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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in complex rea-
soning tasks, yet generating reliable reasoning
processes remains a significant challenge. We
present a unified probabilistic framework that for-
malizes LLM reasoning through a novel graphical
model incorporating latent thinking processes and
evaluation signals. Within this framework, we
introduce the Bootstrapping Reinforced Thinking
Process (BRiTE) algorithm, which works in two
steps. First, it generates high-quality rationales
by approximating the optimal thinking process
through reinforcement learning, using a novel re-
ward shaping mechanism. Second, it enhances
the base LLM by maximizing the joint proba-
bility of rationale generation with respect to the
model’s parameters. Theoretically, we demon-
strate BRiTE’s convergence at a rate of 1/T with
T representing the number of iterations. Empiri-
cal evaluations on math and coding benchmarks
demonstrate that our approach consistently im-
proves performance across different base models
without requiring human-annotated thinking pro-
cesses. In addition, BRiTE demonstrates supe-
rior performance compared to existing algorithms
that bootstrap thinking processes use alternative
methods such as rejection sampling, and can even
match or exceed the results achieved through su-
pervised fine-tuning with human-annotated data.
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1. Introduction
Large Language Models (LLMs; OpenAI, 2023; Anthropic,
2023; Team et al., 2024a), have emerged as a breakthrough
in artificial intelligence, demonstrating unprecedented capa-
bilities in natural language processing and generation. The
training pipeline of these state-of-the-art models consists of
two critical phases: pre-training and post-training. During
the pre-training phase, LLMs learn from vast datasets to
predict subsequent tokens in sequences, enabling them to
learn extensive linguistic patterns, contextual understand-
ing, and general world knowledge. The post-training phase
further refines these models through two stages: Supervised
Fine-tuning (SFT) and Reinforcement Learning from Hu-
man Feedback (RLHF; Christiano et al., 2017; Ziegler et al.,
2019; Ouyang et al., 2022). Recent research (OpenAI, 2024)
has shown that by scaling the inference time, these models
demonstrate sophisticated reasoning capabilities, particu-
larly in domains such as mathematics and programming.

Unlocking LLM reasoning abilities typically relies on struc-
tured prompting methods that break down problems into
step-by-step solutions, known as chain-of-thought (CoT)
reasoning (Wei et al., 2022). While this approach has shown
promise and inspired various extensions (Wang et al., 2022;
Yao et al., 2024), the fundamental challenge of reasoning
reliability remains unresolved. Generated rationales often
lack logical completeness or validity, with their quality heav-
ily dependent on task-specific prompting strategies. Recent
developments in inference-time scaling techniques (Snell
et al., 2024) have shown potential improvements. However,
these approaches primarily address surface-level symptoms
rather than the core challenge of generating high-quality
reasoning processes. Furthermore, the field increasingly
seeks automated improvements to reduce reliance on man-
ual prompt engineering. This context motivates our design-
ing mechanism for high-quality thinking process generation.
Meanwhile, prior research (e.g., Zelikman et al., 2022; Yuan
et al., 2023) indicates that reasoning processes, when prop-
erly selected via verifiers, can enhance an LLM’s reasoning
capabilities during post-training. This leads to our research
objective: developing a framework for the automated gen-
eration of high-quality (correct) reasoning processes and
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incorporating them into the post-training stage to improve
existing algorithms.

To this end, we propose a unified probabilistic framework
that formalizes the reasoning process accompanying evalua-
tion signals, followed by a generic algorithmic framework.
Specifically, our work has three key contributions:

• We formulate the problem as a probabilistic graphical
model (Figure 1), characterizing the generation flow from
prompt X to latent rationales Z to answer Y , along with
their corresponding evaluation signal O. This explicit
mathematical characterization serves two essential pur-
poses: first, introducingZ breaks down the complex distri-
bution P(Y |X) into more tractable marginal distributions
P(Z |X) and P(Y |X,Z), which aligns with Chain-of-
Thought (CoT) methods (Wei et al., 2022); second, intro-
ducing O provides crucial rationale-answer quality signal,
making the generation of desired (correct) rationales more
achievable.

• Under this framework, our learning objective is to maxi-
mize the probability of generating high-quality rationales
and answers that yield optimal evaluation signals. To
achieve this, we propose the Bootstrapping Reinforced
Thinking Process (BRiTE) algorithm consisting of two
stages: first generating high-quality rationales by training
an LLM whose output approximates the desired posterior
of thought given the question-answer pair; and then fine-
tuning the seed LLM by maximizing the joint probability
of rationale generation with respect to the LLM’s parame-
ters. Theoretically, we prove our algorithm converges at a
rate of 1/T , where T is the number of iterations. Regard-
ing the practical implementation, to address the challeng-
ing Bayesian inference problem in the former step, we
develop a novel reward shaping mechanism that converts
it into a reinforcement learning optimization problem.

• Our empirical evaluations of math and code generation
benchmarks show consistent improvements across multi-
ple LLM series, including Gemma, Llama, and Mistral.
Our experimental results demonstrate BRiTE’s ability
to enhance existing post-training algorithms (rejection
sampling type methods and iterative DPO) through RL-
based rationale generation with consistent improvements.
Notably, BRiTE achieves a 10-point improvement on
GSM8K benchmarks when applied to the Gemma-1.1-
7B-it base model. Notably, our algorithm matches or even
exceeds the performance of supervised fine-tuning meth-
ods that use human-labeled thinking processes, despite
not requiring any human-annotated data.

In summary, we present a provable and practical frame-
work for automated thinking process generation that can be
seamlessly integrated into the training stage. The thinking

X Y

Z

O

Figure 1. LLM as a probabilistic graphical model. X and Y rep-
resent prompt and response, respectively. The latent variable Z
indicates the intrinsic thinking process behind generation. Evalua-
tion signal O is influenced by X , Z, and Y .

processes generated by our framework are of high quality,
surpassing not only those produced through CoT prompting,
but also outperforming human-annotated thinking processes
when applied to fine-tuning. Our framework represents a
significant advancement in improving LLM reasoning capac-
ity through the creation of synthetic data that incorporates
detailed thinking processes (CoT data).

1.1. Related Works

We discuss mostly related works here. More discussion on
RLHF is deferred to Appendix B.

Reasoning in LLMs. Prior work has explored various
prompting techniques to enhance language model reasoning
capabilities. CoT prompting (Wei et al., 2022) has emerged
as a particularly effective approach, encouraging models to
break down complex problems into intermediate steps by
demonstrating step-by-step reasoning paths. The following
works, such as Zhou et al. (2022); Yao et al. (2024), design
more prompting techniques to enhance the model’s capacity.
However, these methods typically rely on manually crafted
(CoT) prompts to elicit reasoning processes, which are then
used to guide the model’s generation process. While such ap-
proaches have shown promising results in improving model
performance across various reasoning tasks, they remain de-
pendent on human-designed prompting templates and may
not fully capture the natural reasoning patterns that emerge
during model inference. To this end, a line of works aims to
boost the latent reasoning process quality or even achieve
automatic reasoning process generation, where the latter
one is our focus but our method is based on reinforcement
learning and thus is different from previous works. Previous
methods can be roughly regarded as an EM-type algorithm,
and detailed comparisons are presented below.

EM-type Methods. Our algorithmic framework builds upon
the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) and its variant, rejection sampling EM (Neal
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& Hinton, 1998; Rush & Ritter, 2024). In standard EM,
the E-step learns a posterior over latent variables while the
M-step maximizes the expected log-likelihood; rejection
sampling EM approximates complex posteriors through re-
jection sampling in the E-step before proceeding with the
standard M-step. This motivates various rejection sampling
fine-tuning methods employed in modern LLM training
(e.g., Cobbe et al., 2021; Zelikman et al., 2022; Dong et al.,
2023a; Yuan et al., 2023; Gulcehre et al., 2023; Singh et al.,
2023; Zelikman et al., 2024; Yuan et al., 2024; Chen et al.,
2024). These algorithms filter outputs or/and latent reason-
ing process through reward functions or verifiers (E-step),
then perform fine-tuning on the selected samples (M-step).
Our algorithm generalizes these approaches (Example 3.6)
and introduces a novel E-step based on reinforcement learn-
ing (Section 3.4). While Hu et al. (2023); Hoffman et al.
(2024) also conceptualize LLM generation as latent variable
models and propose EM-type algorithms based on Markov
chain Monte Carlo (MCMC) or generative flow networks,
our work distinctively focuses on enhancing the reason-
ing capabilities of LLMs through automated reasoning pro-
cesses using reinforcement learning (e.g., PPO). Notably,
in contrast to these prior works, we provide a more gen-
eral and rigorous mathematical framework fro LLM reason
and unified theoretical guarantees. Furthermore, our frame-
work extends beyond supervised and rejection sampling
fine-tuning to advance iterative direct preference learning
(Xiong et al., 2024a), contributing to improved LLM rea-
soning in the RLHF paradigm. Finally, two recent works by
Liu et al. (2024a) and Wang et al. (2024) also apply RL tech-
niques to enhance LLM reasoning. However, these works
do not focus on improving the thinking process generation,
making them not directly comparable to our approach.

1.2. Notations

For any space X , we denote ∆(X ) as the set of distributions
over X . For any positive integer h, we denote the sequence
{a1, · · · , ah} by a1:h. We use 1{·} to denote the indicator
function.

2. Preliminaries
In this section, we present the single-step bandit formula-
tion and the multi-step Markov decision process (MDP)
formulation for LLMs.

Bandit Formulation of LLMs. A simple way to understand
LLMs is through the bandit formulation. In this context, the
prompt and the response are represented as x ∈ X and y ∈
Y , respectively. Here, X refers to the set of prompts, while
Y represents the set of responses. The LLM corresponds
to the policy π in this bandit framework, where π(y | x)
indicates the probability of generating the response y given
the prompt x.

MDP Formulation of LLMs. Following the notations
in Zhong et al. (2024), we consider an MDP M =
(S,A,P, r, ρ,H). In this framework, S and A represent
the state and action spaces, respectively. The transition ker-
nel is denoted by P : S × A 7→ ∆(S), while r indicates
the reward function. The initial distribution is defined by
ρ ∈ ∆(S), and H specifies the horizon length. A policy
π : S 7→ ∆(A) maps a state to a distribution over the action
space. Initially, an initial state is sampled using s1 ∼ ρ. At
the h-th step, the agent receives the state sh and chooses
the action ah ∼ π(· | sh). This interaction continues until a
specified ending condition is met, which will occur within
H steps.

In the context of generating large language models (LLMs),
let s1 ∼ ρ represent the prompt x ∼ ρ. At each step h, the
state sh = (s1, a1:h−1) consists of the prompt x and all to-
kens generated up to that point. The LLM acts as a policy π
that maps sh to a distribution over the action ah ∼ π(· | sh),
where the action signifies a token (or a series of consecutive
tokens). The transition process is deterministic; it simply
concatenates sh = (s1, a1:h−1) and ah to create a new state
sh+1 = (s1, a1:h). The generation process concludes with a
special end-of-sentence token EoS, which will be generated
within H steps. For simplicity, we consider the length-H
trajectories {(sh, ah)}Hh=1, noting that this does not lose
generality since we can pad the EoS token to the text to
reach length H . With this notation and recognizing the
autoregressive nature of LLMs, for any realizable trajec-
tory {(sh, ah)}Hh=1, the generation probability is given by
π(a1:H | s1) =

∏H
h=1 π(ah | s1, a1:h−1).

Regularized Value Functions. For a policy π, its entropy-
regularized value function is defined as

V π(s; r) = Eπ
[ H∑
h=1

(
r(sh, ah)− β · log π(ah | sh)

)∣∣∣∣s1 = s

]
,

(2.1)
where β > 0 is a regularization parameter. The regularized
Q-function Qπ of a policy π is related to the regularized
value function V π as

Qπ(s, a; r) = r(s, a) + Es′∼P(· | s,a)[V
π(s′; r)],

V π(s; r) = Ea∼π(· | s)[−β log π(a | s) +Qπ(s, a; r)],
(2.2)

The regularized optimal policy π∗ is the policy that maxi-
mizes the regularized value function defined in (2.1), and
its corresponding optimal Q-function and value function
are denoted as Q∗ and V ∗, respectively. By (2.2), it can be
shown that

V ∗(s; r) = log
∑
a∈A

exp
(
Q∗(s, a; r)

)
, (2.3)

π∗(a | s) = exp{(Q∗(s, a; r)− V ∗(s; r))/β}
∝ exp

(
Q∗(s, a; r)

)
. (2.4)
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3. Unified Framework and Generic Algorithm
In this section, we present a new framework for LLM rea-
soning and our generic algorithm within this framework.

3.1. LLM as A Probabilistic Graphical Model

We consider four different spaces: X represents the prompt
space, Z denotes the latent space that captures the intrinsic
thought process (CoT), Y signifies the response space, and
O stands for the evaluation signal space, which reflects the
optimality of the prompt-latent-response tuple. Furthermore,
for any (x, z, y, o) ∈ X × Z × Y × O, we describe the
generation process using the probabilistic graphical model
illustrated in Figure 1. This indicates that

P(z, y, o |x, θ) = P(z, y |x, θ) · P(o |x, z, y) (3.1)
= P(z |x, θ) · P(y |x, z, θ) · P(o |x, z, y),

where θ is the parameter of the LLM that guides the gen-
eration process. First, a latent variable z is generated
from the distribution P(· |x, θ), and then the response
y ∼ P(· |x, z, θ) is produced based on both the prompt
x and the latent variable z. Importantly, the probability
P(o |x, z, y) is independent of the LLM parameterized by θ,
as we assume there exists a ground-truth judgment for the
triplet (x, z, y), such as a ground-truth/human reward func-
tion. Unlike traditional LLM frameworks that only consider
the prompt space X and output space Y , our framework
incorporates both a latent thinking process space and an
observation space. These additional components are cru-
cial for mathematically understanding how to improve the
quality of thinking processes using evaluation signals.

Under this probabilistic graphical modeling of LLMs, our
learning objective is to maximize

L(θ) = logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ), (3.2)

where Z ⊆ Z , Y ⊆ Y , and O ⊆ O denote the subsets of
spaces representing the latent thinking process, response,
and evaluation signals, respectively. In Section 3.2, we de-
velop a general optimization algorithm that works with any
choice of these spaces (Z ,Y ,O). Subsequently, in Sec-
tion 3.3, we show how this framework unifies existing learn-
ing approaches by demonstrating how different choices of
these spaces (Z ,Y ,O) correspond to various established
learning paradigms and algorithms.

3.2. Bootstrapping Reinforced Thinking Process

We propose the algorithm, Bootstrapping Reinforced
Thinking Process (BRiTE), to maximize the objective (3.2)
within the framework proposed in the previous subsection.
Since this objective may be difficult to optimize directly, we

rewrite it as

L(θ) = logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ)

= log
∑

(z,y,o)∈Z ×Y ×O

P(z, y, o |x, θ)

= max
Q(·,·,·|x,ψ)∈∆(Z ×Y ×O)

Lψ(θ), (3.3)

where Q(·, ·, · |x, ψ) can be regarded as another LM
parametrized by ψ and Lψ(θ) is

Lψ(θ) =
∑

(z,y,o)
∈Z ×Y ×O

logP(z, y, o |x, θ) ·Q(z, y, o |x, ψ)

−
∑

(z,y,o)
∈Z ×Y ×O

logQ(z, y, o |x, ψ) ·Q(z, y, o |x, ψ).

The last equality of (3.3) follows the following lemma:
Lemma 3.1. For any set W and non-negative numbers
{Pw ≥ 0}w∈W , it holds

log
∑
w∈W

Pw = max
q∈∆(W)

Ew∼q(·)[logPw − log q(w)].

The maximum is achieved when q(w) =
Pw/(

∑
w′∈W Pw′).

Proof of Lemma 3.1. This lemma is equivalent to the non-
negativity of the KL divergence. For a detailed proof, please
refer to Appendix C.1.

We have transformed the problem of maximizing L(θ) into
maximizing its lower bound Lψ. This shares the same
spirit with the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) and Variational Autoencoders (VAE)
(Kingma, 2013). To solve this optimization problem, we
iteratively update the parameters ψ and θ to maximize (3.3).
Given ψt and θt, the updating rules of ψt+1 and θt+1 are
specified as

• choosing ψt+1 such that

Q(z, y, o |x, ψt+1) = argmax
Q(·,·,· | x,ψ)

Lψ(θt) (3.4)

=
P(z, y, o |x, θt)∑

(z,y,o)∈Z ×Y ×O P(z, y, o |x, θt)
∝ P(z, y, o |x, θt).

This is implied by the optimality condition in Lemma 3.1.

• choosing θt+1 such that

θt+1 = argmax
θ

Lψt+1(θ) (3.5)

= argmax
θ

{ ∑
(z,y,o)

∈Z×Y ×O

log P(z, y, o |x, θ) ·Q(z, y, o |x, ψt+1)
}

= argmax
θ

{ ∑
(z,y,o)

∈Z×Y ×O

log P(z, y |x, θ) ·Q(z, y, o |x, ψt+1)
}
,
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where the second equality is implied by (3.1).

Intuitively, during the ψ-updating step in (3.4), the proposed
algorithm learns to generate high-quality thinking processes
by focusing on verified correct responses. Specifically, when
we define O = {O∗}, where O∗ represents the correct
evaluation signal in mathematical tasks, P(z, y,O∗ | x)
represents the probability distribution of generating both a
high-quality thinking process z and correct final answer y.
Following this, in the following θ-updating step in (3.5), the
algorithm fine-tunes the Large Language Model by maxi-
mizing the joint distribution between the learned thinking
process generator and the LLM’s output with respect to pa-
rameter θ. This fine-tuning approach encompasses several
learning paradigms and algorithms, including SFT, RLHF,
and rejection sampling-based algorithms, as detailed in Ex-
amples 3.4, 3.5, and 3.6. The two-stage BRiTE algorithm
draws inspiration from the classical EM algorithm. While
the probabilistic graphical model used in BRiTE differs
from traditional latent variable models, the ψ-updating and
θ-updating steps correspond to the E-step and M-step in the
EM algorithm, respectively.

Before presenting the theoretical results for BRiTE, we
make the following assumption about the generation proba-
bility of parametrized LLMs.

Assumption 3.2. Assume that LLM is parameterized by θ,
we denote that the logits of generating (z, y) conditioned on
x by fθ(x, z, y), then the probability of P(z, y |x, θ) takes
the form

P(z, y |x, θ) = exp
(
fθ(x, z, y)−A(x, θ)

)
∝ exp

(
fθ(x, z, y)

)
,

where Aθ(x, θ) is the normalization factor. Moreover, we
assume that fθ ∈ H for some reproducing kernel Hilbert
space (RKHS)1 associated with the kernel K : (X × Z ×
Y)× (X × Z × Y) 7→ R.

The fθ(x, z, y) in Assumption 3.2 represents the logits for
predicting (y, z) based on the prompt x, thereby capturing
the current generation method of modern transformer-based
LLMs. With this assumption, we establish the convergence
result of our algorithm in the following theorem, whose
proof is deferred to Appendix D.1.

Theorem 3.3. Suppose Assumption 3.2 holds. Given that L
is concave and θ∗ = argmaxθ L(θ), we have

min
1≤t≤T

{L(θ∗)− L(θt)} ≤
KL

(
P(·, · |x, θ1)∥P(·, · |x, θ∗)

)
T

,

1We say H is a RKHS on the set W with the reproducing
kernel K : W × W 7→ R if the inner product ⟨·, ·⟩ satisfies
f(w) = ⟨K(w, ·), f⟩, for any (f, w) ∈ H×W.

Theorem 3.3 establishes a convergence rate of 1/T , where
T represents the number of iteration steps. In our analy-
sis, we link our algorithm to classical mirror descent algo-
rithms (Nemirovskij & Yudin, 1983; Bubeck et al., 2015),
which have also been utilized in recent studies of policy
optimization algorithms (Agarwal et al., 2021; Cai et al.,
2020; Zhong & Zhang, 2024). Additionally, our results rely
on a concave assumption. This assumption is crucial for
proving global convergence results, and we can still obtain
a weaker guarantee for stationary points even without this
concave condition; see Appendix D.2 for details.

Having established a theoretical guarantee for our proposed
generic algorithm, we will demonstrate how our algorithm
can incorporate many existing learning algorithms, high-
lighting the broad applicability of our algorithmic frame-
work and its theoretical guarantee.

3.3. Connections to Existing Learning Paradigms and
Algorithms

Example 3.4 (Pre-training, SFT and Conditional SFT). We
first set aside the latent space and observation space, mean-
ing that Z = O = ∅. In this case, our learning objec-
tive (3.2) encompasses two key processes: (I) pre-training,
where we let x represent the prompt and Y the next to-
ken; and (II) supervised fine-tuning (SFT), where we define
Y = {y∗(x)} as the expert response corresponding to the
prompt x. Moreover, for the prompt-response pair (x, y)
and singleton space Y = {y}, we consider Z = R+ and
Z = {R(x, y)} be the reward corresponding to the prompt-
response pair, then our objective recovers the conditional
SFT (Lu et al., 2022; Dong et al., 2023b; Yang et al., 2024).
Example 3.5 (RLHF: PPO and DPO). We choose Y = Y
and Z = Z as the complete response space and latent
space, respectively. Additionally, we set O = {0, 1}, where
1 indicates optimality and 0 indicates non-optimality, re-
spectively. Since our goal is to maximize the probability of
observing the signal of optimality, we focus on O = {1}. We
also assume that P(o = 1 | x, z, y) = exp(R(x, z, y)/β)
for some reward function R and β > 0. With these choices,
we have

Lψ(θ) =
∑

(z,y)∈Z×Y

log P(z, y, 1 |x, θ) ·Q(z, y, 1 |x, ψ)

−
∑

(z,y)∈Z×Y

logQ(z, y, 1 |x, ψ) ·Q(z, y, 1 |x, ψ)

= E(z,y)∼Q(·,· | x,ψ)

[
R(x, z, y)− β log

Q(z, y |x, ψ)
P(z, y |x, θ)

]
,

where Q(z, y |x, ψ) =
∑
o∈O Q(z, y, o |x, ψ) =

Q(z, y, 1 |x, ψ). This expression recovers the proximal pol-
icy optimization (PPO; Schulman et al., 2017) for RLHF
(Christiano et al., 2017; Ouyang et al., 2022), where ψ
represents the LLM being optimized, and θ stands for
the reference policy. Assuming that the preference data
{(x, z+, y+, z−, y−)} is drawn from the Bradley-Terry (BT)
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model (Bradley & Terry, 1952), with (z+, y+) denoting pre-
ferred data and (z−, y−) indicating dispreferred data, one
can follow Rafailov et al. (2024) to derive the latent direct
preference optimization (latent DPO) objective:

LLatent−DPO (3.6)

= σ

(
β log

Q(z+, y+ |x, ψ)
P(z+, y+ |x, θ)

− β log
Q(z−, y− |x, ψ)
P(z−, y− |x, θ)

)
,

where σ is the sigmoid function. In contrast to the standard
DPO objective in Rafailov et al. (2024), the objective in
(3.6) additionally incorporates the latent variable z.
Example 3.6 (Rejection Sampling EM Methods). Let Y =
Y represent the complete response space, and define O =
{0, 1}, where 1 indicates the optimal outcome and 0 indi-
cates otherwise. We focus on the optimal signal, denoted
as O = {1}. Additionally, we denote Z = Z as the
complete thinking process space. The updating rule in
(3.4) is given by Q(z, y, 1 |x, ψt+1) ∝ P(z, y, 1 |x, θt) =
P(z, y |x, θt) · P(o = 1 |x, z, y). Consequently, the update
in (3.5) can be expressed as

θt+1 = argmax
θ

{ ∑
(z,y)∈Z×Y

log P(z, y |x, θ) ·Q(z, y, 1 |x, θt)
}

= argmax
θ

{
E(z,y)∼P(·,· | x,θt)

[
log P(z, y |x, θ) · P(1 |x, z, y)

]}
.

(3.7)

1. If we simplify the scenario by omitting the latent space
(i.e., Z = ∅) and assume that P(o = 1 |x, z, y) =
1{y is the correct answer}, this leads to the STaR algo-
rithm (Zelikman et al., 2022) or rejection sampling fine-
tuning (Dong et al., 2023a; Yuan et al., 2023; 2024),
which performs supervised fine-tuning after rejection
sampling based on verifier results.

2. If we simplify the scenario by omitting the latent space
(i.e., Z = ∅) and assuming P(o = 1 |x, y) =
exp(R(x, y)/β) for some true reward function R, the
updating rule in (3.7) simplifies to

θt+1 = argmax
θ

{
Ey∼P(· | x,θt)

[
logP(y |x, θ)

· exp
(
R(x, y)/β

)]}
. (3.8)

This recovers the ReSTEM algorithm presented in (Singh
et al., 2023).

Finally, we note that Neal & Hinton (1998) first introduced
the unified view of rejection sampling EM, which Rush &
Ritter (2024) later expanded upon.

By combining Theorem 3.3 with the examples in this sec-
tion, we provide theoretical guarantees for these learning
algorithms. As a result, we establish theoretical foundations
for two approaches: (1) PPO, connecting to the work of
(Schulman et al., 2017; Cai et al., 2020; Zhong & Zhang,
2024), and (2) Generalized RestEM in Example 3.6 (which
includes vanilla RestEM (Singh et al., 2023) as a special
case), presenting the first theoretical analysis of its kind.

3.4. Practical Implementation: The Power of
Reinforcement Learning

We have demonstrated that our generic algorithm encom-
passes a wide range of existing learning paradigms and
algorithms, with a provable convergence guarantee. In this
section, we carefully examine the practicality of our algo-
rithm.

First, the θ-updating step is relatively straightforward to
implement, as this step simply maximizes the predicted
probability of the next tokens after we sample (z, y, o) from
Q(z, y, o |x, ψt+1). In contrast, the ψ-updating step can be
challenging in certain contexts. For instance, when Y =
{y} represents the response corresponding to x, O = {1}
indicates the optimality signal of interest, and Z = Z , we
have Q(z, y, 1 |x, θ) ∝ P(z, y, 1 |x, θ) = P(z |x, y, 1, θ)—
the posterior of the latent variable z. Intuitively, obtaining
this distribution requires us to identify the ideal latent (CoT)
based on the pair (x, y), which represents an intractable
posterior.

To achieve this goal, we aim to use RL to train an LLM
that characterizes the distribution Q(z, y, o |x, ψt+1) or
P(z, y, o |x, θt) in (3.4). Since an LLM acts as the pol-
icy of an MDP, our approach involves two main steps: (i)
constructing an MDP whose optimal policy matches the
distribution Q that we need to learn; and (ii) applying RL
algorithms to solve this MDP and identify the optimal policy
to learn the desired distribution. These two steps convert
the challenging sampling problem to a more amenable RL
optimization problem. Notably, the main challenge we face
is reward shaping, which involves designing appropriate re-
ward functions to ensure that the optimal policy aligns with
the intended LLM that accurately represents the posterior.
Our approach to reward shaping is based on the follow-
ing proposition, which characterizes the optimal policy for
deterministic entropy-regularized MDPs.

Proposition 3.7. Assuming the transition dynamic of
entropy-regularized MDP is deterministic, then for any tra-
jectories {(si, ai)}Hi=h satisfying aH = EOS, we have

π∗(ah ∪ {(si, ai)}Hi=h+1 | sh) ∝ exp
( 1

β

H∑
i=h

r(si, ai)
)
.

The proof is deferred to Appendix C.2. By Proposition 3.7,
if we select β = 1 and use the total reward as logP(z, y, o |
x, θt), the resulting optimal policy recovers Q defined in
(3.4). This choice of total reward function can naturally be
assigned to each token as the token-reward function, due
to the autoregressive nature of LLM generation. Specif-
ically, when (z, y, o) is represented by a token sequence
a1:τ , the total reward logP(z, y, o | x, θt) can be expressed
as

∑τ
j=1 logP(aj | a1:j−1, x), where logP(aj | a1:j−1, x)

serves as the reward for the j-th token in RL training.
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Finally, we remark that the application of RL to text genera-
tion has been explored in previous studies, such as Guo et al.
(2021). However, there appears to be no work applying
RL to generate the thinking process to enhance reasoning
capabilities within the context of LLMs. Additionally, ex-
isting studies do not address the issue of reward shaping,
which is a crucial problem in our scenario and is tackled by
Proposition 3.7.

4. Experiments
In this section, we systematically demonstrate that our uni-
fied algorithm enhances the reasoning capability of LLMs.

4.1. Experimental Setups

Tasks and Datasets. To evaluate mathematical reason-
ing capabilities, we conduct experiments on two promi-
nent benchmarks: GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). GSM8K contains 1,319 high-
quality grade school math problems requiring multi-step
reasoning, ranging from basic arithmetic to elementary alge-
bra. The MATH dataset comprises 5,000 competition-level
problems covering advanced topics such as algebra, ge-
ometry, number theory, probability, and calculus. These
problems require more sophisticated problem-solving strate-
gies and formal mathematical reasoning. The training sets
of GSM8K and MATH datasets each contain approximately
7,500 data points. Each data point includes a question x,
along with human-annotated rationale z∗ and the correct
final answer y∗.

Base Models. We use several open-source instruction-
tuned LLMs as base models, including Gemma-2-9b-it
(Team et al., 2024b), Gemma-1.1-7B-it (Team et al., 2024a),
Mixtral-7B-Instruct-v0.2 (Jiang et al., 2023) and Llama-3-
8B-Instruct (Touvron et al., 2023).

Baselines. Our first baseline is rejection sampling (RS)
methods (Neal & Hinton, 1998; Dong et al., 2023a; Yuan
et al., 2023; Zelikman et al., 2022). For each problem x, we
generate N = 30 candidate rationales and select one (zrs)
containing the correct answer y∗. The model is fine-tuned on
these problem-rationale-answer tuples {(x, zrs, y

∗)}. Impor-
tantly, this method does not use human-annotated rationales
z∗, making it directly comparable to our approach. We also
test the performance of supervised fine-tuning (SFT) on
datasets with human-annotated rationales {(x, z∗, y∗)}. As
a baseline learning from preference data, we implement the
iterative DPO (Xiong et al., 2024a; Pang et al., 2024), ini-
tialized with instruction-tuned models. The training process
consists of 3 iterations. In each iteration, we: (1) use the
current model to generate 30 CoT and responses {(z, y)}
per prompt; (2) select the best and worst response pairs

(z+, y+, z−, y−) based on the correctness of the y; and (3)
apply DPO training (see Rafailov et al. (2024) or (3.6)) on
these preference tuples {(x, z+, y+, z−, y−)}.

Implementations of BRiTE. To systematically demon-
strate the effectiveness of our algorithm, we implemented
BRiTE in three distinct configurations:

1. We implement the ψ-updating step of BRiTE to obtain
Q using (3.4), examining how the generated thinking
process aligns with the desired reasoning path to en-
hance LLM reasoning capabilities. Following our theo-
retical framework in Section 3.4, we optimize two types
of reward functions in the entropy-regularized MDP:
(i) log(z, y, o |x) = logP(z, y∗(x) |x), where y∗ repre-
sents the correct answer for question x. This equality
holds because we focus solely on correct questions, using
proper choices of O = {answer verified to be correct}
and Y = {y∗}. (ii) log(z, y, o |x) = logP(z, y |x) +
R(x, z, y)/β, where we assume that P(o = 1 |x, z, y) =
exp(R(x, z, y)/β) with O = {1}. We employ PPO
(Schulman et al., 2017) or GRPO (Shao et al., 2024) to
optimize this MDP.

2. BRiTE first obtains Q in (3.4) through RL, then updates
θ in (3.5) using SFT. The SFT data consists of three
components: problems x, thinking processes zQ(x) gen-
erated by Q, along with the ground truth answers y∗.

3. We implement BRiTE-DPO, which consists of 3 itera-
tions. During the t-th iteration, we first learn the distri-
bution Q according to (3.4). Then for each prompt x,
we leverage Q to generate N = 30 reasoning process
and output pairs {(zQ, yQ)}. Subsequently, we evaluate
the correctness of each yQ to identify the best and worst
latent reasoning processes and construct response pairs
(z+Q , y

+
Q , z

−
Q , y

−
Q ) for use in DPO training (3.6).

4.2. Experimental Result and Analysis

1. BRiTE Significantly Improves Existing Rejection Sam-
pling Fine-Tuning Algorithms. We begin by comparing
BRiTE-SFT with rejection sampling EM-type algorithms,
both of which aim to enhance the reasoning capabilities
of LLMs by bootstrapping the thinking process. The key
distinction is that BRiTE-SFT uses RL for this bootstrap-
ping, while rejection sampling methods rely on sampling
techniques. From Table 1, we observe that BRiTE-SFT con-
sistently outperforms rejection sampling-based algorithms
across all models, achieving a concrete accuracy improve-
ment of 1-10 points. These improvements are primarily
attributed to BRiTE-SFT’s ability to generate higher-quality
thinking processes compared to rejection sampling, high-
lighting the potential of RL-driven approaches to advance
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Algorithm Mistral-7B-Instruct-v0.2 Gemma-1.1-7B-it Gemma-2-9B-it Llama-3-8B-Instruct
GSM8K MATH GSM8K MATH GSM8K MATH GSM8K MATH

— 41.8 9.8 49.0 18.8 81.3 37.3 79.2 28.3
SFT 52.8 13.6 57.5 19.6 80.1 41.5 72.6 27.1
RS 47.7 10.3 58.4 18.7 87.6 47.5 79.5 28.9

BRiTE 52.2 11.2 59.2 23.7 89.7 50.5 81.0 30.0

Table 1. A comparison of the performance of three algorithms: BRiTE, rejection sampling (RS) type algorithms, and SFT using human-
annotated data.

LLM reasoning through more effective bootstrapping of the
thinking process.

2. BRiTE Matches or Even Enhances the Performance
of SFT with Human-Annotated Thinking Process. To
further validate the effectiveness of BRiTE’s RL-based boot-
strapping mechanism, we compare its performance against
SFT using human-annotated thinking process data. Human
annotations are widely regarded as the gold standard for
training LLMs, as they include explicitly crafted reasoning
pathways to ensure high-quality outputs. However, as shown
in Table 1, BRiTE achieves performance on par with, and in
some cases surpasses, that of human-annotated reasoning-
based fine-tuning in downstream tasks. This highlights a
remarkable outcome: RL-generated thinking processes can
achieve a quality comparable to or even superior to human-
derived reasoning. This somewhat surprising result under-
scores the value of BRiTE as a cost-effective alternative to
labor-intensive and time-consuming human annotation pro-
cesses. By reducing reliance on manual annotation, BRiTE
sheds light on mitigating the bottleneck associated with
creating high-quality datasets, particularly for complex rea-
soning tasks where human annotations can be prohibitively
expensive or inconsistent.

3. BRiTE Further Enhances the Reasoning Capacity
in RLHF Stage. In addition to advancing reasoning algo-
rithms using question-(rational)-answer data, BRiTE demon-
strates the potential to enhance RLHF algorithms that rely
on preference data. As shown by the experimental results
in Figure 2, BRiTE consistently outperforms iterative DPO
across multiple benchmarks, highlighting its effectiveness
in the RLHF stage. This superior performance is attributed
to BRiTE’s ability to facilitate more structured and contex-
tually nuanced reasoning processes, which, in turn, produce
higher-quality preference data and enable more robust pol-
icy refinement. These findings not only underscore the
versatility of BRiTE but also affirm its value in optimizing
RLHF-based fine-tuning pipelines, further cementing its
role as a generic algorithm for enhancing LLM reasoning in
the post-training stage.

4. BRiTE Can Also Improve Code Generation Abil-
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Figure 2. Comparison between BRiTE and iterative DPO.

Algorithm HumanEval BCB (Instruct)
Basic (%) Plus (%) Hard (%) Full (%)

— 78.0 70.7 10.1 35.5

SFT 78.0 67.7 11.5 37.2
RS 79.3 73.2 11.5 35.6

BRiTE 81.7 72.6 15.5 36.3

Table 2. Results of BRiTE on coding generation task using the
deepseek-coder-6.7b-instruct model.

ity. Finally, we extend the evaluation of BRiTE beyond
mathematics tasks to assess its performance on code gen-
eration. The results, presented in Table 2, demonstrate a
consistent trend observed in mathematics tasks: BRiTE
outperforms rejection sampling-based algorithms and even
surpasses SFT using human-annotated answers. This high-
lights BRiTE’s versatility and effectiveness across diverse
problem domains, showcasing its ability to generalize to a
wide range of reasoning tasks. We also remark that rejection
sampling-based algorithms require the code datasets to be
equipped with correct unit tests, which are unnecessary for
BRiTE. For a detailed description of the experimental setup
and configuration, refer to Appendix E.2.

4.3. Enhanced Math Reasoning via Expanded Dataset
and Advanced Base Model

In the previous subsection, BRiTE’s performance did not
demonstrate significant advantages over other algorithms
like rejection sampling. This was primarily due to two
factors: the instruct models had already undergone post-
training, and the dataset size was limited. To overcome
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Method MATH500 Minerva Math OlympiadBench AIME24 AMC23 GPQA Diamond

— 44.1 12.9 16.1 0.9 10.1 25.9
RS 54.3 21.0 23.1 5.6 31.6 26.9

BRiTE (ψ-update) 79.1 35.0 35.7 14.3 57.7 28.5
BRiTE (θ-update) 76.9 40.6 37.0 14.4 57.1 29.8

BRiTE-iter-2 (ψ-update) 80.6 41.3 37.3 14.3 57.9 29.9
BRiTE-iter-2 (θ-update) 78.2 39.8 37.9 15.3 56.4 30.1

Table 3. Performance comparison across different reasoning benchmarks.

these constraints, we have implemented a larger training
dataset based on the more advanced Qwen base model.

Specifically, we perform BRiTE on the model Qwen2.5-7B
(Team, 2024) with a mixed dataset (the size is around 40K)
of RUC-AIBOX/STILL-3-Preview-RL-Data2,
MATH, and historical AIME problems (excluding AIME
2024). We evaluated models trained using the RS baseline,
the ψ-update and θ-update of BRiTE on a diverse set of
reasoning benchmarks, including six challenging math
and science reasoning benchmarks: Math-500, Minerva
Math, Olympiad Bench, AIME24, AMC23, and GPQA
Diamond. Here MATH500 contains 500 competition-level
math problems drawn from the MATH dataset (Hendrycks
et al., 2021), spanning subjects from algebra to precalculus
and accompanied by solutions . Minerva Math comprises
272 undergraduate-level quantitative problems in physics,
chemistry, biology, economics, and mathematics, designed
to test advanced multi-step reasoning (Lewkowycz et al.,
2022). OlympiadBench (He et al., 2024) is a collection
of 8,952 Olympiad-caliber problems in math and physics
(with 57% including diagrams) provided in both English
and Chinese, each with a detailed solution . Drawing
from its extensive entries, we selected 674 open-ended,
competition-style, text-only problems from Olympiad-
Bench. AMC23 (40 problems) and AIME24 (30 problems)
are benchmarks based on recent AMC 12 (2023) and AIME
(2024) contests (Mathematical Association of America,
2023; 2024), representing high school-level competition
questions of moderate and high difficulty, respectively .
Finally, GPQA Diamond (Rein et al., 2024) consists of 198
graduate-level scientific questions verified by experts. Each
of these datasets challenges models with a different profile
of difficulty and domain coverage, collectively evaluating
a broad spectrum of mathematical reasoning capabilities.
We evaluate the pass@1 accuracy (64 sampling times for
AIME24 and AMC23 and 8 sampling times for the others)
for each benchmark.

As shown in Table 3, BRiTE with an external verifier can
improve reject sampling (RS) significantly. Specifically, on
MATH500, Minerva Math and AMC23, BRiTE improve
upon RS by over 15 points in accuracy, showcasing the

2https://huggingface.co/datasets/
RUC-AIBOX/STILL-3-Preview-RL-Data
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Figure 3. Left: Training dynamics of BRiTE with an external veri-
fier and rejection sampling. Right: Mean accuracy of benchmark
scores of models trained by BRiTE with an external verifier and
reject sampling during the training process.

strong impact of RL-bootstrapped rationales. Moreover, we
also show that the iterative training version of BRiTE leads
to some improvements, though the training in iteration 1
reaches a plateau that may limit further gains. Figure 3 (left)
shows that BRiTE exhibits faster and more stable training
loss reduction compared to rejection sampling, indicating
more effective use of feedback during optimization. Fig-
ure 3 (right) further confirms this trend across benchmarks:
BRiTE consistently achieves higher mean accuracy through-
out training. These results indicate that BRiTE not only
improves final performance, but also accelerates the acquisi-
tion of reasoning capabilities during training.

5. Conclusion
In this work, we explore methods for enhancing language
model reasoning through the automated generation of high-
quality thinking processes. We present a unified probabilis-
tic framework that characterizes both the reasoning process
and evaluation signals. Within this framework, we develop
the Bootstrapping Reinforced Thinking Process (BRiTE)
algorithm, which advances automated reasoning generation
through reinforcement learning during inference and in-
corporates improved reasoning processes into post-training
phases. Furthermore, we demonstrate that BRiTE possesses
a provable convergence property and unifies various exist-
ing learning paradigms and algorithms. Extensive empir-
ical results on mathematics tasks show that our approach
surpasses traditional chain-of-thought prompting while en-
hancing existing supervised/rejection sampling fine-tuning
and reinforcement learning from human feedback methods.
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A. Author Contributions
This work stems from the valuable contributions and close collaboration of all authors. The first seven authors and ZW
are the core contributors to this project, all participating in discussions of problem formulation and theory, as well as
experimental implementation. In particular, HZ and ZW lead the project, primarily propose the methodology, derive the
theoretical results, guide experimental progress, contribute to early baselines, and write the paper. YY, SZ, and XX mainly
contribute to the initial implementation of BRiTE without verifier reward for Llama, Gemma, and Mistral models, while YL,
YZ, and ZL mainly contribute to BRiTE with verifier reward for larger datasets and Qwen base models. In addition, YL, YZ,
and ZL make key contributions to direct preference learning, rejection sampling, and code generation, respectively. Other
authors also make significant contributions to this work, providing computational resources and offering suggestions for
theoretical analysis, experiment design, and paper writing.

B. Additional Related Works
RLHF. RLHF (Christiano et al., 2017; Ziegler et al., 2019), also known as the dueling RL (Yue et al., 2012; Pacchiano
et al., 2021) or preference-based RL (Wirth et al., 2017; Chen et al., 2022), has emerged as a breakthrough technique in
language model development, playing a pivotal role in the success of ChatGPT (Ouyang et al., 2022) and subsequent large
language models by effectively aligning model outputs with human preferences. In the standard RLHF pipeline, the first
stage involves learning a reward function from human preference data, followed by optimization using proximal policy
optimization (Schulman et al., 2017). However, this approach demands substantial computational resources and requires
careful tuning of numerous hyperparameters. Direct preference learning (e.g., Zhao et al., 2023; Rafailov et al., 2024; Azar
et al., 2024; Tang et al., 2024; Meng et al., 2024; Liu et al., 2024b; Cen et al., 2024) offers an alternative by learning the
desired policy directly, circumventing the need for explicit reward learning and optimization. Recent work by Xiong et al.
(2024a); Xie et al. (2024); Cen et al. (2024); Zhang et al. (2024) extends these offline approaches through online iterative
learning to gather on-policy data for enhanced performance. However, these algorithms mainly focus on the chat task
and do not explicitly model the latent reasoning process, thus not fully extracting the reasoning power of LLMs. While
Pang et al. (2024); Wu et al. (2024) incorporate reasoning processes into DPO training using CoT prompting, our approach
distinctively generates reasoning processes automatically through RL, demonstrating significant improvements in model
reasoning capacity. Some work (e.g., Xiong et al., 2024b) combines iterative DPO with tool use to improve reasoning
capabilities, which is beyond the scope of our current work.

C. Missing Proofs in the Main Paper
C.1. Proof of Lemma 3.1

Proof of Lemma 3.1. For any q(·) ∈ ∆(W), we have

Ew∼q(·)[logPw − log q(w)]− log
∑
w∈W

Pz = Ew∼q(·)

[
log

Pw∑
w′∈W Pw′

− log q(w)
]
= −KL(q∥p̃) ≤ 0,

where p̃ is the distribution defined as p̃(w) = Pw/(
∑
w′∈W Pw′), and the equality is achieved when q = p̃. Hence, we have

finished the proof of Lemma 3.1.

C.2. Proof of Proposition 3.7

Proof of Proposition 3.7. The first equation follows from the deterministic transition. We will now focus on proving the
second propositional relationship. According to equation (2.3), we have:

π∗(ai | si) = exp{(Q∗(si, ai)− V ∗(si))/β}, ∀h ≤ i ≤ H,
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which implies that

H∑
i=h

β log π∗(ai | si) =
H∑
i=h

(
Q∗(si, ai)− V ∗(si)

)
=

H−1∑
i=h

(
r(si, ai) + V ∗(si+1)− V ∗(si)

)
+

(
r(sH , aH)− V ∗(sH)

)
=

H∑
i=h

r(si, ai)− V ∗(sh), (C.1)

where the second equality uses the fact that aH = EOS. Hence, we have

H∏
i=h

π∗(ai | si) =
exp

(
1
β

∑H
i=h r(si, ai)

)
exp(V ∗(sh)/β)

∝ exp
( 1

β

H∑
i=h

r(si, ai)
)
,

where the last step is obtained by the fact that sh is a fixed state, independent of ah ∪ {(si, ai)}Hi=h+1.

D. Convergence Results
D.1. Proof of Theorem 3.3

Before starting the proof of Theorem 3.3, we present two technical lemmas.
Lemma D.1. For any (θ, θ′) and fixed x ∈ X , we have

KL
(
P(·, · |x, θ)∥P(·, · |x, θ′)

)
= A(x, θ′)−A(x, θ) + ⟨∇A(x, θ), fθ − fθ′⟩.

Proof of Lemma D.1. By the definition of KL-divergence, we have

KL
(
P(·, · |x, θ)∥P(·, · |x, θ′)

)
=

∑
(z,y)∈Z×Y

P(z, y |x, θ) · log P(z, y |x, θ)
P(z, y |x, θ′)

=
∑

(z,y)∈Z×Y

P(z, y |x, θ) ·
[
fθ(x, z, y)− fθ′(x, z, y) +A(x, θ′)−A(x, θ)

]
= A(x, θ′)−A(x, θ) +

〈
E(z,y)∼P(·,· | x,θ)[K((x, z, y), ·)], fθ − fθ′

〉
, (D.1)

where the last equality uses (i)
∑

(z,y)∈Z×Y P(z, y |x, θ) = 1; and (ii) the assumption that fθ ∈ H (Assumption 3.2).
Meanwhile, by Assumption 3.2, we have

A(x, θ) = log
∑

(z,y)∈Z×Y

exp(fθ(x, z, y)) = log
∑

(z,y)∈Z×Y

exp(⟨K((x, z, y), ·), fθ⟩,

which implies that

∇A(x, θ) =
∇
(∑

(z,y)∈Z×Y exp(⟨K((x, z, y), ·), fθ⟩)
)

∑
(z,y)∈Z×Y exp(⟨K((x, z, y), ·), fθ⟩)

=
∑

(z,y)∈Z×Y

exp(⟨K((x, z, y), ·), fθ⟩)∑
(z,y)∈Z×Y exp(⟨K((x, z, y), ·), fθ⟩)

· K((x, z, y), ·)

=
∑

(z,y)∈Z×Y

P(z, y |x, θ) · K((x, z, y), ·), (D.2)

where ∇ is a functional gradient. Combining (D.1) and (D.2), we have

KL
(
P(z, y |x, θ)∥P(z, y |x, θ′)

)
= A(x, θ′)−A(x, θ) + ⟨∇A(x, θ), fθ − fθ′⟩,

which finishes the proof of Lemma D.1.
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Lemma D.2. It holds that

∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ) = E(z,y)∼Q(·,· | x,θ)[K((x, z, y), ·)]−∇A(x, θ),

where Q(z, y |x) =
∑

o∈O P(z,y,o | x,θ)∑
(z,y,o)∈Z×Y ×O P(z,y,o | x,θ) .

Proof. By definition, we have

∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ) = ∇ log
∑

(z,y,o)∈Z ×Y ×O

P(z, y, o |x, θ)

=

∑
(z,y,o)∈Z ×Y ×O ∇P(z, y, o |x, θ)∑
(z,y,o)∈Z ×Y ×O P(z, y, o |x, θ)

=

∑
(z,y,o)∈Z ×Y ×O

(
P(o |x, z, y) · ∇P(z, y |x, θ)

)∑
(z,y,o)∈Z ×Y ×O P(z, y, o |x, θ)

, (D.3)

where the last equality follows from (3.1). Meanwhile, by Assumption 3.2, we further have

∇P(z, y |x, θ) = ∇ exp(fθ(x, z, y)−A(x, θ))

= exp(fθ(x, z, y)−A(x, θ)) · [∇⟨K((x, z, y), ·), fθ⟩ − ∇A(x, θ)]
= P(z, y |x, θ) · [K((x, z, y), ·)−∇A(x, θ)]. (D.4)

Combining (D.3) and (D.4), we have

∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ) =
∑

(z,y,o)∈Z ×Y ×O

(
P(o |x, z, y) · ∇P(z, y |x, θ)

)∑
(z,y,o)∈Z ×Y ×O P(z, y, o |x, θ)

=
∑

(z,y)∈Z ×Y

∑
o∈O P(z, y, o |x, θ)∑

(z,y,o)∈Z ×Y ×O P(z, y, o |x, θ)
· [K((x, z, y), ·)−∇A(x, θ)]

= E(z,y)∼Q(·,· | x,θ)[K((x, z, y), ·)]−∇A(x, θ). (D.5)

This finishes the proof of Lemma D.2.

Now we start the proof of Theorem 3.3.

Proof of Theorem 3.3. By the updating rule of θt+1 in (3.5), we have

θt+1 = argmax
θ

{ ∑
(z,y,o)∈Z ×Y

logP(z, y |x, θ) ·Q(z, y, o |x, θt)
}

= argmax
θ

{ ∑
(z,y)∈Z ×Y

logP(z, y |x, θ) ·Q(z, y |x, θt)
}
,

where we use the notation Q(z, y |x, θt) =
∑
o∈O Q(z, y, o |x, θt). Furthermore, we have

θt+1 = argmax
θ

{ ∑
(z,y)∈Z ×Y

logP(z, y |x, θ) ·Q(z, y |x, θt)
}

= argmax
θ

{ ∑
(z,y)∈Z ×Y

log
P(z, y |x, θ)
P(z, y |x, θt)

·Q(z, y |x, θt)
}

= argmax
θ

{〈
E(z,y)∼Q(·,· | x,θt)[K((x, z, y), ·)], fθ − fθt

〉
+A(x, θt)−A(x, θ)

}
, (D.6)
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where the last equality is implied by

log
P(z, y |x, θ)
P(z, y |x, θt)

= fθ(x, z, y)− fθt(x, z, y) +A(x, θt)−A(x, θ)

= ⟨K((x, z, y), ·), fθ − fθt⟩+A(x, θt)−A(x, θ).

Combining (D.6) and Lemma D.2, we have

θt+1 = argmax
θ

{
⟨∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt) +∇A(x, θt), fθ − fθt⟩+A(x, θt)−A(x, θ)

}
. (D.7)

By the optimality condition, this implies that

∇A(θt+1)−∇A(θt) = ∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt). (D.8)

We have〈
∇A(x, θt+1)−∇A(x, θt), fθ∗ − fθt+1

〉
= ⟨∇A(x, θt), fθt+1

− fθt⟩ −A(x, θt+1) +A(x, θt)

− ⟨∇A(x, θt), fθ∗ − fθt⟩+A(x, θ∗)−A(x, θt)

+ ⟨∇A(x, θt+1), fθ∗ − fθt+1
⟩ −A(x, θ∗) +A(x, θt+1)

= −KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
+KL

(
P(·, · |x, θt)∥P(·, · |x, θ∗)

)
−KL

(
P(·, · |x, θt+1)∥P(·, · |x, θ∗)

)
,

where the last equality follows from Lemma D.1. This is equivalent to

KL
(
P(·, · |x, θt)∥P(·, · |x, θ∗)

)
−KL

(
P(·, · |x, θt+1)∥P(·, · |x, θ∗)

)
= ⟨∇A(θt+1)−∇A(θt), fθ∗ − fθt+1⟩+KL

(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
= ⟨∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθ∗ − fθt+1⟩︸ ︷︷ ︸

(⋆)

+KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
, (D.9)

where the last equality follows from (D.8). For the Term (⋆), we have

(⋆) =
〈
∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθ∗ − fθt+1

〉
= ⟨∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθ∗ − fθt⟩︸ ︷︷ ︸

(I)

+
〈
∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθt − fθt+1

〉︸ ︷︷ ︸
(II)

.

(D.10)

Term (I). By the local concave assumption, we have

Term (I) in (D.10) ≥ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ∗)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt). (D.11)

Term (II). By Lemma 3.1, we have

logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)

=
∑

(z,y,o)∈Z ×Y ×O

[logP(z, y, o |x, θt+1)− logQ(z, y, o |x, θt+1)] ·Q(z, y, o |x, θt), (D.12)

where

Q(z, y, o |x, θ) = P(z, y, o |x, θ)∑
(z′,y′,o′)∈Z ×Y ×O P(z′, y′, o′ |x, θ)

=
P(z, y, o |x, θ)

P(z ∈ Z , y ∈ Y , o ∈ O |x, θ)
. (D.13)

17



BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning

Note that Q(·, ·, · |x, θt) is a distribution over Z × Y × O , which means that
∑

(z,y,o)∈Z ×Y ×O Q(z, y, o |x, θt) = 1.
Hence, we have

logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt) =
∑

(z,y,o)∈Z ×Y ×O

Q(z, y, o |x, θt) · logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)

=
∑

(z,y,o)∈Z ×Y ×O

Q(z, y, o |x, θt) · log
P(z, y, o |x, θt)
Q(z, y, o |x, θt)

, (D.14)

where the last equality is implied by the definition of Q(z, y, o |x, θ) in (D.13). Combining (D.12) and (D.14), we have

logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)

=
∑

(z,y,o)∈Z ×Y ×O

Q(z, y, o |x, θt) · log
P(z, y, o |x, θt+1)

P(z, y, o |x, θt)
+ KL

(
Q(·, ·, · |x, θt)∥Q(·, ·, · |x, θt+1)

)
≥

∑
(z,y,o)∈Z ×Y ×O

Q(z, y, o |x, θt) · log
P(z, y, o |x, θt+1)

P(z, y, o |x, θt)

=
∑

(z,y,o)∈Z ×Y ×O

Q(z, y, o |x, θt) · log
P(z, y |x, θt+1)

P(z, y |x, θt)
, (D.15)

where the third equality follows from the non-negativity of KL-divergence, and the last equality is implied by (3.1). By
Assumption 3.2, we can rewrite the right-handside of (D.15) as∑

(z,y,o)∈Z ×Y

Q(z, y, o |x, θt) ·
(
fθt+1(x, z, y)− fθt(x, z, y)

)
+A(x, θt)−A(x, θt+1)

=
〈
E(z,y)∼Q(·,· | x,θt)[K((x, z, y), ·)], fθt+1

− fθt
〉
+A(x, θt)−A(x, θt+1)

=
〈
E(z,y)∼Q(·,· | x,θt)[K((x, z, y), ·)]−∇A(x, θt), fθt+1

− fθt
〉
−KL

(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
=

〈
∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθt+1

− fθt
〉
−KL

(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
, (D.16)

where the third line is implied by Lemma D.1, and the last equality follows from (D.5). Plugging (D.16) into (D.15), we
have

Term (II) in (D.10) =
〈
∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθt − fθt+1

〉
≥ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)

−KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
. (D.17)

Combining (D.10), (D.11), and (D.17), we have

(⋆) ≥ Term (I) + Term (II)
≥ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ∗)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt) + logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)

− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)−KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
= logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ∗)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)

−KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
. (D.18)

Putting (D.9) and (D.18) together, we obtain

KL
(
P(·, · |x, θt)∥P(·, · |x, θ∗)

)
−KL

(
P(·, · |x, θt+1)∥P(·, · |x, θ∗)

)
≥ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ∗)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1).

Telescoping this inequality from 0 to T − 1, we obtain that which implies that

min
1≤t≤T

{logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ∗)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)} ≤
KL

(
P(·, · |x, θ1)∥P(·, · |x, θ∗)

)
T

,

which finishes the proof of Theorem 3.3.
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D.2. Additional Theoretical Results

Theorem D.3. Suppose Assumption 3.2 holds. Then we have

min
1≤t≤T

KL
(
P(·, · |x, θt+1)∥P(·, · |x, θt)

)
≤ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θT+1)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ1)

T
.

Proof of Theorem D.3. By the same derivation of (D.17), we have

KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
≥ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)

−
〈
∇ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt), fθt − fθt+1

〉
= logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)

−
〈
∇A(θt+1)−∇A(θt), fθt − fθt+1

〉
, (D.19)

where the last equality is implied by the optimality condition in (D.8). By Lemma D.1, we have

KL
(
P(·, · |x, θt)∥P(·, · |x, θt+1)

)
= A(x, θt+1)−A(x, θt) + ⟨∇A(x, θt), fθt − fθt+1

⟩. (D.20)

Combining (D.19) and (D.20), we have

A(x, θt+1)−A(x, θt) +
〈
∇A(θt+1), fθt − fθt+1

〉
≥ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1).

Together with Lemma D.1, we have

logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt+1)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θt)
≥ A(x, θt)−A(x, θt+1) +

〈
∇A(θt+1), fθt+1

− fθt
〉
= KL

(
P(·, · |x, θt+1)∥P(·, · |x, θt)

)
.

Telescoping this inequality across t ∈ [T ], we have

min
t∈[T ]

{
KL

(
P(·, · |x, θt+1)∥P(·, · |x, θt)

)}
≤

∑T
t=1 KL

(
P(·, · |x, θt+1)∥P(·, · |x, θt)

)
T

≤ logP(z ∈ Z , y ∈ Y , o ∈ O |x, θT+1)− logP(z ∈ Z , y ∈ Y , o ∈ O |x, θ1)
T

,

which finishes the proof of Theorem D.3.

E. Implementation Details
E.1. Implementation Details for Math Task

Implementation of BRiTE. The BRiTE algorithm is run on 4 NVIDIA H100 during training. We leverage the PPO
pipeline (Schulman et al., 2017) to learn the sampling policy Q (3.4) with a learning rate of 5e− 7 and a batch size of 1. For
the subsequent SFT on rationales sampled by Q, we set the learning rate to 5e− 5 and the batch size to 2. We adopt the
LoRA (Hu et al., 2021) training for both steps, where the r is set to 32 and lora alpha is set to 128.

Implementation of RS. For rejection sampling, we set the temperature of the model’s generation to 1.0, sample N = 30
candidate rationales for each problem x, and select the best rationales zrs. we filter generations by selecting those that
produce the correct final answer. The model is then fine-tuned on these problem-rationale-answer tuples {x, zrs, y

∗} using
the same learning rate and LoRA parameters as in BRiTE.

Implementation of SFT. For SFT on original datasets with human-annotated rationales, we use the same LoRA parameters
as in BRiTE. The learning rates for Mistral-7B-Instruct-v0.2 and Gemma-1.1-7B-it are set to 5e−5. For
Gemma-2-9b-it, the learning rate is 5e−6, and for Llama-3-8B-Instruct, it is 8e−7. These smaller learning rates
are chosen to mitigate overfitting and ensure optimal performance.
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Implementation of RLHF Algorithms. For both BRiTE DPO and iterative DPO, we select 6k data points per iteration
from the RLHF4MATH/prompt iter1,2,3 dataset3 over three iterations. The learning rates for DPO training are
configured as follows: Mistral-7B-Instruct-v0.2 uses a learning rate of 2e− 7, Gemma-1.1-7B-it employs
4e− 7, while Gemma-2-9B-it and Llama-3-8B-Instruct are set to 5e− 7. The generation temperature is set to
1.0, and each prompt sample N = 30 responses.

Evaluation. We utilize the evaluation function provided in the Qwen2.5-Math repository4 to assess the models’
performance on the test sets of GSM8K and MATH.

E.2. Implementation Details for Coding Generation Tasks

Datasets. For the code generation task, We choose the first 4000 rows of the educational instruct split of the
dataset OpenCoder-LLM/opc-sft-stage25(Huang et al., 2024) as the training dataset, which comprises (instruction,
code, test case) tuples. The entire dataset is generated with an algorithmic corpus as a seed and validated through a Python
compiler.

Models. We choose the language model deepseek-ai/deepseek-coder-6.7b-instruct6 with around seven
billion active parameters as the base model, which is especially pretrained and fined-tuned on the code corpus for better
code generation performance.

Baselines. Similar to the mathematics tasks, we use Reject Sampling (RS) and SFT as the baselines. We follow a rejection
sampling approach similar to prior math section. The model generates candidate rationales with a temperature of 1.0,
sample N = 30 rationales for problem x. The best rationales, zrs, is then selected. The model is then fine-tuned on
these rationale-answer tuples {x, zrs, y}. Notably, unlike the mathematical setting, filtering correct generations in the code
generation task requires candidates to pass all unit tests and receive positive compiler feedback.

Benchmarks. We evaluate the trained models on the HumanEval task from Evalplus (Liu et al., 2023) and the instruct
split of the BigCodeBench (Zhuo et al., 2024). These popular benchmarks evaluate how the language models complete the
partial code snippet and generate a full code snippet according to natural language instructions.

Training Details. We use 4 NVIDIA A100 GPUs for all the training. We leverage the PPO pipeline (Schulman et al.,
2017) to learn the sampling policy Q (3.4) with a learning rate of 5e− 7 and a batch size of 1. With the rationales sampled
from Q of BRiTE, we set the learning rate as 5e− 5 and the batch size as 2 in the SFT stage of BRiTE. For the baselines, we
also set the learning rate as 5e− 5 and the batch size as 2 in the SFT algorithm. For the fine-tune stage of reject sampling,
we use the same learning rate as in BRiTE. To save the computation budget, we adopt the LoRA (Hu et al., 2021) training
for all the optimization phases, where the r is set to 32 and lora alpha is set to 128.

Evaluation Details and Results. We report the pass@1 scores (the success rate of the first attempt) with the greedy
decoding for the base model, SFT algorithm, Reject Sampling (RS) algorithm, and our proposed algorithm BRiTE-SFT
in Table 2. Results show that our proposed algorithm BRiTE can help LLMs improve their code generation ability and
demonstrate the performance gain of BRiTE compared with the baselines. We also remark that rejection sampling-based
algorithms require the code datasets to be equipped with correct unit tests, which are unnecessary for BRiTE.

3https://huggingface.co/RLHF4MATH
4https://github.com/QwenLM/Qwen2.5-Math
5https://huggingface.co/datasets/OpenCoder-LLM/opc-sft-stage2/tree/main
6https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
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