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Abstract

The peer review process is central to scientific publishing, with the rebuttal phase1

offering authors a critical opportunity to address reviewers’ concerns. Yet the causal2

mechanisms underlying rebuttal effectiveness, particularly how author responses3

influence final review decisions, remain unclear. To uncover the mechanisms driv-4

ing rebuttal effectiveness, we model it as a causal representation learning (CRL)5

problem. Using data from the OpenReview system for ICLR submissions, we6

examine how rebuttal characteristics of both reviewers and authors causally affect7

post-rebuttal rating changes. We introduce a weakly supervised disentangled CRL8

framework that leverages review subscores (e.g., openness, clarity, directness) as9

concept-level supervision. Theoretically, we establish identifiability conditions for10

latent variables across multiple distributions, showing that human-interpretable11

concepts can be recovered under mild assumptions. Empirically, our results un-12

cover distinct causal patterns governing successful rebuttals, revealing how specific13

strategies differentially influence review criteria. These findings provide action-14

able guidance for authors in crafting effective rebuttals, while offering broader15

implications for transparency, fairness, and efficiency in the peer review process.16

1 Introduction17

Scientific progress is fundamentally dependent on peer review, a system designed to ensure the quality,18

validity, and integrity of published research [1, 2, 3, 4]. Recently, the machine learning community19

has embraced greater transparency through platforms like OpenReview, where reviews, rebuttals,20

and rating changes are publicly accessible [5, 6, 7, 8]. This transparency creates an unprecedented21

opportunity to analyze the dynamics of peer review, particularly the effectiveness of author rebuttals22

in influencing reviewers’ final assessments. Despite its importance, little is empirically known about23

what makes a rebuttal effective and how specific strategies influence reviewers’ final decisions.24

Prior work on peer review has examined systemic properties such as bias [9], arbitrariness [10],25

and predictive validity [11, 12]. More recently, studies leveraging OpenReview data have explored26

reviewer behavior and rating consistency [13, 14], and randomized trials have tested reviewer27

anchoring effects [15]. The effectiveness of rebuttals has been touched upon. For instance, [16]28

report that rebuttals trigger rating changes in roughly 25% of cases, but causal mechanisms remain29

unexplored. Existing analyses focus largely on correlations, leaving an open question of why certain30

rebuttal strategies succeed while others fail, and under what contextual conditions they are effective.31

In parallel, advances in causal representation learning (CRL) provide powerful tools for uncov-32

ering latent causal factors from high-dimensional data [17]. While many CRL methods operate33

in unsupervised settings [18, 19, 20, 21], recent work demonstrates that weak supervision from34

concept labels [22, 23, 24, 25] can better align latent factors with human-interpretable dimensions.35

Complementary strategies that exploit multiple distributions [21, 26], multiple modalities [20, 27],36
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Table 1: Performance comparison of LLMs in generating subscores for rebuttal. Besides the average
Time Cost (TC), L2 norm between human annonation and LLM estimation is reported for other 10
subscores, including Clarity (CL), Directness (DI), Attitude (AT), Authors Openness (AO), Evidence
(EV), Rigor (RI), De-Escalation (DE), Review Quality (RQ), Reviewer Openness (RO), and Concern
Severity (CS). The final column reports the average L2 error (AE) across all 10 subscores.

Models (LLMs) Metrics

TC↓ CL↓ DI↓ AT↓ AO↓ EV↓ RI↓ RI↓ RQ↓ RO↓ CS↓ AE↓
DeepSeek-R1 18.33s 0.30 0.55 0.47 0.60 0.83 0.63 0.67 0.80 0.55 0.80 0.62
Grok-3-Latest 11.74s 0.45 0.50 0.74 0.60 0.39 0.53 0.67 1.00 0.90 1.30 0.71
Gemini-2.0-Flash-Lite 3.70s 0.40 0.75 0.53 0.95 0.89 0.58 1.00 0.30 1.10 0.65 0.71
ChatGPT-4.1-Mini 9.73s 0.35 0.65 0.95 0.95 0.94 0.63 1.00 1.25 0.60 0.65 0.80
Gemini-2.0-Flash 4.12s 0.45 1.10 0.79 0.95 1.11 0.74 0.83 0.75 1.05 0.45 0.82
ChatGPT-4.1 9.73s 0.55 0.70 0.79 1.05 0.89 0.84 0.67 1.40 0.90 0.65 0.84
ChatGPT-4.1-Nano 5.34s 0.35 0.55 1.05 1.30 0.72 0.58 2.50 0.50 0.50 0.75 0.88
Llama-4-Maverick 5.86s 0.50 0.75 1.26 1.35 1.28 0.89 2.00 0.75 0.70 0.75 1.02
Gemini-2.5-Flash-Preview-04-17 13.26s 0.65 0.75 0.74 1.35 0.94 0.84 1.17 1.45 1.20 1.25 1.03
Deepseek-V3-0324 5.94s 0.55 1.00 1.84 0.80 1.28 1.16 1.50 1.40 1.30 0.85 1.17
ChatGPT-4o-Latest 8.43s 0.60 1.30 2.00 1.40 1.17 0.95 2.17 2.00 1.05 0.80 1.34

nonstationarities [28, 29], or interventions [30, 31] provide variation that strengthens identifiability.37

At the same time, large language models (LLMs) now enable sophisticated analysis of scientific text38

[32, 33, 34], producing flexible representations that capture nuanced argumentation and discourse.39

Prior research in argument mining and persuasion [35, 36] highlights that textual properties such as40

clarity, directness, and evidence strength are central to rebuttal persuasiveness, yet these insights have41

not been systematically incorporated into causal analyses of peer review. To address this gap, we42

leverage pretrained LLMs to extract embeddings from rebuttal and review text, and analyze these43

representations within a causal framework, aiming to explain the underlying rebuttal process in44

OpenReview system and provide practical guidance to the broader machine learning community.45

Using ICLR review and rebuttal data from OpenReview, we define 10 subscores (e.g., openness,46

clarity) that capture features of both reviewers and authors during the rebuttal process, extracted with47

state-of-the-art LLMs. We hypothesize that these subscores are linked to reviewers’ rating changes48

and aim to verify it. We proposed a causal representation learning framework which leverages the49

subscores as weak supervision. To summarize, our contributions are threefold: (i) we introduce50

rebuttal effectiveness as a causal modeling problem and formalize it within a multi-distribution51

CRL framework, (ii) we establish theoretical identifiability results showing that human-interpretable52

concepts can be recovered under mild assumptions, and (iii) we provide an empirical analysis53

uncovering population-level causal patterns in rebuttal success. Ultimately, our goal is to reveal54

which factors are most causally related to rating change and to offer the machine learning community55

concrete guidance on how to craft more effective and efficient rebuttals in OpenReview.56

2 Dataset and Observations57

Data Collection and Processing. We analyze peer-review data from the Paper Copilot platform [37],58

which aggregates review data from major artificial intelligence (AI) conferences. We focus on ICLR59

2024 (7304 submissions) and 2025 (11672 submissions) hosted on the OpenReview system, as these60

cycles provide full access to author–reviewer discussions and both pre- and post-rebuttal ratings,61

which are essential for studying rating change. Each submission includes metadata (e.g., title, author62

list, abstract), reviewer initial ratings and comments, author rebuttals, and follow-up discussions.63

Desk-rejected papers are removed. Since our goal is to analyze reviewer–author interactions rather64

than paper-level outcomes, each review–rebuttal thread is treated as an independent sample. To65

ensure meaningful interactions, we exclude cases without rebuttals or without reviewer responses.66

After filtering, we obtain 23922 valid reviewer–author discussions (each stands for one sample).67

Self-defined Subscores and LLM Inference. For fine-grained analysis, we randomly select 10% of68

samples from each primary area (2393 in total) for annotation. We define ten interpretable subscores:69

seven author-related (clarity, directness, positive attitude, acknowledgment of limitations, strength70

of evidence, technical rigor, handling of misunderstandings and de-escalation) and three reviewer-71

related (specificity, open-mindedness, severity of concerns), each rated on a five-point ordinal scale.72

To scale beyond manual labeling, we benchmarked multiple large language models against a 20-73
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rating_init
rating_final
rating_diff

confidence_init
confidence_final
confidence_diff

2 2 0 0 1 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
5 4 4 0 2 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
5 4 5 2 2 0 0 0 0 3

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 3 0 1 0
0 0 0 2 0 0 2 0 0 0
5 3 3 5 3 5 0 2 2 2 0

1
2
3
4
5

Figure 1: Independence test results between rating/confidence and metadata (red) or LLM-inferred
subscores (blue). Each cell shows the number of tests (out of five different methods) failed to reject
the null hypothesis of independence at significance level α=0.05. A value of 0 indicates strong
evidence of dependence, while 5 indicates strong evidence of independence across all applied tests.

example seed set (see Tab. 1) and selected DeepSeek-R1, which showed the highest agreement with74

human annotations, to automatically label the 10% subset. Refer to App. A2 for more details.75

Independence Tests. To analyze how rebuttal and reviewer attributes relate to rating change, we76

apply five independence tests: KCI [38], RCSI [39], HSIC [40], Chi-square [41], and G-square [42].77

Fig. 1 reports the aggregated outcomes, and Fig. A1 shows the distributions of all metadata and78

subscores. Independence tests on metadata are conducted using the full set of 23922 samples, while79

tests on subscores are based on the annotated 2393-sample subset.80

Takeaway Messages. We summarize several key observations: (i) All of our self-defined author
subscores are strongly associated with rating change, suggesting that well-supported and constructive
rebuttals—especially those that are clear, direct, positive, and open—are particularly effective. (ii)
Review quality, reviewer open-mindedness, and severity of concerns predict rating adjustments,
indicating that significant shifts occur when reviewers are receptive and rebuttals directly address
serious issues. (iii) Metadata features such as title length, abstract length, and number of authors
show little relation to rating change. (iv) Primary area exhibits only weak dependence on rating
change. (v) The number of interactions correlates with rating change, underscoring the importance
of back-and-forth engagement in reviewer discussions. (vi) The average rating of other reviewers is
strongly correlated with an individual reviewer’s rating change, highlighting peer influence among
reviewers. (vii) Finally, confidence ratings appear largely independent of rebuttal and reviewer
attributes, suggesting they reflect intrinsic reviewer disposition rather than rebuttal content. (viii)
Overall, these findings indicate that rebuttal effectiveness depends less on superficial characteristics
and more on substantive qualities (e.g., rigor, etc.) combined with reviewer willingness to reconsider.
This provides a strong empirical foundation for modeling rebuttal effectiveness within a causal
framework and offers practical guidance for authors on how to craft more effective rebuttals.

81

3 Causal Formulation and Identifiability Theory82

Multi-modality Multi-measurement CRL
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Figure 2: Left: True causal model. Right: Learned latent causal graph.

Let x = [x1,x2] denote83

the observed data, where x184

represents the aggregated85

text from reviewers and x286

the aggregated text from au-87

thors. Let z = [z1, z2]88

denote the corresponding89

latent variables, with z190

linked to reviewers and z291

to authors. We further intro-92

duce θ as a latent factor cap-93

turing changes across do-94

mains (e.g., primary areas).95
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In addition to x and z, we consider a set of human-interpretable concepts c = [c1, c2], referring96

to reviewers and authors respectively. These concepts capture qualitative attributes such as rigor,97

evidence, or openness. We assume c is a linear transformation of z, thus providing interpretable, low-98

dimensional views of latent causes. Formally, the data generation process (Fig. 2) can be expressed99

as follows: (1) assume m ∈ {1, 2} indexes reviewers and authors respectively. Each latent variable is100

generated by zm,i = hm,i(Pa(zm,i), θ, ϵm,i), where Pa(zm,i) denotes its parents in the latent causal101

graph Gz, ϵm,i are mutually independent exogenous noise variables, and θ represents domain-specific102

factors; (2) observations are generated by xm = gm(zm), with gm(·) a nonlinear mixing function;103

(3) human-aligned concepts cm are generated by applying an affine transformation to a point z̃m104

from the affine subspace of zm: cm = fm(z̃m), where fm(·) denotes a linear mapping. Our goal105

is to leverage multiple datasets across varying contexts θ to recover the latent variables z and the106

concepts c and their causal relationships (up to inherent indeterminacies). Achieving this is crucial107

for providing authors with causal insights into which rebuttal strategies most affect rating changes.108

We present the main theoretical results for our setting here and show the full results in App. A3.3.109

Theorem 1. (Identifiability of Review Concepts) Suppose we match the observations xm across
modalities (authors and reviewers), and the following conditions hold in the data-generating process:

i (Information Preservation): The functions g1 and g2 are differentiable and invertible.

ii (Primary Area Diversity): All entries of v⊤B are non-zero, where Bi,j =
bek
σ2 denotes the

area–concept matrix.
iii (Thought Reflection): The latent components in z1 are causal parents of z2, but not vice versa.
iv (Distinctive Concept Alignment): There exists a set of linearly independent aligning vectors

C = {a1, . . . , an} such that, for each concept Ce, the rows of the aligning matrix Ae lie in
C, i.e., (Ae)⊤ei ∈ C. Let Se denote the indices of the subset of C that appear as rows of Ae.
Every aligning vector in C appears in at least one area e (where an area corresponds to a
concept-conditional distribution), that is,⋃

e

Se = [n].

Then the review concepts are identifiable as in Definition 1.
110

Discussion of Assumptions Assumption i requires that the latent space is recoverable from the111

observed data. Assumption ii further requires the presence of latent distribution shifts in the review112

concepts across different primary areas, ensuring variability in the underlying structure. Assump-113

tion iii reflects the natural process in which authors first read the reviews, then engage in reflection,114

and finally provide rebuttals. Finally, Assumption iv ensures that all concepts can be decomposed115

into a finite set of atomic components that remain distinct across primary areas, which is essential.116

Experiments and Analysis. Building on our identifiability theory, we design a network architecture117

with corresponding loss functions (See App.A4). We first use the CRL framework to learn the latent118

variables z, and then apply causal discovery methods to recover the causal graph among them (see119

Fig. 2 (Right)). We evaluate the resulting model on two dimensions: (i) predictive performance, i.e.,120

its ability to predict rating change, and (ii) interpretability, i.e., alignment with human-understandable121

aspects of the review process. The learned latent variables can be interpreted as meaningful review122

concepts. In particular, z1,1, z1,2, and z1,3 capture reviewer-related subscores, while z2,1 through z2,7123

correspond to rebuttal-related subscores. Notably, z1,3 exerts a direct influence on both z2,1 and z2,7,124

highlighting a causal pathway from reviewers to authors in the rebuttal process.125

4 Conclusion126

We introduced rebuttal effectiveness as a causal modeling problem and developed a weakly supervised127

causal representation framework using ICLR review data from OpenReview. By combining fine-128

grained annotations with independence tests, we found that substantive rebuttal qualities together129

with reviewer receptiveness strongly drive rating changes, while superficial factors like title length130

or author count have little impact. Theoretically, we established conditions under which human-131

aligned review concepts are identifiable, enabling interpretable causal analysis. Our findings provide132

actionable guidance for authors and broader implications for transparency and fairness in peer review,133

while opening directions for extending causal analyses to other venues and discourse-level features.134
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A1 Details about Related Work325

A1.1 Peer Review Analysis326

Peer review in scientific publishing has been widely studied, with work addressing bias [9], consis-327

tency [10], and predictive validity [11]. The transparency of the OpenReview platform has further328

enabled analyses of reviewer behavior and decision-making [13, 14]. Recent studies provide comple-329

mentary perspectives. [15] conducted a randomized controlled trial and found that reviewers are not330

strongly anchored to their initial scores, showing a willingness to revise after rebuttals, though the331

drivers of such changes remain unclear. The LazyReview dataset [43] addresses a different challenge332

by identifying low-effort or vague reviews, offering tools to improve review quality. By contrast,333

the effectiveness of rebuttals themselves has received relatively limited attention. [16] showed that334

rebuttals lead to score changes in about 25% of reviews, while [14] explored correlates of successful335

rebuttals without establishing causality. Our work extends these efforts by explicitly modeling the336

causal mechanisms underlying rebuttal effectiveness.337
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A1.2 Causal Representation Learning338

Causal representation learning (CRL) seeks to uncover latent causal factors from high-dimensional339

data [17, 44], enabling reasoning about interventions and counterfactuals. Recent work has shown340

that CRL can learn disentangled representations capturing causal mechanisms [45, 46], making341

it particularly useful in domains where causal factors are latent or noisy, such as peer review.342

Unsupervised CRL methods face identifiability challenges [47], which researchers have attempted to343

address using temporal structure [48], sparsity assumptions [49], or group-theoretic frameworks [50].344

However, such assumptions often fail in real-world settings. To overcome this, weak supervision and345

multi-environment data have been proposed to improve identifiability [25, 51]. Building on weakly346

supervised approaches [52] and concept-based representation learning [22], our work adapts these347

ideas to model rebuttal effectiveness.348

A1.3 Natural Language Processing for Scientific Text349

Analyzing rebuttals requires handling complex scientific text. Advances in natural language pro-350

cessing have enabled richer analysis of scientific documents [53, 54], supporting tasks such as351

classification, summarization, citation intent detection [55, 56], document retrieval [57], and fact-352

checking [58]. While less explored, rebuttals have been studied through argument mining [36, 59]353

and persuasive language [35], reflecting their persuasive nature in influencing reviewer opinions.354

Our work connects these directions by applying causal representation learning to study rebuttal355

effectiveness in scientific peer review, focusing on the OpenReview system in machine learning356

conferences.357

A2 Details about the Dataset and Analysis358

A2.1 Explanation of Subscores in Tab.1359

We consider ten variables capturing key aspects of rebuttals and reviews. Clarity (CL) reflects how360

clearly the rebuttal communicates its arguments, while Directness (DI) measures the extent to which it361

addresses reviewer concerns explicitly. Attitude (AT) captures the tone of the rebuttal, distinguishing362

professional and respectful responses from defensive ones. Authors Openness (AO) denotes the363

willingness of authors to acknowledge limitations or alternative perspectives. Evidence (EV) refers to364

the use of data, experiments, or citations to support claims, and Rigor (RI) evaluates the technical365

soundness and thoroughness of rebuttal arguments. De-Escalation (DE) reflects the ability to resolve366

misunderstandings and reduce conflict during the exchange. On the reviewer side, Review Quality367

(RQ) measures the specificity and constructiveness of feedback, Reviewer Openness (RO) captures368

the willingness of reviewers to revise their evaluation in light of rebuttals, and Concern Severity (CS)369

indicates the seriousness of the issues raised in the review.370

A2.2 Explanation of Variables in Fig.1371

We further include metadata and reviewer-provided variables. Title Length and Abstract Length372

measure the verbosity of the submission’s title and abstract, respectively, while Num Authors captures373

the number of contributing authors. Status indicates the acceptance outcome (e.g., oral, poster, reject),374

and Primary Area records the main research domain of the paper. Num Interactions reflects the extent375

of back-and-forth exchanges between authors and reviewers. Reviewer scores are also considered:376

Soundness assesses methodological correctness, Presentation evaluates clarity of exposition, and377

Contribution reflects novelty and significance. Finally, aoor_rating_diff measures the average of378

other reviews’s rating differences or changes for one reviewer; we define this variable in order to see379

how one reviewer can be influenced by other reviewers.380

A2.3 Dataset Analysis381

For fine-grained analysis, we annotate a 10% random sample of the dataset with interpretable labels382

capturing both rebuttal quality and reviewer behavior. Rebuttal-related dimensions include Clarity, Di-383

rectness in Addressing Reviewer Concerns, Positive Attitude, Willingness to Acknowledge Limitations,384

Strength of Evidence, Technical Convincingness and Rigor, and Handling of Misunderstandings and385
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De-escalation, while reviewer-related dimensions include Review Specificity and Constructiveness,386

Open-mindedness, and Severity of Concerns. All labels are rated on a 5-point ordinal scale, with387

detailed guidelines provided in the annotation prompt (Appendix).388

To construct the annotated subset, we manually labeled 20 review–rebuttal threads and used them to389

benchmark 10 LLMs. We then computed the L-2 distance between model predictions and human390

labels across dimensions. As shown in Table 1, DeepSeek-R1 achieved the closest alignment to391

human annotations and was chosen to label the full 10% set.392

In addition to the annotated labels, we extract further labels from OpenReview, including metadata393

such as Title Length, Abstract Length, Number of Authors, Status, Primary Area, and Number394

of Reviewer-Author(s) Interactions, as well as reviewer-provided scores Soundness, Presentation,395

Contribution, Initial Rating, Final Rating, Initial Confidence, and Final Confidence. Using this396

subset, we conduct pairwise independence tests with Kernel-based Conditional Independence (KCI),397

Randomized Conditional Independence (RCSI), Hilbert-Schmidt Independence Criterion (HSIC),398

Chi-squared, and G-squared tests. Detailed results for each method are given in the Appendix. Figure399

A1 summarizes the findings, where each cell shows how many of the five tests failed to reject the null400

hypothesis.401

The aggregated results in Figure A1 reveal several patterns. Rating Difference shows strong de-402

pendence with Openness, Evidence, and Rigor, suggesting that reviewers who initially gave low403

scores are more likely to revise them when faced with open, well-supported, and rigorous rebuttals.404

Number of Interaction is also dependent on Rating Difference, reflecting the role of back-and-forth405

communication in driving score changes. By contrast, Clarity, Directness, and Attitude show no406

dependence with Rating Difference, likely due to their skewed distribution (most rebuttals score407

highly, leaving little variability) or the selection bias of top-tier conference submissions, where both408

papers and reviews tend to be of consistently high quality. Interestingly, Clarity and Attitude do show409

dependence with Initial Rating and Final Rating, but not with Rating Difference, implying that they410

shape the overall impression of a paper without directly influencing score updates.411

We also find that Reviewer Openness and Severity of Concerns are strongly associated with Rating412

Difference, indicating that large score changes occur when open-minded reviewers engage with413

rebuttals addressing serious issues. In contrast, metadata features such as Title Length, Abstract414

Length, Number of Authors, and Primary Area show no dependence on Rating Difference, suggesting415

they play only a minor role compared to content-based signals. The dependence of Status on Initial416

Rating, Final Rating, and Rating Difference is expected, as decisions (e.g., oral, poster) follow review417

scores. Finally, Confidence scores appear largely independent of other features, suggesting they are418

influenced by external factors.419

A3 Learning Human-aligned Causal Representations420

A3.1 Basic Concept421

To connect abstract latent variables with human-understandable criteria, we model review subscores422

(e.g., soundness, clarity, novelty) as concepts. Formally, each concept is defined as a linear projection423

A : Rdz → RdC of the latent rebuttal representation z, with a valuation b ∈ RdC corresponding to424

the reviewer’s assigned subscore (e.g., clarity = 4). Thus, rebuttals with the same subscore form425

a concept-conditional set in latent space. This formulation anchors the learned representations to426

interpretable axes aligned with reviewer evaluations.427

A3.2 Definition of Identifiability428

The key question is whether these human-aligned concepts can be uniquely recovered from data.429

We can now state our primary learning problem. We are given an observational dataset (all reviews)430

and multiple concept-conditional datasets (subsets of reviews filtered by sub-scores). The fundamental431

question is whether we can uniquely recover the underlying concepts from this data. This is the432

problem of identifiability.433

Definition 1. Given observational and concept-conditional datasets, we say the concepts434

{C1, . . . , Cm} with linear maps {A1, . . . , Am} are identifiable if for any other set of parame-435

ters (f̃ , Ãe, b̃e) that generates the same observed data distributions, there exists an invertible linear436

11



map T , a shift w ∈ Rdz , permutation matrices P e, and invertible diagonal matrices Λe such that for437

all data points x and concepts e:438

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w), (1)

and the concept parameters are related by:439

Ãe = P eAeT−1, b̃e = ΛeP e(be −Aew). (2)

Identifiability, in this context, means that we can recover the structure of the human-aligned concepts440

up to a set of acceptable ambiguities. We can learn the linear subspaces corresponding to concepts441

like ‘soundness‘ and ‘clarity‘ (Equation 2) and, crucially, we can learn to evaluate any rebuttal on442

these conceptual axes (Equation 1). The ambiguities—permutation (P e), scaling (Λe), and a global443

linear transformation of the latent space (T )—are unavoidable as the latent space is never directly444

observed. However, they do not impede our goal. Recovering these concept evaluation maps Aef−1445

is precisely what allows us to dissect a rebuttal, understand which of its latent characteristics causally446

drive reviewer perceptions along specific criteria, and ultimately provide the concrete, actionable447

guidance promised in our abstract. The theoretical conditions for achieving this identifiability, as448

outlined in [1], rely on the diversity of the available concept-conditional distributions, a condition449

naturally met by the rich sub-score data in OpenReview.450

A3.3 Identifiability of Causal Models: Theorem and Proof451

Theorem 1. (Identifiability of Review Concepts) Suppose we match the observations xm across
modalities (authors and reviewers), and the following conditions hold in the data-generating process:

i (Information Preservation): The functions g1 and g2 are differentiable and invertible.

ii (Primary Area Diversity): All entries of v⊤B are non-zero, where Bi,j =
bek
σ2 denotes the

area–concept matrix.
iii (Thought Reflection): The latent components in z1 are causal parents of z2, but not vice versa.
iv (Distinctive Concept Alignment): There exists a set of linearly independent aligning vectors

C = {a1, . . . , an} such that, for each concept Ce, the rows of the aligning matrix Ae lie in
C, i.e., (Ae)⊤ei ∈ C. Let Se denote the indices of the subset of C that appear as rows of Ae.
Every aligning vector in C appears in at least one area e (where an area corresponds to a
concept-conditional distribution), that is,⋃

e

Se = [n].

Then the review concepts are identifiable as in Definition 1.
452

Discussion of Assumptions Assumption i requires that the latent space is recoverable from the453

observed data. Assumption ii further requires the presence of latent distribution shifts in the review454

concepts across different primary areas, ensuring variability in the underlying structure. Assump-455

tion iii reflects the natural process in which authors first read the reviews, then engage in reflection,456

and finally provide rebuttals. Finally, Assumption iv ensures that all concepts can be decomposed457

into a finite set of atomic components that remain distinct across primary areas, which is essential for458

separating and identifying them.459

Proof Sketch We first recover the latent space from the reviews and author responses by applying460

the inverse generating functions together with the fixed causal direction between the author and review461

modules. The presence of latent distribution shifts in the review concepts across different primary462

areas then provides additional variation, which allows us to identify each concept by comparing the463

concept spaces across environments. In this way, the atomic concepts can be causally inferred.464

Proof. We outline the argument showing that the review concepts are identifiable under Assump-465

tions i–iv.466

Step 1: Recovering the latent space. By Assumption i, both generating functions g1, g2 are differ-467

entiable and invertible. Hence, we can consistently map the observed responses and reviews (x1,x2)468
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back into their latent representations (z1, z2) = (g−1
1 (x1), g

−1
2 (x2)). Assumption iii enforces that469

the review latents z2 are causal parents of the response latents z1 (reviews influence responses, but not470

vice versa). Thus the recovered latent space retains a fixed causal ordering, eliminating confounding471

symmetries.472

Step 2: Variation across primary areas. For each primary area e, the observed distribution473

corresponds to a concept-conditional dataset with parameters (Ae, be). Define the area–concept474

matrix B ∈ Rm×n by475

Bi,j =
bek
σ2

if aj is active in area e, Bi,j = 0 otherwise.

Assumption ii requires that v⊤B has no zero entries. This ensures that across areas there is genuine476

distributional shift in the valuations be, preventing degenerate alignments of concepts. Intuitively, if477

two concepts always co-occur with the same valuation, they cannot be separated; diversity prevents478

this.479

Step 3: Identifying atomic concepts. By Assumption iv, there exists a set of linearly independent480

aligning vectors C = {a1, . . . , an} such that the rows of each Ae are subsets of C. Let Se ⊆ [n] be481

the indices of the atoms appearing in area e. The union condition
⋃

e S
e = [n] guarantees that every482

atomic concept is observed in at least one area. From the quadratic form of the concept-conditional483

densities,484

ln p(z)− ln pe(z) =

n∑
i=1

(
1
2Mei⟨ai, z⟩2 −Bei⟨ai, z⟩

)
+ ce,

where M is the environment–concept incidence matrix and B is the area–concept valuation matrix,485

we can solve for the atomic directions ai up to permutation and scaling. This step mirrors the486

identifiability argument in Definition 1.487

Step 4: Resolving symmetries. Because the latent space is not directly observed, solutions are unique488

only up to permutation and linear reparametrization. However, the combination of (i) invertibility (i),489

(ii) causal ordering (iii), (iii) area diversity (ii), and (iv) complete coverage of atomic alignments (iv)490

ensures that these are the only remaining symmetries. Thus the review concepts can be identified491

uniquely up to linear equivalence.492

Putting together these steps, we recover all review concepts and their valuations from the observed493

multimodal data, completing the proof of Theorem 1.494

A4 Implementation Framework495

Based on the theoretical identifiability conditions, we now introduce our practical implementation for496

learning the latent causal representations. The core challenge is to infer the posterior distribution of497

the latent variables z given the observed data x, i.e., p(z|x). Since the generative process x = f(z)498

is assumed to be complex and nonlinear, this posterior is intractable to compute directly. Therefore,499

we employ variational inference to approximate it.500

A4.1 Variational Inference and Model Architecture501

We adopt a parametric implementation based on a Variational Autoencoder (VAE) architecture. This502

framework consists of an encoder that approximates the posterior distribution and a decoder that503

reconstructs the data.504

• Encoder: We introduce an approximate posterior distribution qϕ(z|x), parameterized by an505

encoder network with parameters ϕ. This network takes the high-dimensional observed data506

X (e.g., text embeddings of reviews and rebuttals) and outputs the parameters of a diagonal507

Gaussian distribution for each latent variable: qϕ(z|x) = N (µϕ(x), diag(σ2
ϕ(x))).508

• Decoder: The decoder network pθ(x|z), parameterized by θ, takes a sample from the latent509

space and aims to reconstruct the original input X .510

• Latent Causal Structure: The causal relationships between the latent variables z are511

modeled according to a linear structural equation model: z = AT z + E, where A is a512

learnable weighted adjacency matrix representing the causal graph Gz , and E are exogenous513

noise variables. This causal structure is incorporated into the model’s prior, p(z).514

13



The model is trained by maximizing the Evidence Lower Bound (ELBO), which is a lower bound on515

the log-likelihood of the data, log p(x). The ELBO is defined as:516

LELBO = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (3)

The first term is the reconstruction log-likelihood, ensuring the latents capture the data’s salient517

features. The second term is a KL divergence that regularizes the approximate posterior to be close to518

the prior over the latent variables.519

A4.2 Learning Objectives for Causal Concept Discovery520

While the ELBO is a standard objective for learning representations, our goal requires additional521

constraints to ensure the learned latents are not only representative but also causally structured and522

aligned with human concepts. We introduce two additional loss terms to achieve this.523

A4.2.1 Causal Sparsity Loss524

To ensure the learned causal graph GZ is identifiable and interpretable, we must encourage sparsity. A525

dense graph of latent relationships would be difficult to analyze and prone to overfitting. We therefore526

impose an L1 penalty on the adjacency matrix A, which promotes a sparse graph by driving many of527

the potential causal connection weights to zero. The sparsity loss is defined as:528

Lsparsity = ∥A∥1 =
∑
i,j

|Aij | (4)

A4.2.2 Weak Supervision Loss529

A central component of our framework is the alignment of the abstract latent space with the concrete530

evaluation criteria used by human reviewers. We leverage the review sub-scores (e.g., for soundness,531

clarity, novelty) as a form of weak supervision. We designate a subset of the latent variables, zsup ⊆ z,532

to correspond to these concepts and penalize the deviation from the ground-truth scores, y. For the533

numerical scores in OpenReview, we use the Mean Squared Error (MSE):534

Lsupervision =
1

m

m∑
k=1

(z(k)sup − y(k))2 (5)

where m is the number of supervised concepts. This loss is crucial for grounding the representation535

and ensuring its practical utility.536

A4.3 Final Objective Function537

The model is trained end-to-end by minimizing a single, composite objective function that is a538

weighted sum of the three components described above. The final learning objective is:539

Ltotal = LELBO + λ1Lsparsity + λ2Lsupervision (6)

where λ1 and λ2 are hyperparameters that control the relative importance of enforcing causal sparsity540

and concept alignment against the primary objective of data reconstruction.541

542
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(a) CIT Heatmap

(b) Distribution of Rating and 

Confidence Scores.
(c) Distribution of Labeled 

Scores.

(a) CIT Heatmap

(b) Distribution of Rating and 

Confidence Scores.

(c) Distribution of Labeled 

Scores.

Figure A1: Illustration of CIT results and data distribution for the 10% subset. (a) shows the
aggregated CIT results. Each cell indicates how many tests failed to reject the null hypothesis of
independence at α = 0.05. A score of 0/5 (strong evidence of dependence) means all tests found
significant dependence, while a score of 5/5 (strong evidence of independence) means that none
did. (b) and (c) show the distribution of rating and confidence scores and other extracted/annotated
sublabels, respectively.
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