
Planning for Success: Exploring LLM Long-term Planning Capabilities in
Table Understanding

Thi-Nhung Nguyen1, Hoang Ngo2, Dinh Phung1, Thuy-Trang Vu1, Dat Quoc Nguyen2

1Monash University, 2Qualcomm AI Research*

{nhung.thinguyen,dinh.phung,trang.vu1}@monash.edu
{hoangngo,datnq}@qti.qualcomm.com

Abstract

Table understanding is key to addressing chal-
lenging downstream tasks such as table-based
question answering and fact verification. Re-
cent works have focused on leveraging Chain-
of-Thought and question decomposition to
solve complex questions requiring multiple op-
erations on tables. However, these methods
often suffer from a lack of explicit long-term
planning and weak inter-step connections, lead-
ing to miss constraints within questions. In
this paper, we propose leveraging the long-
term planning capabilities of large language
models (LLMs) to enhance table understand-
ing. Our approach enables the execution of a
long-term plan, where the steps are tightly in-
terconnected and serve the ultimate goal, an as-
pect that methods based on Chain-of-Thought
and question decomposition lack. In addition,
our method effectively minimizes the inclusion
of unnecessary details in the process of solv-
ing the next short-term goals, a limitation of
methods based on Chain-of-Thought. Exten-
sive experiments demonstrate that our method
outperforms strong baselines and achieves state-
of-the-art performance on WikiTableQuestions
and TabFact datasets.

1 Introduction

Table understanding is key to addressing challeng-
ing downstream tasks involving tables, one of the
most prevalent forms of semi-structured data in
real-world scenarios, such as table question an-
swering (Wang et al., 2023a; Lin et al., 2023) and
fact verification (Chen et al., 2020). The primary
goal is to accurately extract relevant information
from tables to provide precise answers to user ques-
tions. To better understand the problem consider
the example in Table 1.

Early works focus on fine-tuning BERT to en-
code tables (Herzig et al., 2020; Chen et al., 2020).
The key idea is to leverage specialized embedding

*Qualcomm Vietnam Company Limited.

Calculate the total revenue of products sold in both
Region A and Region B in 2023, where the quantity
sold is greater than 500 in each region.

2008

700

Product Region Sales Year Quantity Sold Revenue

A1 A 2023 600 1000
A1 B 2023 400 800

A2 A 2023 700 1500
A2 B 2023 600 1300
A3 A 2022 800 2000
A3 B 2023 300 500

Figure 1: A question-answering example over a table.

layers or attention mechanisms to encode table cells
or segments effectively, enabling models to under-
stand the structure of tables. Another direction re-
volves around the synthesis of SQL query-response
pairs to pre-train an encoder-decoder model as a
neural SQL executor (Eisenschlos et al., 2020; Liu
et al., 2022b; Jiang et al., 2022). With the advent of
large language models (LLMs), recent works have
explored instruction fine-tuning of LLMs with tab-
ular data to create generalist models capable of han-
dling a variety of table-based tasks (Zhang et al.,
2024), showing improved performance over flag-
ship closed-source LLMs such as GPT-3.5-turbo
and GPT-4 (OpenAI et al., 2024).

Leveraging the strong in-context learning perfor-
mance of LLMs, recent works have increasingly
focused on addressing table understanding through
prompting. One common approach is to convert
the question into executable languages, allowing
the use of tools such as SQL or Python to access
the information inside the table (Lin et al., 2023;
Gemmell and Dalton, 2023; Wang et al., 2024;
Nahid and Rafiei, 2024; Liu et al., 2024; Kong
et al., 2024). However, due to the constraints of
the single-pass generation process, these methods
often struggle with complex questions requiring
multiple steps of table operations. To address this

challenge, some state-of-the-art methods employ
Chain-of-Thought (CoT) reasoning, which enables
multi-step reasoning (Yao et al., 2023; Chen et al.,
2023; Wei et al., 2022; Wang et al., 2024). Others
rely on question decomposition, breaking down the
question into sub-questions, solving them individu-
ally, and finally synthesizing a final answer (Kong
et al., 2024; Patnaik et al., 2024; Ye et al., 2023).
However, both CoT-based methods and question
decomposition-based methods suffer from a lack
of explicit long-term planning and weak inter-step
connections. This results in missing constraints
within the question, leading to incorrect final an-
swers. An illustration of this issue is shown in Fig-
ure 2, where step 3 is not conditionally linked to
the previous steps. In addition, in the case of CoT-
based methods, the entire current chain is often
utilized to generate the output for the subsequent
step. This approach can result in LLMs forgetting
critical details or generating hallucinations, as they
process a substantial amount of information, in-
cluding extraneous details, which may introduce
unnecessary complexity and lead to errors (Jiang
et al., 2022; Chen, 2023).

In this paper, we propose leveraging the long-
term planning capabilities of LLMs to address these
challenges. Unlike methods based on CoT and
question decomposition, which lack explicit long-
term planning, our method begins with the formula-
tion of a long-term plan upon receiving a question.
This plan outlines the necessary steps, called short-
term goals, to progress systematically from the ini-
tial table to the final answer. The short-term goals
can be either independent or interconnected, de-
pending on the requirements of the question, ensur-
ing that each serves the long-term goal. To handle
each short-term goal effectively, we leverage a set
of specialized experts, each dedicated to a specific
task. These experts take responsibility for handling
short-term goals relevant to their specialization, op-
erating independently to resolve the goals within
their localized scope. At this local level, each ex-
pert focuses solely on their assigned goal without
being influenced by other parts of the long-term
plan. The intermediate steps executed by the exe-
cution experts are single-pass. Once the short-term
goal is completed, only the final results are updated
within the long-term plan, minimizing the inclu-
sion of unnecessary information in the process of
solving the next short-term goals—a common issue
in CoT-based methods.

Our contributions are summarized as follows:

Incorrect result: 1000 + 1500 + 1300 = 3800

Step 1: Filter rows for year = 2023.

700

Product Region Sales Year Quantity Sold Revenue
A1 A 2023 600 1000
A1 B 2023 400 800
A2 A 2023 700 1500
A2 B 2023 600 1300
A3 B 2023 300 500

Step 2: Filter rows for Units Sold > 500.

700
Product Region Sales Year Quantity Sold Revenue

A1 A 2023 600 1000
A2 A 2023 700 1500
A2 B 2023 600 1300

Step 3: Calculate total revenue.

Incorrect result: 1000 + 1500 + 1300 = 3800

Chain-Of Thought
Subquestion 1: What is the total revenue of
products sold in Region A in 2023, where the
quantity sold is greater than 500?

Subquestion 2: What is the total revenue of
products sold in Region B in 2023, where the
quantity sold is greater than 500?

700
Product Region Sales Year Quantity Sold Revenue

A1 A 2023 600 1000
A2 A 2023 700 1500

700Product Region Sales Year Quantity Sold Revenue
A2 B 2023 600 1300

Calculate total revenue

Question Decomposition

Figure 2: An illustration showing how CoT-based meth-
ods and question decomposition-based methods miss the
important inter-region condition in revenue calculation
(corresponding to the table and question in Figure 1).

(I) We propose leveraging the long-term planning
capabilities of LLMs to enhance table understand-
ing. (II) Our approach enables the execution of
a long-term plan where the steps are tightly inter-
connected, all serving the ultimate goal—an as-
pect that methods based on Chain-of-Thought and
question decomposition lack. (III) Our approach
effectively minimizes the inclusion of unnecessary
details in the process of solving the next short-term
goals—a limitation of methods based on Chain-of-
Thought. (IV) Comprehensive experiments demon-
strate that our approach achieves state-of-the-art
performance, outperforming existing strong base-
lines on standard benchmarks WikiTableQuestions
and TabFact.

2 Related Works

Fine-tuning pre-trained BERT models (Devlin
et al., 2019) were one the dominant approach for
Table Understanding (Herzig et al., 2020; Chen
et al., 2020; Liu et al., 2022a; Deng et al., 2022;
Wang et al., 2021; Iida et al., 2021). TaPas (Herzig
et al., 2020) leverage the mask language modeling
approach proposed in BERT to reconstruct certain
cells in the table during training process. Wang
et al. (2021) further enhance the performance by
masking the entire columns in tables. A different
approach is to train an encoder-decoder model to
transform questions into SQL queries and then an-
swer these questions by executing the respective
generated SQL queries (Eisenschlos et al., 2020;
Liu et al., 2022b; Jiang et al., 2022). Recently,
large language models (LLMs) have demonstrated
excellent performance on a variety of tasks. Recent
works have been shifting their focus to fine-tuning
open-source LLMs to create models capable of
handling a variety of table-based tasks. However,

Router

Search

Comparison

python

Calculation

python

Planning
Expert

Step1: From the original table,
filter rows for 2023

Step 5: from step 4, calculate
total revenue.

Step 2: from step 1, filter products
in Region A with Units > 500

Step 3: from step 1, filter products
in Region B with Units > 500

Step 4: From step 2 & 3, identify
products in both regions

E
xe

cu
tio

n
E

xp
er

ts

Assessment
Expert

Calculate the total revenue of
products sold in both Region A and

Region B in 2023, where the quantity
sold is greater than 500 in each

region.

ANSWER

Update/Replan

Figure 3: Overview of our proposed framework PLANTA.

these methods require expensive labeled data and
high training costs. This has led to the emergence
of prompt-based approaches, which leverage the
in-context learning capabilities of LLMs.

For prompt-based methods, some works propose
concatenating task descriptions with the serialized
table as a string and inputting them into an LLM to
generate a text-based response (Marvin et al., 2023;
Cheng et al., 2023; Sui et al., 2024). Other works
enhance the performance further by adding few-
shot and curated examples to the prompt (Cheng
et al., 2023; Narayan et al., 2022; Chen, 2023).
However, with reasoning only, LLMs often strug-
gle to accurately retrieve all relevant data required
within tables. Therefore, recent works increasingly
incorporate external tools (e.g., Python and SQL)
instead of relying solely on general text process-
ing to effectively extract relevant data within ta-
bles (Chen et al., 2023; Gao et al., 2023; Rajkumar
et al., 2022; Cheng et al., 2023; Ni et al., 2023).
Despite this, due to the constraint of a single pass,
this approach still struggles with complex ques-
tions where multiple operations need to be exe-
cuted to produce an accurate answer. Recent state-
of-the-art methods mitigate this limitation by em-
ploying chain-of-thought (CoT) reasoning or ques-
tion decomposition (Chen et al., 2023; Zhao et al.,
2024; Yang et al., 2024; Zhou et al., 2023; Khot
et al., 2023). Some works (Ye et al., 2023; Cheng
et al., 2023; Liu et al., 2024) further enhance the
performance by self-consistency technique (Wang
et al., 2023b), where a diverse set of reasoning
paths is sampled from LLMs and the most consis-
tent answer is selected to obtain the final answer.
However, both CoT-based methods and question
decomposition-based methods suffer from a lack
of explicit long-term planning and weak inter-step
connections. This results in constraints within the

question being missed, leading to incorrect final
answers. Furthermore, CoT-based methods often
utilize the entire current chain to generate the out-
put for the subsequent step. This approach can
result in LLMs forgetting critical details or gener-
ating hallucinations, as they process a substantial
amount of information, including extraneous de-
tails, which may introduce unnecessary complexity
and lead to errors (Jiang et al., 2022; Chen, 2023).

3 Our Approach

We introduce a novel method, named PLANTA,
which leverages the long-term Planning capabili-
ties of Large Language Models to improve Table
Understanding. PLANTA is designed to tackle the
challenge of generating accurate answers to table-
based questions by extracting and reasoning over
relevant information from the given tables.

Figure 3 illustrates the architectural overview
of PLANTA. First, upon receiving a table and
a question, a Planning expert comes up with a
long-term plan outlining the necessary steps, called
short-term goals, to transform the initial table into
the desired answer to the user’s question. Next,
each short-term goal is routed to an appropriate
Execution expert by a Router, which assigns short-
term goals to experts based on their specialization
via LLM prompting. These goals are then resolved
locally, with only the final results passed to the
following components of PLANTA, potentially up-
dating the long-term plan. Meanwhile, interme-
diate steps executed by the Execution experts are
processed in a single pass. After each step, the up-
dated long-term plan is evaluated by an Assessment
expert, who determines whether sufficient evidence
has been gathered to answer the question or if mod-
ifications to the plan are necessary. If no adjust-
ments are needed, the process continues. Below,

def execute_sql_query(query, table):
"""
Executes an SQL query
on a table and returns the result.
 Args:
 query: SQL query to execute.
 table: Table to execute the query on.
"""

Search Calculation Comparison
def multiply(a, b):
 "Returns the product of two numbers."
def minus(a, b):
 "Returns the difference of two numbers"
def sum(a, b):
 "Returns the sum of two numbers"
def divide(a, b):
 "Returns the division of two numbers."

def compare(a, b):
"Return: 'a is greater' if a > b
 'b is greater' if a < b
 'a is equal to b' if a == b"
def max_in_list(a_list):
 "Returns the highest number in the list"
def min_in_list(a_list):
 "Returns the smallest number in the list"

Figure 4: Predefined Python functions ("hands") assigned to the Search expert, Calculation expert, and Comparison
expert in PLANTA, respectively.

we provide a detailed description of the architec-
ture and roles of the experts within PLANTA. We
first outline the common architecture shared by all
experts in Subsection 3.1, followed by an in-depth
discussion of the differences in their architecture
and their specific contributions in Subsection 3.2.

3.1 Common Architecture
In PLANTA, each expert consists of two main com-
ponents: the "brain" and the "hands". Each brain is
specialized in a specific task and can independently
reason to complete an assigned task. It is powered
by an LLM, whose knowledge scope is encoded
through prompting. The hands are predefined tools,
such as Python or SQL execution functions, tai-
lored to the expert’s specializations. These tools
enable access to detailed data within tables and
execute operations that LLMs may struggle with,
such as calculations. They provide the brain with
the necessary inputs for reasoning and determining
the subsequent steps required to complete the task.

3.2 Task-Specific Architecture
Planning expert: Its role is to outline the nec-
essary steps of short-term goals, structured as a
task list, to transform the initial table into an ac-
curate answer. Since this role focuses solely on
planning without execution, the Planning expert’s
architecture comprises only the "brain". This brain
is powered by an LLM specifically designed for
the planning task, with a knowledge scope that
includes the given table, the question, and the spe-
cializations of Execution experts (see our prompt
for Planing in Appendix). For each step in the plan,
dependencies on previous steps must be explicitly
defined to enable the flexible reuse of variables
from earlier steps. This approach minimizes the
transfer of unnecessary information to subsequent
steps while ensuring that all dependencies are cor-
rectly managed. For example, in Figure 3, step 3
depends only on the output of step 1. Therefore,
step 3 can access only the output of step 1 that it
depends on, without accessing the output of step 2.

My goal is to find row containing products
sold in region B where quantity sold > 500.
First, I need to check the table structure.

The columns are: Product, Region, Sales
Year, Quantity Sold, Revenue.

Call:
RUN execute_sql_query (sql_query)
params:
sql_query = """

SELECT column_name
FROM information_schema.columns

"""

Next, I need to filter the data with two
conditions:

Region = 'B'
Quantity Sold > 500

Call:
RUN execute_sql_query (sql_query)
params:
sql_query = """

SELECT *
WHERE Region = 'B'
AND Quantity_Sold > 500;

"""

Everything is correct, I'll return the list of
rows that meet the requirements.

700Product Region Sales Year Quantity Sold Revenue
A2 B 2023 600 1300

Figure 5: An example of how the Search expert ad-
dresses the 3rd short-term goal from Figure 3. Once
the short-term goal is received, the Search expert per-
forms reasoning step by step. The process includes un-
derstanding the question, analyzing the table structure,
identifying the data that meets the goal’s conditions, and
providing the answer. When the expert needs to access
data in the table, it automatically calls the predefined
SQL execution function (see Figure 4) to retrieve the
necessary information. This is done by generating SQL
queries as parameters for the function.

Execution experts: The task of the Execution ex-
perts is to resolve the short-term goals required by
the Planning expert. These goals are assigned to ap-
propriate Execution experts based on their special-
ization by the Router, which we perform using an
LLM via prompting (see our prompt for the Router
in Appendix). Motivated by operations on tables,

our PLANTA system is designed with three Exe-
cution experts: (1) Search expert, (2) Comparison
expert, and (3) Calculation expert. In terms of their
knowledge scope, they can only access the data and
short-term goals provided by the Planning expert
and reason with the support of predefined functions,
which we call "hands". The predefined functions
include SQL query execution for the Search expert;
comparative and superlative comparison for the
Comparison expert; and basic calculations such as
addition, subtraction, multiplication, and division
for the Calculation expert. See Figure 4 for more
details.

Unlike the initial question on tables, which must
be addressed according to a pre-defined long-term
plan, short-term goals are often simpler and more
manageable. Therefore, we allow the experts to
independently determine how to resolve assigned
goals, such as utilizing the Chain-of-Thought or
question decomposition approach, as long as the
assigned goal is solved (see our prompts for three
Execution experts in Appendix). We expect that
this flexibility will enable the experts to reason and
use their "hands" in ways that align with their exe-
cution capabilities. Figure 5 illustrates an example
of how an Execution Expert addresses an assigned
short-term goal.

Assessment expert: The task of the Assessment
expert is to evaluate the quality of the plan after
receiving the result of the current short-term goal
from the Execution Expert. Similar to the Planning
expert, it does not execute tasks but focuses solely
on reasoning, using an LLM specialized in assess-
ment tasks. Its knowledge scope includes access to
the table, the question, and the long-term plan (see
our prompt for the Assessment in Appendix). After
every k short-term goals, the Assessment expert
determines whether to generate an early answer
if sufficient relevant information is available, or
revise the plan if the results from the Execution
experts fail to meet requirements or if the initial
plan appears infeasible. Otherwise, the results from
the Execution experts are automatically incorpo-
rated into the long-term plan. In essence, it takes
a plan as input and outputs either a revised or an
unchanged plan, or an answer.

Recommendation: Our preliminary experiments
show that frequent assessments, such as after each
short-term goal, can facilitate early answers, con-
serve resources, and quickly address errors as they
arise. However, frequent evaluations may also lead

Statistics WikiTQ TabFact
Questions 4343 2024
Number of Tables 421 298
Min/Max Rows 6/518 5/49
Min/Max Columns 5/20 3/21

Table 1: Statistics of the WikiTableQuestions (WikiTQ)
and TabFact test sets.

to challenges, such as overemphasizing short-term
results at the expense of long-term objectives, un-
necessary plan revisions (e.g., repeated short-term
result validations), inaccurate premature answers,
and increased resource costs. To mitigate these
issues, k should be tuned based on the data and the
complexity of the question, balancing stability and
efficiency.

4 Experiment Setup

Dataset and Metric: Following previous works
(Wang et al., 2024), we conduct experiments on the
benchmark datasets WikiTableQuestions—a ques-
tion answering dataset over semi-structured tables
(Pasupat and Liang, 2015) and TabFact—a dataset
for table-based fact verification (Chen et al., 2020).
Table 1 describes the statistics of their test sets. See
a description of both datasets in the Appendix.

We employ the official denotation accuracy (Pa-
supat and Liang, 2015) for WikiTableQuestions
and the binary classification accuracy for TabFact.

Baselines: We compare our method to recent
strong table understanding methods, including
TEXT2SQL (Rajkumar et al., 2022), CHAIN-OF-
THOUGHT (Wei et al., 2022), Dater (Khot et al.,
2023), StructGPT (Jiang et al., 2023), BINDER
(Cheng et al., 2023), TabSQLify (Nahid and Rafiei,
2024), CHAIN-OF-TABLE (Wang et al., 2024)
and DP&PYAGENT (Liu et al., 2024). CHAIN-
OF-TABLE and DP&PYAGENT are the state-of-
the-art methods on TabFact and WikiTableQues-
tions, respectively.

Implementation Details: We utilize LangGraph
to construct our proposed model, PLANTA, which
is conceptualized as a graph.1 In this graph, the
long-term plan represents the graph’s state and each
expert presents a node. Each expert is powered
by an LLM with a distinct prompt, as detailed in
Appendix . We mainly use "GPT-3.5-turbo" and
"GPT-4o-mini" from OpenAI as the LLMs. The
temperature for LLMs is set to 0. The maximum

1https://langchain-ai.github.io/langgraph/

number of iterations for a full turn of reasoning and
execution of predefined functions per expert is set
to 2. The maximum number of short-term goals
is set to 12. The Assessment expert evaluates the
long-term plan after completing n− 1 steps of the
plan where n is the number of short-term goals in
the plan.

5 Evaluation

5.1 Main Results

Table 2 reports the accuracy of our PLANTA and
strong baselines on WikiTableQuestions (WikiTQ)
and TabFact test sets.

Recent state-of-the-art methods, including
CHAIN-OF-TABLE and DP&PYAGENT, rely on
chain-of-thought reasoning and self-consistency,
demonstrating the effectiveness of these methods
for table understanding. Both CHAIN-OF-TABLE
and DP&PYAGENT show notable improvements
when upgrading their backbone LLM from GPT-
3.5-turbo to GPT-4o-mini. For example, CHAIN-
OF-TABLE improves from 59.9 to 70.4 on WikiTQ
and 80.2 to 85.8 on TabFact. DP&PYAGENT in-
creases from 65.5 to 74.7 on WikiTQ and 80.0 to
89.9 on TabFact, highlighting the benefits of using
a more powerful language model.

Our PLANTA outperforms all baselines on both
test sets. With GPT-3.5-turbo, PLANTA scores
70.0 on WikiTQ and 82.0 on TabFact, outperform-
ing DP&PYAGENT (65.5 on WikiTQ, 80.0 on
TabFact) and CHAIN-OF-TABLE (59.9 on Wik-
iTQ, 80.2 on TabFact). When using GPT-4o-mini,
PLANTA further improves to 75.7 on WikiTQ and
90.4 on TabFact, surpassing DP&PYAGENT (74.7
on WikiTQ, 89.9 on TabFact) and CHAIN-OF-
TABLE (70.4 on WikiTQ, 85.8 on TabFact).

Overall, PLANTA demonstrates state-of-the-art
performance across different LLMs and datasets,
providing clear evidence of the effectiveness of the
proposed method for table understanding.

5.2 Ablation Study

To investigate the impact of each proposed compo-
nent of PLANTA, we evaluate our ablated variants
on WikiTQ and TabFact. Due to budget constraints,
we evaluate the ablated variants on 1,000 randomly
selected questions from each of the WikiTQ and
TabFact test sets. Table 3 presents the contribution
of each proposed component to PLANTA’s overall
performance with GPT-4o-mini.

Method WikiTQ TabFact
GPT-3.5-turbo

TEXT2SQL (2022) 52.9 64.7
CHAIN-OF-THOUGHT 53.5 65.4
BINDER (2023) 56.7 79.2
Dater (2023) 52.8 78.0
StructGPT (2023) 48.4 _
TabSQLify (2024) 64.7 79.5
CHAIN-OF-TABLE (2024) 59.9 80.2
DP&PYAGENT (2024) 65.5 80.0
Our PLANTA 70.0 82.0

GPT-4o-mini
CHAIN-OF-TABLE 70.4 85.8
DP&PYAGENT 74.7 89.9
Our PLANTA 75.7 90.4

Table 2: Performance results on the WikiTableQues-
tions (WikiTQ) and TabFact test sets. Rows 3 to
11 evaluate the table understanding capabilities of
baseline methods and our PLANTA using GPT-3.5-
turbo as the LLM. Results for previous methods are
taken from their respective works, except for Dater,
BINDER, and DP&PYAGENT. Since original Dater
and BINDER relied on the now-decommissioned
OpenAI Codex LLM, we extract their results based
on GPT-3.5-turbo, reported in the CHAIN-OF-
TABLE paper (Wang et al., 2024). Furthermore,
DP&PYAGENT is tested only on a variant version of
the original WikiTQ test set (i.e. not the same test
set). Therefore, we run their official implementation
(https://github.com/Leolty/tablellm) to report
results on the original WikiTQ and the TabFact test sets
with GPT-3.5-turbo. In rows 12-15, we run the official
implementations of CHAIN-OF-TABLE (https:
//github.com/google-research/chain-of-table)
and DP&PYAGENT using GPT-4o-mini to provide
results with a faster and more cost-efficient LLM.
Note that Wang et al. (2024) also report results of
CHAIN-OF-TABLE using "PaLM-2" with 340B
parameters (Anil et al., 2023). Since the PaLM-2
API has been decommissioned, we are unable to run
PLANTA with "PaLM-2".

W/o planning: In this variant, long-term plan-
ning is excluded from PLANTA. Instead, the Plan-
ning expert relies solely on chain-of-thought (CoT)
reasoning. In detail, the Planning expert is required
to think step by step and generate a single request
for Execution experts to handle. This process is
repeated iteratively until a final answer is produced
by the Assessment expert. As shown in Table 3,
the exclusion of long-term planning significantly
hurts PLANTA’s performance, with accuracy drop-
ping from 76.5 to 69.0 on WikiTQ and from 90.0
to 74.0 on TabFact. Our internal analysis indicates
that the sharper decline on TabFact is due to the

https://github.com/Leolty/tablellm
https://github.com/google-research/chain-of-table
https://github.com/google-research/chain-of-table

Method WikiTQ TabFact
PLANTAGPT-4o-mini 76.5 90.0

w/o planning 69.0 74.0
w/o search 56.0 62.5
w/o calculation 71.5 81.5
w/o comparison 75.5 88.0
w/o group experts 74.4 88.0
w/o assessment 75.0 85.3

Table 3: The performance of the full-component
PLANTA with GPT-4o-mini, along with the results of
the ablation study.

nature of fact verification tasks, which typically
require only a true/false response. This simplicity
may cause the Assessment expert to prematurely
decide on an answer without verifying supporting
evidence. Meanwhile, WikiTQ questions, which
involve more searching tasks, encourage the model
to continue processing until the result is found, re-
ducing premature mistakes.

W/o search: In this variant, the Search expert
is excluded from PLANTA, and search tasks are
instead handled by the Comparison and Calcula-
tion experts. This leads to a significant drop in
accuracy, from 76.5 to 56.0 on WikiTQ and from
90.0 to 62.5 on TabFact, even though the brains of
the Comparison and Calculation experts can still
reason to perform searches. These results high-
light that search is a critical task, and our design of
the Search expert enables the brains to effectively
utilize predefined functions, resulting in more ac-
curate search performance compared to relying on
reasoning alone.

W/o calculation & W/o comparison: In these
variants, the Comparison and Calculation experts
are removed from PLANTA separately. Similar
to the "W/o search" variant, these exclusions hurt
PLANTA’s accuracy. Specifically, removing the
Calculation expert causes a sharper decline, with
a 5% drop on WikiTQ and 8.5% on TabFact, com-
pared to removing the Comparison expert, which
results in a 1% drop on WikiTQ and 2% on TabFact,
while the Search expert’s brain still attempts reason-
ing to perform these tasks. These results highlight
that LLMs’ reasoning often struggles with compar-
ison and even basic calculation.

W/o group experts: In this variant, all Execu-
tion experts are merged into a single unified ex-
pert responsible for handling search, calculation,
and comparison tasks. Instead of using specialized
prompts and predefined functions tailored to each
expert’s specific task, the unified expert uses a gen-
eral prompt and has access to all predefined func-

tions. This consolidation results in a 2.1% drop in
accuracy on WikiTQ and a 2.0% drop on TabFact.
These results demonstrate that Execution experts
benefit significantly from prompts and predefined
functions designed specifically for their special-
ized tasks, highlighting the value of maintaining
task-specific experts within PLANTA.

W/o assessment: In this variant, the Assessment
expert is excluded from PLANTA. In details, all
outputs from the Execution experts are automati-
cally updated into the long-term plan, and the final
answer is generated once all short-term goals are
completed. Table 3 shows that removing the As-
sessment expert reduces PLANTA’s accuracy by
1.5% on WikiTQ and 4.7% on TabFact. This dis-
crepancy mainly arises from the need to revise the
plan to handle code execution errors or situations in
which one or more steps in the plan are infeasible,
leading to repetitive iterations without returning
valid results.

6 Analysis

6.1 Error analysis

Table 4 presents the types of errors observed in
PLANTA. The most frequent errors are related to
planning and common sense, stemming from the
LLMs’ lack of "real expert knowledge". As a result,
they struggle to handle unpredictable data, such as
"TBA" for time or "note" columns containing addi-
tional, contrasting information that alters the main
context. This is consistent with the analysis in Sub-
section 6.2, where we demonstrate that improving
the planning capabilities of the LLM leads to a sub-
stantial increase in accuracy. The Missing "hands"
error, where no predefined function is available
to assist reasoning, accounts for only 1.9% of the
cases, emphasizing the robustness of our design
for predefined functions. However, 11.7% of er-
rors occur when the LLM mistakenly relies solely
on reasoning instead of utilizing the available pre-
defined functions to execute tasks accurately. In
addition, 11.3% of errors are caused by generating
invalid parameters for predefined functions. Hallu-
cinations remain an unavoidable issue with LLMs,
accounting for 11.3% of errors. LLMs can generate
inaccurate final answers, even when accurate ones
are explicitly provided in the final step. Despite
its smaller percentage, acceptable answers reflect a
need to handle vague questions.

Error Type Description %
Planning/Replanning Errors related to incorrect relationships between steps, failure to handle exceptions within

plan, and inability to detect execution errors when revising plan.
37.7%

Common sense LLMs lack reasoning based on real-world knowledge. Example: When asked how many
consecutive years 1990-1991 represent, LLMs answer "2", while the correct answer is 1.

20.8%

Lazy executor Errors where experts rely solely on LLM reasoning, even when predefined functions could
assist, leading to incorrect results. Example: LLMs miscalculate 3 + 3 + 1 = 6, but a tool
could compute it correctly.

11.7%

Parameter errors Errors caused by generating invalid parameters for predefined functions, such as wrong
data types or conditions.

11.3%

Hallucination The plan is executed correctly, but the conclusion is wrong. 11.3%
Acceptable answers Unclear questions lead to answers that are technically correct but not aligned with the

expected response. For example, when asked row listed before row 4?, PLANTA lists rows
1 to 3, while the golden answer is row 3.

5.7%.

Missing "hands" No predefined function is available to support the reasoning process 1.9%

Table 4: Error types in PLANTAGPT-4o-mini on the WikiTableQuestions test set. The total percentage does not add up
to 100% because some samples contain more than one error.

LLMs

70

75

80

85

90

GPT-3.5 Turbo GPT-4o-mini GPT-4o GPT4

fixed planning fixed execution

Figure 6: The impact of different LLMs on table un-
derstanding performance on the subset of 1000 Wik-
iTableQuestions test questions used for the Ablation
study. For "fixed planning", the LLM used for planning
is set to GPT-4o-mini, while the LLM for execution
tasks varies from GPT-3.5-turbo to GPT-4-mini to GPT-
4o to GPT-4, increasing in reasoning capability. For
"fixed execution", the LLM for execution tasks remains
GPT-4o-mini, with the LLM for planning adjusted from
GPT-3.5-turbo to GPT-4-mini to GPT-4o to GPT-4.

6.2 Improved LLMs Are Always the Key to
Table Understanding?

As shown in Table 2, using LLMs with better
reasoning capabilities notably improves table un-
derstanding performance. Here, we investigate
whether improvements in LLMs always lead to sig-
nificant performance gains. Our analysis focuses
on two main aspects: [1] Planning, which deter-
mines how PLANTA chooses the best approach
to answer a question, including the task of plan-
ning by the Planning expert and the task of re-
vised planning by the Assessment expert; and [2]
Execution, which involves performing the neces-
sary tasks (such as search, comparison, and calcu-

lation) to find the relevant data within tables.
Figure 6 illustrates the impact of different LLMs

on table understanding along these two aspects
on the subset of 1000 WikiTableQuestions test
questions used for the Ablation study. The results
demonstrate that under the "fixed execution" set-
ting, planning with better LLMs leads to a sub-
stantial improvement in accuracy for table under-
standing, with GPT-3.5-turbo achieving 72% and
GPT-4 increasing this to 88.5%. In contrast, under
the "fixed planning" setting, the improvement in
execution tasks with better LLMs is far more lim-
ited, with accuracy rising from 74% to 79%. This
contrast highlights the disproportionate influence
of LLM reasoning on planning tasks compared to
execution tasks. In other words, execution tasks
appear to be less influenced by the model’s rea-
soning power than planning tasks are, emphasizing
the need for task-specific optimizations. Thus, by
using powerful models for planning and more cost-
effective models for execution, we can optimize
both performance and resource efficiency.

7 Conclusion

We propose a novel method PLANTA to enhance
table understanding by leveraging the long-term
planning capabilities of LLMs. Our method fo-
cuses on two main goals: (1) enabling the ex-
ecution of a long-term plan with tightly inter-
connected steps; (2) minimizing the inclusion
of unnecessary details when solving short-term
goals, thereby improving efficiency compared
to CoT-based approaches. Experimental results
show that PLANTA achieves new state-of-the-art
performances on two benchmark datasets. Our
PLANTA implementation is publicly available at:
https://github.com/nhungnt7/PLANTA.

Limitations

Although our experiments have proven the effec-
tiveness of our proposed method, there are still
some limitations that can be improved in future
work. While our approach encourages LLMs to
engage in reasoning and solve tasks in a general-
ist manner, LLMs could benefit significantly from
additional task-specific knowledge. For example,
providing more targeted few-shot examples and ex-
plicitly including common exceptions could help
the system handle rare or unpredictable scenarios
better, as discussed in Subsection 6.1. Furthermore,
future works can impose stricter constraints to en-
courage LLMs to use the "hands" of predefined
functions effectively. This would minimize errors
caused by LLMs attempting to rely solely on rea-
soning when predefined functions are better suited
for the task, referred to as lazy executors in Subsec-
tion 6.1.

Acknowledgments

This work was supported by Monash eResearch
capabilities, including M3.

This work was completed while Hoang Ngo and
Dat Quoc Nguyen were at Movian AI, Vietnam.

References
Rohan Anil, Andrew M. Dai, et al. 2023. PaLM 2

Technical Report. arXiv preprint, arXiv:2305.10403.

Wenhu Chen. 2023. Large Language Models are few(1)-
shot Table Reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023, pages
1120–1130.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of Thoughts
Prompting: Disentangling Computation from Rea-
soning for Numerical Reasoning Tasks. Transactions
on Machine Learning Research.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. TabFact: A Large-scale
Dataset for Table-based Fact Verification. In Proceed-
ings of the 8th International Conference on Learning
Representations.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding Language
Models in Symbolic Languages. In Proceedings of
the 11th International Conference on Learning Rep-
resentations.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and
Cong Yu. 2022. TURL: Table Understanding through
Representation Learning. ACM SIGMOD Record,
51(1):33–40.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
281–296, Online. Association for Computational Lin-
guistics.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided Language
Models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764–
10799.

Carlos Gemmell and Jeff Dalton. 2023. ToolWriter:
Question Specific Tool Synthesis for Tabular Data.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
16137–16148.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020. TaPas: Weakly Supervised Table Parsing
via Pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: Pretrained Representations of
Tabular Data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
GPT: A General Framework for Large Language
Model to Reason over Structured Data. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9237–9251.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. OmniTab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 932–942, Seattle,
United States. Association for Computational Lin-
guistics.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sabhar-
wal. 2023. Decomposed Prompting: A Modular Ap-
proach for Solving Complex Tasks. In Proceedings
of the 11th International Conference on Learning
Representations.

Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Balasub-
ramaniam Srinivasan, Chuan Lei, Christos Falout-
sos, Huzefa Rangwala, and George Karypis. 2024.
OpenTab: Advancing Large Language Models as
Open-domain Table Reasoners. In Proceedings of
the 12th International Conference on Learning Rep-
resentations.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria
de Gispert, and Gonzalo Iglesias. 2023. An Inner
Table Retriever for Robust Table Question Answer-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9909–9926.

Guang Liu, Jie Yang, and Ledell Wu. 2022a. PTab:
Using the Pre-trained Language Model for Modeling
Tabular Data. arXiv:2209.08060.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022b.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Tianyang Liu, Fei Wang, and Muhao Chen. 2024. Re-
thinking Tabular Data Understanding with Large Lan-
guage Models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
450–482.

Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo,
and Joyce Nakatumba-Nabende. 2023. Prompt Engi-
neering in Large Language Models. In Proceedings
of the International Conference on Data Intelligence
and Cognitive Informatics, pages 387–402.

Md Nahid and Davood Rafiei. 2024. TabSQLify: En-
hancing Reasoning Capabilities of LLMs Through
Table Decomposition. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 5725–5737.

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-
pher Ré. 2022. Can Foundation Models Wrangle
Your Data? Proceedings of the VLDB Endowment,
16(4):738–746.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I Wang, and Xi Victoria Lin. 2023.
LEVER: learning to verify language-to-code gener-
ation with execution. In Proceedings of the 40th In-
ternational Conference on Machine Learning, pages
26106–26128.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, et al. 2024. GPT-4
Technical Report.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional Semantic Parsing on Semi-Structured Tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480.

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit
Bhatia, Yaman Kumar, and Balaji Krishnamurthy.
2024. CABINET: Content Relevance-based Noise
Reduction for Table Question Answering. In Pro-
ceedings of the 12th International Conference on
Learning Representations.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the Text-to-SQL Capabil-
ities of Large Language Models . arXiv preprint,
arXiv:2204.00498.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table Meets LLM: Can
Large Language Models Understand Structured Table
Data? A Benchmark and Empirical Study. In Pro-
ceedings of the 17th ACM International Conference
on Web Search and Data Mining, page 645–654.

Dingzirui Wang, Longxu Dou, and Wanxiang Che.
2023a. A Survey on Table-and-Text HybridQA: Con-
cepts, Methods, Challenges and Future Directions.
arXiv preprint, arXiv:2212.13465.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-Consistency Improves
Chain of Thought Reasoning in Language Models.
In Proceedings of the 11th International Conference
on Learning Representations.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi
Fu, Shi Han, and Dongmei Zhang. 2021. TUTA:
Tree-based Transformers for Generally Structured
Table Pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1780–1790.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, and Tomas Pfister. 2024. Chain-of-Table: Evolv-
ing Tables in the Reasoning Chain for Table Under-
standing. In Proceedings of the 12th International
Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of Thought Prompting
Elicits Reasoning in Large Language Models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems.

Bohao Yang, Chen Tang, Kun Zhao, Chenghao Xiao,
and Chenghua Lin. 2024. Effective Distillation of
Table-based Reasoning Ability from LLMs. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation, pages 5538–5550.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large Language Mod-
els are Versatile Decomposers: Decomposing Evi-
dence and Questions for Table-based Reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, page 174–184.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2024. TableLlama: Towards open large general-
ist models for tables. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 6024–6044, Mexico City, Mexico. Association
for Computational Linguistics.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi,
Linyong Nan, Lyuhao Chen, Yixin Liu, Xian-
gru Tang, Rui Zhang, and Arman Cohan. 2024.
DocMath-eval: Evaluating math reasoning capabili-
ties of LLMs in understanding long and specialized
documents. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 16103–16120.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-Most Prompting Enables Com-
plex Reasoning in Large Language Models. In Pro-
ceedings of the 11th International Conference on
Learning Representations.

A Prompt

Table 5 provides details of the custom-designed
prompt for each component in the PLANTA system.

B Dataset description

WikiTableQuestions (WikiTQ): A question an-
swering dataset based on HTML tables, each with a
minimum of 6 rows and 5 columns. The questions
were not generated using predefined templates but
were hand-crafted by users, resulting in signifi-
cant linguistic diversity. These questions span vari-
ous domains and require operations such as table
lookup, aggregation, superlatives, arithmetic opera-
tions, joins, and unions.

TabFact: A table-based binary fact verification
dataset designed to determine whether a textual hy-
pothesis is supported or refuted based on evidence
provided in tables. The dataset presents a challeng-
ing task that requires both soft linguistic reasoning
and hard symbolic reasoning. TabFact spans a wide
range of operations, including aggregation, nega-
tion, superlatives, counting, comparative reasoning,
and ordinal analysis.

Planning Router Search
You are a Planning expert. Your
goal is to generate a plan to ex-
clude a sequence of steps includ-
ing SQL search (more detailed
conditions in the requirements
are better), calculation, and com-
parison based on the given table
to get the answer to the question.
For each step in the plan, depen-
dencies on previous steps must
be explicitly defined. Table: {ta-
ble}. Question: {question}.

You are a task classification,
your task is to classify the re-
quirement type for the given task
and route it to the appropriate
expert. Please return the ex-
pert specialization based on the
following guidance: 1. return
’search’ if you need to search,
conditional count the table for
specific information. 2. return
’compare’ if you need to com-
pare two or more pieces of infor-
mation. 3. return ’calculation’
if you need to perform a calcu-
lation between numbers. Your
task: {short-term goal}.

You are a Search expert. You
have been tasked to reason and
generate an SQL query to extract
and conditional count specific in-
formation (rows) from the table.
We allow you to independently
determine how to resolve the as-
signed goal, such as utilizing
the Chain-of-Thought or ques-
tion decomposition approach, as
long as the goal is solved. You
can use the tool to execute an
SQL query generated based on
the question and given table and
return the result. You might
know the answer without run-
ning any code, but you should
still run the code to get the an-
swer. Given table: {table}. Your
task: {shot-term goal}

Comparision Calculation Assessment
You are a Comparison expert.
You must use the tools provided
to complete the assigned task.
We allow you to independently
determine how to resolve the as-
signed goal, such as utilizing
the Chain-of-Thought or ques-
tion decomposition approach, as
long as the goal is solved. You
can use one tool multiple times
and use many tools at one time
in any order. You might know
the answer without running any
code, but you should still run the
code to get the answer. Your
tools include: {list of predefined
functions}. Your task: {shot-
term goal}.

You are a Calculation expert.
You must use the tools provided
to complete the assigned task.
We allow you to independently
determine how to resolve the as-
signed goal, such as utilizing
the Chain-of-Thought or ques-
tion decomposition approach, as
long as the goal is solved. You
can use one tool multiple times
and use many tools at one time
in any order. You might know
the answer without running any
code, but you should still run the
code to get the answer. Your
tools include: {list of predefined
functions}. Your task: {shot-
term goal} .

You are an Assessment expert.
Your goal is to answer the ques-
tion if sufficient relevant infor-
mation is available or revise the
plan if the results from the Ex-
ecution experts fail to meet re-
quirements or if the initial plan
appears infeasible. Your original
plan was this: {plan}. You have
currently done the follow steps
with the following results at tem-
plate (step, result): {past_steps}

Table 5: Custom-designed prompts for each component in the PLANTA.

	Introduction
	Related Works
	Our Approach
	Common Architecture
	Task-Specific Architecture

	Experiment Setup
	Evaluation
	Main Results
	Ablation Study

	Analysis
	Error analysis
	Improved LLMs Are Always the Key to Table Understanding?

	Conclusion
	Prompt
	Dataset description

