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Abstract

The peer review process is central to scientific publishing, with the rebuttal phase
offering authors a critical opportunity to address reviewers’ concerns. Yet the causal
mechanisms underlying rebuttal effectiveness, particularly how author responses
influence final review decisions, remain unclear. To uncover the mechanisms driv-
ing rebuttal effectiveness, we model it as a causal representation learning (CRL)
problem. Using data from the OpenReview system for ICLR submissions, we
examine how rebuttal characteristics of both reviewers and authors causally affect
post-rebuttal rating changes. We introduce a weakly supervised disentangled CRL
framework that leverages review subscores (e.g., openness, clarity, directness) as
concept-level supervision. Theoretically, we establish identifiability conditions for
latent variables across multiple distributions, showing that human-interpretable
concepts can be recovered under mild assumptions. Empirically, our results un-
cover distinct causal patterns governing successful rebuttals, revealing how specific
strategies differentially influence review criteria. These findings provide action-
able guidance for authors in crafting effective rebuttals, while offering broader
implications for transparency, fairness, and efficiency in the peer review process.

1 Introduction

Scientific progress is fundamentally dependent on peer review, a system designed to ensure the quality,
validity, and integrity of published research [} 2| 3| 4]. Recently, the machine learning community
has embraced greater transparency through platforms like OpenReview, where reviews, rebuttals,
and rating changes are publicly accessible [5} 6, [7, |8]. This transparency creates an unprecedented
opportunity to analyze the dynamics of peer review, particularly the effectiveness of author rebuttals
in influencing reviewers’ final assessments. Despite its importance, little is empirically known about
what makes a rebuttal effective and how specific strategies influence reviewers’ final decisions.

Prior work on peer review has examined systemic properties such as bias [9], arbitrariness [10],
and predictive validity [[L1,[12]. More recently, studies leveraging OpenReview data have explored
reviewer behavior and rating consistency [13| [14], and randomized trials have tested reviewer
anchoring effects [15]. The effectiveness of rebuttals has been touched upon. For instance, [[16]]
report that rebuttals trigger rating changes in roughly 25% of cases, but causal mechanisms remain
unexplored. Existing analyses focus largely on correlations, leaving an open question of why certain
rebuttal strategies succeed while others fail, and under what contextual conditions they are effective.

In parallel, advances in causal representation learning (CRL) provide powerful tools for uncov-
ering latent causal factors from high-dimensional data [17]. While many CRL methods operate
in unsupervised settings [18 19} 20, [21]], recent work demonstrates that weak supervision from
concept labels [22, 23] 24, [25]] can better align latent factors with human-interpretable dimensions.
Complementary strategies that exploit multiple distributions [21} 26], multiple modalities [20} 27],

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56

57

58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73

Table 1: Performance comparison of LLMs in generating subscores for rebuttal. Besides the average
Time Cost (TC), Lo norm between human annonation and LLM estimation is reported for other 10
subscores, including Clarity (CL), Directness (DI), Attitude (AT), Authors Openness (AO), Evidence
(EV), Rigor (RI), De-Escalation (DE), Review Quality (RQ), Reviewer Openness (RO), and Concern
Severity (CS). The final column reports the average Lo error (AE) across all 10 subscores.

Models (LLMs) ‘ Metrics

| TC, | CLL DI AT, AO] EV| RI, RI, RQ| RO| CS| AE|
DeepSeek-R1 1833s | 030 055 047 060 083 063 067 080 055 080 062
Grok-3-Latest 11745 | 045 050 074 060 039 053 067 100 090 130 071
Gemini-2.0-Flash-Lite 370s | 040 075 053 095 089 058 100 030 110 065 071
ChatGPT-4.1-Mini 9.73s | 035 065 095 095 094 063 100 125 060 065 080
Gemini-2.0-Flash 4125 | 045 1.10 079 095 1.11 074 083 075 105 045 082
ChatGPT-4.1 973s | 055 070 079 105 089 084 067 140 090 065 084
ChatGPT-4.1-Nano 534s | 035 055 105 130 072 058 250 050 050 075 088
Llama-4-Maverick 586s | 050 075 126 135 128 089 200 075 070 075 1.02
Gemini-2.5-Flash-Preview-04-17 | 13.26s | 0.65 075 074 135 094 084 117 145 120 125 1.03
Deepseek-V3-0324 5045 | 055 1.00 184 080 128 1.16 150 140 130 085 1.17
ChatGPT-40-Latest 843s | 0.60 130 200 140 117 095 217 200 105 080 134

nonstationarities [28} 29], or interventions [30} 31]] provide variation that strengthens identifiability.
At the same time, large language models (LLMs) now enable sophisticated analysis of scientific text
[32, 1331 34]], producing flexible representations that capture nuanced argumentation and discourse.
Prior research in argument mining and persuasion [35} 136] highlights that textual properties such as
clarity, directness, and evidence strength are central to rebuttal persuasiveness, yet these insights have
not been systematically incorporated into causal analyses of peer review. To address this gap, we
leverage pretrained LLMs to extract embeddings from rebuttal and review text, and analyze these
representations within a causal framework, aiming to explain the underlying rebuttal process in
OpenReview system and provide practical guidance to the broader machine learning community.

Using ICLR review and rebuttal data from OpenReview, we define 10 subscores (e.g., openness,
clarity) that capture features of both reviewers and authors during the rebuttal process, extracted with
state-of-the-art LLMs. We hypothesize that these subscores are linked to reviewers’ rating changes
and aim to verify it. We proposed a causal representation learning framework which leverages the
subscores as weak supervision. To summarize, our contributions are threefold: (i) we introduce
rebuttal effectiveness as a causal modeling problem and formalize it within a multi-distribution
CRL framework, (ii) we establish theoretical identifiability results showing that human-interpretable
concepts can be recovered under mild assumptions, and (iii) we provide an empirical analysis
uncovering population-level causal patterns in rebuttal success. Ultimately, our goal is to reveal
which factors are most causally related to rating change and to offer the machine learning community
concrete guidance on how to craft more effective and efficient rebuttals in OpenReview.

2 Dataset and Observations

Data Collection and Processing. We analyze peer-review data from the Paper Copilot platform [37]],
which aggregates review data from major artificial intelligence (AlI) conferences. We focus on ICLR
2024 (7304 submissions) and 2025 (11672 submissions) hosted on the OpenReview system, as these
cycles provide full access to author-reviewer discussions and both pre- and post-rebuttal ratings,
which are essential for studying rating change. Each submission includes metadata (e.g., title, author
list, abstract), reviewer initial ratings and comments, author rebuttals, and follow-up discussions.
Desk-rejected papers are removed. Since our goal is to analyze reviewer—author interactions rather
than paper-level outcomes, each review—rebuttal thread is treated as an independent sample. To
ensure meaningful interactions, we exclude cases without rebuttals or without reviewer responses.
After filtering, we obtain 23922 valid reviewer—author discussions (each stands for one sample).

Self-defined Subscores and LLM Inference. For fine-grained analysis, we randomly select 10% of
samples from each primary area (2393 in total) for annotation. We define ten interpretable subscores:
seven author-related (clarity, directness, positive attitude, acknowledgment of limitations, strength
of evidence, technical rigor, handling of misunderstandings and de-escalation) and three reviewer-
related (specificity, open-mindedness, severity of concerns), each rated on a five-point ordinal scale.
To scale beyond manual labeling, we benchmarked multiple large language models against a 20-
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Figure 1: Independence test results between rating/confidence and metadata (red) or LLM-inferred
subscores (blue). Each cell shows the number of tests (out of five different methods) failed to reject
the null hypothesis of independence at significance level a=0.05. A value of O indicates strong
evidence of dependence, while 5 indicates strong evidence of independence across all applied tests.

example seed set (see Tab. [T) and selected DeepSeek-R1, which showed the highest agreement with
human annotations, to automatically label the 10% subset. Refer to App.[AZ]for more details.

Independence Tests. To analyze how rebuttal and reviewer attributes relate to rating change, we
apply five independence tests: KCI [38]], RCSI [39], HSIC [40], Chi-square [41], and G-square [42]].
Fig. [T reports the aggregated outcomes, and Fig. [AT] shows the distributions of all metadata and
subscores. Independence tests on metadata are conducted using the full set of 23922 samples, while
tests on subscores are based on the annotated 2393-sample subset.

Takeaway Messages. We summarize several key observations: (i) All of our self-defined author
subscores are strongly associated with rating change, suggesting that well-supported and constructive
rebuttals—especially those that are clear, direct, positive, and open—are particularly effective. (ii)
Review quality, reviewer open-mindedness, and severity of concerns predict rating adjustments,
indicating that significant shifts occur when reviewers are receptive and rebuttals directly address
serious issues. (iii) Metadata features such as title length, abstract length, and number of authors
show little relation to rating change. (iv) Primary area exhibits only weak dependence on rating
change. (v) The number of interactions correlates with rating change, underscoring the importance
of back-and-forth engagement in reviewer discussions. (vi) The average rating of other reviewers is
strongly correlated with an individual reviewer’s rating change, highlighting peer influence among
reviewers. (vii) Finally, confidence ratings appear largely independent of rebuttal and reviewer
attributes, suggesting they reflect intrinsic reviewer disposition rather than rebuttal content. (viii)
Overall, these findings indicate that rebuttal effectiveness depends less on superficial characteristics
and more on substantive qualities (e.g., rigor; etc.) combined with reviewer willingness to reconsider.
This provides a strong empirical foundation for modeling rebuttal effectiveness within a causal
framework and offers practical guidance for authors on how to craft more effective rebuttals.

3 Causal Formulation and Identifiability Theory

Let x = [x1,X2] denote

the observed data, where x; c; c,
represents the aggregated

text from reviewers and Xo ﬁ @

the aggregated text from au- 6

thors. Let z = [z1,22] ([« 7 VN T o
denote the corresponding
latent variables, with z;
linked to reviewers and z, ' @ €12 €21 @ €22
to authors. We further intro-

duce 6 as a latent factor cap- X1 X,

turing changes across do-
mains (e.g., primary areas). Figure 2: Left: True causal model. Right: Learned latent causal graph.
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In addition to x and z, we consider a set of human-interpretable concepts ¢ = [c, co, referring
to reviewers and authors respectively. These concepts capture qualitative attributes such as rigor,
evidence, or openness. We assume c is a linear transformation of z, thus providing interpretable, low-
dimensional views of latent causes. Formally, the data generation process (Fig.[2) can be expressed
as follows: (1) assume m € {1, 2} indexes reviewers and authors respectively. Each latent variable is
generated by 2y, ; = Ay, i(Pa(2m.i), 0, €m i), where Pa(z,, ;) denotes its parents in the latent causal
graph G, €, ; are mutually independent exogenous noise variables, and 6 represents domain-specific
factors; (2) observations are generated by X,,, = ¢y, (Z, ), With g, (+) a nonlinear mixing function;
(3) human-aligned concepts c,, are generated by applying an affine transformation to a point z,,
from the affine subspace of z,,: ¢,, = fi(Zm), where f,,(-) denotes a linear mapping. Our goal
is to leverage multiple datasets across varying contexts € to recover the latent variables z and the
concepts ¢ and their causal relationships (up to inherent indeterminacies). Achieving this is crucial
for providing authors with causal insights into which rebuttal strategies most affect rating changes.
We present the main theoretical results for our setting here and show the full results in App.[A3.3]

Theorem 1. (Identifiability of Review Concepts) Suppose we match the observations X, across
modalities (authors and reviewers), and the following conditions hold in the data-generating process:

i (Information Preservation): The functions g, and g, are differentiable and invertible.

ii (Primary Area Diversity): All entries of v' B are non-zero, where B;; = Z—% denotes the
area—concept matrix.

iti (Thought Reflection): The latent components in z, are causal parents of zo, but not vice versa.

iv (Distinctive Concept Alignment): There exists a set of linearly independent aligning vectors
C = {a,...,an} such that, for each concept C¢, the rows of the aligning matrix A° lie in
C, ie., (A°)Te; € C. Let S denote the indices of the subset of C that appear as rows of A°.
Every aligning vector in C appears in at least one area e (Where an area corresponds to a
concept-conditional distribution), that is,

USe = [n].

Then the review concepts are identifiable as in Definition ]}

Discussion of Assumptions Assumption [ij requires that the latent space is recoverable from the
observed data. Assumption [ii further requires the presence of latent distribution shifts in the review
concepts across different primary areas, ensuring variability in the underlying structure. Assump-
tion [iii reflects the natural process in which authors first read the reviews, then engage in reflection,
and finally provide rebuttals. Finally, Assumption [iv|ensures that all concepts can be decomposed
into a finite set of atomic components that remain distinct across primary areas, which is essential.

Experiments and Analysis. Building on our identifiability theory, we design a network architecture
with corresponding loss functions (See App[A4). We first use the CRL framework to learn the latent
variables z, and then apply causal discovery methods to recover the causal graph among them (see
Fig.[2] (Right)). We evaluate the resulting model on two dimensions: (i) predictive performance, i.e.,
its ability to predict rating change, and (ii) interpretability, i.e., alignment with human-understandable
aspects of the review process. The learned latent variables can be interpreted as meaningful review
concepts. In particular, 21 1, 21,2, and 21 3 capture reviewer-related subscores, while z5 ; through 2z 7
correspond to rebuttal-related subscores. Notably, z; 5 exerts a direct influence on both 25 ; and 23 7,
highlighting a causal pathway from reviewers to authors in the rebuttal process.

4 Conclusion

We introduced rebuttal effectiveness as a causal modeling problem and developed a weakly supervised
causal representation framework using ICLR review data from OpenReview. By combining fine-
grained annotations with independence tests, we found that substantive rebuttal qualities together
with reviewer receptiveness strongly drive rating changes, while superficial factors like title length
or author count have little impact. Theoretically, we established conditions under which human-
aligned review concepts are identifiable, enabling interpretable causal analysis. Our findings provide
actionable guidance for authors and broader implications for transparency and fairness in peer review,
while opening directions for extending causal analyses to other venues and discourse-level features.
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A1l Details about Related Work

Al.1 Peer Review Analysis

Peer review in scientific publishing has been widely studied, with work addressing bias [9]], consis-
tency [[10], and predictive validity [T1]]. The transparency of the OpenReview platform has further
enabled analyses of reviewer behavior and decision-making [13} [14]]. Recent studies provide comple-
mentary perspectives. [15]] conducted a randomized controlled trial and found that reviewers are not
strongly anchored to their initial scores, showing a willingness to revise after rebuttals, though the
drivers of such changes remain unclear. The LazyReview dataset addresses a different challenge
by identifying low-effort or vague reviews, offering tools to improve review quality. By contrast,
the effectiveness of rebuttals themselves has received relatively limited attention. [16] showed that
rebuttals lead to score changes in about 25% of reviews, while explored correlates of successful
rebuttals without establishing causality. Our work extends these efforts by explicitly modeling the
causal mechanisms underlying rebuttal effectiveness.
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Al.2 Causal Representation Learning

Causal representation learning (CRL) seeks to uncover latent causal factors from high-dimensional
data [17,44]], enabling reasoning about interventions and counterfactuals. Recent work has shown
that CRL can learn disentangled representations capturing causal mechanisms [45] 46], making
it particularly useful in domains where causal factors are latent or noisy, such as peer review.
Unsupervised CRL methods face identifiability challenges [47], which researchers have attempted to
address using temporal structure [48]], sparsity assumptions [49], or group-theoretic frameworks [50]].
However, such assumptions often fail in real-world settings. To overcome this, weak supervision and
multi-environment data have been proposed to improve identifiability [2551]]. Building on weakly
supervised approaches [52]] and concept-based representation learning [22]], our work adapts these
ideas to model rebuttal effectiveness.

A1.3 Natural Language Processing for Scientific Text

Analyzing rebuttals requires handling complex scientific text. Advances in natural language pro-
cessing have enabled richer analysis of scientific documents [53}, |54]], supporting tasks such as
classification, summarization, citation intent detection [55} |56], document retrieval [57]], and fact-
checking [58]]. While less explored, rebuttals have been studied through argument mining [36, 59|
and persuasive language [335l], reflecting their persuasive nature in influencing reviewer opinions.

Our work connects these directions by applying causal representation learning to study rebuttal
effectiveness in scientific peer review, focusing on the OpenReview system in machine learning
conferences.

A2 Details about the Dataset and Analysis

A2.1 Explanation of Subscores in Tab/T]

We consider ten variables capturing key aspects of rebuttals and reviews. Clarity (CL) reflects how
clearly the rebuttal communicates its arguments, while Directness (DI) measures the extent to which it
addresses reviewer concerns explicitly. Attitude (AT) captures the tone of the rebuttal, distinguishing
professional and respectful responses from defensive ones. Authors Openness (AO) denotes the
willingness of authors to acknowledge limitations or alternative perspectives. Evidence (EV) refers to
the use of data, experiments, or citations to support claims, and Rigor (RI) evaluates the technical
soundness and thoroughness of rebuttal arguments. De-Escalation (DE) reflects the ability to resolve
misunderstandings and reduce conflict during the exchange. On the reviewer side, Review Quality
(RQ) measures the specificity and constructiveness of feedback, Reviewer Openness (RO) captures
the willingness of reviewers to revise their evaluation in light of rebuttals, and Concern Severity (CS)
indicates the seriousness of the issues raised in the review.

A2.2 Explanation of Variables in Fig/l]

We further include metadata and reviewer-provided variables. Title Length and Abstract Length
measure the verbosity of the submission’s title and abstract, respectively, while Num Authors captures
the number of contributing authors. Status indicates the acceptance outcome (e.g., oral, poster, reject),
and Primary Area records the main research domain of the paper. Num Interactions reflects the extent
of back-and-forth exchanges between authors and reviewers. Reviewer scores are also considered:
Soundness assesses methodological correctness, Presentation evaluates clarity of exposition, and
Contribution reflects novelty and significance. Finally, aoor_rating_diff measures the average of
other reviews’s rating differences or changes for one reviewer; we define this variable in order to see
how one reviewer can be influenced by other reviewers.

A2.3 Dataset Analysis

For fine-grained analysis, we annotate a 10% random sample of the dataset with interpretable labels
capturing both rebuttal quality and reviewer behavior. Rebuttal-related dimensions include Clarity, Di-
rectness in Addressing Reviewer Concerns, Positive Attitude, Willingness to Acknowledge Limitations,
Strength of Evidence, Technical Convincingness and Rigor, and Handling of Misunderstandings and

10
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De-escalation, while reviewer-related dimensions include Review Specificity and Constructiveness,
Open-mindedness, and Severity of Concerns. All labels are rated on a 5-point ordinal scale, with
detailed guidelines provided in the annotation prompt (Appendix).

To construct the annotated subset, we manually labeled 20 review—rebuttal threads and used them to
benchmark 10 LLMs. We then computed the L-2 distance between model predictions and human
labels across dimensions. As shown in Table [T} DeepSeek-R1 achieved the closest alignment to
human annotations and was chosen to label the full 10% set.

In addition to the annotated labels, we extract further labels from OpenReview, including metadata
such as Title Length, Abstract Length, Number of Authors, Status, Primary Area, and Number
of Reviewer-Author(s) Interactions, as well as reviewer-provided scores Soundness, Presentation,
Contribution, Initial Rating, Final Rating, Initial Confidence, and Final Confidence. Using this
subset, we conduct pairwise independence tests with Kernel-based Conditional Independence (KCI),
Randomized Conditional Independence (RCSI), Hilbert-Schmidt Independence Criterion (HSIC),
Chi-squared, and G-squared tests. Detailed results for each method are given in the Appendix. Figure
[AT]summarizes the findings, where each cell shows how many of the five tests failed to reject the null
hypothesis.

The aggregated results in Figure [AT] reveal several patterns. Rating Difference shows strong de-
pendence with Openness, Evidence, and Rigor, suggesting that reviewers who initially gave low
scores are more likely to revise them when faced with open, well-supported, and rigorous rebuttals.
Number of Interaction is also dependent on Rating Difference, reflecting the role of back-and-forth
communication in driving score changes. By contrast, Clarity, Directness, and Attitude show no
dependence with Rating Difference, likely due to their skewed distribution (most rebuttals score
highly, leaving little variability) or the selection bias of top-tier conference submissions, where both
papers and reviews tend to be of consistently high quality. Interestingly, Clarity and Attitude do show
dependence with Initial Rating and Final Rating, but not with Rating Difference, implying that they
shape the overall impression of a paper without directly influencing score updates.

We also find that Reviewer Openness and Severity of Concerns are strongly associated with Rating
Difference, indicating that large score changes occur when open-minded reviewers engage with
rebuttals addressing serious issues. In contrast, metadata features such as Title Length, Abstract
Length, Number of Authors, and Primary Area show no dependence on Rating Difference, suggesting
they play only a minor role compared to content-based signals. The dependence of Status on Initial
Rating, Final Rating, and Rating Difference is expected, as decisions (e.g., oral, poster) follow review
scores. Finally, Confidence scores appear largely independent of other features, suggesting they are
influenced by external factors.

A3 Learning Human-aligned Causal Representations

A3.1 Basic Concept

To connect abstract latent variables with human-understandable criteria, we model review subscores
(e.g., soundness, clarity, novelty) as concepts. Formally, each concept is defined as a linear projection
A : R% — Rec of the latent rebuttal representation z, with a valuation b € R% corresponding to
the reviewer’s assigned subscore (e.g., clarity = 4). Thus, rebuttals with the same subscore form
a concept-conditional set in latent space. This formulation anchors the learned representations to
interpretable axes aligned with reviewer evaluations.

A3.2 Definition of Identifiability

The key question is whether these human-aligned concepts can be uniquely recovered from data.

We can now state our primary learning problem. We are given an observational dataset (all reviews)
and multiple concept-conditional datasets (subsets of reviews filtered by sub-scores). The fundamental
question is whether we can uniquely recover the underlying concepts from this data. This is the
problem of identifiability.

Definition 1. Given observational and concept-conditional datasets, we say the concepts
{CY,...,C™} with linear maps {A',..., A™} are identifiable if for any other set of parame-

ters ( f , Ae, 56) that generates the same observed data distributions, there exists an invertible linear

11
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map T, a shift w € R%, permutation matrices P¢, and invertible diagonal matrices A such that for
all data points x and concepts e:

AJHx) = APPAS(f7H (%) +w), M
and the concept parameters are related by:
A® = PAST™L b° = A°Pe(b° — Aw). )

Identifiability, in this context, means that we can recover the structure of the human-aligned concepts
up to a set of acceptable ambiguities. We can learn the linear subspaces corresponding to concepts
like ‘soundness‘ and ‘clarity‘ (Equation [2)) and, crucially, we can learn to evaluate any rebuttal on
these conceptual axes (Equation[I)). The ambiguities—permutation (P€), scaling (A¢), and a global
linear transformation of the latent space (1')—are unavoidable as the latent space is never directly
observed. However, they do not impede our goal. Recovering these concept evaluation maps A f~*
is precisely what allows us to dissect a rebuttal, understand which of its latent characteristics causally
drive reviewer perceptions along specific criteria, and ultimately provide the concrete, actionable
guidance promised in our abstract. The theoretical conditions for achieving this identifiability, as
outlined in [1], rely on the diversity of the available concept-conditional distributions, a condition
naturally met by the rich sub-score data in OpenReview.

A3.3 Identifiability of Causal Models: Theorem and Proof

Theorem 1. (Identifiability of Review Concepts) Suppose we match the observations X, across
modalities (authors and reviewers), and the following conditions hold in the data-generating process:

i (Information Preservation): The functions g1 and go are differentiable and invertible.

i (Primary Area Diversity): All entries of v B are non-zero, where B; ; = z—é denotes the
area—concept matrix.

iii (Thought Reflection): The latent components in z, are causal parents of zo, but not vice versa.

iv (Distinctive Concept Alignment): There exists a set of linearly independent aligning vectors
C = {ai,...,a,} such that, for each concept C¢, the rows of the aligning matrix A€ lie in
C, ie., (A°)Te; € C. Let S¢ denote the indices of the subset of C that appear as rows of A°.
Every aligning vector in C appears in at least one area e (where an area corresponds to a
concept-conditional distribution), that is,

s =l

Then the review concepts are identifiable as in Definition![l]

Discussion of Assumptions Assumption [ requires that the latent space is recoverable from the
observed data. Assumption [ii] further requires the presence of latent distribution shifts in the review
concepts across different primary areas, ensuring variability in the underlying structure. Assump-
tion [iii reflects the natural process in which authors first read the reviews, then engage in reflection,
and finally provide rebuttals. Finally, Assumption [iv|ensures that all concepts can be decomposed
into a finite set of atomic components that remain distinct across primary areas, which is essential for
separating and identifying them.

Proof Sketch We first recover the latent space from the reviews and author responses by applying
the inverse generating functions together with the fixed causal direction between the author and review
modules. The presence of latent distribution shifts in the review concepts across different primary
areas then provides additional variation, which allows us to identify each concept by comparing the
concept spaces across environments. In this way, the atomic concepts can be causally inferred.

Proof. We outline the argument showing that the review concepts are identifiable under Assump-

tions Hivl

Step 1: Recovering the latent space. By Assumption | both generating functions g1, g, are differ-
entiable and invertible. Hence, we can consistently map the observed responses and reviews (X1, X2)

12
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back into their latent representations (z1,22) = (g7 (x1), g5 ' (x2)). Assumptionenforces that
the review latents z5 are causal parents of the response latents z; (reviews influence responses, but not
vice versa). Thus the recovered latent space retains a fixed causal ordering, eliminating confounding
symmetries.

Step 2: Variation across primary areas. For each primary area e, the observed distribution
corresponds to a concept-conditional dataset with parameters (A€, b¢). Define the area—concept
matrix B € R™*" by
be
B;; = —’; if a; is active in area e, B; ; = 0 otherwise.
o

Assumptionrequires that v T B has no zero entries. This ensures that across areas there is genuine
distributional shift in the valuations b°, preventing degenerate alignments of concepts. Intuitively, if
two concepts always co-occur with the same valuation, they cannot be separated; diversity prevents
this.

Step 3: Identifying atomic concepts. By Assumption[iv] there exists a set of linearly independent
aligning vectors C = {ay, ..., ay} such that the rows of each A° are subsets of C. Let S¢ C [n] be
the indices of the atoms appearing in area e. The union condition | J, S¢ = [n] guarantees that every
atomic concept is observed in at least one area. From the quadratic form of the concept-conditional
densities,

n
2
Inp(z) —Inp®(z) = Z (%Mei<ai,z> - Bei<ai,z>) + Ce,
i=1
where M is the environment—concept incidence matrix and B is the area—concept valuation matrix,
we can solve for the atomic directions a; up to permutation and scaling. This step mirrors the
identifiability argument in Definition I}

Step 4: Resolving symmetries. Because the latent space is not directly observed, solutions are unique
only up to permutation and linear reparametrization. However, the combination of (i) invertibility (i),
(ii) causal ordering , (iii) area diversity , and (iv) complete coverage of atomic alignments
ensures that these are the only remaining symmetries. Thus the review concepts can be identified
uniquely up to linear equivalence.

Putting together these steps, we recover all review concepts and their valuations from the observed
multimodal data, completing the proof of Theorem T} O

A4 Implementation Framework

Based on the theoretical identifiability conditions, we now introduce our practical implementation for
learning the latent causal representations. The core challenge is to infer the posterior distribution of
the latent variables z given the observed data x, i.e., p(z|x). Since the generative process x = f(z)
is assumed to be complex and nonlinear, this posterior is intractable to compute directly. Therefore,
we employ variational inference to approximate it.

A4.1 Variational Inference and Model Architecture

We adopt a parametric implementation based on a Variational Autoencoder (VAE) architecture. This
framework consists of an encoder that approximates the posterior distribution and a decoder that
reconstructs the data.

» Encoder: We introduce an approximate posterior distribution ¢,4(z|x), parameterized by an
encoder network with parameters ¢. This network takes the high-dimensional observed data
X (e.g., text embeddings of reviews and rebuttals) and outputs the parameters of a diagonal
Gaussian distribution for each latent variable: g, (z|x) = N (u¢(x), diag(o73 (x))).

* Decoder: The decoder network py(x|z), parameterized by 6, takes a sample from the latent
space and aims to reconstruct the original input X.

* Latent Causal Structure: The causal relationships between the latent variables z are
modeled according to a linear structural equation model: z = A"z + E, where A is a
learnable weighted adjacency matrix representing the causal graph G, and E are exogenous
noise variables. This causal structure is incorporated into the model’s prior, p(z).

13
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The model is trained by maximizing the Evidence Lower Bound (ELBO), which is a lower bound on
the log-likelihood of the data, log p(x). The ELBO is defined as:

Leiso = Eq, (a)x)[log po(x|2)] — Dx1.(g4(2]%)||p(2)) 3

The first term is the reconstruction log-likelihood, ensuring the latents capture the data’s salient
features. The second term is a KL divergence that regularizes the approximate posterior to be close to
the prior over the latent variables.

A4.2 Learning Objectives for Causal Concept Discovery

While the ELBO is a standard objective for learning representations, our goal requires additional
constraints to ensure the learned latents are not only representative but also causally structured and
aligned with human concepts. We introduce two additional loss terms to achieve this.

A4.2.1 Causal Sparsity Loss

To ensure the learned causal graph G is identifiable and interpretable, we must encourage sparsity. A
dense graph of latent relationships would be difficult to analyze and prone to overfitting. We therefore
impose an L; penalty on the adjacency matrix A, which promotes a sparse graph by driving many of
the potential causal connection weights to zero. The sparsity loss is defined as:

Esparsity = ”A”l = Z |A7J| )
4,J
A4.2.2 Weak Supervision Loss

A central component of our framework is the alignment of the abstract latent space with the concrete
evaluation criteria used by human reviewers. We leverage the review sub-scores (e.g., for soundness,
clarity, novelty) as a form of weak supervision. We designate a subset of the latent variables, zq, C z,
to correspond to these concepts and penalize the deviation from the ground-truth scores, y. For the
numerical scores in OpenReview, we use the Mean Squared Error (MSE):

1 ¢ k k)2
Esupervision = % kz_l(zgug - y( )) (&)

where m is the number of supervised concepts. This loss is crucial for grounding the representation
and ensuring its practical utility.

A4.3 Final Objective Function

The model is trained end-to-end by minimizing a single, composite objective function that is a
weighted sum of the three components described above. The final learning objective is:

Elotal = »CELBO + M ['sparsity + A2 »Csupervision (6)

where A\; and A5 are hyperparameters that control the relative importance of enforcing causal sparsity
and concept alignment against the primary objective of data reconstruction.

14
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Figure Al: Illustration of CIT results and data distribution for the 10% subset. (a) shows the
aggregated CIT results. Each cell indicates how many tests failed to reject the null hypothesis of
independence at o = 0.05. A score of 0/5 (strong evidence of dependence) means all tests found
significant dependence, while a score of 5/5 (strong evidence of independence) means that none
did. (b) and (c) show the distribution of rating and confidence scores and other extracted/annotated
sublabels, respectively.
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