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ABSTRACT

Video inpainting methods often fail to resolve the inherent trade-off between long-
term global consistency and short-term local smoothness, leading to artifacts such
as contextual drift and flickering. We introduce OmniPainter, a latent diffusion
framework designed to address this limitation. Our framework is built on two
core innovations: a Flow-Guided Ternary Control mechanism for superior struc-
tural fidelity, and a novel Adaptive Global-Local Guidance strategy. This guidance
strategy dynamically blends two complementary guidance scores at each denois-
ing step: an autoregressive score to enforce local transitional smoothness, and a
hierarchical score to maintain long-range global coherence. The blending weight
is determined by a function of both the video’s motion dynamics and the current
diffusion timestep. This adaptive blending allows the model to prioritize global
structure during the early stages of generation and then shift focus to local conti-
nuity during later refinement stages, thereby achieving a robust temporal equilib-
rium. Extensive experiments confirm that OmniPainter significantly outperforms
state-of-the-art methods, setting a new standard for temporally consistent video
restoration.

1 INTRODUCTION

Recent advances in deep learning have revolutionized video inpainting, enabling unprecedented
restoration of missing or occluded regions in video content Lee et al. (2019); Gao et al. (2020);
Zeng et al. (2020); Zou et al. (2021); Liu et al. (2021). While early techniques reliant on optical
flow and patch-based propagation Chang et al. (2019); Li et al. (2022b) often faltered with complex
motion, modern approaches leveraging generative models like Diffusion Models Ho et al. (2020);
Li et al. (2025); Zhang et al. (2024b); Wan et al. (2024) have achieved significant breakthroughs.
Nevertheless, a critical challenge remains unresolved: ensuring robust temporal consistency across
extended video sequences.

This challenge involves a difficult trade-off between two distinct requirements, which we term
global-local temporal consistency. Global consistency refers to maintaining the identity, appear-
ance, and structure of objects and scenes over long durations. In contrast, local consistency pertains
to generating smooth, flicker-free transitions between adjacent frames. Many state-of-the-art meth-
ods, including those using Transformers Guo et al. (2023); Blattmann et al. (2023), excel at one
aspect but often at the expense of the other. For instance, autoregressive models Cui et al. (2024)
can produce smooth local transitions but are prone to error accumulation, leading to a gradual drift
in global context. Conversely, hierarchical or keyframe-based approaches Li et al. (2025) may pre-
serve global structure but can introduce subtle discontinuities between interpolated segments (See
Figure 1). Consequently, no existing approach has effectively reconciled these conflicting demands.

To address this critical gap, we propose OmniPainter, a novel video inpainting framework based on
a Latent Diffusion Model (LDM). OmniPainter is specifically designed to achieve superior global-
local temporal consistency by introducing two synergistic components that manage spatial details
and temporal dynamics in a more sophisticated manner. Our main contributions are:

Flow-Guided Ternary Control: We introduce a novel ternary control mask that provides nuanced
spatial guidance to the diffusion model. Instead of treating all missing pixels equally, we leverage
a reliable optical flow prior Teed & Deng (2020) to partition masked regions into three categories:
those requiring full inpainting from scratch, those to be preserved, and crucially, those to be refined.
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Globally inconsistent (Autoregressive strategy)

Locally inconsistent (Hierarchical strategy)

Texture details drop (w/o Ternary Control)

1 300
Globally consistent

Locally consistent

No texture details drop

No error accumulation

1 300

Error accumulation (Autoregressive strategy)

Figure 1: Existing strategies often suffer from inherent limitations in maintaining temporal consis-
tency and generating reliable results (left). In contrast, our proposed framework, OmniPainter, is
designed to overcome these shortcomings by achieving temporally consistent and robust video in-
painting.

This refinement capability allows the model to utilize valuable high-frequency textures from the
flow-warped result while correcting its inaccuracies, significantly enhancing structural stability and
detail preservation.

Adaptive Global-Local Guidance: To explicitly address the temporal consistency dilemma, we
propose a novel guidance mechanism that dynamically blends two complementary strategies during
the denoising process. Autoregressive (AR) Guidance enforces smooth continuity between adjacent
groups of frames, excelling in high-motion scenarios. Hierarchical (HR) Guidance ensures long-
range coherence by conditioning on distant keyframes, proving effective for maintaining global
context. The blending of these two scores is adaptively controlled by both the video’s motion mag-
nitude and the current diffusion timestep. This allows OmniPainter to prioritize global structure (via
HR) in the early stages of generation and then shift focus to local smoothness (via AR) in the final
refinement stages, achieving a robust temporal equilibrium.

Extensive experiments demonstrate that the combination of these innovations enables OmniPainter
to significantly outperform existing methods in both visual quality and temporal coherence. Our
framework substantially mitigates flickering and long-term drift, paving the way for more reliable
and visually consistent video restoration in challenging real-world scenarios.

2 RELATED WORK

Video Inpainting. Video inpainting has advanced considerably, yet existing approaches still face
critical limitations. Early methods relying on patch-based propagation Chang et al. (2019) of-
ten failed when faced with complex motion. To address this, optical flow-guided models such as
E2FGVI Li et al. (2022b), FGT++ Zhang et al. (2024a), and ProPainter Zhou et al. (2023) were in-
troduced to enhance motion coherence by explicitly warping content from reference frames. While
effective, their performance is highly dependent on the accuracy of the flow estimation. They often
struggle in low-motion scenes where flow is unreliable and, crucially, treat the flow-warped prior as
a fixed guide, failing to correct its inherent inaccuracies. Our work addresses this by introducing a
Ternary Control mechanism that allows the model to selectively refine rather than simply follow the
flow-based prior. On the other hand, Transformer-based architectures like STTN Zeng et al. (2020)
and FuseFormer Liu et al. (2021) leverage attention to capture temporal dependencies. However,
their fixed receptive fields often prevent them from enforcing consistent object appearance and struc-
ture over long sequences. More recent diffusion-based methods Li et al. (2025); Gu et al. (2024);
Zhang et al. (2024b); Wan et al. (2024); Zi et al. (2024); Lee et al. (2024); Wang et al. (2023b)
have demonstrated powerful generative capabilities but still fall short in resolving the fundamental
tension between maintaining long-term global context and short-term local smoothness.
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Figure 2: Overview of our Global-Local temporally consistent video inpainting framework.

Long Video Generation. The challenge of maintaining temporal consistency is also central to
long video generation. Methodologies in this field offer valuable insights into managing temporal
dynamics. Autoregressive models Xie et al. (2024); Li et al. (2024); Cui et al. (2024); Valevski
et al. (2024); Chung et al. (2024) generate frames sequentially, which excels at creating smooth
local transitions. However, this approach is susceptible to error accumulation, causing the global
context to drift over time. In our framework, we harness the principle of autoregression for our AR
Guidance to ensure local continuity, but mitigate its drift problem by integrating it into a broader
guidance system. Conversely, hierarchical strategies Zhou et al. (2025); Wang et al. (2023a); Yin
et al. (2023); Bar-Tal et al. (2024) attempt to secure global consistency by generating keyframes
first and then filling in the gaps. While this helps preserve long-range dependencies, it can result in
abrupt or unnatural transitions between segments.

Unlike these prior works, which typically commit to one strategy, OmniPainter resolves this
dilemma through its Adaptive Global-Local Guidance. Our framework synthesizes the strengths of
both autoregressive and hierarchical approaches, dynamically blending them based on scene motion
and the diffusion process itself. This allows us to achieve both global and local temporal consistency,
a combination that has remained elusive in the specific context of video inpainting.

3 METHOD

Our video inpainting framework, shown in Figure 2, consists of two core modules. First, the
Ternary Control Video Inpainting LDM leverages optical-flow warping and a ternary mask to
pre-fill reliably moving regions, preserve fine texture, and enforce temporal coherence and local
texture details. Second, the Global–Local Guidance integrated with conditional training dynami-
cally blends autoregressive and hierarchical score estimates based on motion strength and diffusion
timestep; by alternately conditioning on previous groups and sparse keyframes during training, the
model learns both smooth group-level transitions and sparse-to-dense interpolations, enabling effi-
cient high-quality inpainting of long video sequences.

3.1 TERNARY CONTROL VIDEO INPAINTING LDM

We consider a masked video sequence X = [x1, . . . , xn] with corresponding binary masks M =
[m1, . . . ,mn], where xt ∈ RH×W×3 is the t-th frame and mt ∈ {0, 1}H×W×1 is its mask. To
enforce temporal coherence and mitigate artifacts, we first leverage reliable motion information from
adjacent frames. Following the image propagation strategy of PropPainter Zhou et al. (2023), we
compute a pre-filled frame x̂t using the optical flow ft−1→t and a reliability map Ar ∈ {0, 1}H×W :

x̂t =W(xt−1, ft−1→t)⊙Ar + xt ⊙ (1−Ar), (1)

where W(·, ·) is the backward warping operator and ⊙ denotes element-wise multiplication. The
reliability map Ar identifies regions where the flow estimation is confident. This step pre-fills tem-
porally consistent regions, reducing the generative load on the diffusion model for predictable areas.

However, optical flow can be imperfect, introducing artifacts or inaccuracies (See Figure 6). Simul-
taneously, these warped results contain invaluable high-frequency texture details that, if discarded,
force the diffusion model to hallucinate textures from scratch, often leading to blurriness (See Fig-
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Figure 3: Left: PSNR, TCLocal, and FVID as functions of optical flow magnitude under AR-
only and HR-only guidance. The two guidance modes exhibit contrasting performance trends with
increasing flow magnitude. Right: Evolution of TClocal and TCglobal as the fraction of diffusion
steps guided by AR or HR increases. The curves labeled “AR first” and “HR first” indicate schedules
in which each guidance modality is exclusively applied first. Notably, the HR-first strategy yields
superior global and local temporal consistency, motivating our adaptive temporal blending strategy.

ure 1). To balance these aspects, we introduce a ternary control mechanism that partitions the
masked regions into two distinct types: regions to be fully inpainted and regions to be refined.

This is implemented via a ternary control mask m̂t, which designates one of three roles for each
pixel j:

m̂t(j) =


1.0 if mt(j) = 1 and Ar(j) = 0

β if mt(j) = 1 and Ar(j) = 1

0.0 if mt(j) = 0

(2)

Here, β ∈ [0, 1] is a hyperparameter that controls the influence of the warped prior. A value of 1
indicates a pure inpainting task, whereas a smaller β instructs the model to treat the warped result
W(xt−1, ·) as a strong but imperfect prior to be refined. This ternary mask provides a more nuanced
spatial guidance than a simple binary mask.

Frames and the ternary control masks are encoded into the latent space of a pretrained VAE E(·).
Let zt = E(xt) and m̂lat

t = Resize(m̂t). The inpainting task is then formulated as learning the
conditional score of the latent distribution:

sθ(y
(k) | z, m̂) ≈ ∇y(k) log pk(y

(k) | z, m̂), (3)

where y(k) is the noisy latent representation of the ground-truth video at diffusion step k, z =
[E(x̂1), . . . , E(x̂n)] is the masked latent video, and m̂ = [m̂lat

1 , . . . , m̂lat
n ] is the latent control mask

sequence.

We train the score network using a simplified DDPM Ho et al. (2020) objective, which regresses
to the noise ϵ added during the forward noising process y(k) =

√
ᾱky

(0) +
√
1− ᾱk ϵ, where

ϵ ∼ N (0, I). The objective is:

Lθ = Ey(0),ϵ,k

[∥∥ϵ− ϵθ(y
(k), k, z, m̂)

∥∥2], (4)

where ϵθ is the noise prediction network. In inference, the final inpainted frame x̃t is obtained by
iteratively denoising with the learned score and decoding the result z̃t back into the pixel space via
x̃t = D(z̃t). This ternary-control framework anchors the diffusion process to accurate local details
from optical flow, yielding temporally coherent inpainting that faithfully preserves both textures and
structure.

3.2 GLOBAL–LOCAL GUIDANCE

In long-video inpainting, generating reliable per-step scores for all frames at once is impractical. We
therefore divide the n-frame sequence into contiguous subgroups and employ two complementary
guidance scores: an Autoregressive (AR) score for local continuity and a Hierarchical (HR) score
for global coherence.

Autoregressive Score (AR). AR guidance enforces smooth transitions between adjacent groups,
Gj and Gj−1. For each frame index t ∈ Gj , the generation process is conditioned on an predic-
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tion of the previous group, ŷ(0)
Gj−1

. The AR guidance score is then defined by conditioning on this
efficiently-obtained prediction:

sAR(t, k) = ∇y
(k)
t

log pk
(
y
(k)
t | ŷ(0)

Gj−1

)
. (5)

Operationally, the conditioning set ŷ(0)
Gj−1

is temporally concatenated with the masked latent zt, and
its corresponding control mask region is set to zero.

Hierarchical Score (HR). HR guidance guarantees long-range consistency via a sparse strategy.
For a frame t within an interval defined by keyframes [ih, (i+ 1)h], we refine it by conditioning on
the predictions of the two nearest coarse latents, ŷ(0)ih and ŷ

(0)
(i+1)h:

sHR(t, k) = ∇y
(k)
t

log pk
(
y
(k)
t | ŷ(0)ih , ŷ

(0)
(i+1)h

)
. (6)

These two conditioning latents are concatenated with the target frame’s masked latent to serve as
input to the model. This approach ensures distant frames remain coherent, but interpolation can
weaken connectivity under rapid motion.

Our guidance framework leverages intermediate clean latent predictions for conditioning during in-
ference, rather than the final, fully denoised outputs. Following Song et al. (2021), these predictions
are estimated directly from the noisy latent state in a single step. For both AR and HR scores, the
conditioning latents are estimations derived from the current denoising state, k. This strategy pro-
vides a dual benefit: it not only enables the adaptive fusion of our guidance scores as the conditions
themselves evolve with the denoising process, but also gives the model the flexibility to achieve
continuous global refinement throughout the denoising trajectory by utilizing relatively loose con-
straints.

Adaptive Guidance. Neither AR nor HR guidance alone suffices across all video conditions. Our
preliminary analysis, shown in Figure 3, reveals two key findings that motivate our adaptive ap-
proach. First (Left Panel), AR guidance excels in high-motion regimes, while HR guidance is supe-
rior in low-motion contexts. Second (Right Panel), a scheduling strategy that applies HR guidance
in the early stages of diffusion and AR in the later stages (”HR first”) yields substantially better
temporal consistency than the reverse. Note: The diffusion process transitions from a noisy (early
stages) to a clean (later stages).

Based on these findings, we designed an adaptive guidance mechanism that dynamically blends AR
and HR scores. The blending is controlled by two factors: (1) the video’s overall motion dynam-
ics, and (2) the Signal-to-Noise Ratio (SNR), which inherently represents the current stage of the
diffusion process.

First, we quantify scene dynamics using the average optical-flow magnitude, F(X), computed with
the RAFT Teed & Deng (2020). The final blending weight, ω, is formulated as a product of a
motion-dependent weight, γ, and a denoising-step-dependent weight, η. For the motion weight γ,
we employ a bounded exponential function, Φ(x) = 1 − e−λx, which maps the non-negative flow
magnitude to a value in [0, 1). The hyperparameter λ controls the sensitivity to motion magnitude.
For the step-dependent weight η, we use the sigmoid function, σ(·), applied to the logarithm of the
SNR, defined as SNR(k) = ᾱk/(1− ᾱk). The weights are thus explicitly defined as:

γ = Φ
(
F(X)

)
, η = σ

(
log(SNR(k))

)
, ω = γ · η.

This formulation directly implements our finding. With the adaptive weight ω defined, we compute
the blended conditional score:

sblend(t, k) = (1− ω) sHR(t, k) + ω sAR(t, k). (7)

By dynamically blending the two scores, our adaptive guidance mechanism generates inpainting
results that are both locally and globally temporally consistent.

5
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Figure 4: Qualitative comparisons with state-of-the-art methods reveal the strengths of our approach.
(Top) In the video completion task, our method preserves intricate textures and ensures smooth
transitions between frames, resulting in a highly coherent output. (Bottom) For object removal, our
approach seamlessly eliminates the target object while maintaining detailed background structures
and stable motion. In both scenarios, our method surpasses existing techniques in visual quality and
temporal consistency.

Global-Local Conditional Training As detailed in Eq. 4, our noise prediction network
ϵθ(y

(k), k, C, z, m̂) is designed to accept a conditioning set C. To accommodate both Autore-
gressive (AR) and Hierarchical (HR) guidance within a single model, C is dynamically sampled at
each training iteration:

C =

{ŷ
(0)
Gj−1
}, with probability 0.5

{ŷ(0)
ih , ŷ

(0)
(i+1)h}, with probability 0.5

where ŷ(0) denotes the estimated clean latents for the previous group Gj−1 or the two nearest sparse
keyframes {ih, (i+ 1)h}.
The resulting conditional loss is:

Lcond = Ey,ϵ,k,C

∥∥ϵ− ϵθ
(
y(k), k, C, z, m̂

)∥∥2. (8)

By randomly alternating between AR and HR conditioning structures during training, a single model
learns to perform both local-group continuity and sparse-to-dense interpolation. At inference, this
unified model provides the per-frame conditional scores required for our adaptive guidance.

4 EXPERIMENTS

Implementation Details. Our Latent Diffusion Model (LDM) was trained on a combined dataset
from YouTube-VOS Xu et al. (2018) and the self-collected dataset (see details in Appendix A.2),
with all content resized to a resolution of 512×512. We initialize our model using weights from the
Stable Diffusion v1.5 inpainting model Rombach et al. (2022) and integrate a motion module from
AnimateDiff Guo et al. (2023). During the training phase, the original Stable Diffusion layers were
kept frozen. The model was trained for 50,000 iterations with a batch size of 32 with frame interval
16 and using randomly generated masks (details are provided in Appendix A.3). For inference, we
employ Latent Consistency Models (LCM) Luo et al. (2023) to accelerate the process to 8 steps.
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YouTube-VOS DAVIS UBC Fashion
Models PSNR ↑ SSIM ↑ VFID ↓ E∗

warp ↓ TClocal ↑ PSNR ↑ SSIM ↑ VFID ↓ E∗
warp ↓ TClocal ↑ VFID↓ TClocal ↑ TCglobal ↑

DFVI 29.16 0.9429 0.066 1.651 - 28.81 0.9404 0.187 1.596 - - - -
CPNet 31.58 0.9607 0.071 1.622 - 30.28 0.9521 0.182 1.521 - - - -
FGVC 29.67 0.9403 0.064 1.163 - 30.80 0.9497 0.165 1.571 - - - -
STTN 32.34 0.9655 0.053 1.061 - 30.61 0.9560 0.149 1.438 - - - -
TSAM 30.22 0.9468 0.070 1.014 - 30.67 0.9548 0.146 1.235 - - - -
FuseFormer 33.32 0.9681 0.053 1.053 - 32.59 0.9701 0.137 1.349 - - - -
ISVI 30.34 0.9458 0.077 1.008 - 32.17 0.9588 0.189 1.291 - - - -
FGT 32.17 0.9599 0.054 1.025 - 32.86 0.9650 0.129 1.323 - - - -
E2 FGVI 33.71 0.9700 0.046 1.013 - 33.01 0.9721 0.116 1.289 - - - -
ProPainter 34.43 0.9735 0.042 0.974 0.990 34.47 0.9776 0.098 1.187 0.9760 0.248 0.9792 0.9812
DiffuEraser 32.52 0.9706 0.062 1.013 0.988 32.99 0.9752 0.115 1.234 0.9756 0.055 0.9712 0.9759
Ours 35.66 0.9878 0.040 0.955 0.993 35.84 0.9896 0.088 1.0997 0.9766 0.042 0.9845 0.9861

Table 1: Quantitative comparisons on YouTube-VOS Xu et al. (2018), DAVIS Perazzi et al. (2016)
and UBC Fashion Zablotskaia et al. (2019) datasets. The best is marked in bold. E∗

warp denotes
(Ewarp × 10−3). All methods are evaluated following their default settings.
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Figure 5: Qualitative comparison with state-of-the-art methods on long video (frame 1 to 300). Our
method effectively preserves global-local temporal consistency.

4.1 COMPARISONS

Datasets and Metrics. For quantitative and qualitative evaluation, we use the DAVIS Perazzi et al.
(2016), YouTube-VOS Xu et al. (2018) test set, UBC Fashion Zablotskaia et al. (2019) datasets.
We employ widely used PSNR and SSIM Wang et al. (2004) metrics to evaluate reconstruction
performance, and VFID Wang et al. (2018) scores to measure perceptual similarity between input
and output. Furthermore, we report the flow warping error (Ewarp) Lai et al. (2018) and for local
temporal consistency (TClocal), we compute the cosine similarity between the CLIP Radford et al.
(2021) features of adjacent frames Zhang et al. (2024b) to assess the temporal continuity of the
video. To assess long-range semantic stability, we introduce a global consistency metric, TCglobal,
specifically designed for videos with recurring visual patterns, such as the UBC Fashion dataset.
This metric requires identifying non-adjacent frame pairs in the ground truth that correspond to the
same visual content reappearing over time. To establish an objective benchmark, we pre-process the
test set by finding frame pairs with the highest CLIP feature cosine similarity Radford et al. (2021),
which typically correspond to these recurring moments (e.g., a person returning to a frontal pose
after turning around). The same identified frame pairs are then used to compute TCglobal across the
outputs of all evaluated methods, measuring their ability to maintain appearance consistency over
extended temporal distances.

Quantitative Comparison. We conduct a comprehensive quantitative comparison of our approach
against 11 state-of-the-art methods: DFVI Xu et al. (2019), CPNet Lee et al. (2019), FGVC Gao
et al. (2020), STTN Zeng et al. (2020), TSAM Zou et al. (2021), Fuseformer Liu et al. (2021),
ISVI Zhang et al. (2022b), FGT Zhang et al. (2022a), E2FGVI Li et al. (2022b), ProPainter Zhou
et al. (2023), and DiffuEraser Li et al. (2025). The evaluation is performed on the YouTube-VOS and
DAVIS datasets, following the standard settings for each method, while the UBC Fashion dataset
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Figure 6: (a) Comparison between using only Autoregressive (AR) guidance and our full Global-
Local Guidance. The AR-only approach leads to noticeable texture drift over time. (b) Comparison
between using only Hierarchical Score (HR) guidance and our full approach. The HR-only method
fails to propagate textures correctly according to motion, resulting in distortion. In contrast, our
Global-Local Guidance yields stable, high-quality results in both scenarios. (c) Qualitative compar-
ison demonstrating the effect of the Ternary Mask refinement weight, β. The corresponding ternary
mask is visualized in the top-left corner of each masked frame, showing how our approach effec-
tively corrects structural errors caused by inaccurate flow estimation.

Weights PSNR ↑ SSIM ↑ E∗
warp ↓ TClocal ↑

β = 0.0 34.32 0.9769 1.1163 0.9761
β = 0.25 35.01 0.9811 1.1192 0.9758
β = 0.5 35.84 0.9896 1.0997 0.9766
β = 0.75 34.97 0.9847 1.1147 0.9749
β = 1.0 34.66 0.9826 1.1116 0.9745

Table 2: Ablation study of the Ternary Mask refinement weight β. The setting β = 1.0 is equivalent
to a binary mask. Our proposed setting, β = 0.5, achieves the best results across all metrics.

is used for our specialized temporal consistency evaluation. In our experiments, we set the key
hyperparameters β = 0.5 and λ = 0.25. As shown in Table 1, our method decisively outperforms
all competing techniques in every evaluation metric. Further validation through a user study is
provided in Appendix A.5.

Qualitative Comparison. We provide a qualitative comparison against state-of-the-art methods,
ProPainter and DiffuEraser, in Figure 4. For standard inpainting (top), ProPainter often generates
blurry artifacts in low-motion scenes, while DiffuEraser suffers from inconsistent patterns and tem-
poral flickering. For the object removal task (bottom), where masks are generated using SAM2 Ravi
et al. (2024), both competing methods fail to preserve background details, resulting in blur and
distortion.

In contrast, our method effectively integrates a flow-based prior with our adaptive guidance strategy.
This approach produces stable and coherent results, accurately preserving background patterns and
yielding significantly higher visual fidelity in both tasks.

Long-range Temporal Consistency. To evaluate the ability of the methods to maintain visual
pattern over long video lengths, we conducted an additional qualitative comparison using the UBC
Fashion Zablotskaia et al. (2019) dataset. This dataset comprises videos in which a fashion model
completes a full rotation from a frontal view back to a frontal view, making it ideal for assessing
long-term consistency. As shown in Figure 5, ProPainter fails to preserve any distinct patterns,
resulting in a blurred output, while DiffuEraser generates well-defined patterns, but loses consistency
through the sequence. In contrast, our method consistently maintains the visual context, preserving
the same visual pattern in entire sequence.

4.2 ABLATION STUDY

We conduct a series of ablation studies on the DAVIS dataset to rigorously evaluate the core com-
ponents of our proposed framework: Flow-Guided Ternary Control and the Adaptive Global-Local
Guidance mechanism.
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Guidance PSNR↑ SSIM↑ E∗
warp↓ TClocal ↑

AR 34.11 0.9744 1.1057 0.9767
HR 34.57 0.9788 1.1239 0.9747
λ = 0.05 34.11 0.9735 1.1013 0.9767
λ = 0.1 34.46 0.9802 1.1164 0.9757
λ = 0.15 35.22 0.983 1.1021 0.9762
λ = 0.2 34.53 0.9787 1.0995 0.9764
λ = 0.25 35.84 0.9896 1.0997 0.9766
λ = 0.3 34.63 0.9775 1.1004 0.9761
λ = 0.35 33.52 0.9787 1.1152 0.9764

Table 3: Ablation study of our Adaptive Global-Local Guidance on the DAVIS dataset. We analyze
the individual performance of AR and HR guidance and the effect of the motion sensitivity parameter
λ.

Analysis of the Ternary Mask. We evaluate the effectiveness of our Flow-Guided Ternary Control
by ablating the refinement weight β, with results shown in Table 2. The case where β = 1.0 is
equivalent to using a standard binary mask, completely discarding the flow-based prior in masked
regions. Conversely, β = 0.0 represents fully trusting the prior. Our proposed setting, β = 0.5,
which empowers the model to refine the flow-warped prior, achieves the best performance across all
reported metrics. This demonstrates that granting the model the flexibility to leverage the flow prior
while simultaneously correcting its inherent inaccuracies is critical for preserving high-frequency
details and enhancing overall structural fidelity.

Analysis of Adaptive Global-Local Guidance. To validate our guidance strategy, we first isolate
the effects of its constituent parts. Table 3 presents this analysis.

• Complementary Strengths of AR and HR: The first two rows compare using only Autoregres-
sive (AR) guidance against only Hierarchical (HR) guidance. The AR-only model achieves the
highest local temporal consistency (TC = 0.9767), confirming its strength in generating smooth
frame-to-frame transitions. However, its PSNR and SSIM are lower than the HR-only model.
Conversely, the HR-only model yields superior PSNR and SSIM scores, indicating better preser-
vation of global structure and frame quality, but at the cost of slightly reduced local smoothness.
This result empirically confirms our central hypothesis that AR and HR are complementary, mo-
tivating the need for their dynamic fusion.

• Impact of Motion-Adaptive Blending (λ): The subsequent rows in Table 3 demonstrate the effect
of the motion sensitivity parameter λ, which controls the blend between AR and HR guidance.
The results show a clear performance improvement as λ increases from 0.05, with the optimal
balance achieved at λ = 0.25. This setting yields the highest PSNR and SSIM scores while
maintaining excellent temporal consistency. Performance begins to degrade beyond this point
(e.g., λ = 0.35), suggesting that over-reliance on motion can be detrimental. This validates
that our adaptive blending mechanism, which intelligently adjusts the guidance based on scene
dynamics, is crucial for achieving state-of-the-art performance.

5 CONCLUSION

In this paper, we introduced OmniPainter, a novel video inpainting framework designed to resolve
the fundamental conflict between global and local temporal consistency. Our approach is defined
by two key innovations: a Flow-Guided Ternary Control for enhanced structural fidelity, and an
Adaptive Global-Local Guidance strategy. This guidance mechanism dynamically blends special-
ist Autoregressive (AR) and Hierarchical (HR) scores, intelligently adapting to both scene motion
and the current diffusion timestep to achieve a robust temporal equilibrium. Our extensive exper-
iments demonstrate that OmniPainter establishes a new state-of-the-art by significantly mitigating
both flickering and contextual drift, paving the way for more reliable and sophisticated video in-
painting technologies.

9
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A APPENDIX

A.1 LATENT UPSAMPLING

Most generative models struggle with high-resolution image generation, often causing structural
distortions and quality loss. These issues are exacerbated when the output is generated at resolutions
higher than those seen during training. To address this, Upsample Guidance Hwang et al. (2024)
and I-MAX Du et al. (2024) first generate images at the native training resolution and then use them
as guidance for producing higher resolution outputs, effectively improving stability and reducing
artifacts. However, such methods require a full low-resolution generation path at every denoising
step, which is computationally inefficient.

M
as

k
ed

 F
ra

m
e

w
/o

 L
at

en
t 

U
p
sa

m
p
le

w
/ 

L
at

en
t 

U
p
sa

m
p
le

w
/o

 L
at

en
t 

U
p
sa

m
p
le

w
/ 

L
at

en
t 

U
p
sa

m
p
le

Text-to-Video Task

Video Inpainting Task

In
p
u
t 

T
ex

t A highly realistic, high-definition portrait 

video of a smiling woman wearing a black 

leather jacket, standing in Central Park. She 

is looking directly at the camera. Natural 

lighting, cinematic depth of field, 4K 

resolution.

Figure 7: Qualitative results of latent upsampling. Top: text-to-video results at 1280×1280; Bottom:
video inpainting results at 1920 × 1080 pixels. Both methods use models trained at a resolution of
512× 512.

In contrast, we propose a simpler and more efficient strategy. Our method generates a low-resolution
latent only during the early denoising stages, when the model primarily captures low-frequency
structural information, and uses it to guide the subsequent high-resolution denoising. Furthermore,
this method is applicable not only to video inpainting but also to other image and video generation
tasks (see Figure 7).

Let k be the total number of denoising timesteps, and define a threshold timestep tth = τ ·k (with τ ∈
[0, 1]) at which we switch from low-resolution to high-resolution denoising. The basic procedure is
shown in Algorithm 1.

Algorithm 1 Latent Upsampling

1: Set t = k
2: while t ≥ 0 do
3: if t = tth then
4: z̄0 = 1√

ᾱt
(zt −

√
1− ᾱtϵθ(yt, t))

5: zt−1 =
√
ᾱt−1 E(U(D(z̄0))) +

√
1− ᾱt−1 ϵ

6: else
7: zt−1 = 1√

1−βt
(zt − βt√

1−ᾱ
ϵθ(yt, t)) + σt ϵ

8: end if
9: t← t− 1

10: end while
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Figure 8: Performance com-
parison across different la-
tent upsampling hyperparam-
eter settings.

Here, U(·) is a bilinear upsampling operator, while E(·) and D(·) denote the encoder and decoder
of a pre-trained VAE, respectively. Since latent-space upsampling often results in blurriness, we
use the encoder-decoder pair to perform upsampling in image space. Using the intermediate result
z0 as a low-resolution guide at tth, our approach effectively reduces the number of denoising steps
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compared to previous methods Hwang et al. (2024); Du et al. (2024), cutting the process from 2k to
k steps.

Analysis of Latent Upsampling. As illustrated in Figure 7(down), performing high-resolution
inpainting directly without early latent upsampling yields artifacts and distorted pattern, as also
reported in methods Hwang et al. (2024); Du et al. (2024). In contrast, our approach regulates
the upsampling process by controlling the upsampling step through a parameter τ . We conducted
experiments using videos at 1920×1080p resolution from MiraDataset Ju et al. (2024) with random
masks. Figure 8 presents the upsampling performance across different values of τ , showing that the
best results are obtained when τ = 0.25.

A.2 SELF-COLLECTED DATASET

We collected around 10k video clips, each ranging from 10 seconds to 2 minutes in duration. The
dataset covers a wide range of domains, including variety shows, sports, dramas, movies, TV shows,
and animations. To ensure video quality, we analyzed the aesthetic score Li et al. (2022a) of each
clip and excluded those with low scores. We also calculated the average optical flow difference
between adjacent frames Sun et al. (2018) to remove videos with minimal motion. To promote
dataset diversity, we extracted CLIP Radford et al. (2021) features from sampled frames of each
video and computed cosine similarity across all video pairs, excluding those with high similarity.
As a result of this filtering process, we curated a final dataset of 2,036 high-quality and diverse
videos, which were used for training OmniPainter.

A.3 TRAINING DETAILS

Training Configurations. Our video inpainting latent diffusion model is trained using the Adam
optimizer (β1 = 0.9, β2 = 0.999) with no weight decay. We use a fixed learning rate of 1 × 10−5

without a learning rate scheduler. The diffusion process is configured with T = 1000 timesteps, fol-
lowing a linear noise schedule from βstart = 10−4 to βend = 0.02. Training is performed on 8 Nvidia
A100 GPUs (80GB each). We set the per-GPU batch size to 1 and apply gradient accumulation by
a factor of 4, resulting in an effective batch size of 64. The model is trained for a total of 50,000
iterations.

Ternary Mask and augmentation for training. We generate a training ternary mask, mtrain
t ,

randomly for each ground-truth frame xt. This mask is generated by creating random rectangular
or free-form patches, ensuring the model learns spatially coherent inpainting and refinement. The
pixels in mtrain

t are assigned one of three values based on predefined ratios:

• Known Regions (m̂t(j) = 0): A fraction of the pixels (e.g., 50%) are left untouched. The
model learns from the original, clean data in these areas.

• Inpainting Regions (m̂t(j) = 1): Another fraction (e.g., 25%) is designated for a full
inpainting task. These regions are completely masked out in the input.

• Refinement Regions (m̂t(j) = β): The remaining pixels (e.g., 25%) are assigned the value
β = 0.5. These regions undergo a synthetic degradation process to mimic the imperfectly
warped priors encountered during inference.

Specifically, the input x′
t provided to the model during training is constructed as follows for each

pixel j:

x′
t(j) =


xt(j) if mtrain

t (j) = 0.0

A(xt(j)) if mtrain
t (j) = 0.5

cmask if mtrain
t (j) = 1.0

(9)

where cmask is a placeholder value (e.g., a gray color) for the inpainting regions. The function
A(·) represents our stochastic augmentation pipeline, which applies a random affine transformation
followed by Gaussian noise to the original pixels xt(j).

Crucially, regardless of the input, the model is always tasked with reconstructing the original, uncor-
rupted frame xt. This training strategy effectively teaches the model to perform three actions based
on the mask value: copy known pixels (0.0), denoise and de-artifact corrupted priors (0.5), and
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missing content from scratch (1.0). This prepares the model to robustly handle the varied scenarios
presented by the flow-guided ternary mask m̂t during inference.

A.4 ADDITIONAL QUALITATIVE RESULTS
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Figure 9: Qualitative Comparisons between AR and Global-Local guidance.
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Figure 10: Qualitative Comparisons between AR and Global-Local guidance.

We present additional qualitative results demonstrating that our proposed approach significantly
outperforms both the AR and HR methods.

Figure 9 illustrates that even minor errors in the AR approach tend to propagate over time, degrading
the overall quality of the output, whereas our Global-Local guidance effectively prevents error accu-
mulation, resulting in a stable and reliable performance even under challenging temporal variations.

As shown in Figure 10, while the AR approach suffers from noticeable inconsistencies in the in-
painted context at the beginning and end of the sequence, our method consistently maintains natural,
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Figure 11: Qualitative Comparisons between HR and Global-Local guidance.
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Figure 12: Additional Qualitative Comparisons.
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uniform textures throughout the entire sequence, ensuring robust global temporal consistency that is
critical for long-term video restoration and generation tasks.

Moreover, Figure 11 demonstrates that the HR approach experiences abrupt texture changes during
fast motion, leading to local motion inconsistencies; in contrast, our approach delivers smooth,
natural texture transitions that ensure motion coherence even in high-speed scenarios.

In addition, Fugure 12 shows qualitative comparisons with state-of-the-art methods such as Dif-
fuEraser and ProPainter reveal that our technique consistently provides superior texture quality and
enhanced temporal consistency, clearly overcoming the limitations of existing methods. Overall, our
Global-Local guidance technique not only addresses the drawbacks inherent in AR and HR methods
but also offers exceptional performance in preserving both global texture integrity and local motion
smoothness, making it a highly effective solution for a wide range of video inpainting and restoration
applications.

57
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Figure 13: Human preference win rate.

A.5 USER STUDY

To better compare the performance of different methods, we conducted a user study with 44 partic-
ipants. The goal was to evaluate the visual quality of our method, OmniPainter, compared to two
recent state-of-the-art approaches: DiffuEraser and ProPainter.

In each test, participants were shown two videos side by side: one generated by our method and
the other by one of the baseline methods. They were asked to choose the video that looked better
in terms of visual quality, or to say that both looked similar. This helped us to understand which
method people preferred based on appearance.

We used 100 videos in total for the study, including 50 video completion examples and 50 object
removal examples. All video pairs were performed using the same input masks for all methods to
ensure a fair comparison.

The results are shown in Figure 13. Overall, users showed a clear preference for OmniPainter
over both DiffuErase and ProPainter. This suggests that our method produces results that are more
visually pleasing and consistent, confirming its effectiveness from a human perspective.

A.6 COMPUTATIONAL RESOURCE ANALYSIS

All experiments for computational resource analysis were conducted on a machine equipped with
an AMD EPYC 7502 32-Core CPU and a single NVIDIA A100 GPU with 80GB of memory. The
reported computation time corresponds to processing 80-frame videos at a resolution of 512× 512,
averaged over 10 runs. Standard deviations are shown in parentheses. The measurement excludes
any video pre-processing and post-processing steps. See Table 4 for details. For fair comparison,
ProPainter and DiffuEraser were evaluated using their publicly released implementations with de-
fault settings provided by the authors.

Inference time (seconds) VRAM (MB) NFE
Propainter 23.44(±0.73) 15670 1
Diffueraser 35.29(±0.34) 15553 2
Ours 29.32(±0.14) 15670 8

Table 4: A comparison of computational resource consumption during inference. NFE refers to the
number of function evaluations.
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Figure 14: Qualitative comparison of the effect of flow-based completed video as a prior.

A.7 ADDITIONAL ABLATION STUDY

2. Ablation Study on Adaptive Blending Functions. A core component of our Global-Local
Guidance (GLG) is the adaptive blending of Autoregressive (AR) and Hierarchical (HR) scores.
This blending is dynamically controlled by two weights: a motion-dependent weight, γ, and a
denoising-step-dependent weight, η. To validate our design choices for the functions governing
these weights, we conduct an ablation study, replacing our proposed functions with simpler or alter-
native formulations. The results, summarized in Table 5, demonstrate the superiority of our original
design.

On the Motion-Dependent Weight (γ). Our proposed motion-dependent weight function, γ =
Φ(x) = 1− e−λx, is designed to offer a nuanced response across a wide dynamic range of motion.
To validate this design, we replace it with a simpler clamped linear function:

γLinear = clamp(a · F(X), 0, 1)

For this ablation, we test the linear model with different scaling constants, a.

As shown in Table 5, the linear models are markedly inferior. Their primary drawback is the con-
stant rate of response. The weight γLinear increases uniformly with the motion magnitude F(X)
until it abruptly saturates. This makes the model difficult to tune: a small scaling factor a leads to
insensitivity for moderate motion, while a large a causes premature saturation, failing to distinguish
between slight and moderate motion intensities.

In contrast, our proposed exponential function Φ(x) provides more sophisticated control due to its
concave shape. It exhibits high sensitivity to initial motion (i.e., the transition from static to dy-
namic), ensuring even slight movements begin to invoke AR guidance. However, its rate of increase
diminishes as motion grows, allowing the weight to gracefully approach saturation. This non-linear
behavior is crucial, as it allows the model to be responsive to low-to-moderate motion while re-
maining robust and not overreacting to extremely high motion values. This ensures that guidance is
assigned appropriately based on the true intensity of the scene’s dynamics.

On the Denoising Schedule Weight (η) Our scheduling weight, η = σ(log(SNR(k))), is de-
signed to implement the “HR first” strategy by gradually shifting from HR to AR guidance as the
signal-to-noise ratio increases. This function creates a smooth transition that is dynamically tied
to the model’s convergence state. We investigate whether this adaptive, signal-aware scheduling is
truly necessary by comparing it against simpler schedules that depend only on the discrete timestep
k ∈ [1,K].

We test two alternatives:

1. Linear Schedule: A simple linear ramp, ηLinear = k/K.
2. Exponential Schedule: A schedule that starts very slowly and accelerates sharply, defined

as ηExp = (exp(1− k/K))/(e− 1).

The results in Table 5 show that these predefined schedules fall short of our SNR-based approach.
While the ‘Linear η‘ and ‘Exponential η‘ models provide a smooth transition, they are not adaptive
to the actual denoising process. Our method, by linking η to the SNR, allows the model to transition
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from HR to AR guidance precisely when the signal becomes strong enough for local details to
be refined. This confirms that the superiority of our “HR first” strategy stems not just from the
sequence, but critically from the smooth and adaptive nature of the transition.

Guidance Model PSNR↑ SSIM↑ E∗
warp↓ TClocal↑

Ablation on (γ)
GLG w/ Linear γ (a = 0.025) 33.17 0.9715 1.1384 0.9610
GLG w/ Linear γ (a = 0.05) 34.25 0.9758 1.1180 0.9742
GLG w/ Linear γ (a = 0.1) 34.40 0.9765 1.1095 0.9750
GLG w/ Linear γ (a = 0.15) 32.89 0.9582 1.571 0.9521
GLG w/ Linear γ (a = 0.2) 31.11 0.9442 1.6112 0.9482
Ablation on (η)
GLG w/ Linear η 35.15 0.9740 1.1290 0.9715
GLG w/ Exponential η 34.28 0.9755 1.1220 0.9728
Ours (Full Model) 35.84 0.9896 1.0997 0.9766

Table 5: Ablation study of our Adaptive Blending Functions on the DAVIS dataset. We analyze the
impact of replacing our proposed functions for γ and η with alternative formulations. Our full model
(in bold) demonstrates superior performance across all variants.

A.8 LIMITATIONS

While our proposed OmniPainter framework demonstrates strong performance in terms of visual
quality and temporal consistency, several limitations remain, which point to meaningful directions
for future research and development. Our approach assumes access to accurate and temporally sta-
ble segmentation masks. However, in real-world scenarios, such masks are typically generated using
automated tools (e.g., SAM2), which may introduce inconsistencies or errors. These imperfections
are not explicitly handled in the current framework and can lead to quality degradation. Improving
robustness to imperfect mask inputs or integrating adaptive mask refinement modules could enhance
the method’s practical reliability. Addressing these limitations is essential for advancing video in-
painting systems toward more efficient, autonomous, and deployment-ready solutions.
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