0.96
Adroit-Pen 0.82 0.88 – –

Failed Demonstrations. We next considered demonstrations that include failed trajectories. For
MetaWorld, we injected uniform noise (scale 0.3) into expert actions, producing datasets with 30%
and 50% failed demonstrations. We then compared Cago against several strong baselines (GAIL,
PWIL, JSRL, and Modem) on Adroit-Pen, Stick-Push, and Disassemble. We assume the environments
used to collect demonstrations provide a sparse (binary) reward for goal reaching, enabling us to train
goal predictors exclusively on successful demonstrations. The results are shown in Figure 12, 13.

(a) MetaWorld Disassemble (b) MetaWorld StickPush (c) Adroit Pen

Figure 12: Success rates under 30% failed demonstrations (after 1M steps, averaged over 5 seeds).

(a) MetaWorld Disassemble (b) MetaWorld StickPush (c) Adroit Pen

Figure 13: Success rates under 50% failed demonstrations (after 1M steps, averaged over 5 seeds).

Cago maintains strong performance even with many failed demonstrations, while the baselines
degrade significantly. This robustness to suboptimal or noisy data stems from two key factors: (1)
Cago prioritizes goals that are both challenging and feasible, regardless of whether they originate from
successful or failed demonstrations. While failed trajectories may not directly lead to task success,
they can expose the agent to diverse regions of the environment, potentially aiding exploration. This
allows Cago to extract useful learning signals from a broader range of experiences. (2) Cago neither
imitates demonstrations nor infers reward functions from them. Instead, it uses demonstrations solely
to extract sequences of observations that serve as candidate goals. These goals are selected based on
the agent’s own learning progress, forming a curriculum that guides policy improvement. This design
reduces sensitivity to demonstration quality.

24

F.5 Ablation on Parameters

λvisit controls the threshold for how frequently a state must be visited before it is considered
“mastered” by the agent, and thus eligible for sampling more difficult goals. If it is set too small,
Cago may prematurely progress to harder goals before acquiring sufficient competence in easier ones.
Conversely, if it is set too large, Cago may become overly conservative, spending excessive time on
already-mastered states. We have conducted a sensitivity analysis by setting λvisit ∈ 50, 100, 200,
and evaluated Cago on three environments: Stick-Push, Disassemble, and AdroitPen. The final
success rates after 1M training steps, averaged over 5 random seeds are shown in Table 5.

Table 5: Performance with varying λvisit.

Environment λvisit = 50 λvisit = 100 λvisit = 200

Stick-Push 0.94 0.96 0.99
Disassemble 0.79 0.82 0.80
Adroit-Pen 0.77 0.82 0.83

δ defines the goal sampling window size, i.e., the proportion of expert states from which new goals
are sampled during training. A large δ value may lead to sampling overly distant or inappropriate
goals, affecting stability and learning efficiency. In contrast, a very small δ may overly restrict
exploration and hinder curriculum progression. We added a sensitivity experiment comparing the
default δ = 10% with a smaller value δ = 5% and a larger value δ = 20%, across the same three
environments. Table 6 shows that while larger values can sometimes slightly reduce performance,
Cago remains capable of learning effective policies in all settings.

Table 6: Performance with varying δ.

Environment δ = 5% δ = 10% δ = 20%

Stick-Push 1.00 0.99 0.99
Disassemble 0.81 0.80 0.75
Adroit-Pen 0.76 0.82 0.81

G Runtime

G.1 Experiment total runtimes

Table 7: Runtimes per experiment.

Environment Runtime (h) Benchmark Steps

ShelfPlace 72 MetaWorld 1e6
Disassemble 72 MetaWorld 1e6
StickPull 72 MetaWorld 1e6
StickPush 72 MetaWorld 1e6
PickPlaceWall 72 MetaWorld 1e6
Door 80 Adroit 1e6
Hammer 85 Adroit 1e6
Pen 83 Adroit 1e6
PullCubeTool 78 ManiSkill 1e6
PegInsertionSide 143 ManiSkill 5e6
StackCube 155 ManiSkill 5e6

25

G.2 Computation Time for Updating the Cago Visitation Record Dictionary

In this section, we analyze the computational cost associated with updating the visitation record
dictionary. Let the length of a sampled trajectory be denoted as Lτ , and let τ (i) represent the
demonstration trajectory associated with the same environment reset seed, having length Li. The
visitation record dictionary Dictvisit is updated according to Equation 2:

Dictvisit[τ
(i)][j] += 1 if sim(st, s

(i)
j) ≤ ϵ, ∀t ∈ 1, . . . , Lτ ,∀j ∈ 1, . . . , Li

This update rule implies that for each step in the sampled trajectory, a similarity check is performed
against all steps in the corresponding demonstration trajectory. Thus, the time required to perform an
update of Dictvisit can be approximated by:

Time(Update) ≈ Total Steps× Li × Time(Similarity Calculation)

The computational cost is therefore influenced by three main factors: the total number of interac-
tion steps, the length of each demonstration trajectory, and the cost of computing the similarity
metric. Importantly, the similarity function sim(·, ·) differs by environment, which directly affects
computation time. For MetaWorld environments, we utilize L2-distance in the state vector space
(i.e., low-dimensional numerical vectors). This calculation is computationally efficient, typically
requiring only simple element-wise operations over vector entries. In contrast, for the Adroit and
Maniskill environments, the similarity is computed based on MSE in the image space. This involves
pixel-wise comparison over image observations, which increases the computational load due to the
large input dimensionality (e.g., 100×100×3).As a result, while the update rule remains structurally
the same, the actual runtime overhead for image-based similarity can be substantially higher than that
for state-based similarity. The table below summarizes the total runtime, update time, and similarity
function used for each environment:

Table 8: Computation time and similarity function for updating the visitation dictionary Dictvisit.

Environment Steps Runtime (h) Update Time (h) Similarity

ShelfPlace 1e6 72 0.05 State L2
Disassemble 1e6 72 0.05 State L2
StickPull 1e6 72 0.05 State L2
StickPush 1e6 72 0.05 State L2
PickPlaceWall 1e6 72 0.05 State L2
Door 1e6 80 5.3 Image MSE
Hammer 1e6 85 5.3 Image MSE
Pen 1e6 83 5.3 Image MSE
PullCubeTool 1e6 78 2.8 Image MSE
PegInsertionSide 5e6 143 13.8 Image MSE
StackCube 5e6 155 14.2 Image MSE

H Hyperparameters

We adopt the default hyperparameters from the LEXA backbone model-based RL (MBRL)
agent—such as the learning rate, optimizer, and network architecture—and maintain them con-
sistently across all environments. The primary hyperparameter tuning for Cago focuses on the
following aspects: (1) the episode length Lτ ; (2) the proportion of Lτ allocated to the goal-directed
phase Tgo; (3) the number of demonstrations Ndemo used for both dictionary construction and en-
vironment resetting; (4) the visit frequency threshold λvisit used in Algorithm 1 for filtering goal
candidates; and (5) the similarity calculate metrics in Equation 2; (6) the similarity threshold ϵ in
Equation 2.

26

Table 9: Hyperparameters of Cago.

Environment Lτ Tgo rate Ndemo λvisit δ sim(·, ·) ϵ

MetaWorld all environments 150 0.7 10 200 10% State L2 0.05
Adroit-Door 200 0.7 10 100 10% Image MSE 100.0
Adroit-Hammer 500 0.7 10 200 10% Image MSE 100.0
Adroit-Pen 200 0.7 10 100 10% Image MSE 200.0
PullCubeTool 100 0.7 10 100 10% Image MSE 100.0
PegInsertionSide 100 0.7 20 200 10% Image MSE 100.0
StackCube 100 0.7 20 200 10% Image MSE 100.0

27

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately represent the primary contributions of
the paper, which include the development of the Cago algorithm designed to solve sparse-
reward tasks through a capability-aware goal picking strategy. The introduction outlines the
key challenges in GCRL, specifically with sparse rewards, and how Cago addresses these by
improving the quality of online sampled trajectories using demonstration. These claims are
well-supported by the theoretical underpinnings and experimental results presented in the
paper, reflecting the scope and impact of the proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

28

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper thoroughly discusses the limitations of the Cago framework in
Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, our paper provides the full set of assumptions and a complete (and correct)
proof in the Appendix A for Theorem 1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

29

Answer: [Yes]

Justification: In the Experiment section and appendix of our paper, we elaborate on the
procedure and configuration of our experiments. This includes the sources and modifications
of all testing environments, and implementation methods for all baselines, the devices and
memory utilized, as well as specific values of hyperparameters employed. Concurrently,
we have open-sourced our code; please refer to the Reproducibility Statement section for
further details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As we mentioned in the previous justification, we have not only open-sourced
our code but also provided detailed steps and settings for reproducing our main experimental
results. In the Experiment section and Appendix, we elaborate on the sources and modi-
fications of the environments, baseline implementation details, and Cago implementation
specifics.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide comprehensive details regarding the hyperparameters essential for
understanding the experiments, including those specific to our Cago framework. The table
presented (Table. 9) outlines these hyperparameters for each task, facilitating reproducibility
and comparison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted each experiment a minimum of five times using different
random seeds, and upon plotting the results, as demonstrated in the Experiment section,
we incorporated the experimental error. The solid line denotes the average success rate,
while the shaded region signifies the standard deviation among the repeated experimental
outcomes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly specifies the computer resources (8 Nvidia A100 GPU) and the
amount of GPU memory required (approximately 2.4GB).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in our paper aligns with the NeurIPS Code of Ethics.
We have thoroughly reviewed the guidelines and ensured that our research adheres to ethical
standards. Additionally, we have implemented measures to safeguard anonymity and comply
with pertinent laws and regulations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research aims to address the learning efficiency problem in Reinforcement
Learning (RL) within the GCRL environment. It is currently in the theoretical research stage
and has minimal societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

32

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper properly credits the creators or original owners of assets used,
including code, data, and models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

33

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented our code and provided detailed instructions on its usage,
licenses, and permissible scope of use. Additionally, we have included the documentation
alongside the assets to ensure accessibility and clarity for users.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

34

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Problem Setup
	Method
	Observation Visit Tracking with Demonstration Alignment
	Capability-Aware Goal Sampling
	Learning Framework

	Experiments
	Related Work
	Conclusion
	Appendix
	Proof of Theorem 1
	Extended Background
	Dreamer World Model
	Temporal Distance Training in LEXA

	Discussion
	Limitations and Future Work
	Environment Detail
	MetaWorld
	Adroit
	Maniskill

	More Experiments
	More Baselines
	Visual goal predictor
	Ablation on Number of Demonstration
	Ablation on Demonstration Quality
	Ablation on Parameters

	Runtime
	Experiment total runtimes
	Computation Time for Updating the Cago Visitation Record Dictionary

	Hyperparameters

