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ABSTRACT

This paper presents a simple MLP-like architecture, CycleMLP, which is a versa-
tile backbone for visual recognition and dense predictions. As compared to mod-
ern MLP architectures, e.g. , MLP-Mixer (Tolstikhin et al., 2021), ResMLP (Tou-
vron et al., 2021a), and gMLP (Liu et al., 2021a), whose architectures are cor-
related to image size and thus are infeasible in object detection and segmen-
tation, CycleMLP has two advantages compared to modern approaches. (1) It
can cope with various image sizes. (2) It achieves linear computational com-
plexity to image size by using local windows. In contrast, previous MLPs have
O(N2) computations due to fully spatial connections. We build a family of
models which surpass existing MLPs and even state-of-the-art Transformer-based
models, e.g. Swin Transformer (Liu et al., 2021b), while using fewer parame-
ters and FLOPs. We expand the MLP-like models’ applicability, making them
a versatile backbone for dense prediction tasks. CycleMLP achieves competi-
tive results on object detection, instance segmentation, and semantic segmenta-
tion. In particular, CycleMLP-Tiny outperforms Swin-Tiny by 1.3% mIoU on
ADE20K dataset with fewer FLOPs. Moreover, CycleMLP also shows excel-
lent zero-shot robustness on ImageNet-C dataset. Code is available at https:
//github.com/ShoufaChen/CycleMLP.

1 INTRODUCTION

Vision models in computer vision have been long dominated by convolutional neural net-
works (CNNs) (Krizhevsky et al., 2012; He et al., 2016). Recently, inspired by the successes in
Natural Language Processing (NLP) field, Transformers (Vaswani et al., 2017) are adopted into the
computer vision community. Built with self-attention layers, multi-layer perceptrons (MLPs), and
skip connections, Transformers make numerous breakthroughs on visual tasks (Dosovitskiy et al.,
2020; Liu et al., 2021b). More recently, (Tolstikhin et al., 2021; Liu et al., 2021a) have validated that
building models solely on MLPs and skip connections without the self-attention layers can achieve
surprisingly promising results on ImageNet (Deng et al., 2009) classification.

FC Stepsize O(HW )
Scale

Variable
ImgNet
Top-1

COCO
AP

ADE20K
mIoU

Channel 1 HW 3 79.4 35.0 36.3

Spatial - H2W 2 7 80.9 7 7

Cycle 7 HW 3 81.6 41.7 42.4

Table 1: Comparison of three types of FC operators.

Despite promising results on visual
recognition tasks, these MLP-like
models can not be used in dense pre-
diction tasks (e.g., object detection
and semantic segmentation) due to
the three challenges: (1) Current
models are composed of blocks with
non-hierarchical architectures, which
make the model infeasible to provide
pyramid and high-resolution feature
representations. (2) Current models cannot deal with flexible input scales due to the Spatial FC
as shown in Figure 1b. The spatial FC is configured by an image-size related weight1. Thus, this

1We omit bias here for discussion convenience.
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Figure 1: (a)-(c): motivation of Cycle Fully-Connected Layer (Cycle FC) compared to Channel
FC and Spatial FC. (a) Channel FC aggregates features in the channel dimension with spatial size
‘1’. It can handle various input scales but cannot learn spatial context. (b) Spatial FC (Tolstikhin
et al., 2021; Touvron et al., 2021a; Liu et al., 2021a) has a global receptive field in the spatial
dimension. However, its parameter size is fixed and it has quadratic computational complexity to
image scale. (c) Our proposed Cycle Fully-Connected Layer (Cycle FC) has linear complexity
the same as channel FC and a larger receptive field than Channel FC. (d)-(f): Three examples of
different stepsizes. Orange blocks denote the sampled positions. F denotes the output position.
For simplicity, we omit batch dimension and set the feature’s width to 1 here for example. Several
more general cases can be found in Figure 7 (Appendix G). Best viewed in color.

structure typically requires the input image with a fixed scale during both the training and infer-
ence procedure. It contradicts the requirements of dense prediction tasks, which usually adopt a
multi-scale training strategy (Carion et al., 2020) and different input resolutions in training and in-
ference stages (Lin et al., 2014; Cordts et al., 2016). (3) The computational and memory costs of
the current MLP models are quadratic to input image sizes for dense prediction tasks (e.g., COCO
benchmark (Lin et al., 2014)).

To address the first challenge, we construct a hierarchical architecture to generate pyramid features.
For the second and third issues, we propose a novel variant of fully connected layer, named as Cycle
Fully-Connected Layer (Cycle FC), as illustrated in Figure 1c. The Cycle FC is capable of dealing
with various image scales and has linear computational complexity to image size.

Our Cycle FC is inspired by Channel FC layer illustrated in Figure 1a, which is designed for channel
information communication (Lin et al., 2013; Szegedy et al., 2015; He et al., 2016; Howard et al.,
2017). The main merit of Channel FC lies in that it can deal with flexible image sizes since it is
configured by image-size agnostic weight of Cin and Cout. However, the Channel FC is infeasible to
aggregate spatial context information due to its limited receptive field.

Our Cycle FC is designed to enjoy Channel FC’s merit of taking input with arbitrary resolution and
linear computational complexity while enlarging its receptive field for context aggregation. Specif-
ically, Cycle FC samples points in a cyclical style along the channel dimension (Figure 1c). In this
way, Cycle FC has the same complexity (both the number of parameters and FLOPs) as channel
FC while increasing the receptive field simultaneously. To this end, we adopt Cycle FC to replace
the Spatial FC for spatial context aggregation (i.e., token mixing) and build a family of MLP-like
models for both recognition and dense prediction tasks.

The contributions of this paper are as follows: (1) We propose a new MLP-like operator, Cycle FC,
which is computational friendly to cope with flexible input resolutions. (2) We take the first attempt
to build a family of hierarchical MLP-like architectures (CycleMLP) based on Cycle FC operator for
dense prediction tasks. (3) Extensive experiments on various tasks (e.g., ImageNet classification,
COCO object instance detection, and segmentation, and ADE20K semantic segmentation) demon-
strate that CycleMLP outperforms existing MLP-like models and is comparable to and sometimes
better than CNNs and Transformers on dense predictions.
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Figure 2: ImageNet accuracy v.s.
model capacity. All models are
trained on ImageNet-1K (Deng et al.,
2009) without extra data. CycleMLP
surpasses existing MLP-like models
such as MLP-Mixer (Tolstikhin et al.,
2021), ResMLP (Touvron et al., 2021a),
gMLP (Liu et al., 2021a), S2-MLP (Yu
et al., 2021) and ViP (Hou et al., 2021).

Related Work. Convolution Neural Networks (CNNs) has dominated the visual backbones for
several years (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016). (Dosovitskiy
et al., 2020) introduced the first pure Transformer-based (Vaswani et al., 2017) model into computer
vision and achieved promising performance, especially pre-trained on the large scale JFT dataset.
Recently, some works (Tolstikhin et al., 2021; Touvron et al., 2021a; Liu et al., 2021a) removed
the attention in Transformer and proposed pure MLP-based models. Please see Appendix A for a
comprehensive review of the literature on the visual backbones.

2 METHOD

In this section, we introduce CycleMLP models for vision tasks including recognition and dense
predictions. To begin with, in Sec. 2.1 we formulate our proposed novel operator, Cycle FC, which
serves as a basic component for building CycleMLP models. Then we compare Cycle FC with
Channel FC and multi-head attention adopted in recent Transformer-based models (Dosovitskiy
et al., 2020; Touvron et al., 2020; Liu et al., 2021b) in Sec. 2.2. Finally, we present the detailed
configurations of CycleMLP models in Sec. 2.3.

2.1 CYCLE FULLY-CONNECTED LAYER

Notation. We denote an input feature map as X ∈ RH×W×Cin , where H,W denote the height
and width of the image and Cin is the number of feature channels. We use subscripts to index the
feature map. For example, Xi,j,c is the value of cth channel at the spatial position (i, j) and Xi,j,:

are values of all channels at the spatial (i, j).

The motivation behind Cycle FC is to enlarge receptive field of MLP-like models to cope with
downstream dense prediction tasks while maintaining the computational efficiency. As illustrated
in Figure 1a, Channel FC applies weighting matrix on X along the channel dimension on fixed
position (i, j). However, Cycle FC introduces a receptive field of (SH , SW ), where SH and SW are
stepsize along with the height and width dimension respectively (illustrated in Figure 1 (d)). The
basic Cycle FC operator can be formulated as below:

CycleFC(X)i,j,: =

Cin∑
c=0

Xi+δi(c),j+δj(c),c ·Wmlp
c,: + b (1)

where Wmlp ∈ RCin×Cout and b ∈ RCout are parameters of Cycle FC. δi(c) and δj(c) are the spatial
offset of the two axis on the cth channel, which are defined as below:

δi(c) = (c mod SH)− 1, δj(c) = (b c
SH
c mod SW )− 1 (2)

Examples. We provide several examples (Figure 1 (d)-(f)) to illustrate the stepsize. For the sake of
visualization convenience, we set the tensor’s W = 1. Thus, these three examples naturally all have
SW = 1. Figure 1 (d) illustrates the offsets along two axis when SH = 3, that is δj(c) ≡ 0 and
δi(c) = {−1, 0, 1,−1, 0, 1, · · · } when c = 0, 1, 2, · · · , 8. Figure 1 (e) shows that when SH = H ,
Cycle FC has a global receptive field. Figure 1 (f) shows that when SH = 1, there will be no offset
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along either axis and thus Cycle FC degrades to Channel FC (Figure 1 (a)). We also provide a more
general case where W 6= 1 and SH = 3, SW = 3 in Figure 7 (Appendix).

The offsets δi(c) and δj(c) enlarge the receptive field of Cycle FC as compared to Channel FC
(Figure 1a), which applies weights solely on the same spatial position for all channels. The larger
receptive field in return brings improvements on dense prediction tasks like semantic segmentation
and object detection as shown in Table 1. Meanwhile, Cycle FC still maintains computational effi-
ciency and flexibility on input resolution. Both the FLOPs and the number of parameters are linear
to the spatial scale which are exactly the same as those of Channel FC. In contrast, although Spatial
FC has a global receptive field over the whole spatial space, its computational cost is quadratic to
the image scale. Besides, it fails to handle inputs with different resolutions.

2.2 COMPARISON BETWEEN MULTI-HEAD SELF-ATTENTION (MHSA) AND CYCLE FC

Inspired by Cordonnier et al. (2020), when re-parametried properly, a multi-head self-attention layer
withNh heads can be formulated as below, which is similar to a convolution with kernel size

√
Nh×√

Nh. (Please refer to Appendix C for detailed derivation)

MHSA(X)i,j,: =
∑

h∈{1,2,...,Nh}

Xi+∆i(h),j+∆j(h),:W
mhsa,h + b (3)

where Wmhsa,h ∈ RCin×Cout is the parameter matrix for hth head in MHSA. b ∈ RCout is the
bias vector. {∆i(h),∆j(h)} = {(0, 0), (1, 0), (−1, 0), · · · } contains all possible positional shift in
convolution with kernel size

√
Nh ×

√
Nh. Further, we stack all Wmhsa,h together and reshape it

into Wmhsa ∈ RK×K×Cin×Cout . Then a relationship between Wmlp and Wmhsa can be formulated
as follow.

Wmlp
c,: = Wmhsa

δi(c)+1,δj(c)+1,c,: (4)

equation 4 shows that only the weights of Wmhsa on spatial shift (δi(c)+1, δj(c)+1) are taken into
account in Wmlp. This indicates that Cycle FC introduce an inductive bias that the weighting matrix
in MHSA should be sparse. Thus Cycle FC inherits the large receptive field introduced in MHSA.
The receptive field in Cycle FC is enlarged to (SH , SW ), which enables Cycle FC to tackle with
downstream dense prediction tasks better. Meanwhile, with the sparsity inductive bias, Cycle FC
maintains computational efficiency in MLP-based methods as compared to convolution and multi-
head self-attention. The parameter size in Cycle FC isCin×Cout while Wmhsa ∈ RK×K×Cin×Cout .

2.3 OVERALL ARCHITECTURE

Patch Embedding. Given the raw input image with the size of H ×W × 3, our model first splits it
into patches by a patch embedding module (Dosovitskiy et al., 2020). Each patch is then treated as a
“token”. Specifically, we follow (Fan et al., 2021; Wang et al., 2021a) to adopt an overlapping patch
embedding module with the window size 7 and stride 4. These raw patches are further projected
to a higher dimension (denoted as C) by a linear embedding layer. Therefore, the overall patch
embedding module generates the features with the shape of H4 ×

W
4 × C.

CycleMLP Block. Then, we sequentially apply several Cycle FC Bloc blocks. Comparing with the
previous MLP blocks (Tolstikhin et al., 2021; Touvron et al., 2021a; Liu et al., 2021a) visualized
in Figure 5 (Appendix), the key difference of Cycle FC block is that it utilizes our proposed Cycle
Fully-Connected Layer (Cycle FC) for spatial projection and advances the models in context aggre-
gation and information communication. Specifically, the Cycle FC block consists of three parallel
Cycle FCs, which have stepsizes SH × SW of 1 × 7, 7 × 1, and 1 × 1. This design is inspired by
the factorization of convolution (Szegedy et al., 2016) and criss-cross attention (Huang et al., 2019).
Then, there is a channel-MLP with two linear layers and a GELU (Hendrycks & Gimpel, 2016)
non-linearity in between. A LayerNorm (LN) (Ba et al., 2016) layer is applied before both parallel
Cycle FC layers and channel-MLP modules. A residual connection (He et al., 2016) is applied after
each module.
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Model Param FLOPs Top-1
EAMLP-14 30M - 78.9
EAMLP-19 55M - 79.4
Mixer-B/16 59M 12.7G 76.4
Mixer-B/16† 59M 12.7G 77.3
ResMLP-S12 15M 3.0G 76.6
ResMLP-S24 30M 6.0G 79.4
ResMLP-B24 116M 23.0G 81.0
gMLP-Ti 6M 1.4G 72.3
gMLP-S 20M 4.5G 79.6
gMLP-B 73M 15.8G 81.6
S2-MLP-wide 71M 14.0G 80.0
S2-MLP-deep 51M 10.5G 80.7
ViP-Small/7 25M 6.9G 81.5
ViP-Medium/7 55M 16.3G 82.7
ViP-Large/7 88M 24.4G 83.2
AS-MLP-T 28M 4.4G 81.3
AS-MLP-S 50M 8.5G 83.1
AS-MLP-B 88M 15.2G 83.3
CycleMLP-B1 15M 2.1G 79.1
CycleMLP-B2 27M 3.9G 81.6
CycleMLP-B3 38M 6.9G 82.6
CycleMLP-B4 52M 10.1G 83.0
CycleMLP-B5 76M 12.3G 83.1
CycleMLP-T 28M 4.4G 81.3
CycleMLP-S 50M 8.5G 82.9
CycleMLP-B 88M 15.2G 83.4

Table 2: ImageNet-1K classification
for MLP-like models.

Model Family Scale Param FLOPs Top-1
ResNet18 CNN 2242 12M 1.8G 69.8
EffNet-B3 CNN 3002 12M 1.8G 81.6
GFNet-H-Ti FFT 2242 15M 2.0G 80.1
CycleMLP-B1 MLP 2242 15M 2.1G 78.9
ResNet50 CNN 2242 26M 4.1G 78.5
DeiT-S Trans 2242 22M 4.6G 79.8
BoT-S1-50 Hybrid 2242 21M 4.3G 79.1
PVT-S Trans 2242 25M 3.8G 79.8
Swin-T Trans 2242 29M 4.5G 81.3
GFNet-H-S FFT 2242 32M 4.5G 81.5
CycleMLP-B2 MLP 2242 27M 3.9G 81.6
ResNet101 CNN 2242 45M 7.9G 79.8
RegNetY-8G CNN 2242 39M 8.0G 81.7
BoT-S1-59 Hybrid 2242 34M 7.3G 81.7
PVT-M Trans 2242 44M 6.7G 81.2
CycleMLP-B3 MLP 2242 38M 6.9G 82.4
GFNet-H-B FFT 2242 54M 8.4G 82.9
Swin-S Trans 2242 50M 8.7G 83.0
PVT-L Trans 2242 61M 9.8G 81.7
CycleMLP-S MLP 2242 50M 8.5G 82.9
ViT-B/16 Trans 3842 86M 55.4G 77.9
DeiT-B Trans 2242 86M 17.5G 81.8
DeiT-B Trans 3842 86M 55.4G 83.1
Swin-B Trans 2242 88M 15.4G 83.3
CycleMLP-B MLP 2242 88M 15.2G 83.4

Table 3: Comparison with SOTA models on
ImageNet-1K without extra data.

Stage. The blocks with the same architecture are stacked to form one Stage (He et al., 2016). The
number of tokens (feature scale) is maintained within each stage. At each stage transition, the
channel capacity of the processed tokens is expanded while the number of tokens is reduced. This
strategy effectively reduces the spatial resolution complexity. Overall, each of our model variants
has four stages, and the output feature at the last stage has a shape of H

32 ×
W
32 × C4. These stage

settings are widely utilized in both CNN (Simonyan & Zisserman, 2014; He et al., 2016) and Trans-
former (Wang et al., 2021b; Liu et al., 2021b) models. Therefore, CycleMLP can conveniently serve
as a general-purpose visual backbone and a generic replacement for existing backbones.

Model Variants. The design principle of the model’s macro structure is mainly inspired by the phi-
losophy of hierarchical Transformer (Wang et al., 2021b; Liu et al., 2021b) models, which reduce
the number of tokens at the transition layers as the network goes deeper and increase the channel
dimension. In this way, we can build a hierarchical architecture that is critical for dense predic-
tion tasks (Lin et al., 2014; Zhou et al., 2017). Specifically, we build two model zoos following
two widely used Transformer architectures, PVT (Wang et al., 2021b) and Swin (Liu et al., 2021b).
Models in PVT-style are named from CycleMLP-B1 to CycleMLP-B5 and in Swin-Style are named
as CycleMLP-T, -S, and -B, which represent models in tiny, small, and base sizes. These models are
built by adapting several architecture-related hyper-parameters, including Si, Ci, Ei, and Li which
represent the stride of the transition, the token channel dimension, the number of blocks, and the
expansion ratio respectively at Stage i. Detailed configurations of these models are in Table 11 (Ap-
pendix).

3 EXPERIMENTS

In this section, we first examine CycleMLP by conducting experiments on ImageNet-1K (Deng
et al., 2009) image classification. Then, we present a bunch of baseline models achieved by Cy-
cleMLP in dense prediction tasks, i.e., COCO (Lin et al., 2014) object detection, instance segmen-
tation, and ADE20K (Zhou et al., 2017) semantic segmentation.
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1× 7 7× 1 1× 1 Params FLOPs Top-1 Acc
3 3

24.5M 3.6G
80.5

3 3 80.4
3 3 81.3

33 3 26.8M 3.9G 80.6
33 3 80.5

3 3 3 26.8M 3.9G 81.6

Table 4: Ablation on three parallel branches.
We adopt CycleMLP-B2 variant for this abla-
tion study. Double check marks (33) denote
two same branches.

Stepsize ImgNet
Top-1

ADE20K
mIoU

3 81.6 42.4
5 81.6 (+0.0) 43.2 (+0.8)
7 81.6 (+0.0) 43.9 (+1.5)
9 81.5 (−0.1) 43.2 (+0.8)

Table 5: Stepsize ablation: CycleMLP
achieves the highest mIoU on ADE20K
when stepsize is 7. However, the stepsize
has negligible influence on the ImageNet
classification.

3.1 IMAGENET-1K CLASSIFICATION

The experimental settings for ImageNet classification are mostly from DeiT (Touvron et al., 2020),
Swin (Liu et al., 2021b). The detailed experimental settings for ImageNet classification can be found
in Appendix E.1.

Comparison with MLP-like Models. We first compare CycleMLP with existing MLP-like models
and the results are summarized in Table 2 and Figure 2. The accuracy-FLOPs tradeoff of CycleMLP
consistently outperforms existing MLP-like models (Tolstikhin et al., 2021; Touvron et al., 2021a;
Liu et al., 2021a; Guo et al., 2021; Yu et al., 2021; Hou et al., 2021) under a wide range of FLOPs,
which we attribute to the effectiveness of our Cycle FC. Specifically, compared with one of the
pioneering MLP work, i.e., gMLP (Liu et al., 2021a), CycleMLP-B2 achieves the same top-1 accu-
racy (81.6%) as gMLP-B while reducing more than 3× FLOPs (3.9G for CycleMLP-B2 and 15.8G
for gMLP-B). Furthermore, compared with existing SOTA MLP-like model, i.e., ViP (Hou et al.,
2021), our model CycleMLP-B utilizes less FLOPs (15.2G) than ViP-Large/7 (24.4G, the largest
one of ViP family) while achiving higher top-1 accuracy.

It is noted that all previous MLP-like models listed in Table 2 do not conduct experiments on dense
prediction tasks due to the incapability of dealing with variable input scales, which is discussed in
Sec. 1. However, CycleMLP solved this issue by adopting Cycle FC. The experimental results on
dense prediction tasks are presented in Sec. 3.3 and Sec. 3.4.

Comparison with SOTA Models. Table 3 further compares CycleMLP with previous state-of-
the-art CNN, Transformer and Hybrid architectures. It is interesting to see that CycleMLP models
achieve comparable performance to Swin Transformer (Liu et al., 2021b), which is the state-of-
the-art Transformer-based model. Specifically, CycleMLP-B achieves slightly better top-1 accu-
racy (83.4%) than Swin-B (83.3%) with similar parameters and FLOPs. GFNet (Rao et al., 2021)
utilizes the fast Fourier transform (FFT) (Cooley & Tukey, 1965) to learn spatial information and
achieves similar performance as CycleMLP on ImageNet-1K classification. However, the architec-
ture of GFNet is correlated with the input resolution, and extra operation (parameter interpolation)
is required when input scale changes, which may hurt the performance of dense predictions. We
will thoroughly compare CycleMLP with GFNet in Sec. 3.4 on ADE20K.

3.2 ABLATION STUDY

In this subsection, we conduct extensive ablation studies to analyze each component of our design.
Unless otherwise stated, We adopt CycleMLP-B2 instantiation in this subsection.

Cycle Fully-Connected Layer. To demonstrate the advantage of the Cycle FC, we compare
CycleMLP-B2 with two other baseline models equipped with channel FC and Spatial FC as spatial
context aggregation operators, respectively. The differences of these operators are visualized in Fig-
ure 1, and the comparison results are shown in Table 1. CycleMLP-B2 outperforms the counterparts
built on both Spatial and Channel FC for ImageNet classification, COCO object detection, instance
segmentation, and ADE20K semantic segmentation. The results validate that Cycle FC is capable
of serving as a general-purpose, plug-and-play operator for spatial information communication and
context aggregation.
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Figure 3: Resolution adaptability.
All models are trained on 224×224 and
evaluated on various resolutions with-
out fine-tuning. Left: Absolute top-1
accuracy; Right: Accuracy difference
relative to that tested on 224×224. The
superiority of CycleMLP’s robustness
becomes more significant when scale
varies to a greater extent.

Table 4 further details the ablation study on the structure of CycleMLP block. It is observed that
the top-1 accuracy drops significantly after removing one of the three parallel branches, especially
when discarding the 1×7 or 7×1 branch. To eliminate the probability that the fewer parameters
and FLOPs cause the performance drop, we further use two same branches (denoted as “33” in
Table 4) and one 1×1 branch to align the parameters and FLOPs. The accuracy still drops relative
to CycleMLP, which further demonstrates the necessity of these three unique branches.

Resolution adaptability. One remarkable advantage of CycleMLP is that it can take arbitrary-
resolution images as input without any modification. On the contrary, GFNet (Rao et al., 2021)
needs to interpolate the learnable parameters on the fly when the input scale is different from the one
for training. We compare the resolution adaptability by directly evaluating models at a broad spec-
trum of resolutions using the weight pre-trained on 224×224, without fine-tuning. Figure 3 (left)
shows that the absolute Top-1 accuracy on ImagNet and Figure 3 (right) shows the accuracy dif-
ferences between one specific resolution and the resolution of 224×224. Compared with DeiT and
GFNet, CycleMLP is more robust when resolution varies. In particular, at the 128×128, CycleMLP
saves more than 2 points drop compared to GFNet. Furthermore, at higher resolution, the perfor-
mance drop of CycleMLP is less than GFNet. Note that the superiority of CycleMLP becomes more
significant when the resolution changes to a greater extent.

3.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. We conduct object detection and instance segmentation experiments on COCO (Lin et al.,
2014) dataset. We first follow the experimental settings of PVT (Wang et al., 2021b), which are
introduced in Appendix. E.2. The corresponding results are presented in Table 6. Then, in order
to compare fairly with Swin Transformer, which adopts a different experimental recipe with PVT,
we further follow the experimental settings of Swin with our CycleMLP-S model and the results are
presented in Table 7.

Backbone RetinaNet 1× Mask R-CNN 1×
Param AP AP50 AP75 APS APM APL Param APb APb

50 APb
75 APm APm

50 APm
75

ResNet18 21.3M 31.8 49.6 33.6 16.3 34.3 43.2 31.2M 34.0 54.0 36.7 31.2 51.0 32.7
PVT-Tiny 23.0M 36.7 56.9 38.9 22.6 38.8 50.0 32.9M 36.7 59.2 39.3 35.1 56.7 37.3
CycleMLP-B1 24.9M 38.1 58.7 40.1 21.9 41.9 50.4 34.8M 39.8 61.7 43.3 37.0 58.8 39.7
ResNet50 37.7M 36.3 55.3 38.6 19.3 40.0 48.8 44.2M 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small 34.2M 40.4 61.3 43.0 25.0 42.9 55.7 44.1M 40.4 62.9 43.8 37.8 60.1 40.3
CycleMLP-B2 36.5M 40.6 61.4 43.2 22.9 44.4 54.5 46.5M 42.1 64.0 45.7 38.9 61.2 41.8
ResNet101 56.7M 38.5 57.8 41.2 21.4 42.6 51.1 63.2M 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d 56.4M 39.9 59.6 42.7 22.3 44.2 52.5 62.8M 41.9 62.5 45.9 37.5 59.4 40.2
PVT-Medium 53.9M 41.9 63.1 44.3 25.0 44.9 57.6 63.9M 42.0 64.4 45.6 39.0 61.6 42.1
CycleMLP-B3 48.1M 42.5 63.2 45.3 25.2 45.5 56.2 58.0M 43.4 65.0 47.7 39.5 62.0 42.4
PVT-Large 71.1M 42.6 63.7 45.4 25.8 46.0 58.4 81.0M 42.9 65.0 46.6 39.5 61.9 42.5
CycleMLP-B4 61.5M 43.2 63.9 46.2 26.6 46.5 57.4 71.5M 44.1 65.7 48.1 40.2 62.7 43.5
ResNeXt101-64x4d 95.5M 41.0 60.9 44.0 23.9 45.2 54.0 101.9M 42.8 63.8 47.3 38.4 60.6 41.3
CycleMLP-B5 85.9M 42.7 63.3 45.3 24.1 46.3 57.4 95.3M 44.1 65.5 48.4 40.1 62.8 43.0

Table 6: Object detection and instance segmentation on COCO val2017 (Lin et al., 2014).
We compare CycleMLP with various backbones including ResNet (He et al., 2016), ResNeXt (Xie
et al., 2017) and PVT (Wang et al., 2021b).
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Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs

ResNet50 (He et al., 2016) 41.0 61.7 44.9 37.1 58.4 40.1 44M 260G
PVT-Small (Wang et al., 2021b) 43.0 65.3 46.9 39.9 62.5 42.8 44M 245G

Swin-T (Liu et al., 2021b) 46.0 68.2 50.2 41.6 65.1 44.8 48M 264G
CycleMLP-T (ours) 46.4 68.1 51.1 41.8 64.9 45.1 48M 260G

Table 7: The instance segmentation results of different backbones on the COCO val2017 dataset.
Mask R-CNN frameworks are employed.

Results. Firstly, as shown in Table 6, CycleMLP-based RetinaNet consistently surpasses the CNN-
based ResNet (He et al., 2016), ResNeXt (Xie et al., 2017) and Transformer-based PVT (Wang
et al., 2021b) under similar parameter constraints, indicating that CycleMLP can serve as an ex-
cellent general-purpose backbone. Furthermore, using Mask R-CNN (He et al., 2017) for instance
segmentation also demonstrates similar comparison results. Furthermore, from Table 7, the Cy-
cleMLP can achieve a slightly better performance than Swin Transformer.

3.4 SEMANTIC SEGMENTATION

Settings. We conduct semantic segmentation experiments on ADE20K (Zhou et al., 2017) dataset
and present the detailed settings in Appendix. E.3. Table 8 and Table 9 show the experimental results
using training recipes from PVT and Swin respectively.

Backbone Semantic FPN
Param mIoU (%)

ResNet18 (He et al., 2016) 15.5M 32.9
PVT-Tiny (Wang et al., 2021b) 17.0M 35.7
CycleMLP-B1 (ours) 18.9M 40.8
ResNet50 (He et al., 2016) 28.5M 36.7
PVT-Small (Wang et al., 2021b) 28.2M 39.8
Swin-T† (Liu et al., 2021b) 31.9M 41.5
GFNet-Tiny (Rao et al., 2021) 26.6M 41.0
CycleMLP-B2 (ours) 30.6M 43.4
ResNet101 (He et al., 2016) 47.5M 38.8
ResNeXt101-32x4d (Xie et al., 2017) 47.1M 39.7
PVT-Medium (Wang et al., 2021b) 48.0M 41.6
GFNet-Small (Rao et al., 2021) 47.5M 42.5
CycleMLP-B3 (ours) 42.1M 44.3
PVT-Large (Wang et al., 2021b) 65.1M 42.1
Swin-S† (Liu et al., 2021b) 53.2M 45.2
CycleMLP-B4 (ours) 55.6M 45.1
GFNet-Base (Rao et al., 2021) 74.7M 44.8
ResNeXt101-64x4d (Xie et al., 2017) 86.4M 40.2
CycleMLP-B5 (ours) 79.4M 45.5

Table 8: Semantic segmentation on ADE20K (Zhou
et al., 2017) val. All models are equipped with Se-
mantic FPN (Kirillov et al., 2019). † Results are from
GFNet (Rao et al., 2021).

(a) Swin

(b) CycleMLP

Figure 4: Effective Receptive Field
(ERF). We visualize the ERFs of the
last stage for both Swin (Liu et al.,
2021b) and CycleMLP. Best viewed
with zoom in.
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Results. As shown in Table 8, CycleMLP outperforms ResNet (He et al., 2016) and PVT (Wang
et al., 2021b) significantly with similar parameters. Moreover, compared to the state-of-the-art
Transformer-based backbone, Swin Transformer (Liu et al., 2021b), CycleMLP can obtain com-
parable or even better performance. Specifically, CycleMLP-B2 surpasses Swin-T by 0.9 mIoU
with slightly less parameters (30.6M v.s. 31.9M).

Although GFNet (Rao et al., 2021) achieves similar performance as CycleMLP on ImageNet clas-
sification, CycleMLP notably outperforms GFNet on ADE20K semantic segmentation where input
scale varies. We attribute the superiority of CycleMLP under a scale-variable scenario to the capa-
bility of dealing with arbitrary scales. On the contrary, GFNet (Rao et al., 2021) requires additional
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Method Backbone val
MS mIoU Params FLOPs

UperNet (Xiao et al., 2018)
Swin-T (Liu et al., 2021b) 45.8 60M 945G

AS-MLP-T (Lian et al., 2021) 46.5 60M 937G
CycleMLP-T (ours) 47.1 60M 937G

UperNet (Xiao et al., 2018)
Swin-S (Liu et al., 2021b) 49.5 81M 1038G

AS-MLP-S (Lian et al., 2021) 49.2 81M 1024G
CycleMLP-S (ours) 49.6 81M 1024G

UperNet (Xiao et al., 2018)
Swin-B (Liu et al., 2021b) 49.7 121M 1188G

AS-MLP-B(Lian et al., 2021) 49.5 121M 1166G
CycleMLP-B (ours) 49.7 121M 1166G

Table 9: The semantic segmentation results of different backbones on the ADE20K validation set.

heuristic operation (weight interpolation) when the input scale varies, which may hurt the perfor-
mance.

Moreover, we also visualized the receptive field following (Xie et al., 2021), and the results are
visualized in Figure 4, which demonstrate that our CycleMLP has a larger effective receptive field
than Swin.

3.5 ROBUSTNESS

Network mCE↓ Noise Blur Weather Digital
Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 76.7 79.8 81.6 82.6 74.7 88.6 78.0 79.9 77.8 74.8 66.1 56.6 71.4 84.7 76.9 76.8
DeiT-S 54.6 46.3 47.7 46.4 61.6 71.9 57.9 71.9 49.9 46.2 46.0 44.9 42.3 66.6 59.1 60.4
Swin-S 62.0 52.2 53.7 53.6 67.9 78.6 64.1 75.3 55.8 52.8 51.3 48.1 45.1 75.7 76.3 79.1
MLP-Mixer 78.8 80.9 82.6 84.2 86.9 92.1 79.1 93.6 78.3 67.4 64.6 59.5 57.1 90.5 72.7 92.2
ResMLP-12 66.0 57.6 58.2 57.8 72.6 83.2 67.9 76.5 61.4 57.8 63.8 53.9 52.1 78.3 72.9 75.3
gMLP-S 64.0 52.1 53.2 52.5 73.1 77.6 64.6 79.9 77.7 78.8 54.3 55.3 43.6 70.6 58.6 67.5
CycleMLP-S 53.7 42.1 43.4 43.2 61.5 76.7 56.0 66.4 51.5 47.2 50.8 41.2 39.5 72.3 57.5 56.1

Table 10: Robustness on ImageNet-C (Hendrycks & Dietterich, 2019). The mean corruption
error (mCE) normalized by AlexNet (Krizhevsky et al., 2012) errors is used as the robustness metric.
The lower, the better.

We further conduct experiments on ImageNet-C (Hendrycks & Gimpel, 2016) to analyze the ro-
bustness ability of the CycleMLP, following (Mao et al., 2021) and results are presented in Table 10.
Compared with both Transformers (e.g. DeiT and Swin) and existing MLP models (e.g. MLP-Mixer,
ResMLP, gMLP), CycleMLP achieves a stronger robustness ability.

4 CONCLUSION

We present a versatile MLP-like architecture, CycleMLP, in this work. CycleMLP is built upon the
Cycle Fully-Connected Layer (Cycle FC), which is capable of dealing with variable input scales
and can serve as a generic, plug-and-play replacement of vanilla FC layers. Experimental results
demonstrate that CycleMLP outperforms existing MLP-like models on ImageNet classification and
achieves promising performance on dense prediction tasks, i.e., object detection, instance segmen-
tation and semantic segmentation. This work indicates that an attention-free architecture can also
serve as a general vision backbone.

Acknowledgment. Ping Luo is supported by the General Research Fund of HK No.27208720,
No.17212120, and the HKU-TCL Joint Research Center for Artificial Intelligence.
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A LITERATURE ON VISION MODEL

CNN-based Models. Originally introduced over twenty years ago (LeCun et al., 1989),
convolutional neural networks (CNN) have been widely adopted since the success of the
AlexNet (Krizhevsky et al., 2012) which outperformed prevailing approaches based on hand-crafted
image features. There have been several attempts made to improve the design of CNN-based mod-
els. VGG (Simonyan & Zisserman, 2014) demonstrated a state-of-the-art performance on ImageNet
via deploying small (3×3) convolution kernels to all layers. He et al.introduced skip-connections in
ResNets (He et al., 2016), enabling a model variant with more than 1000 layers. DenseNet (Huang
et al., 2017) connected each layer to every other layer in a feed-forward fashion, strengthening fea-
ture propagation and reducing the number of parameters. In parallel with these architecture design
works, some other works also made significant contributions to the popularity of CNNs, including
normalization (Ioffe & Szegedy, 2015; Ba et al., 2016), data augmentation (Cubuk et al., 2020; Yun
et al., 2019; Zhang et al., 2017), etc.

Transformer-based Models. Transformers were first proposed by Vaswani et al.for machine trans-
lation and have since become the dominant choice in many NLP tasks (Devlin et al., 2018; Wang
et al., 2018; Yang et al., 2019; Brown et al., 2020). Recently, transformer have also led to a series of
breakthroughs in computer vision community since the invention of ViT (Dosovitskiy et al., 2020),
and have been working as a de facto standard for various tasks, e.g., image classification (Dosovit-
skiy et al., 2020; Touvron et al., 2020; Yuan et al., 2021), detection and segmentation (Wang et al.,
2021b; Liu et al., 2021b; Zheng et al., 2021; Xie et al., 2021), video recognition (Wang et al., 2021c;
Bertasius et al., 2021; Arnab et al., 2021; Fan et al., 2021) and so on. Moreover, there has also been
lots of interest in adopting transformer to cross aggregate multiple modality information (Radford
et al., 2021; Gabeur et al., 2020; Dzabraev et al., 2021). Furthermore, combining CNNs and trans-
formers is also explored in (Srinivas et al., 2021; Li et al., 2021; Wu et al., 2021; Touvron et al.,
2021b).

MLP-based Models. MLP-based models (Tolstikhin et al., 2021; Touvron et al., 2021a; Liu et al.,
2021a) differ from the above discussed CNN- and Transformer-based models because they resort
to neither convolution nor self-attention layers. Instead, they use MLP layers over feature patches
on spatial dimensions to aggregate the spatial context. These MLP-based models share similar
macro structures but differ from each other in the detailed design of the micro block. In addition,
MLP-based models provide more efficient computation than transformer-based models since they
do not need to calculate affinity matrix using key-query multiplication. Concurrent to our work,
S2-MLP (Yu et al., 2021) utilizes a spatial-shift operation for spatial information communication.
The similar aspect between our work and S2-MLP lies in that we all conduct MLP operations along
the channel dimension. However, our Cycle FC is different from S2-MLP in: (1) S2-MLP achieves
communications between patches by splitting feature maps along channel dimension into several
groups and shifting different groups in different directions. It introduces extra splitting and shifting
operations on the feature map. On the contrary, we propose a novel operator-Cycle Fully-Connected
Layer-for spatial context aggregation. It does not modify the feature map and is formulated as a
generic, plug-and-play MLP unit that can be used as a direct replacement of vanilla without any
adjustments. (2) We design a pyramid structure for and conduct extensive experiments on classi-
fication, object detection, instance segmentation, and semantic segmentation. However, the output
feature map of S2-MLP has only one single scale in low resolution, which is unsuitable for dense
prediction tasks. Only ImageNet classification is evaluated on S2-MLP. We compared Cycle FC
with S2-MLP in details in the Section 3.

B COMPARISON OF MLP BLOCKS

We summary MLP blocks proposed by recent MLP-related works in Figure 5. We notice that ex-
isting MLP blocks, i.e., MLP-Mixer, ResMLP and gMLP share similar method of Spatial Proj:
Transpose → Fully-Connected over spatial dimension → Transpose back. These models can not
cope with variable image scales as the FC layers in Spatial Proj are configured by the seq len.

The blocks used for building CycleMLP consist of our proposed novel Cycle FC, whose configura-
tion has nothing to do with image scales and can naturally deal with dynamic image scales.
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Figure 5: Comparison of MLP blocks in details.

C FROM MULTI-HEAD SELF-ATTENTION TO CONVOLUTION

In this section, we provide details in how MHSA can be transferred into a convolution-like operator
in equation 3. To start with, the a MHSA layer can be formulated as below:

MHSA(X) = concat
h∈{1,...,Nh}

[SAh(X)]W out + b (5)

where W out ∈ R(NhCout)×C′
out and b ∈ RC′

out are parameters for the final linear projection. SAh

is the hth self-attention module. Then we reshape X into X ∈ RHW×Cin and let T = H ×W ,
which indicates that there are T tokens in X . SAh can be defined as follow:

SA(X)t,: = softmax(At,:)V + b

A = (Q + P )(K + P )ᵀ
(6)

where V = XW val, Q = XW qry, K = XW key are respectively the value, query and key matrix
with learnable matrices W v ∈ RCin×Cout , W q ∈ RCin×Ck , W k ∈ RCin×Ck . P ∈ RT×Cin is the
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positional embedding matrix containing positional information for every input token, which can be
replaced by the output of any function fP that encodes the position of tokens. And A ∈ RT×T is the
attention matrix where each element Ai,j is the attention score between the ith and jth token in X .
With absolute positional encoding, the second line in equation 6 can be expanded as (Cordonnier
et al., 2020):

Aq,k =(Xq,: + Pq,:)W
qry((Xk,: + Pk,:)W

key)ᵀ

=Xq,:W
qry(Xk,:W

key)ᵀ +Xq,:W
qry(Pk,:W

key)ᵀ + Pq,:W
qry(Xk,:W

key)ᵀ + Pq,:W
qry(Pk,:W

key)ᵀ

(7)

When we apply relative positional encoding scheme in (Dai et al., 2019), A is re-parametried into:

Aq,k = Xq,:W
qry(Xk,:W

key)ᵀ+Xq,:W
qry(rδq,kŴ

key)ᵀ+u(Xk,:W
key)ᵀ+v(rδq,kŴ

key)ᵀ (8)

where rδq,k is a positional encoding for relative distance δq,k = (δ1, δ2) between token q and k in X .
Ŵ key is introduced to only pertain to the positional encoding rq,k. u and v are learnable parameter
vectors that replace the original Pq,:W qry term, which implies that the attention bias remains the
same regardless of the absolution positions of the query. If we set W qry = W key = 0 and
Ŵ key = I , the first three terms in equation 8 vanish and Aq,k = vrᵀq,k. We set {∆i(h),∆j(h)} =

{(0, 0), (1, 0), (−1, 0), · · · } contains all possible positional shift in convolution with kernel size√
Nh×

√
Nh. For each head h, let rq,k = (‖δq,k‖2, δ1, δ2) and vh = −αh(1,−2∆i(h),−2∆j(h)),

each softmax attention matrix becomes:

softmax(Ah)q,k =

{
1 if δq,k = (∆i(h),∆j(h))

0 otherwise
(9)

Substitute softmax(Ah) into equation 5 and we get

MHSA(X)i,j,: =
∑

h∈{1,2,...,Nh}

Xi+∆i(h),j+∆j(h),:W
mhsa,h + b (10)

D ARCHITECTURE VARIANTS

In order to conduct fair and convenient comparison, we build two model zoos: the one is in PVT-
Style (named as CycleMLP-B1 to -B5) and the other in Swin-Style (named as CycleMLP-T, -S and -
B). These models are scaled up by adapting several architecture-related hyper-parameters, including
Si, Ci, Ei and Li which represent the stride of the transition, the token channel dimension, the
number of blocks and the expansion ratio respectively at Stage i. Detailed configurations of these
models are in Table 11.

E EXPERIMENTAL SETUPS

E.1 IMAGENET CLASSIFICATION

Settings. We train our models on the ImageNet-1K dataset (Deng et al., 2009), which contains
1.2M training images and 50K validation images evenly spreading 1,000 categories. We follow
the standard practice in the community by reporting the top-1 accuracy on the validation set. Our
code is implemented based on PyTorch (Paszke et al., 2019) framework and heavily relies on the
timm (Wightman, 2019) repository. For apple-to-apple comparison, our training strategy is mostly
adopted from DeiT (Touvron et al., 2020), which includes RandAugment (Cubuk et al., 2020),
Mixup (Zhang et al., 2017), Cutmix (Yun et al., 2019) random erasing (Zhong et al., 2020) and
stochastic depth (Huang et al., 2016). The optimizer is AdamW (Loshchilov & Hutter, 2017) with
the momentum of 0.9 and weight decay of 5×10−2 by default. The cosine learning rate schedule is
adopted with the initial value of 1×10−3. All models are trained for 300 epochs on 8 Tesla V100
GPUs with a total batch size of 1024.
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Output Size Layer Name
PVT-Style (Wang et al., 2021b) Swin-Style (Liu et al., 2021b)

B1 B2 B3 B4 B5 Tiny Small Base

Stage 1 H
4 ×

W
4

Overlapping
Patch Embedding

S1 = 4 S1 = 4

C1 = 64 C1 = 96 C1 = 96 C1 = 128

CycleMLP
Block

E1 = 4

L1 = 2

E1 = 4

L1 = 2

E1 = 8

L1 = 3

E1 = 8

L1 = 3

E1 = 4

L1 = 3

E1 = 4

L1 = 2

E1 = 4

L1 = 2

E1 = 4

L1 = 2

Stage 2 H
8 ×

W
8

Overlapping
Patch Embedding

S2 = 2 S2 = 2

C2 = 128 C2 = 192 C2 = 192 C2 = 256

CycleMLP
Block

E2 = 4

L2 = 2

E2 = 4

L2 = 3

E2 = 8

L2 = 4

E2 = 8

L2 = 8

E2 = 4

L2 = 4

E1 = 4

L1 = 2

E1 = 4

L1 = 2

E1 = 4

L1 = 2

Stage 3 H
16 ×

W
16

Overlapping
Patch Embedding

S3 = 2 S3 = 2

C3 = 320 C3 = 384 C3 = 384 C3 = 512

CycleMLP
Block

E3 = 4

L3 = 4

E3 = 4

L3 = 10

E3 = 4

L3 = 18

E3 = 4

L3 = 27

E3 = 4

L3 = 24

E1 = 4

L1 = 6

E1 = 4

L1 = 18

E1 = 4

L1 = 18

Stage 4 H
32 ×

W
32

Overlapping
Patch Embedding

S4 = 2 S4 = 2

C4 = 512 C4 = 768 C4 = 768 C4 = 1024

CycleMLP
Block

E4 = 4

L4 = 2

E4 = 4

L4 = 3

E4 = 4

L4 = 3

E4 = 4

L4 = 3

E4 = 4

L4 = 3

E1 = 4

L1 = 2

E1 = 4

L1 = 2

E1 = 4

L1 = 2

Parameters (M) 15.2 26.8 38.4 51.8 75.7 28.3 49.6 87.7

FLOPs (G) 2.1 3.9 6.9 10.1 12.3 4.4 8.6 15.2

Table 11: Instantiations of the CycleMLP with varying complexity. The Ei and Li denote the
expand ratio and number of repeated layers. Our design principle is inspired by the philosophy of
ResNet (He et al., 2016), where the channel dimension increases while the spatial resolution shrinks
with the layer going deeper.

Further kernel optimization for Cycle FC may bring a faster speed but is beyond the scope of this
work.

E.2 COCO INSTANCE SEGMENTATION

We conduct object detection and instance segmentation experiments on COCO (Lin et al., 2014)
dataset, which contains 118K and 5K images for train and validation splits. We adopt
the mmdetection (Chen et al., 2019) toolbox for all experiments in this subsection. To evalu-
ate the our CycleMLP backbones, we adopt two widely used detectors, i.e., RetinaNet (Lin et al.,
2017) and Mask R-CNN (He et al., 2017). All backbones are initialized with ImageNet pre-trained
weights and other newly added layers are initialized via Xavier (Glorot & Bengio, 2010). We use
the AdamW (Loshchilov & Hutter, 2017) optimizer with the initial learning rate of 1×10−4. All
models are trained on 8 Tesla V100 GPUs with a total batch size of 16 for 12 epochs (i.e., 1× train-
ing scheduler). The input images are resized to the shorted side of 800 pixels and the longer side
does not exceed 1333 pixels during training. We do not use the multi-scale (Carion et al., 2020; Zhu
et al., 2020; Sun et al., 2021) training strategy. In the testing stage, the shorter side of input images
is resized to 800 pixels while no constraint on the longer side.

E.3 ADE20K SEMANTIC SEGMENTATION

We conduct semantic segmentation experiments on ADE20K (Zhou et al., 2017) dataset, which cov-
ers a broad range of 150 semantic categories. ADE20K contains 20K training, 2K validation and
3K testing images. We adopt the mmsegmenation (Contributors, 2020) toolbox as our codebase
in this subsection. The experimental settings mostly follow PVT (Wang et al., 2021b), which trains
models for 40K iterations on 8 Tesla V100 GPUs with 4 samples per GPU. The backbone is initial-
ized with the pre-trained weights on ImageNet. All models are optimized by AdamW (Loshchilov &
Hutter, 2017). The initial learning rate is configured as 2×10−4 with the polynomial decay parame-
ter of 0.9. Input images are randomly resized and cropped to 512×512 at the training phase. During
testing, we scale the images to the shorted side of 512. We adopt the simple approach Semantic
FPN (Kirillov et al., 2019) as the semantic segmentation method following (Wang et al., 2021b) for
fair comparison.
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Method Backbone val
MS mIoU Params FLOPs

DANet (Fu et al., 2019a) ResNet-101 45.2 69M 1119G
DeepLabv3+ (Chen et al., 2018) ResNet-101 44.1 63M 1021G

ACNet (Fu et al., 2019b) ResNet-101 45.9 - -
DNL (Yin et al., 2020) ResNet-101 46.0 69M 1249G

OCRNet (Yuan et al., 2020) ResNet-101 45.3 56M 923G
UperNet (Xiao et al., 2018) ResNet-101 44.9 86M 1029G

OCRNet (Yuan et al., 2020) HRNet-w48 45.7 71M 664G
DeepLabv3+ (Chen et al., 2018) ResNeSt-101 46.9 66M 1051G
DeepLabv3+ (Chen et al., 2018) ResNeSt-200 48.4 88M 1381G

UperNet (Xiao et al., 2018)
Swin-T (Liu et al., 2021b) 45.8 60M 945G

AS-MLP-T (Lian et al., 2021) 46.5 60M 937G
CycleMLP-T (ours) 47.1 60M 937G

UperNet (Xiao et al., 2018)
Swin-S (Liu et al., 2021b) 49.5 81M 1038G

AS-MLP-S (Lian et al., 2021) 49.2 81M 1024G
CycleMLP-S (ours) 49.6 81M 1024G

UperNet (Xiao et al., 2018)
Swin-B (Liu et al., 2021b) 49.7 121M 1188G

AS-MLP-B(Lian et al., 2021) 49.5 121M 1166G
CycleMLP-B (ours) 49.7 121M 1166G

Table 12: The semantic segmentation results of different backbones on the ADE20K validation set.

F SAMPLING STRATEGIES

We explore more sampling strategies in this subsection, including random sampling and dilated sam-
pling inspired by dilated convolution (Yu & Koltun, 2016; Chen et al., 2018) (as shown in Figure 6).
We also compare the dense sampling method with ours.

Random sampling. As shown in Table 13, we conduct experiments with random sampling for
three independent trials and observe that the averaged Top-1 accuracy on ImageNet-1K drops by
1.3%. We hypothesize that the decreased performance is caused by the fact that random sampling
will totally disturb the semantic information of objects, which is essential to image recognition.
Compared with the random sampling strategy, our cyclical sampling is able to aggregate the adjacent
pixels, which benefits in capturing the semantic information.

Dilated Stepsize (Figure 6). As shown in Table 13, we observe the result of dilated sampling is
better than the random one (+1.0% acc) but lower than ours (−0.5% acc). In fact, compared with the
random sampling, dilated solutions take their advantages in local information aggregation. However,
compared with the cyclical sampling strategy, dilated solutions lose the fine-grained information for
recognition. It may hurt the accuracy performance to some extent.

Dense sampling. we conduct ablation studies by using dense sampling strategies (i.e., vanilla con-
volution with kernel size 1×3 and 3×1). Since dense sampling strategies incredibly increase the
models’ parameters and FLOPs, we do not have enough time to thoroughly optimize the model for
300 epochs. Therefore, for fair comparisons, we conducted extra ablation studies on training mod-
els for 100 epochs with the strictly same learning configurations. The results shown in Table 14
demonstrate that the sparse sampling strategy (ours) outperforms the dense one. The comparison in-
dicates that the dense sampling strategies introduce redundant parameters, which makes the model
hard to optimize. Our sparse sampling strategy with fewer parameters is proven to be efficient and
optimization-friendly.
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Figure 6: An example of dilated
CycleMLP where dilation=2
and stepsize=3.

Sampling Params FLOPs Top-1 Acc
dilation=2 26.8M 3.9G 81.1
Random, S=1

26.8M 3.9G
80.4

Random, S=2 80.2
Random, S=3 80.4

CycleMLP 26.8M 3.9G 81.6
Table 13: Comparison with dilated and random
sampling. For random sampling, we conduct the
experiments for three independent trials with three
seeds (S=1, 2, 3).

Operators Dense Params FLOPs Top-1 Acc

Conv: 1×3 + 3×1 X 34.3M 5.1G 75.0
CycleMLP: 1×3 + 3×1 7 26.8M 3.9G 76.1

Table 14: Comparison with dense sampling: On
the consideration of training time, we only train both
models for 100 epochs for fair comparison.

branch1 branch2 ImgNet
Top-1

ADE20K
mIoU

7×1 1× 7 81.6 43.9
7×2 2×7 81.5 43.4
7×3 3×7 81.4 42.7
4×4 4×4 81.5 43.1

Table 15: Comparison on different stepsizes (e.g.,
even stepsize and odd stepsize), including 7×2,
4×4.

G VISUALIZATION EXAMPLES

For easier understanding of our proposed CycleMLP, we visualize several instances of CycleMLP
in Figure 7, including general case with stepsize 3×3 (7a), even stepsize (7b), and examples where
stepsize along height or width equals to 1 (7c, 7d).

We note that given specific number of input and output channels, no matter how the stepsize changes,
the number of parameters of the CycleMLP does not change. Therefore, there is a trade-off of
representation abilities between spatial and channel dimensions, which will be discussed in details
in following experimental analysis.

Experiments: We further conduct experiments on CycleMLPs with stepsize of 2×7, 7×2, 7×3,
3×7, and 4×4, respectively. The results are summarized Table 15. For fair comparisons, all the
models in the above table have the same parameters and FLOPs. We observe that the model with
stepsize of 1×7 and 7×1 achieves the best performance, especially for semantic segmentation on
ADE20K. To analyze the impact of stepsize on the performance, we take Figure 7 for better illus-
tration. One can see that enlarging the stepsize can expand the spatial receptive field. However, at
a cost, it will reduce the number of periods (groups) running along the channel dimension, which
may hurt the channel-wise representation abilities. Taking a feature map with C = 18 for example,
the CycleMLP with stepsize 3×3 (Figure 7(a)) runs through only 2 channel groups (curly brackets
in the figure). However, the CycleMLP with stepsize 3×1 (Figure 7(c)) will run through 6 groups
in total, making better use of the representation in the channel dimension. That’s to say, there is a
trade-off between spatial and channel representation. We empirically found that CyCleMLP with
stepsize of 1×7 and 7×1 achieves the best performance.
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Figure 7: Examples of Stepsize cases: Here we separate the feature map along the width
dimension for convenient visualization. F denotes the output position. We place the absolute
coordinates (h, w, c) of the sampled points at the left of the feature. Sampled points within a
curly bracket ({) belong to the same period (group). Dash lines link two cyclical periods.
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