What do tokens know about their characters and how do they know it?

Anonymous ACL submission

Abstract

Pre-trained language models (PLMs) that use
subword tokenization schemes can succeed at a
variety of language tasks that require character-
level information, despite lacking explicit ac-
cess to the character composition of tokens.
Here, studying a range of models (e.g., GPT-
J, BERT, RoBERTa, GloVe), we probe what
word pieces encode about character-level in-
formation by training classifier to predict the
presence or absence of a particular alphabetical
character in an English-language token, based
on its embedding (e.g., probing whether the
model embedding for "cat" encodes that it con-
tains the character "a"). We find that these
models robustly encode character-level infor-
mation and, in general, larger models perform
better at the task. Through a series of experi-
ments and analyses, we investigate the mecha-
nisms through which PLMs acquire character
information during training and argue that this
knowledge is acquired through multiple phe-
nomena, including a systematic relationship be-
tween particular characters and particular parts
of speech, as well as natural variability in the
tokenization of related strings.

1 Introduction and Motivation

The dominant class of models in NLP (pre-trained
transformer models; Brown et al., 2020; Devlin
et al., 2019; Bommasani et al., 2021) use tokeniza-
tion schemes, like BPE or WordPiece tokeniza-
tion (Sennrich et al., 2015; Schuster and Nakajima,
2012; Kudo and Richardson, 2018), that break text
into word pieces. These models face an apparent
limitation in that they do not have access to infor-
mation below the level of the word piece, such as
information about characters. But character-level
information has been claimed to be useful for a
variety of tasks, including adapting text to novel
domains like biomedicine, texts with misspellings,
and wordplay-based tasks that require attention to
character-level manipulations (Riabi et al., 2021;
El Boukkouri, 2020; Clark et al., 2021).

." Experiment 2

EConcatenate
111 -

Soft
Embedding
Lookup

Experiment 1
Feature:

Experiment 2
Input to Features

probe.

employee
Input Token

: “JJ VB NN DT
*.Soft-Syntax Labels’

Figure 1: Overview of our probing setup. In Experiment
1, the input is a model embedding and we train MLPs to
classify whether a particular character (e.g., "a") occurs
in a particular token (e.g, "employee"). In Experiment
2, we use syntactic features as input, rather than model
embeddings, to train our probe.

But there are drawbacks to using character-level
models: character-based sequences are long and
therefore can slow down training (Mielke et al.,
2021). And giving including character-level infor-
mation does not necessarily improve performance
on tasks where one might expect it to (Libovicky
et al., 2021; Rosales Nufiez et al., 2021; Itzhak and
Levy, 2021). Therefore, the vast majority of top-
performing models in languages with alphabetic
scripts use models with various kinds of subword
tokenization schemes (e.g., Devlin et al., 2019;
Brown et al., 2020), but rarely with character-level
schemes.



One possible explanation for this state of affairs
is that models trained on word pieces implicitly
learn something about characters, making the ex-
plicit inclusion of character-level information un-
necessary. Indeed, recent work has shown that
even models based on subword tokens might be
able to use and manipulate character-level informa-
tion. Rozner et al. (2021) and Efrat et al. (2021)
both study cryptic crosswords and find that PLMs
(specifically, T5) can take advantage of character-
level information in order to solve wordplay tasks
like unscrambling scrambled words. Itzhak and
Levy (2021) show that ROBERTa can access sub-
word information by testing it on a spelling task
that requires it to map from words to characters
(e.g., from cat to the characters ¢ + a + 1).

The fact that models can do tasks like this is curi-
ous: word pieces have no explicit access to charac-
ter information during training, and the mechanism
by which they acquire such information is not ob-
vious. The goal of this paper is to understand the
nature of this information, and how it is learned.

Thus, we make several contributions. First, we
provide a thorough characterization of what charac-
ter information is accessible to subword-tokenized
PLMs by designing a binary probing task (§3) to
probe subword tokens for the presence or absence
of a particular character: e.g., does the sequence
star contain the letter ? This task lets us not just as-
sess whether this information is available, but lets
us characterize, in a fine-grained way, the nature of
character-level knowledge in subword tokens. We
find performance far above a controlled baseline
(an F1 score of 93.7 for the best-performing model,
GPT-J), suggesting that subwords learn meaningful
information about their characters.

To explore how this information is acquired, we
introduce several possible explanations and con-
duct detailed analyses of the probing task (§3.3).
Specifically, we consider how character knowledge
varies as a function of the English character being
probed for (it’s easier to classify rare letters than
common ones), the position in the token of the char-
acter in question (performance is somewhat better
early in tokens), and the frequency of the token
(frequent tokens aren’t necessarily easier to probe).
We then turn to the possibility than systematic cor-
respondences between English characters and syn-
tactic features (e.g., adverbs tend to end in "y"),
play a role in how models acquire character-level
information. To that end, we devise syntactic base-

lines, whereby we use features like part of speech
as input to the classifer for detecting the presence of
absence of tokens (§4). The probe performs much
better than control tasks, which suggests syntactic
features contribute to the tokenizer’s performance.
However, this correlation does not suffice to ex-
plain the totality of character information learned
by PLMs.

Finally, we consider another possible mecha-
nism, based on the variability of tokenization, by
which character-level information might be learned
(§5). We conduct an experiment using simple fixed
embeddings, as proof of concept that increasing
variability in tokenization (Cao and Rimell, 2021)
affects the character information learned. Overall,
given the importance of tokenization schemes for
downstream performance (Bostrom et al., 2021;
Mielke et al., 2021), we believe this knowledge
could inform the development of tokenization
schemes that improve model performance.

2 Prior work

All language models must choose what to use as
the basic linguistic unit, and, as a result, there is a
long history of work in NLP, evaluating the trade-
offs between models that tokenize words based on
characters, words, or something in between, like
bytes or word pieces (see Mielke et al., 2021; Pin-
ter, 2021, for recent surveys).

While words are a seemingly natural kind and
are often used as basic units for modeling language,
there is considerable debate in the linguistics litera-
ture as to how to even define a word, due to differ-
ences across languages (Haspelmath, 2017). More-
over, word-level models have a major weakness in
that they do not naturally handle out of vocabulary
items (see Jurafsky, 2003, for an overview) and
can have very different behaviors in languages with
different morpohological systems (Mielke et al.,
2019; Cotterell et al., 2018). Character-level mod-
els have their own weaknesses: they are typically
slower to train at the scale required for massive lan-
guage modeling. Many recent efforts have centered
around trying to use meaningful sub-word units in
language modeling, such as BPE (Gage, 1994; Sen-
nrich et al., 2015), WordPiece tokenization (Schus-
ter and Nakajima, 2012), and UnigramLLM (Kudo,
2018).

While subword tokenization schemes often end
up with reasonable linguistic units, they still lack
access to character-level information. So there have



been a number of efforts to imbue word or sub-
word tokenization schemes with character-level in-
formation (Mielke and Eisner, 2019; Kim et al.,
2016; Dos Santos and Zadrozny, 2014; Bojanowski
et al., 2017; Li et al., 2018; Ma and Hovy, 2016;
Aguilar et al., 2020; El Boukkouri, 2020; Clark
et al., 2021). But, if models trained on subword
tokens implicitly learn character-level information
during training, there may be less of a need to sup-
plement them with explicit information.

To shed new light on these questions, we use
probing, which is widely used to assess what in-
formation is contained in PLM embeddings. (Be-
linkov, 2021; Belinkov and Glass, 2019; Hewitt
and Manning, 2019; Hupkes et al., 2018). Be-
cause probing has limitations (Elazar et al., 2021;
Pimentel et al., 2020; Voita et al., 2021), we use a
number of control tasks (Hewitt and Liang, 2019)
and baselines in order to ask what can be recovered
from embeddings, relative to a control of equal
expressive power.

3 Experiment 1: Probing for character
information

The main goal of our first experiment is to quan-
tify the extent to which tokens in PLMs capture
character-level information and characterize that
knowledge across a variety of dimensions. We
train a binary classifier probe that takes as input a
token’s frozen embeddings from a PLMs to predict
whether a particular character of the English alpha-
bet is contained in that token. That is, if successful,
the probe will predict that cool contains an "o" but
"cat" does not. We also consider a task in which
the probe must say whether one token (e.g., "coo")
is a substring of another token (e.g., "cool"). We
examine the probe’s success as a function of the
character being probed for, length of the token be-
ing probed, position of the character in the token,
and frequency of the token.

3.1 Method

We consider the static non-contextualized embed-
dings of PLMs: GPT-J (Wang and Komatsuzaki,
2021), GPT-2 (Radford et al., 2019), RoBERTa
(Liu et al., 2019), BERT (cased and uncased; De-
vlin et al., 2019), as well as GloVe embeddings
(Pennington et al., 2014) and Language-only em-
beddings of the multimodal LXMERT (Tan and
Bansal, 2019). See Appendix B for model details.

Each language model has its own vocabulary,

consisting of tokens. We consider only the tokens
consisting entirely of characters in the standard En-
glish alphabet (a-z), along with the special charac-
ters that accompany these tokens, such as preceding
whitespace (denoting by G in the RoBERTa and
GPT-family) or symbols denoting continuations of
preceeding word (‘##’ in BERT family).

Our probing task trains classifiers to detect
the presence or absence of each of the 26 En-
glish alphabets o over each token w; from the
filtered-vocabulary V. Thus, a separate dataset
for each alphabet « is constructed over V' as D/, =
{(w1,41), (wa2,y2),...(wg,yq)} where the binary
label y; denotes whether o occurs at least once in
w; € V. From these data-points in D/, we create a
balanced dataset D, with equal number of positive
and negative labels by undersampling the (w;, ;)
points with y; as the negative label (i.e., when prob-
ing for the presence of the character "z", half the
tokens will contain "z" even though most tokens
in general do not). We then split D,, into training
and test splits in a roughly 80-20 ratio, while en-
suring that tokens with the same lemma appears in
the same split. This is the most challenging split,
as it prevents the probe from leveraging wordform
similarity across words with the same lemma in
both training and test (Itzhak and Levy, 2021).

We train our probe over the static non-trainable
embeddings E of these PLMs. For a data-point
(w;, y;), the probe receives as input a token w;.
The probe predicts logits g; by an MLP: g; =
o(MLP,(E"x;)). In the control task, we consider
randomly-initialized non-trainable embeddings in-
stead of the trained embeddings from the PLMs.

Substring Sub-experiment As an additional sub-
experiment for assessing the generalizability of
the task, for the best-performing model (GPT-J),
we consider a related substring classification task.
Specifically, we probe GPT-J’s embedding to detect
whether a token w is a substring of the token v. That
is, can it detect that the token "ome" is a substring
of "some"? For this condition, we set up the experi-
ment as before but, rather than attempt to detect the
presence or absence of a character, we seek to clas-
sify whether a particular token u; is a substring of
another token v;. To create positive examples, we
consider all substrings of v; that are in the overall
vocabulary V. For each positive example, we sam-
ple a token from V' of equal character length as w;
which is not a substring of v; in order to create neg-
ative examples. This creates a balanced set, from



-
=}
L

W

W\wﬂ\«/\«/
| control v

©
©
s

o
o

N
~

F1 Score for Classifying Char. in Subword

Figure 2: For selected models, the average F1-score (y-
axis) for how well a character (x-axis) can be classified
on our main probing task. The control (random embed-
dings) appears in red, the syntax baseline in green, and
the 4 models shown in grayscale, with the largest and
most recent model (GPT-J) in the darkest color.

which we sample an 80-20 train-test split, ensuring
that the superset token v; always occur in the same
split. We train the probe as before, with the input
as the concatenated embeddings of the two tokens.

3.2 Results

Main Character Probing Results Table 1 shows
the results averaged across 5 train-test splits and
different seeds, reporting on the Macro-F1 metric
averaged across all 26 characters. We also observe
very low variance for the strong performing models,
as shown in the Appendix (Table 6).

For our main character probing experiment,
all models perform substantially better than their
matched controls (which hover around 50, which
is chance level), suggesting that word piece to-
kens from PLMs store information about their con-
stituent characters in their embeddings. GPT-J is
the best-performing model (with F1 of 93.70 and
94.35), followed by RoOBERTa and GPT-2, then the
BERT models. All the transformer models outper-
form the GloVe fixed embedding model. Clearly,
the performance of the models on this probing
task correlates with performance on other language
tasks, such that larger models trained on larger cor-
pora do better.!

There are also other factors that may contribute
to difference in performance such as the nature of
the pre-training task and the tokenizer. The lat-

!Since performance varies considerably based on the
model used, we consider this work an additional data point
for the argument that one should consider multiple models in
interpretability work (Bowman, 2021).

[ Modeltype [ PLM [ Control ]
Main Probing Experiment
GPT-J 93.70 | 48.36
GPT-2 84.25 52.31
RoBERTa 86.41 47.33
BERT-Cased 78.50 | 47.08
BERT-Uncased | 77.48 49.37
GloVe 300D 67.57 | 49.57
GloVe 100D 66.04 | 50.33
LXMERT 62.4 53.92
Substring Sub-Experiment
GPT-J [ 86.56 [ 70.03

Table 1: Results for the main probing experiment.

ter is evidence from the considerable performance
gap between RoOBERTa and BERT, which may be
partially attributed to RoBERTa using GPT’s re-
versible tokenizer, leading to more variability de-
pending on preceeding whitespace. (See §5 for the
potential effect of tokenizer variability on perfor-
mance.)

Substring Experiment Performance on the Sub-
string Experiment is also far above chance, with
an average F1 of 86.56, compared to a control F1
(on random embeddings) of 70.03 (bottom row in
Table 1). Control performance is well above 50 in
this case since the data set is created to be balanced
such that the superstrings have equal numbers of
positive and negative examples. But there are still
baseline differences in how often a token occurs
as a substring, so the model can learn that cer-
tain substrings like "en" are more common than
substrings like "emies". We take the performance
on the Substring Experiment as evidence that the
model can make use of character information to do
more complicated substring tasks than just charac-
ter identification.

3.3 Breakdown of results

Next, we consider a number possibilities for how
character-level information gets into these embed-
dings and conduct analyses intended to understand
the nature of the information learned and how it
gets there.

Is the first letter learned best because of alpha-
betization? One possibility is that, because the
training data likely contains many alphabetical lists
and other kinds of word lists (e.g., lists of words
starting with "z"), the model learns a co-occurrence
relationship between words that start with the same
character. We would predict that this would cause
stronger performance when the probed character



occurs at the beginning of the word. To that end,
we examine how the model’s performance varies
as a function of where in the token the target char-
acter is (top panel in Figure 3). While there is
indeed a significant negative relationship between
word position and recall as measured by a linear
regression (5 =-.01, p<.001), the slope is relatively
small. While recall on the first letter in a token
is high (95.2), it is not an outlier: performance is
only somewhat higher than recall for the second
character (94.5). Moreover, performance is above
chance even when the target character appears 10
or more characters deep in a token. Therefore, we
do not believe the effect is driven only by word
beginnings, although they likely play a role.

Is it only frequent words that the probe gets
right? Next, we consider whether performance
varies as a function of the frequency of the token
(middle panel in Figure 3). One possibility could
be that character information is memorized only
in high-frequency tokens like “the", which occur
often enough that at least some of the time very
frequent token will occur broken down into char-
acters (e.g., "the" appearing in the context of "t h
e"), and that low-frequency tokens will perform
worse. This does not appear to be the case and, in
fact, there is, if anything, a negative relationship
(8 = —.013, p=.05) between binned log frequency
and performance, such that less frequent tokens are
easier to attain character information from.

Is it easier to get long or short words right?
The bottom panel of Figure 2 shows F1-score as
a function of the length of the token. Using the
GPT-J embeddings, it is easier to classify charac-
ters in short tokens, as compared to longer tokens.
This may be a function of the nature of the task
since there is, in some sense, less information to be
represented for a short token like "be" for the pur-
poses of the task (just that it contains a "b" and it
contains an "e"), whereas a long token would have
to represent information about more characters.

Which characters are learned best? Part of
what makes the success of the probe is that word
embeddings represent word co-occurrence infor-
mation, which is typically conceived of as syn-
tactic and semantic in nature (Erk, 2016) and so
should, because of the arbitrariness of the rela-
tionship between forms and meanings (Saussure,
1916; Hockett, 1960), mean there is no relation-
ship between individual characters and informa-

e '—.-.—.*—.——Q—QM
5] ©PTY

T T T T T v T v v g v
o 1 2 3 4 5 6 T 10 11 12

3 8 a9
Position in token (where 0 is first char.)
T epTa
075
e 0.50

0 5 10
Log frequency bin

1.00
0.75 GPT-J

2 3 4 5 6 78 9 10 11 12 13 14 15
Token length

Figure 3: Performance on the GPT-J probe, relative to a
control probe, as a function of the character’s position in
the token (top), the log frequency of the token (middle),
and the length of the token (bottom). The size of the
point reflects the amount of data.

tion learned by embeddings. But this arbitrari-
ness breaks down, in that there are statistically de-
tectable non-arbitrary form-meaning relationships
in language (Blasi et al., 2016; Monaghan et al.,
2014; Tamariz, 2008; Dautriche et al., 2017; Pi-
mentel et al., 2019), such as the fact that fI- words
in English tend to be about movement (e.g., flap, fly,
flutter, flicker; Marchand, 1959; Bergen, 2004) and
that different parts of speech have different phono-
logical patterns (Dautriche et al., 2015; Kelly, 1992;
Monaghan et al., 2005). An even larger source of
shared information between characters and syn-
tactic/semantic information is that morphological
forms can be cues to word categories: for instance,
most plural nouns end with "s" and many adverbs
end in "ly". This leads to changes in character-level
distributions: while roughly 12% of words in Amer-
ican English contain "y", 85% of adverbs do (as
estimated using data from Brysbaert et al., 2012).
Thus, a model with access to part of speech infor-
mation could do well by guessing that all adverbs

contain "y".

So one possibility is that the probe’s perfor-
mance is largely driven by characters that corre-
late with syntactic and semantic features. If this
were the case, we might expect some characters to
show much better performance than others. Figure



[ Measure | SpaCy | GPT-J [ Control |

Aggregate Performance
Fl1 [ 5234 ] 61.24 [ 49.68
Best performing characters
s 64.60 66.82 40.32
y 61.96 64.89 48.68
e 62.05 62.32 47.27
Worst performing characters
b 48.92 55.13 48.25
m 48.13 55.61 46.11
q 43.79 53.54 49.28

Table 2: The best and worst performing characters from
Experiment 2 on the SpaCy syntactic baseline, the GPT-
J syntactic baseline, and the Control.

2 shows the F1-Macro as a function of character.
For GPT-J, the best-performing model, there are
some clear trends. For instance, it is easiest to clas-
sify rare letters: J, W, X, Q, Z all have F1-scores
over 93. And it is hardest for the probe to classify
vowels: U, A, O, and E are the lowest perform-
ing characters between 83 and 86. But even those
lower-performing characters do far better than the
chance baseline (at about 50 F1 score)

To further explore this, we conducted a quali-
tative analysis of the probe’s successes and fail-
ures. Consider the probe for classifying the pres-
ence/absence of "y": the model assigns highest
confidence to the following 4 tokens: "lly", " selec-
tively", " subtly", " mechanically". These all have
"ly" endings, which in English is typically associ-
ated with adverbs. Similarly, the top performing
tokens for the "s" classifier all end with a morpho-
logically meaningful "-s" suffix: "
stocks"," suggestions".

This analysis suggests that the strong classifier
performance could be explained by the model learn-
ing systematic relationships between certain char-
acters and syntactically or semantically meaningful
morphology. Is syntactic information the window
through which character-level information enters
PLMs? To address that question, our next exper-
iment focuses on a syntactic baseline, to see how
well character-level information can be predicted
based on syntactic features.

non

socialists",

4 Experiment 2: The effect of syntactic
information

In this experiment, we focus on building probes
for the same task as in Experiment 1 (identifying
whether a particular character occurs in a particular
token). But, rather than using the token embed-
dings from a large language model as input, we

attempt to classify the presence/absence of charac-
ters in a token based on syntactic information.

Our first model (the SpaCy model) uses SpaCy
(Honnibal and Montani, 2017) to obtain distribu-
tions over features for each token in the vocabulary:
Fine-Grained Part of Speech tag (PoS; e.g., for
"Jane", NNP for a proper noun), Coarse-Grained
Part of Speech tag (Coarse-grained PoS; e.g., for
"Jane", PROPN for proper noun), and a Named
Entity Recognition tag (NER; e.g., for "Jane", PER-
SON for a personal name). We use these features
to construct a syntactic vector for each token.

Because SpaCly is built to operate over words,
not tokens, we also construct custom syntactic base-
lines that can tag subwords, as opposed to tokens.

The performance of these probes will serve as
a baseline for ascertaining how much character-
level information can be learned by these features
alone, without a full language model. If they can
perform just as well as the full GPT-J embeddings,
that would suggest that morphosyntactic informa-
tion (of the sort that we already know is learned
by PLMs during pretraining) is sufficient for the
performance on the probing task.

The method is the same as in Experiment 1,
where the goal is to predict the presence or absence
of a character « in a token, except that instead of
using the token’s model embeddings as input, we
instead use syntactic feature vectors (obtained ei-
ther from SpaCy or a custom tagger) as input. We
describe these syntactic vectors below.

Syntactic baselines The SpaCy model has 3
features for each token: NER, PoS, and Coarse-
Grained PoS tags. The resultant features are dis-
crete one-hot feature vectors over labels.

The custom syntactic tagger, which solves the
problem that SpaCy tags words, not subword to-
kens, takes a (subword) token’s model embedding
as input and outputs a vector of probabilities over
part of speech and named entity categories. Here,
we describe results for our custom GPT-J Tagger,
trained using GPT-J model embeddings, since GPT-
J is the best-performing of our models for our main
task. See Appendix C for descriptions and the re-
sults for 2 additional BERT-based custom taggers
that we built.

To build our custom GPT-J-Tagger, we train an
MLP model to predict PoS and NER label based
on GPT-J’s static embedding layer for each token.
The tagger is trained on the CoNLL 2003 dataset’s
train and valid splits (Sang and De Meulder, 2003),



which contains part of speech and named entity
information. Unlike the SpaCy tagger, our cus-
tom GPT-J-Tagger outputs a probability distribu-
tion over categories. We use this distribution over
labels as input, rather than a one-hot vector. In the
Appendix, Table 10 shows the performance of the
tagger’s performance qua tagger.

Probing for characters using syntactic baselines
We run the character probing experiment as be-
fore. But, rather than using the model embeddings,
we use the syntactic feature vectors as the target
of our probe. Table 2 shows the results of these
experiments. Using the syntactic baselines leads
to substantially improved performance over con-
trol tasks, and the GPT-J-Tagger does better than
the SpaCy tagger. We hypothesize that this is be-
cause the custom GPT-J-Tagger is better suited to
handling subwords, and because it enables us to
use label distribution rather than one-hot vectors.
Zooming in on the performance over individual
characters, we observe that some English alphabets
consistently perform much better when using the
syntactic features, than the control task. As pre-
dicted, these are precisely the characters that are
highly correlated with particular parts of speech.
The best performing characters are: "s" (associ-
ated with plural nouns and third-person singular
verbs) and "y" (associated with adjective and ad-
verb endings). Thus, the syntactic baselines seem
to be capturing the information that they were in-
tended to capture. But their performance still fell
far below the best performing PLMs, suggesting
that the large models are capturing more than just
the information captured by the syntactic models.
Moreover, as can be seen in Figure 2, the syntax
baseline shows a sharp peak for morphologically
informative characters like "s", but this pattern is
much weaker in GPT-J (which shows only a slight
performance increase for "s"). Therefore, we do
not think syntactic information can explain all the
character information learned by PLMs. In the next
section, we consider another possibility: variability
of tokenization, the focus of the next section.

5 Experiment 3: Tokenization variability

Here, we posit that the variability of tokenization is
another avenue by which character-level informa-
tion could be learned by models. We first quantify
this variability and then run an experiment using
CBOW Word Embeddings (Mikolov et al., 2013)
showing how increasing the variability in tokeniza-

Word Tokenizations
"dictionary" "d + ictionary"

" dictionary" " dictionary"
"dictionaries" "d + iction + aries"
" dictionaries" | " diction + aries"
"dicionary" "d + icion + ary"

Table 3: Some GPT tokenizations for "dictionary".

tion can lead to more character information being
learned.

Subword tokenization like the one used by GPT
models can cause the same lemma to have very dif-
ferent tokenizations, depending on its form and/or
its spelling. See Table 3 for possible tokeniza-
tions of "dictionary" and related forms, including
a misspelling (bottom row). This is a subset of the
possible misspellings, variants, and morphologi-
cal forms of the word. But the listed forms alone
generate 8 unique tokens.

It would be useful for the model to learn a rela-
tionship between all these tokens, since they repre-
sent the same lemma. We posit that the desirability
of learning this mapping is a mechanism by which
character information could be learned, by induc-
ing an objective to map between atomic tokens like
‘ dictionary’ and the various substring tokens that
can arise. While each of these mappings could
be learned individually, learning character-level
spelling information offers a more general solu-
tion to the problem, such that even a completely
tokenization could be interpreted by composing
characters.

For this to be plausible, though, variable tok-
enizations like this must be frequent enough for
it to matter. In Appendix D, we use heuristics to
identify different forms in which a word appears
and conduct a series of back-of-the-envelope cal-
culations to determine how many different unique
tokenizations are expected for a long word (8+ char-
acters) like dictionary, in all its variant forms and
misspellings in a sample of the Pile corpus (we used
1/6 of the corpus as a sample; Gao et al., 2020). We
found that, on average, we should expect over 200
different tokenizations for a word like "dictionary",
many which have no tokens in common.

This result leads to a prediction: increasing
the variability of tokenization should increase
the amount of character-level information learned.
To test this, we train models using tokenization
schemes with different levels of variability and
then test how much character-level information
they learn, using our probing task.



Tokenization p Embedding | Control
Word - 60.55 47.12
GPT-J - 63.23 47.51
GPT-J 0.05 66.00 47.23
GPT-J 0.1 65.64 46.72
GPT-J 0.2 64.23 47.01
GPT-J 0.5 62.33 46.47

Table 4: Average F1 scores for probing results, as a
function of change in tokenization variability

Because the overall goal of our paper is to char-
acterize and explain the nature of character-level
information learned, and not to use it to build a
better model, we conduct a proof-of-concept exper-
iment using CBOW Word Embeddings (Mikolov
et al., 2013) on a portion of the Pile corpus with
1.1B characters, as opposed to training a large
transformer model from scratch varying tokeniza-
tion schemes. We train 6 CBOW models from
scratch, each with a different tokenization scheme.
As baselines, we consider vanilla rule-based word-
tokenization (the CBOW default, labeled "Word"
in Table 4) and GPT-J’s default word piece tok-
enization scheme. Comparing these two baselines
against each other lets us compare the effect of
word tokenization vs. subword tokenization on
character information. But our key manipulation is
to consider variations of GPT-J’s tokenizer in which
we systematically increase tokenization variabil-
ity. In pre-processing the word-tokenized corpus
for input, for each word token w;, with probability
(1—p), we tokenize it using the standard GPT-J tok-
enizer. Under the standard tokenizer, " schematics"
becomes " sche + mat + "ics". With probability p,
however, we tokenize w; using a random tokeniza-
tion that consists of alternative valid tokens from
GPT-J. So, " schematics" could become " schema +
tics" or " schematic + s" (but not " schemati + cs"
since " schemati" is not a valid GPT token). We
vary p from 0.05 to 0.5. See Appendix D for more
details on this procedure. The result is a series of
tokenized corpora, which have more variable tok-
enization than the vanilla GPT-J-tokenized corpus.

We train CBOW models, separately for each
of these corpora. Table 4 shows the results of
these experiments on our probing task (using the
same method as in Experiment 1). As expected,
probes on the subword tokenization schemes re-
veal they learn more information about characters
than the default word-level tokenizer. Most impor-
tantly, upon increasing the variability on GPT-J’s
tokenization scheme, the performance of the probe

increases, peaking at p = 0.05 and p = 0.1. There-
after, the performance decreases with variability,
suggesting that increasing variability leads to in-
creased character knowledge but only up to a point,
like because there is a tradeoff: since the corpus
size for the toy experiment is small, having very
high variability leads to the model seeing fewer
instances of each token.

While the magnitude of these differences are
relatively small, they are consistent across ran-
dom seeds and train-test splits. Thus, we believe
that these results offer proof of concept that (a)
the variability of tokenization affects how much
character information is learned by PLMs and (b)
that increasing tokenization variability could be a
means by which PLMs could be built to learn more
character-level information.

6 Discussion and Conclusion

Overall, our results suggest a possible explanation
for why efforts to infuse subword models with
character-level information may not be necessary:
the information already gets learned during train-
ing through a variety of methods. Insofar as these
methods (e.g., tokenizer variability) can be manip-
ulated in model construction, this knowledge could
be used to build models that perform better at tasks
dependent on such knowledge. In future work, we
believe it will be important to test the generalizabil-
ity of these results in languages other than English.
Given the particular importance of tokenization in
multilingual models (Rust et al., 2021; Singh et al.,
2019), it would be fruitful to consider these results
in multilingual settings.

More generally, while the linguistic capabilities
of PLMs are much studied (Rogers et al., 2020;
Bommasani et al., 2021), the question whether
PLMs learn the constituent characters of tokens
is of a different nature in that it depends on learn-
ing a property of language (spelling) that is not
explicitly tied to meaning. There is no a priori
reason "dog" is spelled "D-O-G", and, in a sense,
the spelling of the word does not matter. But, in
another sense, it does matter: humans routinely use
language in creative and character-dependent ways:
e.g., alphabetizing text, scrambling letters to create
codes, and solving crossword puzzles. Understand-
ing whether the building blocks of this knowledge
can emerge during self-supervised training on a
word prediction task could be of interest not just in
NLP, but in the cognitive sciences.



7 Ethics and Broader Impacts

This work consists of probing experiments and in-
terpretability analyses of PLMs, and the risks and
ethical considerations are largely those that affect
any work with large PLMs (e.g., energy costs; see
Bommasani et al., 2021, for an overview of risks
and tradeoffs). The intended use of our code is for
academic research. We consider probing publicly
available PLMs, which are made publicly avail-
able in part for research purposes, to be within the
intended use of PLMs.

References

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Keskar, and Thamar Solorio. 2020.
Char2subword: Extending the subword embedding
space from pre-trained models using robust character
compositionality. arXiv e-prints, pages arXiv—2010.

Yonatan Belinkov. 2021. Probing classifiers: Promises,
shortcomings, and alternatives. arXiv preprint
arXiv:2102.12452.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49-72.

Benjamin K Bergen. 2004. The psychological reality of
phonaesthemes. Language, 80(2):290-311.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Damian E Blasi, Sgren Wichmann, Harald Ham-
marstrom, Peter F Stadler, and Morten H Chris-
tiansen. 2016. Sound-meaning association biases ev-
idenced across thousands of languages. Proceedings
of the National Academy of Sciences, 113(39):10818-
10823.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible generation of natural lan-
guage deductions. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 6266—6278, Online and Punta Cana,

Dominican Republic. Association for Computational
Linguistics.

Samuel R Bowman. 2021. When combating hype, pro-
ceed with caution. arXiv preprint arXiv:2110.08300.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Marc Brysbaert, Boris New, and Emmanuel Keuleers.
2012. Adding part-of-speech information to the
subtlex-us word frequencies. Behavior research
methods, 44(4):991-997.

Kris Cao and Laura Rimell. 2021. You should evalu-
ate your language model on marginal likelihood over
tokenisations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2104-2114, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. arXiv preprint arXiv:2103.06874.

Ryan Cotterell, Christo Kirov, Mans Hulden, and Jason
Eisner. 2018. On the complexity and typology of
inflectional morphological systems. Transactions of
the Association for Computational Linguistics.

Isabelle Dautriche, Kyle Mahowald, Edward Gibson,
Anne Christophe, and Steven T Piantadosi. 2017.
Words cluster phonetically beyond phonotactic regu-
larities. Cognition, 163:128-145.

Isabelle Dautriche, Daniel Swingley, and Anne
Christophe. 2015. Learning novel phonological
neighbors: Syntactic category matters. Cognition,
143:77-86.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Cicero Dos Santos and Bianca Zadrozny. 2014. Learn-
ing character-level representations for part-of-speech
tagging. In International Conference on Machine
Learning, pages 1818-1826. PMLR.

Avia Efrat, Uri Shaham, Dan Kilman, and Omer Levy.
2021. Cryptonite: A cryptic crossword benchmark
for extreme ambiguity in language. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4186—4192, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.


https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/2021.emnlp-main.506
https://doi.org/10.18653/v1/2021.emnlp-main.506
https://doi.org/10.18653/v1/2021.emnlp-main.506
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://doi.org/10.18653/v1/2021.emnlp-main.344

Hicham El Boukkouri. 2020. Ré-entrainer ou entrainer
soi-méme ? stratégies de pré-entrainement de BERT
en domaine médical (re-train or train from scratch
? pre-training strategies for BERT in the medi-
cal domain ). In Actes de la 6e conférence con-
jointe Journées d’Etudes sur la Parole (JEP, 33e
édition), Traitement Automatique des Langues Na-
turelles (TALN, 27e édition), Rencontre des Etudi-
ants Chercheurs en Informatique pour le Traitement
Automatique des Langues (RECITAL, 22e¢ édition).
Volume 3 : Rencontre des Etudiants Chercheurs en In-
formatique pour le TAL, pages 29-42, Nancy, France.
ATALA et AFCP.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160—
175.

Katrin Erk. 2016. What do you know about an alligator
when you know the company it keeps? Semantics
and Pragmatics, 9:17-1.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23-38.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Martin Haspelmath. 2017. The indeterminacy of word
segmentation and the nature of morphology and syn-
tax. Folia Linguistica, 51(s1000):31-80.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733-2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41294138, Minneapolis, Minnesota. Association for
Computational Linguistics.

C.F. Hockett. 1960. The origin of language. Scientific
American, 203(3):88-96.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelli-
gence Research, 61:907-926.

10

Itay Itzhak and Omer Levy. 2021. Models in a
spelling bee: Language models implicitly learn the
character composition of tokens. arXiv preprint
arXiv:2108.11193.

Daniel Jurafsky. 2003. Probabilistic modeling in psy-
cholinguistics: Linguistic comprehension and pro-
duction. In R. Bod, J. Hay, and S. Jannedy, editors,
Probabilistic Linguistics. MIT Press.

Michael H. Kelly. 1992. Using sound to solve syntac-
tic problems: The role of phonology in grammat-
ical category assignments. Psychological Review,
99(2):349-364.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71, Brussels, Belgium.
Association for Computational Linguistics.

Bofang Li, Aleksandr Drozd, Tao Liu, and Xiaoyong
Du. 2018. Subword-level composition functions for
learning word embeddings. In Proceedings of the
second workshop on subword/character level models,

pages 38-48.

Jindfich Libovicky, Helmut Schmid, and Alexander
Fraser. 2021. Why don’t people use character-
level machine translation? arXiv preprint
arXiv:2110.08191.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional Istm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Hans Marchand. 1959. Phonetic symbolism in en-
glish wordformation. Indogermanische Forschungen,
64:146.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
Chenglei Si, Wilson Y Lee, Benoit Sagot, et al. 2021.
Between words and characters: A brief history of
open-vocabulary modeling and tokenization in nlp.
arXiv preprint arXiv:2112.10508.


https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://aclanthology.org/2020.jeptalnrecital-recital.3
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
http://arxiv.org/abs/arXiv:2101.00027
http://arxiv.org/abs/arXiv:2101.00027
http://arxiv.org/abs/arXiv:2101.00027
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.1037/0033-295X.99.2.349
https://doi.org/10.1037/0033-295X.99.2.349
https://doi.org/10.1037/0033-295X.99.2.349
https://doi.org/10.1037/0033-295X.99.2.349
https://doi.org/10.1037/0033-295X.99.2.349
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975-4989, Florence,
Italy. Association for Computational Linguistics.

Sabrina J Mielke and Jason Eisner. 2019. Spell once,
summon anywhere: A two-level open-vocabulary
language model. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6843-6850.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Padraic Monaghan, Nick Chater, and Morten H. Chris-
tiansen. 2005. The differential role of phonological
and distributional cues in grammatical categorisation.
Cognition, 96(2):143-182.

Padraic Monaghan, Richard C. Shillcock, Morten H.
Christiansen, and Simon Kirby. 2014. How arbitrary
is language. Philosophical Transactions of the Royal
Society B.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024-8035.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing

(EMNLP), pages 1532-1543.

Tiago Pimentel, Arya D McCarthy, Damian E Blasi,
Brian Roark, and Ryan Cotterell. 2019. Meaning to
form: Measuring systematicity as information. arXiv
preprint arXiv:1906.05906.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609—4622, Online. Association for Computa-
tional Linguistics.

Yuval Pinter. 2021. Integrating approaches to word
representation. arXiv preprint arXiv:2109.04876.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

11

Arij Riabi, Benoit Sagot, and Djamé Seddah. 2021.
Can character-based language models improve down-
stream task performances in low-resource and noisy
language scenarios? In Proceedings of the Seventh
Workshop on Noisy User-generated Text (W-NUT
2021), pages 423-436, Online. Association for Com-
putational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842-866.

José Carlos Rosales Nuiiez, Guillaume Wisniewski, and
Djamé Seddah. 2021. Noisy UGC translation at the
character level: Revisiting open-vocabulary capabil-
ities and robustness of char-based models. In Pro-
ceedings of the Seventh Workshop on Noisy User-
generated Text (W-NUT 2021), pages 199-211, On-
line. Association for Computational Linguistics.

Joshua Rozner, Christopher Potts, and Kyle Mahowald.
2021. Decrypting cryptic crosswords: Semantically
complex wordplay puzzles as a target for nlp. In
NeurIPS 2021, Proceedings of Machine Learning
Research.

Phillip Rust, Jonas Pfeiffer, Ivan Vulié, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118-3135, Online. Association
for Computational Linguistics.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint c¢s/0306050.

F. de Saussure. 1916. Course in general linguistics.
Open Court Publishing Company.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International

Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149-5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. Bert is not an interlingua and
the bias of tokenization. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pages 47-55.

Monica Tamariz. 2008. Exploring systematicity be-
tween phonological and context-cooccurrence repre-
sentations of the mental lexicon. The Mental Lexicon,
3(2):259-278.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490.


https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
http://arxiv.org/abs/arXiv:1301.3781
http://arxiv.org/abs/arXiv:1301.3781
http://arxiv.org/abs/arXiv:1301.3781
https://doi.org/10.1016/j.cognition.2004.09.001
https://doi.org/10.1016/j.cognition.2004.09.001
https://doi.org/10.1016/j.cognition.2004.09.001
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2021.wnut-1.47
https://doi.org/10.18653/v1/2021.wnut-1.47
https://doi.org/10.18653/v1/2021.wnut-1.47
https://doi.org/10.18653/v1/2021.wnut-1.47
https://doi.org/10.18653/v1/2021.wnut-1.47
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2021.wnut-1.23
https://doi.org/10.18653/v1/2021.wnut-1.23
https://doi.org/10.18653/v1/2021.wnut-1.23
https://doi.org/10.18653/v1/2021.wnut-1.23
https://doi.org/10.18653/v1/2021.wnut-1.23
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.1075/ml.3.2.05tam
https://doi.org/10.1075/ml.3.2.05tam
https://doi.org/10.1075/ml.3.2.05tam
https://doi.org/10.1075/ml.3.2.05tam
https://doi.org/10.1075/ml.3.2.05tam

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1126—1140, Online.
Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Appendix A Code details

We release our code anonymously at https:
//github.com/Anonymous-ARR/code under MIT
License.

The models weights, data and other de-

pendencies required for experiment are
at https://github.com/Anonymous-ARR/
Releases/releases.

The intended use of our code is for academic
research. We consider probing publicly available
PLMs, which are made available for research as
well as end use cases, to be within the intended use
of PLMs.

Appendix B Probing for Character
Information

We use off-the-shelf APIs for lemmatization and
WordNet from NLTK (Bird et al., 2009) (Apache
License 2.0). Our implementation uses PyTorch
(Paszke et al., 2019) (BSD License), HuggingFace
(Wolf et al., 2019) (Apache License 2.0) and cus-
tom APIs for GPT-J’s embedding.

The probes for each MLP are trained separately
starting with random initialization weights. We
train the probe via a binary classification task
via backpropagation, using the Adam optimizer
(Kingma and Ba, 2014) with betas of 0.9 & 0.999
and epsilon of 1e-08 without weight decay, over
the standard Binary Cross Entropy loss across the
predicted logits ¢; and ground truth logits v;.

B.1 PLMs considered

Details of the PLMs used along with their model-
card on Huggingface:

12

Case-Sensitive

Model type PLM | Control
GPT-J 94.35 52.76
GPT-2 84.69 51.05
RoBERTa 83.87 49.00
BERT-Cased 78.47 45.35
BERT-Uncased | 77.48 49.37
GloVe 300D 69.40 49.40
GloVe 100D 61.56 49.55
LXMERT 60.30 49.61

Table 5: Results for the main probing experiment,
across models.

* GPT-J: We used the standard GPT-J with 6
Billion parameters and its reversible Byte-Pair
encoding based subword tokenizer. We ex-
tracted the embeddings and have released it
separately. Model Card: ‘EleutherAl/gpt-j-
6B’ under Apache 2.0 License.

* GPT-2: We consider the base model for GPT-
2 with 124 Million parameters. The tokenizer
used in this model is the exact same as the
one used in GPT-3 and is also a subword tok-
enizer based on reversible Byte-Pair encoding.
Model Card: ‘gpt2’ under Modified MIT Li-
cense.

* RoBERTa: We again use the Base model for
fairer comparison to GPT-2 model with 125
Million parameters. This model has partially
reversible Byte-Pair Encoding based on GPT-
2’s byte-pair tokenizer but with additional to-
kens for a BERT-like MLLM discriminative
pre-training. Model Card: ‘roberta-base’ un-
der MIT License

BERT: The BERT-base models have roughly
110 Million parameters. Both the Uncased
and Cased versions of this model are consid-
ered with their Word-Piece tokenizers. For
this tokenizer, we also consider the charac-
ter ‘## while filtering out vocabulary, as it
denotes the token continues on the preceed-
ing word. Model Card: ‘bert-base-uncased’,
‘bert-base-cased’ under Apache 2.0 License

* GloVe: We experiment with 100 and 300 dim
version of 400K-Vocab GloVe trained on 6B
tokens. We consider the 40k most frequent
tokens in GloVe, comparable to the vocab-
ulary sizes of the other models. GloVe ver-
sion used: ‘Wikipedia 2014 + Gigaword 5
(6B tokens, 400K vocab, uncased, 50d, 100d,


https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://github.com/Anonymous-ARR/code
https://github.com/Anonymous-ARR/code
https://github.com/Anonymous-ARR/code
https://github.com/Anonymous-ARR/Releases/releases
https://github.com/Anonymous-ARR/Releases/releases
https://github.com/Anonymous-ARR/Releases/releases

Case-insensitive | Case-Insensitive

Model PLM | Control | PLM | Control
GPT-] 0.83 3.12 1.39 2.27
GPT-2 2.01 3.09 2.21 2.75
RoBERTa 2.27 3.13 2.79 2.46
BERT-Cased 2.93 7.46 2.77 5.67
BERT-Uncased | 3.32 433 3.32 433

Table 6: Standard Deviation in our probing experiment
1 for the key models considered.

Statistics

Tokenizer’s Vocab for each model
Tokens having only letters (a-z,A-Z)
GPTs, RoBERTa: Allow preceding G
BERT: Allow preceding ‘##’

Property
Dataset
Data-filtered

Train-Test split | 80-20

Preprocessing None

Output labels 26 tasks (each with binary label)
Link Model Card & links in §B.1

Table 7: Dataset Checklist for experiment 1.

200d, & 300d vectors, 822 MB download):
glove.6B.zip’ 2

e LXMERT: We use the uncased version of
LXMERT-base model and similar to the
BERT model, filtering out also for ‘##’ preced-
ing symbols. Model Card: ‘unc-nlp/Ixmert-
base-uncased’ under

B.2 Hyperparameter and other Details

Each probe is trained for 5 epochs, with 128 batch-
size. The Learning rate is tuned over averaged
Macro-F1 in the grid {1e — 5,3e — 5, 5e — 5, le —
4,3¢ — 4,1e — 3,3e — 3,1e — 2,3e — 2}. We
trained the probe on the best hyperparameter set-
tings across 5 different train-test splits and seeds.
Table 8 shows these best learning rate and the num-
ber of parameter (and frozen-parameters) in the
probe. For all the control embedding, we assume
the same dimension as the largest model (4096)
and considered a maximum vocab of 100k, even
though only the first few thousands might be used.
These experiments take less than 20 minutes for
each run requiring less than 12 GB of GPU mem-
ory and were run on a mix of NVidia Tesla K80,
GTX 1080 Ti, P100, V100 GPUs with Dell R740
and Intel Xeon CPUs.

Table 5 shows the result of the probe in a case-
sensitive setting. The case-insensitive probe treats
both "Cat" and "cat" as a hit for both "c". The
case-sensitive probe treats only "cat" (not "Cat")

% Accessible at nlp.stanford.edu/projects/glove/, Apache
v2.0 License

13

Subword Taggers 5"'|5robes
r:————————————— : e —

1
1
N~~~ )

JJ VB NN DT

=

p 4

interview| ##er

\_Bert Tokenizer )

JJ VB NNDT

Concatenate

. Soft
\Embedding
! Lookup

Ginterviewer
- %
GPT's %Lt
Soft - Syntax Labels

Vocab

Figure 4: Experiment 2: syntax baselines with BERT-
sentence and BERT-token custom taggers.

as a hit for "c". Note that performance is the same
for BERT-Uncased since it does not distinguish
between these conditions.

Appendix C Syntax Baseline for
Character information

C.1 Custom syntax taggers

First we consider an off-the-shelf SpaCy model
with its 3 features for each token: NER, PoS, and
Coarse-Grained PoS tags. Before running this
model, we remove the preceding whitespace char-
acters in the token, if present. The resultant features
are discrete one-hot feature vector over labels. The
SpaCy tagger is not perfectly suited to our task
since it operates at the word level, whereas we are
concerned with obtaining a subword token’s em-
beddings. To solve that problem, we also built
3 custom taggers for obtaining PoS and NER la-
bels on subword tokens. These tagger takes (a
subword) token’s model embedding as input and
outputs a vector of probabilities over part of speech
and named entity categories.

To build our custom GPT-J-Tagger, we train an
MLP to predict PoS and NER label based on GPT-
J’s static embedding layer for each token. The
tagger is trained on the CoNLL 2003 dataset’s
train and valid splits (Sang and De Meulder, 2003),
which contains part of speech and named entity
information. Unlike the SpaCy tagger, our cus-
tom GPT-J-Tagger outputs a probability distribu-



Case-insensitive Case-Sensitive
Model Lemma Control Lemma Control
Probe LR # Params LR # Params LR # Params LR # Params
GPT-J le-4 | 240M (206M) le-4 | 443M (410M) le-4 | 240M (206M) | 3e-4 | 443M (410M)
GPT2 3e-4 40M (39M) le-4 | 443M (410M) | 3e-4 40M (39M) 3e-4 | 443M (410M)
RoBERTa 3e-4 40M (39M) le-4 | 443M (410M) le-3 40M (39M) le-2 | 443M (410M)
BERT-cased le-3 23M (22M) 3e-3 | 443M (410M) | 1le-3 23M (22M) Se-5 | 443M (410M)
BERT-uncased | 3e-3 25M (23M) 3e-4 | 443M (410M) | 3e-4 25M (23M) le-4 | 443M (410M)
LXMERT led | 24M (23M) | 3e-4 | 443M (410M) | 3e-4 | 24M (23M) | le-4 | 443M (410M)
GloVe 100D | le-4 | 4.02M (4.00M) | 3e-4 | 12.2M (12.0M) | 3e-4 | 4.02M (4.00M) | 3e-4 | 12.2M (12.0M)
GloVe 300D | 3e-4 | 12.2M (12.0M) | le-4 | 12.2M (12.0M) | 3e-4 | 12.2M (12.0M) | 3e-5 | 12.2M (12.0M)
Table 8: Experiment 1 Hyperparameters.
Property Statistics 2 Results and H rparameter
Train Sentences | 14986 C esults and Hyperparameters
Trzllig "SFOkenS %41‘2253 We use off-the-shelf APIs for lemmatization and
Valid Sentences . .
Valid Tokens 55043 WordNet from NLTK. Our 1mplementatlon uses
Test Sentences | 3683 PyTorch (Paszke et al., 2019), HuggingFace (Wolf
;eES;{T;)kenS 20349 et al., 2019) and custom APIs (now released) for
PoS Tazgss 45 GPT-J’s embedding. The hyperparameter tuning
Preprocessing | None was done on the dev set for only the learning rate
Link github: davidsbatista/NER-datasets in the grid {1 e — 5, 3e — 5’ le — 4} for BERT and
Table 9: Dataset Checklist for training POS/NER {le—5,3¢—5,5¢ —5,1e—4,3¢ —4,1e —3, 3¢ —

CoNLL set.

tion over categories so we can use this distribution
over labels as the vector of interest, rather than a
one-hot vector.

Table 10 show the performance of the tagger’s
performance qua tagger. Table 9 shows the Dataset
Checklist for this experiment. To build the BERT
sequence-labeling tagger, we fine-tuned a BERT se-
quence labeling model for the PoS and NER tasks,
in order to output a label for each (sub-word) token
in a sentence. When extracting syntactic features
for this model, we first do the same pre-processing
of removing the special preceeding whitespace of
GPT’s tokens as SpaCy before input into the BERT
model. Since BERT’s tokenizer could have more
than one token for a single GPT-J’s token, we con-
sider average of the logits as the pre-softmaxed
feature vector.

In addition to the BERT sentence-level tagger,
we consider a BERT token classifier model fine-
tuned for NER and PoS at token level rather than
at sequence (sentence level) in the preceding one
with same pre-processing. This token-level model
does not leverage context to deduce the label, and is
closer to how we use this model later to get features
for predicting NER/PoS features.

14

3,1e — 2,3e — 2} for GPT-J. Our MLP model is
3-layered with SELU and Tanh activation and 0.1
Dropout before the last layer. Our BERT-Model
is initialized with ‘bert-base-cased‘ from Hugging-
face with default values of hyperparameters. Our
implementation was done using PyTorch and op-
timized via Adam with betas of 0.9 & 0.999 and
epsilon of 1e-08 without weight decay over the
standard Cross Entropy loss. We set the batch size
to 32 sentences for BERT and 64 for GPT-J. All
the experiments can be done within 16GB of GPU
memory and no run individually takes more than
2 hours. We release these models along with our
codebase with instructions to run them.

Table 10 shows the performance of these NER
and PoS models. As expected, the BERT-sentence
model performs the best on both the tasks as it
leverages the context while tagging. Whereas, GPT-
J slighlty outperfoms BERT-token on both the tasks.
Note that these performance are not comparable as
their tokenization differ and only one of the model
leverages context to predict NER and PoS tag.

C.3 Method

Assume we have m syntactic features. Consider
the tokenizer Vocabulary V' (with only alphabetic
tokens) and the D, datapoint pairs for each letter
« of the lowercased English alphabets. For each
token-label pair (wj, y; ), we obtain the m syntactic
features of the word {z'", 2(® . 2{™} using the
trained models to tag the features.



Model Type # Epochs | Batch Size | LR | Dev Flwia | Dev Flaracro | Test Flwia | Test F'lasacro
BERT-sentence (PoS) 10 32 le-5 98.17 94.80 93.42 87.40
BERT-token (PoS) 10 32 le-5 76.42 56.75 77.24 56.74
GPT-J] MLP (PoS) 20 64 le-4 62.90 68.72 60.15 69.14
BERT-sentence (NER) 10 32 le-5 97.88 93.18 96.02 86.92
BERT-token (NER) 10 32 le-5 83.50 56.97 81.57 54.88
GPT-J] MLP (NER) 20 64 5e-5 85.59 63.56 82.71 57.34

Table 10: Labels from POS/NER labels. LR denotes learning rate

[ Split Type | SpaCy | BERT-sentence | BERT-token [ GPT-J [ Control

Aggregate across 26 characters
F1 [ 52338 ] 55.008 [ 597525 [ 61.2395 [ 49.6772
Best performing ones
S 64.5967 60.7179 70.3299 66.8159 | 40.3154
y 61.9632 60.3871 67.1591 64.8863 | 48.6838
e 62.0518 57.7531 64.6152 62.3213 | 47.2712
t 60.6848 54.3826 64.0681 60.7345 | 48.4873
p 50.235 55.2361 63.9658 60.5067 | 46.5612
i 60.8024 56.4055 63.3518 61.6032 | 42.8155
Worst performing ones
w 45.748 52.7235 57.6919 58.2666 | 48.6947
q 43.7924 56.5274 57.5407 53.5437 | 49.2841
k 47.7873 49.3832 57.3084 55.9559 | 46.2371
o 52.9403 53.6138 56.8312 55.6293 | 43.5871
b 48.9159 56.739 56.3873 55.1265 | 48.252
m 48.1349 53.4036 56.2846 55.6094 | 46.1084

Table 11: Syntax baseline: Probing over syntax label distribution.

[ Split Type | SpaCy [ BERT-sentence | BERT-token | GPT-J | Control

Aggregate across 26 letters
F1 [ 44354 ] 2.9588 [ 37989 ] 2.724 | 4.3973
Best performing ones
s 0.6947 1.2941 0.4853 0.6514 | 5.5055
y 1.8665 1.6406 0.5697 1.4251 | 3.2417
e 0.6645 0.8544 0.3245 0.3233 | 1.8349
t 0.2643 3.4695 0.9129 0.5924 | 1.7645
p 6.1928 1.1628 0.5669 0.2985 | 3.7013
i 0.512 1.4392 0.5998 0.4867 | 5.5685
Worst performing ones
w 4.9794 2.2996 1.9614 1.9536 | 1.7453
q 2.7071 3.4438 4.5954 4.7932 | 5.5068
k 2.9332 6.885 2.0885 1.6864 | 1.6311
0 6.24 1.6009 1.0449 0.463 | 3.5961
b 4.0455 1.5597 1.4074 2.0701 | 2.7857
m 7.2995 2.4854 2.1762 1.0948 | 6.152

Table 12: Standard Deviation of POS/NER labels

15




We train a classifier to predict whether a char-
acter « is present in the token w; using only its
syntactic features. Assume randomly initialized
‘trainable” embeddings {E1, Es ... E,, } for each
of the m syntactic features. We predict the logits
7; for token w; over each letter o using an MLP
classifier over the embeddings:

; EL2(™ 1))

m

ji = o(MLP([ETzY ; ...

where 7', 0, ; denotes transpose, sigmoid func-
tion and vector concatenation respectively. Each
syntactic feature mz(»] ) is a vector denoting probabil-
ity distribution of a token over the corresponding
feature labels (including being a one-hot vector),
this is crucial because a token (especially subword-
token) might have different labels depending on the
context.

We train different MLPs and Embeddings from
scratch for each alphabet a with no shared param-
eters across the (case-insensitive) 26 English al-
phabets. We train our model for binary classifica-
tion via backpropagation over the standard Binary
Cross Entropy loss across the predicted logits ¥;
and ground truth logits y;.

As before, for each character we create a bal-
anced dataset consisting of equal number of pos-
itive and negative examples, where each exam-
ple is made up entirely of either English alpha-
bets or whitespace. These are randomly divided
into training and test split which keep words with
same tokens with same lemmas in the same split.
For control task we randomly assign the syntac-
tic features for each token. We set the batch size
for runs with one-hot vectors as features to 128
and to 64 for others, the learning rate is tuned in
{le—5,3e—5,1e—4,3e—4,1e—3,3e—3,1le—2}
for all the features over the metric of Averaged F1-
Scores across the 26 English letters. The best learn-
ing rates for SpaCy, BERT-sentence, BERT-token,
GPT-J and Control were found to be 1e-3, le-3, 3e-
3, le-4, 1e-2. Using Adam Optimizer we train each
of the 26 models for 5 epochs with betas of 0.9
& 0.999 and epsilon of 1e-8. Our implementation
is done using PyTorch and Huggingface. Finally
for the best hyperparameter, we perform 5 runs
with different train/test splits and seeds. Our MLP
model is 3-layered with SELU and Tanh activation
and 0.1 Dropout before the last layer.

Tables 11 and 12 show the mean and variance of
the results over the 4 taggers and control task. We

16

also show the performance over the best and worst
performing letters.

Appendix D Variability of Tokenization

D.1 Quantifying variability in the Pile Corpus

To quantify the variability in the tokenization of
frequent words in the kind of corpora used to train
these models, we consider 1/6th of the publicly
available Pile Corpus used to train GPT-J ( 250 GB
of text). For our analysis we consider 500 frequent
words of 8+ characters (as measured using Google
Ngrams) since long words are more likely to be the
source of variability.

For each target word, we first case-insensitively
detect each of its occurrence in the sub-corpus. In
order to also account for spelling errors, we used
case-insensitive fuzzy search allowing matches of
substring up to 1 Levenshtein distance away. Over
these occurrences, we discard those where the sub-
string is part of a bigger word, such as some ‘dif-
ferentiation’ for the target word ‘different’ or if the
fuzzy match has whitespaces.

Once we have such occurrences, we want to
obtain the tokenization of the target word in the
context. For this reason, we obtain the adjust the
indices of the possibly-misspelt matched-substring
for our target word till the nearest non-word, this
allows for matches of [somethin’, somethin", some-
thin] all to be considered as the string ‘somethin’.
We also account the factors that leads to differing
tokenization, such as preceeding whitespaces.

Now, for each of the target words, we have a
list of probable tokenization at most 1 Levensthein
distance away. Since two target words such as
‘projection’ and ‘protection’ could themselves be
at 1 Levenshtein distance, these may act as pseudo
matches for each other. So we consider only one
of these two from our target list, leading to 466
word down from 500 words. Now, for each of
these target words, we count the number of possible
unique tokenizations.

For each of these 466 target words, we also ob-
tain a list of words from the WordNet which are 1
Levenshtein distance away. We call this word list
as the pseudo-match list. We also consider the num-
ber of tokenization for each target words, excluding
their pseudo-match list as well as by excluding all
those which are equally (or closer) to any word in
pseudo-match list than the target word. We also
compute the statistics of those with exact matches.

Table 13 shows these statistics for the target



words. On average, a target word is expected to
have 213 different tokenization depending on the
context. We observe that while one may expect the
number of tokenization to go up with the number
of characters in the target word, it doesn’t perfectly
increase monotonically. This is because the num-
ber of occurrences of the target word, dictates the
number of tokenization it will have, and there we
see a consistent trend that the number of tokeniza-
tion greatly increases with increasing occurrences.
It is due to this reason, we expect these number to
be even higher, when considering the entire Pile
corpus, instead of the subset in our case.

We observe three factors contributing to surpris-
ingly large number of tokenization. First, it is be-
cause of Case-Sensitive tokenization, which leads
to upto 6 different tokenization for each of the tar-
get words. Second, its the context dependent tok-
enization, which increases the expected number of
different tokenization to 12.91. Lastly, the remain-
der is contributed by the previous two combined
with misspellings.

Our implementation is sped up using multipro-
cessing and fuzzy regex. For this we split the sub-
corpus across multiple pieces. These runs takes
about 3 days across 40 CPU Cores, 60 GB of RAM
and less than 600GB hard disk space. Our experi-
ment was only conducted on a portion of the Pile
corpus, and the possible tokenizations for each tar-
get word is expected to increase with larger corpus
size. We report the mean and standard deviation in
the number of tokenizations a word has across the
portion of the Pile corpus considered. These are
also reported as a function of word length and its
frequency of occurrence in the corpus.

Tables 13 and 14 shows these score. The ‘All
matches’ field considers the unique tokenizations
of all matched substrings including those at 1 (case
and whitespace insensitive) Levensthein distance
away. These word at 1 Levensthein distance could
be either misspellings or a different English word
(for example an occurrence of the word ‘projec-
tion” for target word ‘protection’). The latter of
these are identified using the wordnet dictionary
and the statistics recalculated and shown in the
column ‘Matches except pseudo’. Some of the
misspelling contribute to this score could be mis-
spelling of either the target word or of one of the
other English words at 1 Levensthein distance away
(‘prohection’ could be a misspelling of either ‘pro-
jection’ or ‘protection’ being at distance 1 from

17

both). Such occurrences are removed and statis-
tics recomputed for the column ‘Matches closer
pseudo’. The column ‘Exact contain’ considers
only those occurrences, which contain the exact tar-
get word (case-insensitively) in the string ignoring
whitespaces. Whereas the ‘Exact match’ does not
consider the occurrences involving a preceeding
whitespace.

Table 15 shows some examples for the variation
in tokenization.

D.2 Algorithm for increasing tokenization
variability

Algorithm 1 A simplified version of subword Tok-
enization with controllable variability

Require: 0 <=p <=1
procedure YOURFUNCTION(sentence)
tokens < List()
words + wordT okenize(sentences)
for each w in words do
u ~ Uniform|0,1]
if u < p then
V < GPTJ.Vocab
filter(V, Ax.is Alphabetic(z))
Choices < List()
foriin1,2...(w.length() — 1) do
if w[:i] € V & wli:] € V then
push(Choices, w:i], w[i:])
end if
end for
if ~isEmpty(Choices) then
s ~ Choices
tokens < Merge(tokens, s)
continue
end if
end if
s < GPTJ.Tokenize(w)
tokens < Merge(tokens, s)
end for
end procedure




Measure All Matches | Matches except pseudo | Matches closer pseudo | Exact contain | Exact match | Num Words
Aggregate 232.90 229.70 213.74 17.91 5.97 466

7 Length words 297.50 271.00 223.50 22.00 6.5 2

8 Length words 332.29 325.68 288.07 25.00 7.89 28

9 Length words 231.48 227.78 206.95 16.94 5.93 190

10 Length words 225.51 222.58 209.53 17.97 5.87 127

11 Length words 213.28 211.02 202.97 17.88 5.85 61

12 Length words 224.14 223.54 218.64 18.25 5.79 28

13 Length words 218.14 217.00 214.76 16.57 5.19 21

14 Length words 238.33 238.33 238.33 16.67 5.00 9
exp(12) occurrence 88.70 86.67 82.11 10.33 5.90 27
exp(13) occurrence 155.78 153.87 146.55 13.61 5.15 74
exp(14) occurrence 210.36 207.51 195.74 16.70 5.75 174
exp(15) occurrence 278.88 275.00 251.69 19.91 5.96 139
exp(16) occurrence 370.02 365.04 336.48 26.62 8.56 52

Table 13: Tokenization Variance statistics - mean score.

Measure All Matches | Matches except pseudo | Matches closer pseudo | Exact contain | Exact match

Aggregate 95.12 94.29 91.26 17.91 2.67
7 Length words 155.50 129.00 81.50 13.00 2.50
8 Length words 100.90 99.17 91.19 8.46 247
9 Length words 90.97 90.00 86.03 7.34 2.50
10 Length words 88.56 89.04 90.71 7.86 2.75
11 Length words 107.55 107.65 108.46 8.77 2.84
12 Length words 63.25 63.53 62.53 8.26 2.82
13 Length words 81.22 81.30 82.20 7.82 2.59
14 Length words 62.48 62.48 62.48 4.52 1.05

exp(12) occurrence 38.59 37.65 34.60 3.15 1.26

exp(13) occurrence 39.75 39.13 39.36 4.92 2.10

exp(14) occurrence 51.84 52.17 53.73 6.19 2.51

exp(15) occurrence 70.46 70.59 77.22 7.86 2.38

exp(16) occurrence 101.86 100.38 103.83 9.99 3.44

Table 14: Variability across target words in Tokenization Variance statistics.
String Tokenization String Tokenization String Tokenization
signature playstation personal
Exact match case insensitive Exact match case insensitive Exact match case insensitive

"SIGNATURE" ["SIGN", "ATURE"] "playstation” ["play”, "station"] "PERSONAL" ["p", "ERSON", "AL"]

"sIGNATURE" ["s", "IGN", "ATURE"] "PLaySTATION" ["PL", "ay", "ST", "ATION"] "PeRSonAl" ["Pe", "RS", "on", "Al"]
"SigNature" ["S", "ig", "Nature"] "playStation" ["play", "Station"] "personal" ["personal”]
"Signature" ["Sign", "ature"] "PLAYSTATION" ["PLAY", "ST", "ATION"] "Personal” ["Personal"]
"SIgnature” ["SI", "gn", "ature"] "Playstation" ["Play", "station"] "PERSONAL" ["P", "ERSON", "AL"]
"signature" ["sign", "ature"] "PlayStation" ["Play", "Station"] "PErsonal” ["P", "Er", "son", "al"]

Exact match and whitespaces Exact match and whitespaces Exact match and whitespaces
" signature" [”Gsignature"] " Playstation” ) ["GPlaystation"] " PERSONal" _["GPERSON", "al"]
" Signature" ["'GSignalure”] " PLayStation" ["GPL”, "ay", "Station"] " PerSoNAI" ["GPer", "So", "N", "Al"]
" SigNature" A[”GSig”, "Nature"] " PLAYstation" ) ["GPLAY", "station"] " pErsonal" [”Gp", "Er", "son", "al"]
" signaTure" ["Gsign", "a", "T", "ure"] " PLAYSTATION" ["GPLAY", "ST", "ATION"] " perSonal" ["Gper","S", "onal"]

" SIGNATure" [”GSIGN", "AT", "ure"] " PlayStation" ) ["GPlayStation"] " perSONal" ["Gper", "SON", "al"]
" SiGNATURE" ["Gsi", "GN", "ATURE"] " plAYsTaTion" ["Gpl", "A_Y", "s", "Ta", "T", "ion"] " pERSonal" l"Gp", "ERS", "onal"]
" SIGNATURE" ["QSIGN", "ATURE"] " playStation" ["Gplay", "Station"] " PERSONAL" ["GPERSON", "AL"]

" signAture” [“G§ign”, "At", "ure"] " playstation” ["Gplay", "station"] " PERSONAI" [”GPERSON", "Al"]

" SIGNature" ["_GSIGN”, "ature"] " PLaystation" ["QPL", "ay", "station"] " personal” [”C_}persunal"]

" sIgnature” ["Gs", "Ign", "ature"] " PlaySTation" ["GPlay", "ST", "ation"] " Personal" ["GPersonal"]

Fuzzy match and misspellings

Fuzzy match and misspellings

Fuzzy match and misspellings

"S1IGNATURE" ["S","1", "GN", "ATURE"] "Play-station" ["Play”, "-", "station"] "p-ersonal” ["p", "-", "erson", "al"]
" SIGNATUTRE" ["GSIGN", "AT", "UT", "RE"] " PLAY-STATION" ["GPLAY", "-", "ST", "ATION"] "per-sonal” ["per", "-", "son", "al"]
" signatyure" ["Gsign", "at", "y", "ure"] "play-station" ["play", "-", "station"] pers-onal" ["Gpers", "-", "onal"]
" signatre” ["Gsign", "atre"] " Play-station" [”GPlay", "-" "station"] Per-sonal" ["GPer", "-", "son", "al"]
"Signiature"” ["Sign", "i", "ature"] " play-station” ["Gplay", "-", "station"] "PER$oNAL" ["PER", "$", "0", "N", "AL"]
" signnature" ["Gsign", "nature"] "Play-Station" ["Play", "-", "Station"] " PER.SONAL" ["GPER", ".", "SON", "AL"]
" signatrre” ["Gsign", "at", "r", "re"] "Play]station" ["Play", "]", "station"] " PERSONA.L" ["GPERSON", "A", ".", "L"]
" sigature” ["Gsig", "ature"] " Playst4tion" ["GPlay", "st", "4", "tion"] "personal[l" ["person”, "a", "[", "I"]
" Sign(ature" ["GSign", "(", "ature"] " PlayStatiOn" ["GPlay", "St", "ati", "0", "n"] "person,L" ["person", ",", "L"]
"signnature" ["sign", "nature"] " Play-Station" ["GPlay”, """ "Station"] "Person(al" ["Person", "(", "al"]
"SIG(NATURE" ["S", "IG", "(", "NAT", "URE"] "Playstaton” ["Play", "st", "aton"] " plersonal” ["Gp", "[", "erson", "al"]
" Si2nature" ["GSi", "2", "nature"] " play.Station" ["Gplay", ".", "Station"] "plersonal” ["p","]", "erson", "al"]
"Singnature" ["Sing", "nature"] " playstaton” ["Gplay", "st", "aton"] " p)ersonal” [”Gp", ")", "erson", "al"]
" signatuure" ["Gsign", "atu", "ure"] " PLAYTSTATION" ["GPLAY", "T", "ST", "ATION"] "P_ersonal" ["P","_", "erson", "al"]
" Signaturs" ["GSign", "at", "urs"] "playstatiom" ["play”, "st", "ati", "om"] "Persnal” ["Pers", "n", "al"]
" sigNUTure" ["Gsig", "N", "UT", "ure"] "playsstation” ["plays", "station"] " peRSSonal" ["Gpe", "R", "SS", "onal"]

Table 15: Some examples of variations in Tokenization for 3 frequent long words.

18




