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Abstract
Pre-trained language models (PLMs) that use001
subword tokenization schemes can succeed at a002
variety of language tasks that require character-003
level information, despite lacking explicit ac-004
cess to the character composition of tokens.005
Here, studying a range of models (e.g., GPT-006
J, BERT, RoBERTa, GloVe), we probe what007
word pieces encode about character-level in-008
formation by training classifier to predict the009
presence or absence of a particular alphabetical010
character in an English-language token, based011
on its embedding (e.g., probing whether the012
model embedding for "cat" encodes that it con-013
tains the character "a"). We find that these014
models robustly encode character-level infor-015
mation and, in general, larger models perform016
better at the task. Through a series of experi-017
ments and analyses, we investigate the mecha-018
nisms through which PLMs acquire character019
information during training and argue that this020
knowledge is acquired through multiple phe-021
nomena, including a systematic relationship be-022
tween particular characters and particular parts023
of speech, as well as natural variability in the024
tokenization of related strings.025

1 Introduction and Motivation026

The dominant class of models in NLP (pre-trained027

transformer models; Brown et al., 2020; Devlin028

et al., 2019; Bommasani et al., 2021) use tokeniza-029

tion schemes, like BPE or WordPiece tokeniza-030

tion (Sennrich et al., 2015; Schuster and Nakajima,031

2012; Kudo and Richardson, 2018), that break text032

into word pieces. These models face an apparent033

limitation in that they do not have access to infor-034

mation below the level of the word piece, such as035

information about characters. But character-level036

information has been claimed to be useful for a037

variety of tasks, including adapting text to novel038

domains like biomedicine, texts with misspellings,039

and wordplay-based tasks that require attention to040

character-level manipulations (Riabi et al., 2021;041

El Boukkouri, 2020; Clark et al., 2021).042
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Figure 1: Overview of our probing setup. In Experiment
1, the input is a model embedding and we train MLPs to
classify whether a particular character (e.g., "a") occurs
in a particular token (e.g, "employee"). In Experiment
2, we use syntactic features as input, rather than model
embeddings, to train our probe.

But there are drawbacks to using character-level 043

models: character-based sequences are long and 044

therefore can slow down training (Mielke et al., 045

2021). And giving including character-level infor- 046

mation does not necessarily improve performance 047

on tasks where one might expect it to (Libovickỳ 048

et al., 2021; Rosales Núñez et al., 2021; Itzhak and 049

Levy, 2021). Therefore, the vast majority of top- 050

performing models in languages with alphabetic 051

scripts use models with various kinds of subword 052

tokenization schemes (e.g., Devlin et al., 2019; 053

Brown et al., 2020), but rarely with character-level 054

schemes. 055
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One possible explanation for this state of affairs056

is that models trained on word pieces implicitly057

learn something about characters, making the ex-058

plicit inclusion of character-level information un-059

necessary. Indeed, recent work has shown that060

even models based on subword tokens might be061

able to use and manipulate character-level informa-062

tion. Rozner et al. (2021) and Efrat et al. (2021)063

both study cryptic crosswords and find that PLMs064

(specifically, T5) can take advantage of character-065

level information in order to solve wordplay tasks066

like unscrambling scrambled words. Itzhak and067

Levy (2021) show that RoBERTa can access sub-068

word information by testing it on a spelling task069

that requires it to map from words to characters070

(e.g., from cat to the characters c + a + t).071

The fact that models can do tasks like this is curi-072

ous: word pieces have no explicit access to charac-073

ter information during training, and the mechanism074

by which they acquire such information is not ob-075

vious. The goal of this paper is to understand the076

nature of this information, and how it is learned.077

Thus, we make several contributions. First, we078

provide a thorough characterization of what charac-079

ter information is accessible to subword-tokenized080

PLMs by designing a binary probing task (§3) to081

probe subword tokens for the presence or absence082

of a particular character: e.g., does the sequence083

star contain the letter t? This task lets us not just as-084

sess whether this information is available, but lets085

us characterize, in a fine-grained way, the nature of086

character-level knowledge in subword tokens. We087

find performance far above a controlled baseline088

(an F1 score of 93.7 for the best-performing model,089

GPT-J), suggesting that subwords learn meaningful090

information about their characters.091

To explore how this information is acquired, we092

introduce several possible explanations and con-093

duct detailed analyses of the probing task (§3.3).094

Specifically, we consider how character knowledge095

varies as a function of the English character being096

probed for (it’s easier to classify rare letters than097

common ones), the position in the token of the char-098

acter in question (performance is somewhat better099

early in tokens), and the frequency of the token100

(frequent tokens aren’t necessarily easier to probe).101

We then turn to the possibility than systematic cor-102

respondences between English characters and syn-103

tactic features (e.g., adverbs tend to end in "y"),104

play a role in how models acquire character-level105

information. To that end, we devise syntactic base-106

lines, whereby we use features like part of speech 107

as input to the classifer for detecting the presence of 108

absence of tokens (§4). The probe performs much 109

better than control tasks, which suggests syntactic 110

features contribute to the tokenizer’s performance. 111

However, this correlation does not suffice to ex- 112

plain the totality of character information learned 113

by PLMs. 114

Finally, we consider another possible mecha- 115

nism, based on the variability of tokenization, by 116

which character-level information might be learned 117

(§5). We conduct an experiment using simple fixed 118

embeddings, as proof of concept that increasing 119

variability in tokenization (Cao and Rimell, 2021) 120

affects the character information learned. Overall, 121

given the importance of tokenization schemes for 122

downstream performance (Bostrom et al., 2021; 123

Mielke et al., 2021), we believe this knowledge 124

could inform the development of tokenization 125

schemes that improve model performance. 126

2 Prior work 127

All language models must choose what to use as 128

the basic linguistic unit, and, as a result, there is a 129

long history of work in NLP, evaluating the trade- 130

offs between models that tokenize words based on 131

characters, words, or something in between, like 132

bytes or word pieces (see Mielke et al., 2021; Pin- 133

ter, 2021, for recent surveys). 134

While words are a seemingly natural kind and 135

are often used as basic units for modeling language, 136

there is considerable debate in the linguistics litera- 137

ture as to how to even define a word, due to differ- 138

ences across languages (Haspelmath, 2017). More- 139

over, word-level models have a major weakness in 140

that they do not naturally handle out of vocabulary 141

items (see Jurafsky, 2003, for an overview) and 142

can have very different behaviors in languages with 143

different morpohological systems (Mielke et al., 144

2019; Cotterell et al., 2018). Character-level mod- 145

els have their own weaknesses: they are typically 146

slower to train at the scale required for massive lan- 147

guage modeling. Many recent efforts have centered 148

around trying to use meaningful sub-word units in 149

language modeling, such as BPE (Gage, 1994; Sen- 150

nrich et al., 2015), WordPiece tokenization (Schus- 151

ter and Nakajima, 2012), and UnigramLM (Kudo, 152

2018). 153

While subword tokenization schemes often end 154

up with reasonable linguistic units, they still lack 155

access to character-level information. So there have 156
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been a number of efforts to imbue word or sub-157

word tokenization schemes with character-level in-158

formation (Mielke and Eisner, 2019; Kim et al.,159

2016; Dos Santos and Zadrozny, 2014; Bojanowski160

et al., 2017; Li et al., 2018; Ma and Hovy, 2016;161

Aguilar et al., 2020; El Boukkouri, 2020; Clark162

et al., 2021). But, if models trained on subword163

tokens implicitly learn character-level information164

during training, there may be less of a need to sup-165

plement them with explicit information.166

To shed new light on these questions, we use167

probing, which is widely used to assess what in-168

formation is contained in PLM embeddings. (Be-169

linkov, 2021; Belinkov and Glass, 2019; Hewitt170

and Manning, 2019; Hupkes et al., 2018). Be-171

cause probing has limitations (Elazar et al., 2021;172

Pimentel et al., 2020; Voita et al., 2021), we use a173

number of control tasks (Hewitt and Liang, 2019)174

and baselines in order to ask what can be recovered175

from embeddings, relative to a control of equal176

expressive power.177

3 Experiment 1: Probing for character178

information179

The main goal of our first experiment is to quan-180

tify the extent to which tokens in PLMs capture181

character-level information and characterize that182

knowledge across a variety of dimensions. We183

train a binary classifier probe that takes as input a184

token’s frozen embeddings from a PLMs to predict185

whether a particular character of the English alpha-186

bet is contained in that token. That is, if successful,187

the probe will predict that cool contains an "o" but188

"cat" does not. We also consider a task in which189

the probe must say whether one token (e.g., "coo")190

is a substring of another token (e.g., "cool"). We191

examine the probe’s success as a function of the192

character being probed for, length of the token be-193

ing probed, position of the character in the token,194

and frequency of the token.195

3.1 Method196

We consider the static non-contextualized embed-197

dings of PLMs: GPT-J (Wang and Komatsuzaki,198

2021), GPT-2 (Radford et al., 2019), RoBERTa199

(Liu et al., 2019), BERT (cased and uncased; De-200

vlin et al., 2019), as well as GloVe embeddings201

(Pennington et al., 2014) and Language-only em-202

beddings of the multimodal LXMERT (Tan and203

Bansal, 2019). See Appendix B for model details.204

Each language model has its own vocabulary,205

consisting of tokens. We consider only the tokens 206

consisting entirely of characters in the standard En- 207

glish alphabet (a-z), along with the special charac- 208

ters that accompany these tokens, such as preceding 209

whitespace (denoting by Ġ in the RoBERTa and 210

GPT-family) or symbols denoting continuations of 211

preceeding word (‘##’ in BERT family). 212

Our probing task trains classifiers to detect 213

the presence or absence of each of the 26 En- 214

glish alphabets α over each token wi from the 215

filtered-vocabulary V . Thus, a separate dataset 216

for each alphabet α is constructed over V as D′
α = 217

{(w1, y1), (w2, y2), . . . (wd, yd)} where the binary 218

label yi denotes whether α occurs at least once in 219

wi ∈ V . From these data-points in D′
α we create a 220

balanced dataset Dα with equal number of positive 221

and negative labels by undersampling the (wi, yi) 222

points with yi as the negative label (i.e., when prob- 223

ing for the presence of the character "z", half the 224

tokens will contain "z" even though most tokens 225

in general do not). We then split Dα into training 226

and test splits in a roughly 80-20 ratio, while en- 227

suring that tokens with the same lemma appears in 228

the same split. This is the most challenging split, 229

as it prevents the probe from leveraging wordform 230

similarity across words with the same lemma in 231

both training and test (Itzhak and Levy, 2021). 232

We train our probe over the static non-trainable 233

embeddings E of these PLMs. For a data-point 234

(wi, yi), the probe receives as input a token wi. 235

The probe predicts logits ŷi by an MLP: ŷi = 236

σ(MLPα(E
Txi)). In the control task, we consider 237

randomly-initialized non-trainable embeddings in- 238

stead of the trained embeddings from the PLMs. 239

Substring Sub-experiment As an additional sub- 240

experiment for assessing the generalizability of 241

the task, for the best-performing model (GPT-J), 242

we consider a related substring classification task. 243

Specifically, we probe GPT-J’s embedding to detect 244

whether a token u is a substring of the token v. That 245

is, can it detect that the token "ome" is a substring 246

of "some"? For this condition, we set up the experi- 247

ment as before but, rather than attempt to detect the 248

presence or absence of a character, we seek to clas- 249

sify whether a particular token ui is a substring of 250

another token vi. To create positive examples, we 251

consider all substrings of vi that are in the overall 252

vocabulary V . For each positive example, we sam- 253

ple a token from V of equal character length as ui 254

which is not a substring of vi in order to create neg- 255

ative examples. This creates a balanced set, from 256
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Figure 2: For selected models, the average F1-score (y-
axis) for how well a character (x-axis) can be classified
on our main probing task. The control (random embed-
dings) appears in red, the syntax baseline in green, and
the 4 models shown in grayscale, with the largest and
most recent model (GPT-J) in the darkest color.

which we sample an 80-20 train-test split, ensuring257

that the superset token vi always occur in the same258

split. We train the probe as before, with the input259

as the concatenated embeddings of the two tokens.260

3.2 Results261

Main Character Probing Results Table 1 shows262

the results averaged across 5 train-test splits and263

different seeds, reporting on the Macro-F1 metric264

averaged across all 26 characters. We also observe265

very low variance for the strong performing models,266

as shown in the Appendix (Table 6).267

For our main character probing experiment,268

all models perform substantially better than their269

matched controls (which hover around 50, which270

is chance level), suggesting that word piece to-271

kens from PLMs store information about their con-272

stituent characters in their embeddings. GPT-J is273

the best-performing model (with F1 of 93.70 and274

94.35), followed by RoBERTa and GPT-2, then the275

BERT models. All the transformer models outper-276

form the GloVe fixed embedding model. Clearly,277

the performance of the models on this probing278

task correlates with performance on other language279

tasks, such that larger models trained on larger cor-280

pora do better.1281

There are also other factors that may contribute282

to difference in performance such as the nature of283

the pre-training task and the tokenizer. The lat-284

1Since performance varies considerably based on the
model used, we consider this work an additional data point
for the argument that one should consider multiple models in
interpretability work (Bowman, 2021).

Model type PLM Control
Main Probing Experiment
GPT-J 93.70 48.36
GPT-2 84.25 52.31

RoBERTa 86.41 47.33
BERT-Cased 78.50 47.08

BERT-Uncased 77.48 49.37
GloVe 300D 67.57 49.57
GloVe 100D 66.04 50.33
LXMERT 62.4 53.92
Substring Sub-Experiment
GPT-J 86.56 70.03

Table 1: Results for the main probing experiment.

ter is evidence from the considerable performance 285

gap between RoBERTa and BERT, which may be 286

partially attributed to RoBERTa using GPT’s re- 287

versible tokenizer, leading to more variability de- 288

pending on preceeding whitespace. (See §5 for the 289

potential effect of tokenizer variability on perfor- 290

mance.) 291

Substring Experiment Performance on the Sub- 292

string Experiment is also far above chance, with 293

an average F1 of 86.56, compared to a control F1 294

(on random embeddings) of 70.03 (bottom row in 295

Table 1). Control performance is well above 50 in 296

this case since the data set is created to be balanced 297

such that the superstrings have equal numbers of 298

positive and negative examples. But there are still 299

baseline differences in how often a token occurs 300

as a substring, so the model can learn that cer- 301

tain substrings like "en" are more common than 302

substrings like "emies". We take the performance 303

on the Substring Experiment as evidence that the 304

model can make use of character information to do 305

more complicated substring tasks than just charac- 306

ter identification. 307

3.3 Breakdown of results 308

Next, we consider a number possibilities for how 309

character-level information gets into these embed- 310

dings and conduct analyses intended to understand 311

the nature of the information learned and how it 312

gets there. 313

Is the first letter learned best because of alpha- 314

betization? One possibility is that, because the 315

training data likely contains many alphabetical lists 316

and other kinds of word lists (e.g., lists of words 317

starting with "z"), the model learns a co-occurrence 318

relationship between words that start with the same 319

character. We would predict that this would cause 320

stronger performance when the probed character 321
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occurs at the beginning of the word. To that end,322

we examine how the model’s performance varies323

as a function of where in the token the target char-324

acter is (top panel in Figure 3). While there is325

indeed a significant negative relationship between326

word position and recall as measured by a linear327

regression (β = -.01, p<.001), the slope is relatively328

small. While recall on the first letter in a token329

is high (95.2), it is not an outlier: performance is330

only somewhat higher than recall for the second331

character (94.5). Moreover, performance is above332

chance even when the target character appears 10333

or more characters deep in a token. Therefore, we334

do not believe the effect is driven only by word335

beginnings, although they likely play a role.336

Is it only frequent words that the probe gets337

right? Next, we consider whether performance338

varies as a function of the frequency of the token339

(middle panel in Figure 3). One possibility could340

be that character information is memorized only341

in high-frequency tokens like “the", which occur342

often enough that at least some of the time very343

frequent token will occur broken down into char-344

acters (e.g., "the" appearing in the context of "t h345

e"), and that low-frequency tokens will perform346

worse. This does not appear to be the case and, in347

fact, there is, if anything, a negative relationship348

(β = −.013, p=.05) between binned log frequency349

and performance, such that less frequent tokens are350

easier to attain character information from.351

Is it easier to get long or short words right?352

The bottom panel of Figure 2 shows F1-score as353

a function of the length of the token. Using the354

GPT-J embeddings, it is easier to classify charac-355

ters in short tokens, as compared to longer tokens.356

This may be a function of the nature of the task357

since there is, in some sense, less information to be358

represented for a short token like "be" for the pur-359

poses of the task (just that it contains a "b" and it360

contains an "e"), whereas a long token would have361

to represent information about more characters.362

Which characters are learned best? Part of363

what makes the success of the probe is that word364

embeddings represent word co-occurrence infor-365

mation, which is typically conceived of as syn-366

tactic and semantic in nature (Erk, 2016) and so367

should, because of the arbitrariness of the rela-368

tionship between forms and meanings (Saussure,369

1916; Hockett, 1960), mean there is no relation-370

ship between individual characters and informa-371

Figure 3: Performance on the GPT-J probe, relative to a
control probe, as a function of the character’s position in
the token (top), the log frequency of the token (middle),
and the length of the token (bottom). The size of the
point reflects the amount of data.

tion learned by embeddings. But this arbitrari- 372

ness breaks down, in that there are statistically de- 373

tectable non-arbitrary form-meaning relationships 374

in language (Blasi et al., 2016; Monaghan et al., 375

2014; Tamariz, 2008; Dautriche et al., 2017; Pi- 376

mentel et al., 2019), such as the fact that fl- words 377

in English tend to be about movement (e.g., flap, fly, 378

flutter, flicker; Marchand, 1959; Bergen, 2004) and 379

that different parts of speech have different phono- 380

logical patterns (Dautriche et al., 2015; Kelly, 1992; 381

Monaghan et al., 2005). An even larger source of 382

shared information between characters and syn- 383

tactic/semantic information is that morphological 384

forms can be cues to word categories: for instance, 385

most plural nouns end with "s" and many adverbs 386

end in "ly". This leads to changes in character-level 387

distributions: while roughly 12% of words in Amer- 388

ican English contain "y", 85% of adverbs do (as 389

estimated using data from Brysbaert et al., 2012). 390

Thus, a model with access to part of speech infor- 391

mation could do well by guessing that all adverbs 392

contain "y". 393

So one possibility is that the probe’s perfor- 394

mance is largely driven by characters that corre- 395

late with syntactic and semantic features. If this 396

were the case, we might expect some characters to 397

show much better performance than others. Figure 398
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Measure SpaCy GPT-J Control
Aggregate Performance

F1 52.34 61.24 49.68
Best performing characters

s 64.60 66.82 40.32
y 61.96 64.89 48.68
e 62.05 62.32 47.27
Worst performing characters

b 48.92 55.13 48.25
m 48.13 55.61 46.11
q 43.79 53.54 49.28

Table 2: The best and worst performing characters from
Experiment 2 on the SpaCy syntactic baseline, the GPT-
J syntactic baseline, and the Control.

2 shows the F1-Macro as a function of character.399

For GPT-J, the best-performing model, there are400

some clear trends. For instance, it is easiest to clas-401

sify rare letters: J, W, X, Q, Z all have F1-scores402

over 93. And it is hardest for the probe to classify403

vowels: U, A, O, and E are the lowest perform-404

ing characters between 83 and 86. But even those405

lower-performing characters do far better than the406

chance baseline (at about 50 F1 score)407

To further explore this, we conducted a quali-408

tative analysis of the probe’s successes and fail-409

ures. Consider the probe for classifying the pres-410

ence/absence of "y": the model assigns highest411

confidence to the following 4 tokens: "lly", " selec-412

tively", " subtly", " mechanically". These all have413

"ly" endings, which in English is typically associ-414

ated with adverbs. Similarly, the top performing415

tokens for the "s" classifier all end with a morpho-416

logically meaningful "-s" suffix: " socialists", "417

stocks"," suggestions".418

This analysis suggests that the strong classifier419

performance could be explained by the model learn-420

ing systematic relationships between certain char-421

acters and syntactically or semantically meaningful422

morphology. Is syntactic information the window423

through which character-level information enters424

PLMs? To address that question, our next exper-425

iment focuses on a syntactic baseline, to see how426

well character-level information can be predicted427

based on syntactic features.428

4 Experiment 2: The effect of syntactic429

information430

In this experiment, we focus on building probes431

for the same task as in Experiment 1 (identifying432

whether a particular character occurs in a particular433

token). But, rather than using the token embed-434

dings from a large language model as input, we435

attempt to classify the presence/absence of charac- 436

ters in a token based on syntactic information. 437

Our first model (the SpaCy model) uses SpaCy 438

(Honnibal and Montani, 2017) to obtain distribu- 439

tions over features for each token in the vocabulary: 440

Fine-Grained Part of Speech tag (PoS; e.g., for 441

"Jane", NNP for a proper noun), Coarse-Grained 442

Part of Speech tag (Coarse-grained PoS; e.g., for 443

"Jane", PROPN for proper noun), and a Named 444

Entity Recognition tag (NER; e.g., for "Jane", PER- 445

SON for a personal name). We use these features 446

to construct a syntactic vector for each token. 447

Because SpaCy is built to operate over words, 448

not tokens, we also construct custom syntactic base- 449

lines that can tag subwords, as opposed to tokens. 450

The performance of these probes will serve as 451

a baseline for ascertaining how much character- 452

level information can be learned by these features 453

alone, without a full language model. If they can 454

perform just as well as the full GPT-J embeddings, 455

that would suggest that morphosyntactic informa- 456

tion (of the sort that we already know is learned 457

by PLMs during pretraining) is sufficient for the 458

performance on the probing task. 459

The method is the same as in Experiment 1, 460

where the goal is to predict the presence or absence 461

of a character α in a token, except that instead of 462

using the token’s model embeddings as input, we 463

instead use syntactic feature vectors (obtained ei- 464

ther from SpaCy or a custom tagger) as input. We 465

describe these syntactic vectors below. 466

Syntactic baselines The SpaCy model has 3 467

features for each token: NER, PoS, and Coarse- 468

Grained PoS tags. The resultant features are dis- 469

crete one-hot feature vectors over labels. 470

The custom syntactic tagger, which solves the 471

problem that SpaCy tags words, not subword to- 472

kens, takes a (subword) token’s model embedding 473

as input and outputs a vector of probabilities over 474

part of speech and named entity categories. Here, 475

we describe results for our custom GPT-J Tagger, 476

trained using GPT-J model embeddings, since GPT- 477

J is the best-performing of our models for our main 478

task. See Appendix C for descriptions and the re- 479

sults for 2 additional BERT-based custom taggers 480

that we built. 481

To build our custom GPT-J-Tagger, we train an 482

MLP model to predict PoS and NER label based 483

on GPT-J’s static embedding layer for each token. 484

The tagger is trained on the CoNLL 2003 dataset’s 485

train and valid splits (Sang and De Meulder, 2003), 486
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which contains part of speech and named entity487

information. Unlike the SpaCy tagger, our cus-488

tom GPT-J-Tagger outputs a probability distribu-489

tion over categories. We use this distribution over490

labels as input, rather than a one-hot vector. In the491

Appendix, Table 10 shows the performance of the492

tagger’s performance qua tagger.493

Probing for characters using syntactic baselines494

We run the character probing experiment as be-495

fore. But, rather than using the model embeddings,496

we use the syntactic feature vectors as the target497

of our probe. Table 2 shows the results of these498

experiments. Using the syntactic baselines leads499

to substantially improved performance over con-500

trol tasks, and the GPT-J-Tagger does better than501

the SpaCy tagger. We hypothesize that this is be-502

cause the custom GPT-J-Tagger is better suited to503

handling subwords, and because it enables us to504

use label distribution rather than one-hot vectors.505

Zooming in on the performance over individual506

characters, we observe that some English alphabets507

consistently perform much better when using the508

syntactic features, than the control task. As pre-509

dicted, these are precisely the characters that are510

highly correlated with particular parts of speech.511

The best performing characters are: "s" (associ-512

ated with plural nouns and third-person singular513

verbs) and "y" (associated with adjective and ad-514

verb endings). Thus, the syntactic baselines seem515

to be capturing the information that they were in-516

tended to capture. But their performance still fell517

far below the best performing PLMs, suggesting518

that the large models are capturing more than just519

the information captured by the syntactic models.520

Moreover, as can be seen in Figure 2, the syntax521

baseline shows a sharp peak for morphologically522

informative characters like "s", but this pattern is523

much weaker in GPT-J (which shows only a slight524

performance increase for "s"). Therefore, we do525

not think syntactic information can explain all the526

character information learned by PLMs. In the next527

section, we consider another possibility: variability528

of tokenization, the focus of the next section.529

5 Experiment 3: Tokenization variability530

Here, we posit that the variability of tokenization is531

another avenue by which character-level informa-532

tion could be learned by models. We first quantify533

this variability and then run an experiment using534

CBOW Word Embeddings (Mikolov et al., 2013)535

showing how increasing the variability in tokeniza-536

Word Tokenizations
"dictionary" "d + ictionary"
" dictionary" " dictionary"
"dictionaries" "d + iction + aries"
" dictionaries" " diction + aries"
"dicionary" "d + icion + ary"

Table 3: Some GPT tokenizations for "dictionary".

tion can lead to more character information being 537

learned. 538

Subword tokenization like the one used by GPT 539

models can cause the same lemma to have very dif- 540

ferent tokenizations, depending on its form and/or 541

its spelling. See Table 3 for possible tokeniza- 542

tions of "dictionary" and related forms, including 543

a misspelling (bottom row). This is a subset of the 544

possible misspellings, variants, and morphologi- 545

cal forms of the word. But the listed forms alone 546

generate 8 unique tokens. 547

It would be useful for the model to learn a rela- 548

tionship between all these tokens, since they repre- 549

sent the same lemma. We posit that the desirability 550

of learning this mapping is a mechanism by which 551

character information could be learned, by induc- 552

ing an objective to map between atomic tokens like 553

‘ dictionary’ and the various substring tokens that 554

can arise. While each of these mappings could 555

be learned individually, learning character-level 556

spelling information offers a more general solu- 557

tion to the problem, such that even a completely 558

tokenization could be interpreted by composing 559

characters. 560

For this to be plausible, though, variable tok- 561

enizations like this must be frequent enough for 562

it to matter. In Appendix D, we use heuristics to 563

identify different forms in which a word appears 564

and conduct a series of back-of-the-envelope cal- 565

culations to determine how many different unique 566

tokenizations are expected for a long word (8+ char- 567

acters) like dictionary, in all its variant forms and 568

misspellings in a sample of the Pile corpus (we used 569

1/6 of the corpus as a sample; Gao et al., 2020). We 570

found that, on average, we should expect over 200 571

different tokenizations for a word like "dictionary", 572

many which have no tokens in common. 573

This result leads to a prediction: increasing 574

the variability of tokenization should increase 575

the amount of character-level information learned. 576

To test this, we train models using tokenization 577

schemes with different levels of variability and 578

then test how much character-level information 579

they learn, using our probing task. 580
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Tokenization ρ Embedding Control
Word - 60.55 47.12
GPT-J - 63.23 47.51
GPT-J 0.05 66.00 47.23
GPT-J 0.1 65.64 46.72
GPT-J 0.2 64.23 47.01
GPT-J 0.5 62.33 46.47

Table 4: Average F1 scores for probing results, as a
function of change in tokenization variability

Because the overall goal of our paper is to char-581

acterize and explain the nature of character-level582

information learned, and not to use it to build a583

better model, we conduct a proof-of-concept exper-584

iment using CBOW Word Embeddings (Mikolov585

et al., 2013) on a portion of the Pile corpus with586

1.1B characters, as opposed to training a large587

transformer model from scratch varying tokeniza-588

tion schemes. We train 6 CBOW models from589

scratch, each with a different tokenization scheme.590

As baselines, we consider vanilla rule-based word-591

tokenization (the CBOW default, labeled "Word"592

in Table 4) and GPT-J’s default word piece tok-593

enization scheme. Comparing these two baselines594

against each other lets us compare the effect of595

word tokenization vs. subword tokenization on596

character information. But our key manipulation is597

to consider variations of GPT-J’s tokenizer in which598

we systematically increase tokenization variabil-599

ity. In pre-processing the word-tokenized corpus600

for input, for each word token wi, with probability601

(1−ρ), we tokenize it using the standard GPT-J tok-602

enizer. Under the standard tokenizer, " schematics"603

becomes " sche + mat + "ics". With probability ρ,604

however, we tokenize wi using a random tokeniza-605

tion that consists of alternative valid tokens from606

GPT-J. So, " schematics" could become " schema +607

tics" or " schematic + s" (but not " schemati + cs"608

since " schemati" is not a valid GPT token). We609

vary ρ from 0.05 to 0.5. See Appendix D for more610

details on this procedure. The result is a series of611

tokenized corpora, which have more variable tok-612

enization than the vanilla GPT-J-tokenized corpus.613

We train CBOW models, separately for each614

of these corpora. Table 4 shows the results of615

these experiments on our probing task (using the616

same method as in Experiment 1). As expected,617

probes on the subword tokenization schemes re-618

veal they learn more information about characters619

than the default word-level tokenizer. Most impor-620

tantly, upon increasing the variability on GPT-J’s621

tokenization scheme, the performance of the probe622

increases, peaking at ρ = 0.05 and ρ = 0.1. There- 623

after, the performance decreases with variability, 624

suggesting that increasing variability leads to in- 625

creased character knowledge but only up to a point, 626

like because there is a tradeoff: since the corpus 627

size for the toy experiment is small, having very 628

high variability leads to the model seeing fewer 629

instances of each token. 630

While the magnitude of these differences are 631

relatively small, they are consistent across ran- 632

dom seeds and train-test splits. Thus, we believe 633

that these results offer proof of concept that (a) 634

the variability of tokenization affects how much 635

character information is learned by PLMs and (b) 636

that increasing tokenization variability could be a 637

means by which PLMs could be built to learn more 638

character-level information. 639

6 Discussion and Conclusion 640

Overall, our results suggest a possible explanation 641

for why efforts to infuse subword models with 642

character-level information may not be necessary: 643

the information already gets learned during train- 644

ing through a variety of methods. Insofar as these 645

methods (e.g., tokenizer variability) can be manip- 646

ulated in model construction, this knowledge could 647

be used to build models that perform better at tasks 648

dependent on such knowledge. In future work, we 649

believe it will be important to test the generalizabil- 650

ity of these results in languages other than English. 651

Given the particular importance of tokenization in 652

multilingual models (Rust et al., 2021; Singh et al., 653

2019), it would be fruitful to consider these results 654

in multilingual settings. 655

More generally, while the linguistic capabilities 656

of PLMs are much studied (Rogers et al., 2020; 657

Bommasani et al., 2021), the question whether 658

PLMs learn the constituent characters of tokens 659

is of a different nature in that it depends on learn- 660

ing a property of language (spelling) that is not 661

explicitly tied to meaning. There is no a priori 662

reason "dog" is spelled "D-O-G", and, in a sense, 663

the spelling of the word does not matter. But, in 664

another sense, it does matter: humans routinely use 665

language in creative and character-dependent ways: 666

e.g., alphabetizing text, scrambling letters to create 667

codes, and solving crossword puzzles. Understand- 668

ing whether the building blocks of this knowledge 669

can emerge during self-supervised training on a 670

word prediction task could be of interest not just in 671

NLP, but in the cognitive sciences. 672
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7 Ethics and Broader Impacts673

This work consists of probing experiments and in-674

terpretability analyses of PLMs, and the risks and675

ethical considerations are largely those that affect676

any work with large PLMs (e.g., energy costs; see677

Bommasani et al., 2021, for an overview of risks678

and tradeoffs). The intended use of our code is for679

academic research. We consider probing publicly680

available PLMs, which are made publicly avail-681

able in part for research purposes, to be within the682

intended use of PLMs.683
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Appendix A Code details1021

We release our code anonymously at https:1022

//github.com/Anonymous-ARR/code under MIT1023

License.1024

The models weights, data and other de-1025

pendencies required for experiment are1026

at https://github.com/Anonymous-ARR/1027

Releases/releases.1028

The intended use of our code is for academic1029

research. We consider probing publicly available1030

PLMs, which are made available for research as1031

well as end use cases, to be within the intended use1032

of PLMs.1033

Appendix B Probing for Character1034

Information1035

We use off-the-shelf APIs for lemmatization and1036

WordNet from NLTK (Bird et al., 2009) (Apache1037

License 2.0). Our implementation uses PyTorch1038

(Paszke et al., 2019) (BSD License), HuggingFace1039

(Wolf et al., 2019) (Apache License 2.0) and cus-1040

tom APIs for GPT-J’s embedding.1041

The probes for each MLP are trained separately1042

starting with random initialization weights. We1043

train the probe via a binary classification task1044

via backpropagation, using the Adam optimizer1045

(Kingma and Ba, 2014) with betas of 0.9 & 0.9991046

and epsilon of 1e-08 without weight decay, over1047

the standard Binary Cross Entropy loss across the1048

predicted logits ŷi and ground truth logits yi.1049

B.1 PLMs considered1050

Details of the PLMs used along with their model-1051

card on Huggingface:1052

Case-Sensitive
Model type PLM Control

GPT-J 94.35 52.76
GPT-2 84.69 51.05

RoBERTa 83.87 49.00
BERT-Cased 78.47 45.35

BERT-Uncased 77.48 49.37
GloVe 300D 69.40 49.40
GloVe 100D 61.56 49.55
LXMERT 60.30 49.61

Table 5: Results for the main probing experiment,
across models.

• GPT-J: We used the standard GPT-J with 6 1053

Billion parameters and its reversible Byte-Pair 1054

encoding based subword tokenizer. We ex- 1055

tracted the embeddings and have released it 1056

separately. Model Card: ‘EleutherAI/gpt-j- 1057

6B’ under Apache 2.0 License. 1058

• GPT-2: We consider the base model for GPT- 1059

2 with 124 Million parameters. The tokenizer 1060

used in this model is the exact same as the 1061

one used in GPT-3 and is also a subword tok- 1062

enizer based on reversible Byte-Pair encoding. 1063

Model Card: ‘gpt2’ under Modified MIT Li- 1064

cense. 1065

• RoBERTa: We again use the Base model for 1066

fairer comparison to GPT-2 model with 125 1067

Million parameters. This model has partially 1068

reversible Byte-Pair Encoding based on GPT- 1069

2’s byte-pair tokenizer but with additional to- 1070

kens for a BERT-like MLM discriminative 1071

pre-training. Model Card: ‘roberta-base’ un- 1072

der MIT License 1073

• BERT: The BERT-base models have roughly 1074

110 Million parameters. Both the Uncased 1075

and Cased versions of this model are consid- 1076

ered with their Word-Piece tokenizers. For 1077

this tokenizer, we also consider the charac- 1078

ter ‘##’ while filtering out vocabulary, as it 1079

denotes the token continues on the preceed- 1080

ing word. Model Card: ‘bert-base-uncased’, 1081

‘bert-base-cased’ under Apache 2.0 License 1082

• GloVe: We experiment with 100 and 300 dim 1083

version of 400K-Vocab GloVe trained on 6B 1084

tokens. We consider the 40k most frequent 1085

tokens in GloVe, comparable to the vocab- 1086

ulary sizes of the other models. GloVe ver- 1087

sion used: ‘Wikipedia 2014 + Gigaword 5 1088

(6B tokens, 400K vocab, uncased, 50d, 100d, 1089
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Case-insensitive Case-Insensitive
Model PLM Control PLM Control
GPT-J 0.83 3.12 1.39 2.27
GPT-2 2.01 3.09 2.21 2.75

RoBERTa 2.27 3.13 2.79 2.46
BERT-Cased 2.93 7.46 2.77 5.67

BERT-Uncased 3.32 4.33 3.32 4.33

Table 6: Standard Deviation in our probing experiment
1 for the key models considered.

Property Statistics
Dataset Tokenizer’s Vocab for each model
Data-filtered Tokens having only letters (a-z,A-Z)

GPTs, RoBERTa: Allow preceding Ġ
BERT: Allow preceding ‘##’

Train-Test split 80-20
Preprocessing None
Output labels 26 tasks (each with binary label)
Link Model Card & links in §B.1

Table 7: Dataset Checklist for experiment 1.

200d, & 300d vectors, 822 MB download):1090

glove.6B.zip’ 21091

• LXMERT: We use the uncased version of1092

LXMERT-base model and similar to the1093

BERT model, filtering out also for ‘##’ preced-1094

ing symbols. Model Card: ‘unc-nlp/lxmert-1095

base-uncased’ under1096

B.2 Hyperparameter and other Details1097

Each probe is trained for 5 epochs, with 128 batch-1098

size. The Learning rate is tuned over averaged1099

Macro-F1 in the grid {1e− 5, 3e− 5, 5e− 5, 1e−1100

4, 3e − 4, 1e − 3, 3e − 3, 1e − 2, 3e − 2}. We1101

trained the probe on the best hyperparameter set-1102

tings across 5 different train-test splits and seeds.1103

Table 8 shows these best learning rate and the num-1104

ber of parameter (and frozen-parameters) in the1105

probe. For all the control embedding, we assume1106

the same dimension as the largest model (4096)1107

and considered a maximum vocab of 100k, even1108

though only the first few thousands might be used.1109

These experiments take less than 20 minutes for1110

each run requiring less than 12 GB of GPU mem-1111

ory and were run on a mix of NVidia Tesla K80,1112

GTX 1080 Ti, P100, V100 GPUs with Dell R7401113

and Intel Xeon CPUs.1114

Table 5 shows the result of the probe in a case-1115

sensitive setting. The case-insensitive probe treats1116

both "Cat" and "cat" as a hit for both "c". The1117

case-sensitive probe treats only "cat" (not "Cat")1118

2Accessible at nlp.stanford.edu/projects/glove/, Apache
v2.0 License

GPT's
Vocab

Ġinterviewer

##erinterview

Soft - Syntax Labels

MLPs

Probes

Soft
Embedding

Lookup

... ...

...

a b r z

...

Subword Taggers

n

JJ VB NN DT

Concatenate

Bert Tokenizer

Bert

JJ VB NN DT JJ VB NN DT
...

26
...

Figure 4: Experiment 2: syntax baselines with BERT-
sentence and BERT-token custom taggers.

as a hit for "c". Note that performance is the same 1119

for BERT-Uncased since it does not distinguish 1120

between these conditions. 1121

Appendix C Syntax Baseline for 1122

Character information 1123

C.1 Custom syntax taggers 1124

First we consider an off-the-shelf SpaCy model 1125

with its 3 features for each token: NER, PoS, and 1126

Coarse-Grained PoS tags. Before running this 1127

model, we remove the preceding whitespace char- 1128

acters in the token, if present. The resultant features 1129

are discrete one-hot feature vector over labels. The 1130

SpaCy tagger is not perfectly suited to our task 1131

since it operates at the word level, whereas we are 1132

concerned with obtaining a subword token’s em- 1133

beddings. To solve that problem, we also built 1134

3 custom taggers for obtaining PoS and NER la- 1135

bels on subword tokens. These tagger takes (a 1136

subword) token’s model embedding as input and 1137

outputs a vector of probabilities over part of speech 1138

and named entity categories. 1139

To build our custom GPT-J-Tagger, we train an 1140

MLP to predict PoS and NER label based on GPT- 1141

J’s static embedding layer for each token. The 1142

tagger is trained on the CoNLL 2003 dataset’s 1143

train and valid splits (Sang and De Meulder, 2003), 1144

which contains part of speech and named entity 1145

information. Unlike the SpaCy tagger, our cus- 1146

tom GPT-J-Tagger outputs a probability distribu- 1147
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Case-insensitive Case-Sensitive
Model Lemma Control Lemma Control
Probe LR # Params LR # Params LR # Params LR # Params
GPT-J 1e-4 240M (206M) 1e-4 443M (410M) 1e-4 240M (206M) 3e-4 443M (410M)
GPT2 3e-4 40M (39M) 1e-4 443M (410M) 3e-4 40M (39M) 3e-4 443M (410M)

RoBERTa 3e-4 40M (39M) 1e-4 443M (410M) 1e-3 40M (39M) 1e-2 443M (410M)
BERT-cased 1e-3 23M (22M) 3e-3 443M (410M) 1e-3 23M (22M) 5e-5 443M (410M)

BERT-uncased 3e-3 25M (23M) 3e-4 443M (410M) 3e-4 25M (23M) 1e-4 443M (410M)
LXMERT 1e-4 24M (23M) 3e-4 443M (410M) 3e-4 24M (23M) 1e-4 443M (410M)

GloVe 100D 1e-4 4.02M (4.00M) 3e-4 12.2M (12.0M) 3e-4 4.02M (4.00M) 3e-4 12.2M (12.0M)
GloVe 300D 3e-4 12.2M (12.0M) 1e-4 12.2M (12.0M) 3e-4 12.2M (12.0M) 3e-5 12.2M (12.0M)

Table 8: Experiment 1 Hyperparameters.

Property Statistics
Train Sentences 14986
Train Tokens 219553
Valid Sentences 3465
Valid Tokens 55043
Test Sentences 3683
Test Tokens 50349
NER Tags 5
PoS Tags 45
Preprocessing None
Link github: davidsbatista/NER-datasets

Table 9: Dataset Checklist for training POS/NER
CoNLL set.

tion over categories so we can use this distribution1148

over labels as the vector of interest, rather than a1149

one-hot vector.1150

Table 10 show the performance of the tagger’s1151

performance qua tagger. Table 9 shows the Dataset1152

Checklist for this experiment. To build the BERT1153

sequence-labeling tagger, we fine-tuned a BERT se-1154

quence labeling model for the PoS and NER tasks,1155

in order to output a label for each (sub-word) token1156

in a sentence. When extracting syntactic features1157

for this model, we first do the same pre-processing1158

of removing the special preceeding whitespace of1159

GPT’s tokens as SpaCy before input into the BERT1160

model. Since BERT’s tokenizer could have more1161

than one token for a single GPT-J’s token, we con-1162

sider average of the logits as the pre-softmaxed1163

feature vector.1164

In addition to the BERT sentence-level tagger,1165

we consider a BERT token classifier model fine-1166

tuned for NER and PoS at token level rather than1167

at sequence (sentence level) in the preceding one1168

with same pre-processing. This token-level model1169

does not leverage context to deduce the label, and is1170

closer to how we use this model later to get features1171

for predicting NER/PoS features.1172

C.2 Results and Hyperparameters 1173

We use off-the-shelf APIs for lemmatization and 1174

WordNet from NLTK. Our implementation uses 1175

PyTorch (Paszke et al., 2019), HuggingFace (Wolf 1176

et al., 2019) and custom APIs (now released) for 1177

GPT-J’s embedding. The hyperparameter tuning 1178

was done on the dev set for only the learning rate 1179

in the grid {1e− 5, 3e− 5, 1e− 4} for BERT and 1180

{1e−5, 3e−5, 5e−5, 1e−4, 3e−4, 1e−3, 3e− 1181

3, 1e − 2, 3e − 2} for GPT-J. Our MLP model is 1182

3-layered with SELU and Tanh activation and 0.1 1183

Dropout before the last layer. Our BERT-Model 1184

is initialized with ‘bert-base-cased‘ from Hugging- 1185

face with default values of hyperparameters. Our 1186

implementation was done using PyTorch and op- 1187

timized via Adam with betas of 0.9 & 0.999 and 1188

epsilon of 1e-08 without weight decay over the 1189

standard Cross Entropy loss. We set the batch size 1190

to 32 sentences for BERT and 64 for GPT-J. All 1191

the experiments can be done within 16GB of GPU 1192

memory and no run individually takes more than 1193

2 hours. We release these models along with our 1194

codebase with instructions to run them. 1195

Table 10 shows the performance of these NER 1196

and PoS models. As expected, the BERT-sentence 1197

model performs the best on both the tasks as it 1198

leverages the context while tagging. Whereas, GPT- 1199

J slighlty outperfoms BERT-token on both the tasks. 1200

Note that these performance are not comparable as 1201

their tokenization differ and only one of the model 1202

leverages context to predict NER and PoS tag. 1203

C.3 Method 1204

Assume we have m syntactic features. Consider 1205

the tokenizer Vocabulary V (with only alphabetic 1206

tokens) and the Dα datapoint pairs for each letter 1207

α of the lowercased English alphabets. For each 1208

token-label pair (wi, yi), we obtain the m syntactic 1209

features of the word {x(1)i , x
(2)
i . . . x

(m)
i } using the 1210

trained models to tag the features. 1211
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Model Type # Epochs Batch Size LR Dev F1Wtd Dev F1Macro Test F1Wtd Test F1Macro

BERT-sentence (PoS) 10 32 1e-5 98.17 94.80 93.42 87.40
BERT-token (PoS) 10 32 1e-5 76.42 56.75 77.24 56.74
GPT-J MLP (PoS) 20 64 1e-4 62.90 68.72 60.15 69.14

BERT-sentence (NER) 10 32 1e-5 97.88 93.18 96.02 86.92
BERT-token (NER) 10 32 1e-5 83.50 56.97 81.57 54.88
GPT-J MLP (NER) 20 64 5e-5 85.59 63.56 82.71 57.34

Table 10: Labels from POS/NER labels. LR denotes learning rate

Split Type SpaCy BERT-sentence BERT-token GPT-J Control
Aggregate across 26 characters

F1 52.338 55.008 59.7525 61.2395 49.6772
Best performing ones

s 64.5967 60.7179 70.3299 66.8159 40.3154
y 61.9632 60.3871 67.1591 64.8863 48.6838
e 62.0518 57.7531 64.6152 62.3213 47.2712
t 60.6848 54.3826 64.0681 60.7345 48.4873
p 50.235 55.2361 63.9658 60.5067 46.5612
i 60.8024 56.4055 63.3518 61.6032 42.8155

Worst performing ones
w 45.748 52.7235 57.6919 58.2666 48.6947
q 43.7924 56.5274 57.5407 53.5437 49.2841
k 47.7873 49.3832 57.3084 55.9559 46.2371
o 52.9403 53.6138 56.8312 55.6293 43.5871
b 48.9159 56.739 56.3873 55.1265 48.252
m 48.1349 53.4036 56.2846 55.6094 46.1084

Table 11: Syntax baseline: Probing over syntax label distribution.

Split Type SpaCy BERT-sentence BERT-token GPT-J Control
Aggregate across 26 letters

F1 4.4354 2.9588 3.7989 2.724 4.3973
Best performing ones

s 0.6947 1.2941 0.4853 0.6514 5.5055
y 1.8665 1.6406 0.5697 1.4251 3.2417
e 0.6645 0.8544 0.3245 0.3233 1.8349
t 0.2643 3.4695 0.9129 0.5924 1.7645
p 6.1928 1.1628 0.5669 0.2985 3.7013
i 0.512 1.4392 0.5998 0.4867 5.5685

Worst performing ones
w 4.9794 2.2996 1.9614 1.9536 1.7453
q 2.7071 3.4438 4.5954 4.7932 5.5068
k 2.9332 6.885 2.0885 1.6864 1.6311
o 6.24 1.6009 1.0449 0.463 3.5961
b 4.0455 1.5597 1.4074 2.0701 2.7857
m 7.2995 2.4854 2.1762 1.0948 6.152

Table 12: Standard Deviation of POS/NER labels
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We train a classifier to predict whether a char-1212

acter α is present in the token wi using only its1213

syntactic features. Assume randomly initialized1214

‘trainable’ embeddings {E1, E2 . . . Em} for each1215

of the m syntactic features. We predict the logits1216

ŷi for token wi over each letter α using an MLP1217

classifier over the embeddings:1218

ŷi = σ(MLPα([E
T
1 x

(1)
i ; . . . ; ET

mx
(m)
i ]))

where T , σ, ; denotes transpose, sigmoid func-1219

tion and vector concatenation respectively. Each1220

syntactic feature x
(j)
i is a vector denoting probabil-1221

ity distribution of a token over the corresponding1222

feature labels (including being a one-hot vector),1223

this is crucial because a token (especially subword-1224

token) might have different labels depending on the1225

context.1226

We train different MLPs and Embeddings from1227

scratch for each alphabet α with no shared param-1228

eters across the (case-insensitive) 26 English al-1229

phabets. We train our model for binary classifica-1230

tion via backpropagation over the standard Binary1231

Cross Entropy loss across the predicted logits ŷi1232

and ground truth logits yi.1233

As before, for each character we create a bal-1234

anced dataset consisting of equal number of pos-1235

itive and negative examples, where each exam-1236

ple is made up entirely of either English alpha-1237

bets or whitespace. These are randomly divided1238

into training and test split which keep words with1239

same tokens with same lemmas in the same split.1240

For control task we randomly assign the syntac-1241

tic features for each token. We set the batch size1242

for runs with one-hot vectors as features to 1281243

and to 64 for others, the learning rate is tuned in1244

{1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3, 1e−2}1245

for all the features over the metric of Averaged F1-1246

Scores across the 26 English letters. The best learn-1247

ing rates for SpaCy, BERT-sentence, BERT-token,1248

GPT-J and Control were found to be 1e-3, 1e-3, 3e-1249

3, 1e-4, 1e-2. Using Adam Optimizer we train each1250

of the 26 models for 5 epochs with betas of 0.91251

& 0.999 and epsilon of 1e-8. Our implementation1252

is done using PyTorch and Huggingface. Finally1253

for the best hyperparameter, we perform 5 runs1254

with different train/test splits and seeds. Our MLP1255

model is 3-layered with SELU and Tanh activation1256

and 0.1 Dropout before the last layer.1257

Tables 11 and 12 show the mean and variance of1258

the results over the 4 taggers and control task. We1259

also show the performance over the best and worst 1260

performing letters. 1261

Appendix D Variability of Tokenization 1262

D.1 Quantifying variability in the Pile Corpus 1263

To quantify the variability in the tokenization of 1264

frequent words in the kind of corpora used to train 1265

these models, we consider 1/6th of the publicly 1266

available Pile Corpus used to train GPT-J ( 250 GB 1267

of text). For our analysis we consider 500 frequent 1268

words of 8+ characters (as measured using Google 1269

Ngrams) since long words are more likely to be the 1270

source of variability. 1271

For each target word, we first case-insensitively 1272

detect each of its occurrence in the sub-corpus. In 1273

order to also account for spelling errors, we used 1274

case-insensitive fuzzy search allowing matches of 1275

substring up to 1 Levenshtein distance away. Over 1276

these occurrences, we discard those where the sub- 1277

string is part of a bigger word, such as some ‘dif- 1278

ferentiation’ for the target word ‘different’ or if the 1279

fuzzy match has whitespaces. 1280

Once we have such occurrences, we want to 1281

obtain the tokenization of the target word in the 1282

context. For this reason, we obtain the adjust the 1283

indices of the possibly-misspelt matched-substring 1284

for our target word till the nearest non-word, this 1285

allows for matches of [somethin’, somethin", some- 1286

thin] all to be considered as the string ‘somethin’. 1287

We also account the factors that leads to differing 1288

tokenization, such as preceeding whitespaces. 1289

Now, for each of the target words, we have a 1290

list of probable tokenization at most 1 Levensthein 1291

distance away. Since two target words such as 1292

‘projection’ and ‘protection’ could themselves be 1293

at 1 Levenshtein distance, these may act as pseudo 1294

matches for each other. So we consider only one 1295

of these two from our target list, leading to 466 1296

word down from 500 words. Now, for each of 1297

these target words, we count the number of possible 1298

unique tokenizations. 1299

For each of these 466 target words, we also ob- 1300

tain a list of words from the WordNet which are 1 1301

Levenshtein distance away. We call this word list 1302

as the pseudo-match list. We also consider the num- 1303

ber of tokenization for each target words, excluding 1304

their pseudo-match list as well as by excluding all 1305

those which are equally (or closer) to any word in 1306

pseudo-match list than the target word. We also 1307

compute the statistics of those with exact matches. 1308

Table 13 shows these statistics for the target 1309
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words. On average, a target word is expected to1310

have 213 different tokenization depending on the1311

context. We observe that while one may expect the1312

number of tokenization to go up with the number1313

of characters in the target word, it doesn’t perfectly1314

increase monotonically. This is because the num-1315

ber of occurrences of the target word, dictates the1316

number of tokenization it will have, and there we1317

see a consistent trend that the number of tokeniza-1318

tion greatly increases with increasing occurrences.1319

It is due to this reason, we expect these number to1320

be even higher, when considering the entire Pile1321

corpus, instead of the subset in our case.1322

We observe three factors contributing to surpris-1323

ingly large number of tokenization. First, it is be-1324

cause of Case-Sensitive tokenization, which leads1325

to upto 6 different tokenization for each of the tar-1326

get words. Second, its the context dependent tok-1327

enization, which increases the expected number of1328

different tokenization to 12.91. Lastly, the remain-1329

der is contributed by the previous two combined1330

with misspellings.1331

Our implementation is sped up using multipro-1332

cessing and fuzzy regex. For this we split the sub-1333

corpus across multiple pieces. These runs takes1334

about 3 days across 40 CPU Cores, 60 GB of RAM1335

and less than 600GB hard disk space. Our experi-1336

ment was only conducted on a portion of the Pile1337

corpus, and the possible tokenizations for each tar-1338

get word is expected to increase with larger corpus1339

size. We report the mean and standard deviation in1340

the number of tokenizations a word has across the1341

portion of the Pile corpus considered. These are1342

also reported as a function of word length and its1343

frequency of occurrence in the corpus.1344

Tables 13 and 14 shows these score. The ‘All1345

matches’ field considers the unique tokenizations1346

of all matched substrings including those at 1 (case1347

and whitespace insensitive) Levensthein distance1348

away. These word at 1 Levensthein distance could1349

be either misspellings or a different English word1350

(for example an occurrence of the word ‘projec-1351

tion’ for target word ‘protection’). The latter of1352

these are identified using the wordnet dictionary1353

and the statistics recalculated and shown in the1354

column ‘Matches except pseudo’. Some of the1355

misspelling contribute to this score could be mis-1356

spelling of either the target word or of one of the1357

other English words at 1 Levensthein distance away1358

(‘prohection’ could be a misspelling of either ‘pro-1359

jection’ or ‘protection’ being at distance 1 from1360

both). Such occurrences are removed and statis- 1361

tics recomputed for the column ‘Matches closer 1362

pseudo’. The column ‘Exact contain’ considers 1363

only those occurrences, which contain the exact tar- 1364

get word (case-insensitively) in the string ignoring 1365

whitespaces. Whereas the ‘Exact match’ does not 1366

consider the occurrences involving a preceeding 1367

whitespace. 1368

Table 15 shows some examples for the variation 1369

in tokenization. 1370

D.2 Algorithm for increasing tokenization 1371

variability 1372

Algorithm 1 A simplified version of subword Tok-
enization with controllable variability
Require: 0 <= ρ <= 1

procedure YOURFUNCTION(sentence)
tokens← List()
words← wordTokenize(sentences)
for each w in words do

u ∼ Uniform[0, 1]
if u < ρ then

V ← GPTJ.V ocab
filter(V, λx.isAlphabetic(x))
Choices← List()
for i in 1, 2 . . . (w.length()− 1) do

if w[:i] ∈ V & w[i:] ∈ V then
push(Choices, w[:i], w[i:])

end if
end for
if ¬isEmpty(Choices) then

s ∼ Choices
tokens←Merge(tokens, s)
continue

end if
end if
s← GPTJ.Tokenize(w)
tokens←Merge(tokens, s)

end for
end procedure
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Measure All Matches Matches except pseudo Matches closer pseudo Exact contain Exact match Num Words
Aggregate 232.90 229.70 213.74 17.91 5.97 466

7 Length words 297.50 271.00 223.50 22.00 6.5 2
8 Length words 332.29 325.68 288.07 25.00 7.89 28
9 Length words 231.48 227.78 206.95 16.94 5.93 190

10 Length words 225.51 222.58 209.53 17.97 5.87 127
11 Length words 213.28 211.02 202.97 17.88 5.85 61
12 Length words 224.14 223.54 218.64 18.25 5.79 28
13 Length words 218.14 217.00 214.76 16.57 5.19 21
14 Length words 238.33 238.33 238.33 16.67 5.00 9

exp(12) occurrence 88.70 86.67 82.11 10.33 5.90 27
exp(13) occurrence 155.78 153.87 146.55 13.61 5.15 74
exp(14) occurrence 210.36 207.51 195.74 16.70 5.75 174
exp(15) occurrence 278.88 275.00 251.69 19.91 5.96 139
exp(16) occurrence 370.02 365.04 336.48 26.62 8.56 52

Table 13: Tokenization Variance statistics - mean score.

Measure All Matches Matches except pseudo Matches closer pseudo Exact contain Exact match
Aggregate 95.12 94.29 91.26 17.91 2.67

7 Length words 155.50 129.00 81.50 13.00 2.50
8 Length words 100.90 99.17 91.19 8.46 2.47
9 Length words 90.97 90.00 86.03 7.34 2.50
10 Length words 88.56 89.04 90.71 7.86 2.75
11 Length words 107.55 107.65 108.46 8.77 2.84
12 Length words 63.25 63.53 62.53 8.26 2.82
13 Length words 81.22 81.30 82.20 7.82 2.59
14 Length words 62.48 62.48 62.48 4.52 1.05

exp(12) occurrence 38.59 37.65 34.60 3.15 1.26
exp(13) occurrence 39.75 39.13 39.36 4.92 2.10
exp(14) occurrence 51.84 52.17 53.73 6.19 2.51
exp(15) occurrence 70.46 70.59 77.22 7.86 2.38
exp(16) occurrence 101.86 100.38 103.83 9.99 3.44

Table 14: Variability across target words in Tokenization Variance statistics.

String Tokenization String Tokenization String Tokenization
signature playstation personal

Exact match case insensitive Exact match case insensitive Exact match case insensitive
"SIGNATURE" ["SIGN", "ATURE"] "playstation" ["play", "station"] "pERSONAL" ["p", "ERSON", "AL"]
"sIGNATURE" ["s", "IGN", "ATURE"] "PLaySTATION" ["PL", "ay", "ST", "ATION"] "PeRSonAl" ["Pe", "RS", "on", "Al"]

"SigNature" ["S", "ig", "Nature"] "playStation" ["play", "Station"] "personal" ["personal"]
"Signature" ["Sign", "ature"] "PLAYSTATION" ["PLAY", "ST", "ATION"] "Personal" ["Personal"]
"SIgnature" ["SI", "gn", "ature"] "Playstation" ["Play", "station"] "PERSONAL" ["P", "ERSON", "AL"]
"signature" ["sign", "ature"] "PlayStation" ["Play", "Station"] "PErsonal" ["P", "Er", "son", "al"]

Exact match and whitespaces Exact match and whitespaces Exact match and whitespaces
" signature" ["Ġsignature"] " Playstation" ["ĠPlaystation"] " PERSONal" ["ĠPERSON", "al"]
" Signature" ["ĠSignature"] " PLayStation" ["ĠPL", "ay", "Station"] " PerSoNAl" ["ĠPer", "So", "N", "Al"]
" SigNature" ["ĠSig", "Nature"] " PLAYstation" ["ĠPLAY", "station"] " pErsonal" ["Ġp", "Er", "son", "al"]
" signaTure" ["Ġsign", "a", "T", "ure"] " PLAYSTATION" ["ĠPLAY", "ST", "ATION"] " perSonal" ["Ġper", "S", "onal"]

" SIGNATure" ["ĠSIGN", "AT", "ure"] " PlayStation" ["ĠPlayStation"] " perSONal" ["Ġper", "SON", "al"]
" SiGNATURE" ["ĠSi", "GN", "ATURE"] " plAYsTaTion" ["Ġpl", "AY", "s", "Ta", "T", "ion"] " pERSonal" ["Ġp", "ERS", "onal"]
" SIGNATURE" ["ĠSIGN", "ATURE"] " playStation" ["Ġplay", "Station"] " PERSONAL" ["ĠPERSON", "AL"]

" signAture" ["Ġsign", "At", "ure"] " playstation" ["Ġplay", "station"] " PERSONAl" ["ĠPERSON", "Al"]
" SIGNature" ["ĠSIGN", "ature"] " PLaystation" ["ĠPL", "ay", "station"] " personal" ["Ġpersonal"]
" sIgnature" ["Ġs", "Ign", "ature"] " PlaySTation" ["ĠPlay", "ST", "ation"] " Personal" ["ĠPersonal"]

Fuzzy match and misspellings Fuzzy match and misspellings Fuzzy match and misspellings
"S1GNATURE" ["S", "1", "GN", "ATURE"] "Play-station" ["Play", "-", "station"] "p-ersonal" ["p", "-", "erson", "al"]

" SIGNATUTRE" ["ĠSIGN", "AT", "UT", "RE"] " PLAY-STATION" ["ĠPLAY", "-", "ST", "ATION"] "per-sonal" ["per", "-", "son", "al"]
" signatyure" ["Ġsign", "at", "y", "ure"] "play-station" ["play", "-", "station"] pers-onal" ["Ġpers", "-", "onal"]
" signatre" ["Ġsign", "atre"] " Play-station" ["ĠPlay", "-", "station"] Per-sonal" ["ĠPer", "-", "son", "al"]

"Signiature" ["Sign", "i", "ature"] " play-station" ["Ġplay", "-", "station"] "PER$oNAL" ["PER", "$", "o", "N", "AL"]
" signnature" ["Ġsign", "nature"] "Play-Station" ["Play", "-", "Station"] " PER.SONAL" ["ĠPER", ".", "SON", "AL"]
" signatrre" ["Ġsign", "at", "r", "re"] "Play]station" ["Play", "]", "station"] " PERSONA.L" ["ĠPERSON", "A", ".", "L"]
" sigature" ["Ġsig", "ature"] " Playst4tion" ["ĠPlay", "st", "4", "tion"] "persona[l" ["person", "a", "[", "l"]

" Sign(ature" ["ĠSign", "(", "ature"] " PlayStati0n" ["ĠPlay", "St", "ati", "0", "n"] "person,L" ["person", ",", "L"]
"signnature" ["sign", "nature"] " Play-Station" ["ĠPlay", "-", "Station"] "Person(al" ["Person", "(", "al"]

"SIG(NATURE" ["S", "IG", "(", "NAT", "URE"] "Playstaton" ["Play", "st", "aton"] " p[ersonal" ["Ġp", "[", "erson", "al"]
" Si2nature" ["ĠSi", "2", "nature"] " play.Station" ["Ġplay", ".", "Station"] "p]ersonal" ["p", "]", "erson", "al"]
"Singnature" ["Sing", "nature"] " playstaton" ["Ġplay", "st", "aton"] " p)ersonal" ["Ġp", ")", "erson", "al"]
" signatuure" ["Ġsign", "atu", "ure"] " PLAYTSTATION" ["ĠPLAY", "T", "ST", "ATION"] "P_ersonal" ["P", "_", "erson", "al"]
" Signaturs" ["ĠSign", "at", "urs"] "playstatiom" ["play", "st", "ati", "om"] "Persnal" ["Pers", "n", "al"]

" sigNUTure" ["Ġsig", "N", "UT", "ure"] "playsstation" ["plays", "station"] " peRSSonal" ["Ġpe", "R", "SS", "onal"]

Table 15: Some examples of variations in Tokenization for 3 frequent long words.
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