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ABSTRACT

We consider SGD-type optimization on infinite-dimensional quadratic problems
with power law spectral conditions. It is well-known that on such problems deter-
ministic GD has loss convergence rates L; = O(¢~¢), which can be improved to
L; = O(t~%) by using Heavy Ball with a non-stationary Jacobi-based schedule
(and the latter rate is optimal among fixed schedules). However, in the mini-batch
Stochastic GD setting, the sampling noise causes the Jacobi HB to diverge; ac-
cordingly no O(t~2¢) algorithm is known. In this paper we show that rates up to
O(t=2%) can be achieved by a generalized stationary SGD with infinite memory.
We start by identifiyng generalized (S)GD algorithms with contours in the com-
plex plane. We then show that contours that have a corner with external angle 67
accelerate the plain GD rate O(t=¢) to O(t~%). For deterministic GD, increasing
0 allows to achieve rates arbitrarily close to O(t*QC). However, in Stochastic GD,
increasing 6 also amplifies the sampling noise, so in general 6 needs to be opti-
mized by balancing the acceleration and noise effects. We prove that the optimal
rate is given by 0y, = min(2, v, ﬁ) where v, ( are exponents appearing
in the capacity and source spectral conditions. Furthermore, using fast rational
approximations of the power functions, we show that ideal corner algorithms can
be efficiently approximated by finite-memory algorithms, and demonstrate their
practical efficiency on a synthetic problem and MNIST.

1 INTRODUCTION

It is well-known that Gradient Descent (GD) on quadratic problems can be accelerated using the
additional momentum term (the “Heavy Ball” algorithm, [Polyak!(1964))). For ill-conditioned prob-
lem, Heavy Ball with a suitable non-stationary (“Jacobi”) predefined schedule allows to accelerate
a power-law loss converge rate O(t¢) to O(t~2¢), i.e. double the exponent ¢ (Nemirovskiy &
Polyak, |1984; [Brakhage, |1987). This acceleration is the best possible for non-adaptive schedules.

On the other hand, for mini-batch Stochastic Gradient Descent (SGD) typically used in modern
machine learning, the convergence rate picture is much more complicated, and much less is known
about possible acceleration. The natural quadratic problem in this case is the fitting of a linear
model with a sampled quadratic loss. In the power-law spectral setting, it was found in Berthier
et al.| (2020) that plain SGD has two distinct convergent phases: either the sampling noise is weak
and the SGD rate is the same O(¢t~¢) as for GD, or the convergence is slower due to the prevalence
of the sampling noise. We refer to these two scenarios as signal- and noise-dominated, respectively.

This picture was refined in several other works (Varre et al. 2021} Varre & Flammarion| 2022;
Velikanov et al., 2023; |Yarotsky & Velikanov, 2024). In particular, |Yarotsky & Velikanov| (2024)
examined generalized SGDs with finite linear memory of any size (generalizing the momentum and
similar terms) and proved that with stationary schedules they all have the same phase diagram as
plain SGD (Figureleft); in particular, they do not accelerate the plain GD/SGD rate O(t~¢).

On the other hand, the non-stationary Jacobi Heavy Ball accelerating deterministic GD from O(t~¢)
to O(t~2¢) fails for mini-batch Stochastic GD: it eventually starts to diverge due to the accumulating
sampling noise. |Varre & Flammarion| (2022)) have proposed a non-stationary modification of SGD
that achieves a quadratic acceleration, but only on finite-dimensional problems. |Yarotsky & Ve-
likanov|(2024) have proposed a non-stationary modification of the Heavy Ball/momentum algorithm



that is heuristically expected (but not yet proved) to achieve rates O(¢~%¢) with some 1 < # < 2 on
infinite-dimensional problems.

To sum up, the topic of SGD acceleration in ill-conditioned quadratic problems is far from settled.

In the present paper we propose an entirely new approach to acceleration of (S)GD that both provides
a new general geometric viewpoint and proves that, in a certain rigorous sense, SGD in the signal-
dominated regime can be accelerated from O(¢t=¢) to O(t~%) with 6 up to 2.

Our contributions:

1. A view of generalized (S)GD as contours (Section [3). We show that stationary (S)GD
algorithms with an arbitrary-sized linear memory can be identified with contours in the
complex plane. This identification leverages the characteristic polynomials y and the loss
expansions of memory-M (S)GD from |Yarotsky & Velikanov|(2024). We show that all the
information needed to compute the loss evolution is contained inamap ¥ : {z € C : |z| >
1} — C associated with x. The map ¥ gives rise to the contour U({z € C : |z| = 1}) and,
conversely, can be reconstructed, along with the algorithm, from a given contour.

2. Corner algorithms (Section ). A crucial role is played by contours that have a corner
with external angle 7,1 < 6 < 2. We prove that the respective algorithms accelerate
the plain GD rate O(t~¢) to O(t~%). However, in Stochastic GD such algorithms have
the negative effect of amplifying the sampling noise. By balancing these two effects, we
establish the precise phase diagram of feasible accelerations of SGD under power-law spec-
tral assumptions (Figure [I|right). In particular, we identify three natural sub-phases in the
signal-dominated phase; in one of them acceleration up to O (¢ ~2¢) is theoretically feasible.

3. Implementation of Corner (S)GD (Sections[3] [6). Ideal corner algorithms require an infi-
nite memory, but can be fast approximated by finite-memory algorithms using fast rational
approximations of the power function 2. We demonstrate experimentally an acceleration
close to theoretically predicted by applying a memory-5 approximation of Corner SGD to
a synthetic problem and the MNIST classification.

2 BACKGROUND
This section is largely based on the paper|Yarotsky & Velikanov|(2024)) to which we refer for details.

Gradient descent with memory. Suppose that we wish to minimize a loss function L(w) on a
linear space H. We consider gradient descent with size-M memory that can be written as
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The vector w; is the current step-t approximation to an optimal vector w,, and u; is an auxiliary
vector representing the “memory” of the optimizer. These auxiliary vectors have the form u =
(M. aMNT with u™ € H and can be viewed as size-M columns with each component
belonging to H. We refer to M as the memory size. The parameter o (learning rate) is scalar,
the parameters a, b, ¢ are M -dimensional column vectors, and D is a M x M scalar matrix. The
algorithm can be viewed as a sequence of transformations of size-(M 4+ 1) column vectors (3! )
with H-valued components. Throughout the paper, we only consider stationary algorithms, in the
sense that the parameters «, b, ¢, D do not depend on ¢. The simplest nontrivial special case of GD
with memory is Heavy Ball (Polyak| |1964), in which M = 1 and uy is the momentum.

Our theoretical results will rely on the assumption that L is quadratic:
1
L(w) = inHw —wlq, (2)

with a strictly positive definite H. Throughout the paper, we will mostly be interested in infinite-
dimensional Hilbert spaces #, and we slightly abuse notation by interpreting w’ as the co-vector
(linear functional (w, -)) associated with vector w. We will assume that H has a discrete spectrum
with ordered eigenvalues A\, \, 0.



Let w, be the optimal value of L such that VL(w,) = Hw, —q = 0, and denote Aw; = w; — w,.
Then, if Aw; and u; are eigenvectors of H with eigenvalue A, then
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and the new vectors Awy1,us41 are again eigenvectors of H with eigenvalue A. As a result,
performing the spectral decomposition of Aw,, u, reduces the original dynamics (I)) acting in H ®
RM+1 to a M-indexed collection of independent dynamics each acting in R +1,

For quadratic L, evolution (1) admits an equivalent representation

M M
Wit M+1 = Z PmWitm + Z Q’va(Wt—i-m), t= 07 17 ceey (4)
m=0 m=0

with constants (p,,)M_, (¢m)M_, such that Zﬁ«{:o Pm = 1. These constants are found from the
characteristic polynomial

M M
x(z,\) = det(z —Sy) = P(z) — \Q(x), P(x) = 2! — Z Pmx™, Qx) = Z gmx™. (5)
m=0

m=0

Batch SGD with memory. In batch Stochastic Gradient Descent (SGD), it is assumed that the
loss has the form L(w) = Ex.,¢(x, w), where p is some probability distribution of data points x
and £(x, w) is the loss at the point x. In the algorithm (T, we replace VL by VLp,, where B; is a
random batch of | B| points sampled from distribution p, and VL is the empirical approximation
toL,ie. Lp = ﬁ > xep L(x, w). The samples B; at different steps ¢ are independent.

We assume / to have the quadratic form ¢(x, w) = 3 (x”w —y(x))? for some scalar target function
y(x). Here, the inner product x”w can be viewed as a linear model acting on the feature vector x.
By projecting to the subspace of linear functions, we can assume w.l.o.g. that the target function
y(x) is itself linear in x, i.e. f(x) = x? w, with some optimal parameter vector w,. (Later we
will slightly weaken this assumption to also cover unfeasible solutions w,.) Then the full loss is
quadratic as in Eq. @): L(w) = Ex~,3(x"Aw)? = {Aw"HAw, where Aw = w — w, and the

xX~p2
Hessian H = Ey.., [xx”].

Mean loss evolution, SE approximation, and the propagator expansion. Since the trajectory
w in SGD is random, it is convenient to study the deterministic trajectory of batch-averaged losses
Ly =Ep, . . p,L(w;:). The sequence L, can be described exactly in terms of the second moments of
w;, u; that admit exact evolution equations. An important aspect of this evolution is that it involves
4’th order moments of the data distribution p and so cannot in general be solved using only the
second-order information available in the Hessian H = E,[xx"].

A convenient approach to handle this difficulty is the Spectrally-Expressible (SE) approximation
proposed in|Velikanov et al.[(2023). It consists in assuming that there exist constants 7, 75 such that
for all positive definite operators C in H

Exnp[xx” Cxx'] ~ 7 Tr[HCJH — (12 — 1)HCH. (6)

In fact, this approximation holds exactly for some natural types of distribution p (translation-
invariant, gaussian). Otherwise, if the r.h.s. is only an upper or lower bound for the 1.h.s., this implies
a respective relation between the actual losses and the losses computed under the SE approximation.
Theoretical predictions obtained under assumption (6) show good quantitative agreement with ex-
periment on real data. We refer to|Velikanov et al.| (2023); Yarotsky & Velikanov| (2024) for further
discussion of the SE approximation.

The main benefit of the SE approximation is that it allows to write a convenient loss expansion

t
1
Ly = §(Vt+1 +) > Ut 1t Uty —tim 1 Uty 1 —t "'Utz—tl‘/il) )

m=10<t1<...<ty, <t+1



with scalar noise propagators Uy, and signal propagators V;. The signal propagators describe the
error reduction during optimization in the absence of sampling noise, while the noise propagators
describe the perturbing effect of sampling noise injected at various times.

For our main results in Sections [3| ] we will assume that 7, = 0, implying particularly simple
formulas for Uy, V;:

U, = |B|Z/\ [(107)SEH() P, ZAk et w.)?|(10m)Ss ()% (8)

where ey, is a normalized eigenvector for Ak, and it is also assumed that optimization starts from
wo = 0 so that Awy = wo — W, = —W,.

Importantly, the batch size | B| affects L; only through the denominator in the coefficient in U;. The
deterministic GD corresponds to the limit | B| — oo: in this limit U; = 0 and L; = %Vt+1-

Convergence/divergence regimes. Given expansion (7)), we can deduce various convergence
properties of the loss from the properties of the propagators V;, U;.

Theorem 1 (Yarotsky & Velikanov| (2024)). Let numbers Ly be given by expansion with some
Uy >0V, >0.LetUg =) o Upand Vs; = 372 V.

1. [Convergence] Suppose that Us, < 1. Att — oo, if V; = O(1) (respectively, V; = o(1)),
then also Ly = O(1) (respectively, Ly = o(1)).

2. [Divergence] If Us. > 1 and V; > 0 for at least one t, then sup,_, 5 Lt = 00

3. [Signal-dominated regime] Suppose that there exist constants &y, Cyy > 0 such that V; =

Cyt=¢ (14 o(1)) as t — oo. Suppose also that Us, < 1 and U; = O(t¢V) with some
& > max(&y, 1). Then

Cy

L= 2(1—Us)

t=5V (1 + o(1)). ©)
4. [Noise-dominated regime] Suppose that there exist constants &, > &y > 1,Cy > 0 such
that Uy = Cyt=%v (1 + o(1)) and V; = O(t~%V) as t — oc. Let also that Us, < 1. Then

Li = ————2—t7%(1 +o(1)). (10)

Spectral power laws. The detailed convergence results in items 3, 4 of Theorem [l require us
to know the asymptotics of the propagators U, V;. To this end we introduce power-law spectral
assumptions on the eigenvalues and eigencomponents of w, in our optimization problem:

e = Ak (14 0(1)), (11)

> k(e w.)? =QA(1+0(1), k- o, (12)
kil <A

with some constants A, () > 0 and exponents v > 0, > 0. Such power laws are common in kernel
methods or overparameterized models, and can be derived theoretically or observed empirically
(Atanasov et al.,2021; Bordelon & Pehlevan, [2021}Basri et al., 2020; |Velikanov & Yarotsky, 202 1)).
Conditions (1)), (I2) (or their weaker, inequality forms) are usually referred to as the capacity and
source conditions, respectively (Caponnetto & De Vito,|2007). The exponent ( is akin to an inverse
effective condition number: lower ( means that the target and the solution have a heavier spectral tail
of eigencomponents with small A\, making the problem harder. The exponent v is akin to an inverse
effective dimensionality of the problem: lower v means a larger number of eigenvectors above a
given spectral parameter A. Only the source condition matters for the non-stochastic GD rates,
but in SGD the capacity condition (TT]) also becomes important due to the sampling noise.

If 0 < ¢ < 1, then the source condition (I2) is inconsistent with w, having a finite H-norm, i.e.,
strictly speaking, w, is not an element of H. Such a solution is called unfeasible. In fact, unfeasible
scenarios are quite common both theoretically and in practice (see Section [f)). The Corner SGD to
be proposed in Sect10nw111 be especially suitable for unfeasible scenarios. Note also that if v <
then U; = oo and so L; = oo, i.e. the loss immediately diverges.



Li = O(t™%), Oax = min(2, v, ﬁ)
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Figure 1: Left: The phase diagram of stationary finite-memory SGD from |Velikanov et al.| (2023);
Yarotsky & Velikanov| (12024I). Right: Maximum acceleration factor 0, = min(2, v, =) for

P+
Corner SGD 1n the signal-dominated regime (see Theorem H)

Stability and asymptotics of the propagators. Let us say that a square matrix A is strictly stable
if all its eigenvalues are less than 1 in absolute value. It is natural to require the matrices Sy to be
strictly stable for all A € spec(H), since otherwise Uy, V;, and hence L, will not generally even
converge to 0 as t — oo. At A = 0 the matrix S)— has eigenvalue 1 and additionally eigenvalues
of the matrix D; accordingly, we will assume that D is strictly stable.

Theorem 2. Suppose that D and Sy, are strictly stable for all A € spec(H). Recalling the charac-
teristic polynomial x(x, ) = det(z — Sx) = P(z) — AQ(z), define the effective learning rate

o = —Q(1) /£ (1), (13)

and assume that cege > 0. Then, under spectral assumptions (I1), (I2) with v > %, the propagators
Vi, Uy given by Eq. (8) obey, as t — oo,
Ve = (1+0(1)QL(¢ + 1) (20ent) ¢, (14)
(eg A)YY1T(2 — 1/v)
|Blv

Ui = (1+0(1)) (2t)Y/v =2, (15)

Combined with Theorem 1] this result yields the (¢, 1/v)-phase diagram shown in Figure[]left. In
particular, the region ¥ > 1,0 < ¢ < 2 — 1/v represents the signal-dominated phase in which
the noise effects are relatively weak and the loss convergence L; o< t~¢ has the same exponent (
as plain deterministic GD. This holds for all stationary finite- 1/ algorithms and so such algorithms
cannot accelerate the exponent. In the present paper we will focus on the signal-dominated phase
and propose an “infinite-memory”” generalization of SGD that does accelerate the exponent.

3 THE CONTOUR VIEW OF GENERALIZED (S)GD

We consider the propagator expansion (7)) as a basis for our arguments. Observe that we can write
the expression (1 o7 )S%(~>) appearing in the definition of propagator U; in Eq. (§) as

(107)SL( @) = o

" 2mi

f G5 (16)

where |p| = r is a contour in the complex plane encircling all the eigenvalues of S. Next, simple
calculation (see Section [A) shows that

. Qw) 1 1
T _ S 1 @) — = = y 17
R < 7 el R M 777 e S
where P(x) — AQ(z) is the characteristic polynomial of S) introduced in Eq. (3)), and
P(p)
V() = ——. 18
=75 ) (18)
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Figure 2: Left: The map ¥ = g for a memory-1 algorithm with P(u) = (1 — 1)(pn — 0.7) and

Q(p) = 1.1 — 2p. The contour v = U({p : |u] = 1}) encircles spec(H). The map ¥ bijectively
maps {¢t € C : |u| > 1} to the exterior open domain D, with boundary ~. Right: Contour ~
corresponding to a corner map ¥ with angle 67.

We see, in particular, that the values U; depend on the algorithm parameters only through the func-
tion ¥. The same observation can also be made regarding the values V;. Indeed, V;’s are different
from U,’s in that they involve the expression (1 07 )S% () instead of (1 07 )S%(~2). The contour
representation for (1 07 )S%(§) is similar to Eq. (T6), and then a simple calculation gives

W (p)
(O(n) =N (p—1)

Recall from Eqgs. (@),(3) that P can be any monic polynomial (i.e., with leading coefficient 1) of
degree M + 1 such that P(1) = 0, while @ can be any polynomials of degree not greater than
M. Since, by Eq. the loss trajectory L; is completely determined by the propagators Uy, V;, we
see that designing a stationary SGD with memory is essentially equivalent to designing a rational
function W subject to these simple conditions.

(107)(n—S\""(§) = (19)

Let us consider the map ¥ from the stability perspective. Recall that we expect S, to be strictly
stable for all the eigenvalues A\, € spec(H). In terms of ¥ = g this means that W(u) # A for all

w € Csuch that || > 1. Additionally, if D is strictly stable, then Sy has only one simple eigenvalue
of unit absolute value, ;1 = 1, and so ¥(u) # 0 for |u| = 1, u # 1. Let us introduce the curve ~ as
the image of the unit circle under the map W. Then the last condition means that the curve v goes
through the point 0 only once, at x = 1.

In general, the curve ~ can have a complicated shape with self-intersections, and the map ¥ may
not be injective. In particular, the singularity of U at 1 = oo is oc M +1-9¢8(Q) 50 in a vicinity of
= oo the function W is injective if and only if deg(Q)) = M. However, we may expect natural,
non-degenerate algorithms to correspond to simple non-intersecting curves 7. This is confirmed by
considering simple memory-1 algorithms (Fig. [2]left).

Given a non-intersecting (Jordan) contour -, denote by D, the respective exterior open domain.
Then, by Riemann mapping theorem, there exists a bijective holomorphic map ¥., : {y € C: || >
1} — D,. Additionally, by Carathéodory’s theore this map extends continuously to the boundary,
U, :{peC:|ul =1} — 7. Such maps ¥, are non-unique and rather form a three-parameter
family ., o f, where f is a conformal automorphism of {¢s € C : |u| > 1}. However, recall that
our maps ¥ = g had the properties ¥(0co) = oo and ¥(1) = 0. The requirements ¥, (co0) = oo
and ¥, (1) = 0 uniquely fix the conformal isomorphism and hence V.

This suggests the following reformulation of the design problem for stationary SGD with memory.
Rather than starting with the algorithm in the matrix or sequential forms (T)), (@), we can start with a
contour -y or the associated Riemann map ¥, and ensure a fast decay of the respective propagators
Ui, V; and hence, by Theorem the loss L;. Of course, the resulting map V., will not be rational in
general, but we can hope to subsequently approximate it with a rational function g and in this way
approximately reconstruct the algorithm. We will see that this plan indeed works well.

! Carathéodory’s theorem considers bounded domains, but our domains {y € C : |u| > 1} and D, are
conformally isomorphic to bounded ones by simple transformations z = 1/(u — po).



Thus, given a map ¥ we introduce the values U(t,A), V(¢,\) that generalize the expressions
(107)S5(~>) and appear in the generalized definition (§) of the propagators Uy, V;:

o0

U= 57 2 ZA UM V= (efwa V(M) 0)
k=1
1 wldp 1 [T e®ldx
U(t,A):—,% 7:—/ - Q1)
21 Jjy=1 W(p) = A 21 W(eim) — A
1 tflqj d 1 ™ imtq/ T d
V(t,A)z—.j{ () :7/ el (e da 22)
270 Jjp=r () = M) =1) - 21 )5 (B(e) = A)(e” — 1)
The functions \I,(l}% s and )‘I'(/\)(M 7y are holomorphic in {l| > 1} and vanish as p — oo,
so the Fourier coefficients U (¢, A), V (¢, A) vanish for all negative t = —1,—2, ... In particular, by
Parseval’s identity, the ¢ series in the total noise coefficient Us; collapses to the squared L? norm:
71 - 2 " d¢
Uy = —— AL 5. 23
=i 2 L e @

4 CORNER ALGORITHMS

To motivate the algorithms introduced in this section, observe from Theorems E], Q]that in the signal-
dominated regime of stationary memory-M SGD, asymptotically accelerating convergence is essen-
tially equivalent to increasing «..g while keeping the total noise coefficient Uy, < 1. Since ¥(1) = 0,
e can be reformulated in terms of ¥ as

Q1) A -1
Qeff = — ?Tp(l) = —(@(10 ) (24)

Thus, increasing aeg means making — d'i’( ) a possibly smaller positive number. Regarding Us,,

note that it is inversely proportional to the batch size |B|, so if the series in Eq. (23)) converges, we
can always ensure Us; < 1 by making | B| large enough.

It is then natural to try ¥ = W, with a contour « having a corner at 0 with a particular angle.
Denote the angle by 7 when measured in the external domain D,, (Figure Inght) Such contours
correspond to maps W : {|u| > 1} — D, such that

U(p) = —cu(p—1)°(1+0(1), n—1, (25)

with the standard branch of (1 — 1)? and some constant cg > 0. We will refer to such W as corner
maps and to the respective generalized SGD as corner algorithms. Formally,

dv +o00, 0<1
= —=1) ~ cf -1 6—1 - )
du (1 ) ~ cf(p ) |u 1+ { 0, 0>1

so we are interested in 6 > 1. At the same time, we cannot take # > 2, since this would violate the
stability condition U{|u| > 1} N spec(H) = @&. Thus, the relevant range of values for 6 is [1, 2].
Within this range, increasing 6 should have a positive a,g-related effect but a negative Us;-related
effect, since the contour v = W(|u| = 1) is getting closer to the spectral segment [0, Apax], thus
amplifying the singularity |¥(e!?) — \|~2 in Eq. (23). Our main technical result is

(26)

Theorem 3 (B| . Let ¥ be a holomorphic function in {yn € C : |u| > 1} commuting with complex
conjugation and obeying power law condition (23) with some 1 < 0 < 2. Assume that \Il extends
continuously to a C* function on the closed domain |p| > 1, ¥(p) — oo as 1 — oo, and - \I'( )=

O(lp —1|°71Y) as p — 1. Assume also that W ({p € C : |u| = 1,0 # 1}) N[0, Apax] = @ where
Amax = A1 is the largest eigenvalue of H. Let power-law spectral assumptions (T1),(12) hold with
some v > 1,0 < { < 2. Then propagators @20) obey the following t — oo asymptotics.

1. (Noise propagators) U; = Cyyt?/=2(1 + o(1)), with the coefficient

0 Tz
_ 1 a1/ 2 2 —0/v 1 / e"*dz
Cu=+=A F5(r)dr F, _—
v |B| /oor o(r) <o, Fulr)= 27 Jig cg2® + 1



2. (Signal propagators) V; = Cyt=% (1 + o(1)), with the coefficient

& 1 cp2?lem?dz
- F2(r)drf F = 7/ _—
Cy Q/O v (r)dr’s < oo, v(r) o )y et 11

We see that the leading ¢ — oo asymptotics of the propagators are completely determined by the
A N\ 0 spectral asymptotics of the problem and the  — 1 singularity of the map . The functions
Fy, Fy can be written in terms of the Mittag-Leffler functions Ey g, F/g (see Section .

Availability of the coefficients C'y, Cy ensures that the leading asymptotics of Uy, V; are strict power
laws with specific exponents 2—6 /v and ¢, respectively. Increasing § indeed improves convergence
of the signal propagators, but degrades convergence of the noise propagators.

The largest acceleration of the loss exponent ( possibly achievable with corner algorithms is by a
factor 6 arbitrarily close to 2, but in general it will be lower since, by Theorem |1} the exponent of
L, is the lower of the exponents of U; and V;; accordingly, the optimal 6 is obtained by balancing
the two exponents, i.e. setting ¢ = 2 — 6/v. Also, we need the noise exponent 2 — §/v to be > 1,
since otherwise the total noise coefficient Us; = oo and L; diverges for any batch size | B| < oco.

Combining these considerations, we get the phase diagram of feasible accelerations (Figure [I]right).

Theorem 4. Consider a problem with power-law spectral conditions (I1),(12) in the signal-
dominated phase, i.e. v > 1,0 < ( < 2 — 1/v. Let O,ax denote the supremum of those 0 for
which there exists a corner algorithm and batch size B such that Ly = O(t~%). Then

f,ax = min (2, v, ﬁ) 27)

The phase diagram thus has three regions:

I. Fully accelerated: 0,,,,x = 2, achieved forv >2,0<({ <1—1/w.
1. Signal/noise balanced: Oax = 77, < 2, max(1/v,1—1/v) < ( < 2—1/v. The
condition 1/v < ( ensures that Uy, is finite and less than 1 for | B| large enough.

III. Limited by Us-finiteness: . = v < 2,1 < v < 2,0 < ¢ < 1/v. The signal exponent
OmaxC is less than the noise exponent 2 — 6y,,.x /v, but increasing 6 makes Uy, diverge.

5 FINITE-MEMORY APPROXIMATIONS OF CORNER ALGORITHMS

Though corner maps W are irrational, they can be efficiently approximated by rational functions. It
was originally famously discovered by Newman|(1964) that the function |z| can by approximated by
order-M rational functions with error O(efcm). This result was later refined in various ways. In
particular, |Gopal & Trefethen| (2019)) establish a rational approximation with a similar error bound
for general power functions z — 2” on complex domains. For 6 € (0, 1), this is done by writing

g sin(fm) /°° 2dt sin(07) /OO zefmi/2 45 s 28)
Z = = .
o Jo Y042 O oo €T/2H8/0 4 5

and then approximating the last integral by the trapezoidal rule with uniform spacing h = m+/260/M.

In our setting, we start by explicitly defining a f-corner map. This can be done in many ways; we
find it convenient to set

1 2—0 — _ oo —(2—0)s ~1, _

dé 1 1 e ds 1

W) = —A(/ R (O 2)/ -) £ (29)
0o h—1+0 I 0o pm—1l+es Iz

with a scaling parameter A > 0.

Proposition 1 (C). Forany 1 < 0 < 2, Eq. (29) defines a holomorphic map ¥ : C\ [0,1] — C
such that

—0)rw 30)
e (=1 (L4 (1)), p— 1,

where 2° denotes the standard branch in C \ (—o0, 0]. Also, ¥({|u| > 1}) N (0,24] = @.

() = { —Ap(1+o(1)), = 00,



Following [Gopal & Trefethen| (2019), we approximate the last integral in Eq. (Z9) as

. M
~ m— 1 _
/O ehds 0 3 ol(m = D). h= 31)

with some fixed constant /. Note that in contrast to (28), our integral and discretization are “one-
sided” (s > 0), reflecting the fact that the corner map W(u) is power law only at 1+ — 1, which is
related to the s — +o0 behavior of the integrand.

Let (M) denote the map W discretized with M nodes by scheme (31). Observe that (M) is a
rational function, U(M) = g, where deg P = M + 1 and deg@ < M (in particular, P(u) =

(u—DTIM_, (1 — 14 e~ (m=1/2h)) We can then associate to ) a memory-M algorithm

m=1
with particular o, b, ¢, D, for example as follows.

Proposition 2 @) Let h =1/vM and

D = diag(1 —e 2", ... 1— e (M=2)h), (32)
b=(1,...,1)7, (33)
c=(ct,....,ean)’, em=ATYH2 = O)he GO/ Dh(=(m=1/2)h _ 1) (34)

1 — e—(2-0)Mh

_ A1 _
a=A""(2 e)hl—e—@_e)h

o~ (2=O)h/2. (35)

Then the respective characteristic polynomial x (1) = P(u) — AQ () with g = pM),

Of course, as any stationary finite-memory algorithm, for very large ¢ the M-discretized corner
algorithm can only provide a O(¢~¢) convergence of the loss. But, thanks to the O(e~YM) rational

approximation bound, we expect that even with moderate M, for practically relevant finite ranges
of ¢ the convergence should be close to O(t~%¢) of the ideal corner algorithm.

6 EXPERIMENTS

The experiments in this section are performed with Corner SGD approximated as in Proposition 2]
with memory size M = 5 and spacing parameter [ = 5.

A synthetic indicator problem. Suppose that we are fitting the indicator function y(z) =
1j1/,,5/4 () on the segment [0, 1] using the shallow ReLU neural network in which only the out-
put layer weights w,, are trained:

N
~ 1 n
ylz,w) = ¥ an(:c - %)+, (x)4 = max(z,0). (36)
n=1
This is an exactly linear model that in the limit N — oo acquires the form

1
i) = / w(y)(@ — y)edy = xTw, 37)

where x, w are understood as vectors in L?([0, 1]), and x = (x — -) 1. We consider the loss L(w) =
Esnv(0,1)3(xTwW — y(2))?, where U(0, 1) is the uniform distribution on [0, 1].

This limiting integral problem obeys asymptotic spectral power laws (T1)),(12) with precisely com-
putable v,  (see Appendix |E):

(=1 v=4 (38)
The problem thus falls into the sub-phase I “full acceleration” of the signal dominated phase, and
we expect that it can be accelerated with corner algorithms up to 0,5 = 2.

In the experiment we set N = 5 - 10* and apply corner SGD with § = 1.8, see Figure [3] We
observe good agreement of both the theoretical exponent ( = 0.25 of plain SGD and the accelerated
exponent 8¢ = 1.8 - 0.25 = 0.45 of corner SGD with the experimentally estimated values.
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Figure 3: Training loss and final predictions of the linear model (36) trained to fit the target y(z) =
111,574 () using either plain or corner SGD with batch size |B| = 100. The loss trajectories
oscillate strongly, so their smoothed versions are also shown and used to estimate the exponents ( in

power laws L; o t—¢. The corner SGD has § = 1.8, which is close to observed acceleration %.

MNIST. We consider MNIST digit classification performed by a single-hidden-layer ReLU neural

network:
2828

H
gxxwp=§§§:@g(§:wgmmxj r=0,...9. (39)
n=1 =

Here, the input vector x = (mm)?f:xfg represents a MNIST image, and the outputs y, represent

the 10 classes. We use the one-hot encoding for the targets y(x) and the quadratic pointwise loss
{(x,w) = 3|y(x, w)—y(x)| for training. The trainable weights include both first- and second-layer
weights w,(Ll,,ZL, w,@b) .

Note that the model is nonlinear, but for large width H and standard independent weight ini-
tialization it belongs to the approximately linear NTK regime (Jacot et al., [2018)). In |Velikanov &
Yarotsky| (2021) MNIST was found to have an approximate power-law spectrum with

(~025 v=~13, (40)

putting this problem in the sub-phase III “limited by Ux-finiteness” of the signal-dominated phase
(see Figure[T). Theoretically, by Theorem[d] the largest feasible acceleration in this case is Oyax = V.
Note, however, that this theoretical prediction relied on the infinite-dimensionality of the problem
and the divergence of the series > i, t%/¥~2. The actual MNIST problem is finite-dimensional, so
its Us, is always finite (though possibly large) and can be made < 1 if | B| is large enough. This
suggests that corner SGD might practically be used with § > v and possibly display acceleration
beyond th2e theoretical bound 6., = v. Note also that with exponents [@0) the signal/noise balance

bound =+ = 2, i.e. it is not an obstacle for increasing the parameter 6 towards 2.
C+1/v

In FigureE]we test corner SGD with 6 = 1.3 or 1.8 on batch sizes | B| = 1000 and 100. The § = 1.3
version shows a stable performance accelerating the plain SGD exponent ( by a factor ~ 1.5. The
f = 1.8 version shows lower losses, but does not significantly improve acceleration factor 1.5 at
| B| = 1000 and is unstable at | B| = 100. We remark that on the test set the loss and prediction error
of Corner SGD also decrease faster compared to plain SGD (see Appendix [F).

7 ADDITIONAL NOTES AND DISCUSSION

Extension to SE approximation with 7, # 0. The key assumption in our derivation and analysis
of the contour representation and corner algorithms was the Spectrally Expressible approximation
with 75 = 0 for the SGD moment evolution (see Eq. (6)). While the SE approximation in general
was justified from several points of view in|Velikanov et al.| (2023); Yarotsky & Velikanov| (2024),
a natural question is how important is the condition 75 = 0. This condition substantially simplifies
the representation of propagators Uy, V; in Egs. (§)), but does not seem to correspond to any specific

10
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Figure 4: Training loss of neural network (39) on MNIST classification with H = 1000, with batch
size | B| = 1000 (left) or 100 (right). The full color curves show the smoothed losses.

natural data distribution p. (In contrast, the cases 3 = 72 = 1 and ; = 1, 79 = —1 exactly describe
translation-invariant and Gaussian distributions; see |Velikanov et al.|(2023).)

In fact, our analysis of the corner propagators U,, V; can be extended from 75 = 0 to general 7 by a
perturbation theory around 72 = 0. In Appendix |G| we sketch an argument suggesting that, at least
for sufficiently large batch sizes |B|, Theorem mains valid for general 7, even with the same
coefficients Cy, Cy (i.e., the contribution from 75 # 0 produces only subleading terms in Uy, V}).
This implies, in particular, that the acceleration phase diagram in Theorem [ and Figure [T] (right) is
not only 71 -, but also T»-independent.

Computational complexity. The main overhead of finitely-approximated corner algorithms com-
pared to plain SGD lies in the memory requirements: if the model has W weights (i.e., dimw; = W
in Eq. (1)), then a memory-M algorithm needs to additionally store MW scalars in the auxiliary
vectors u;. On the other hand, the number of elementary operations (arithmetic operations and
evaluations of standard elementary functions) in a single iteration of a finitely-approximated corner
algorithm need not be much larger than for plain SGD.

Indeed, an iteration (T)) of a memory-M algorithm consists in computing the gradient VL(w;) and
performing a linear transformation. In SGD with batch size | B|, the estimated gradient VL g, (w;)
is computed by backpropagation using o< | B|WW operations. If Corner SGD is finitely-approximated
using a diagonal matrix D as in Proposition 2] then the number of operations in the linear trans-
formation is O(MW). Accordingly, if | B| > M (which should typically be the case in practice),
then the computational cost of the linear transformation is negligible compared to the batch gradient
estimation, and so the computational overhead of Corner SGD is negligible compared to plain SGD.

Practical and theoretical acceleration. Our MNIST experiment in Section [6]shows that finitely-
approximated Corner SGD developed in Section [5] can practically accelerate learning even on real-
istic problems that are not exactly linear. We note, however, that, in contrast to the ideal infinite-
memory Corner SGD of Section [] this finitely-approximated Corner SGD does not theoretically
accelerate the convergence exponent ( as ¢ — c0. (As shown in |Yarotsky & Velikanov| (2024)),
this is generally impossible for stationary algorithms with finite linear memory.) Nevertheless, we
expect that such an acceleration can be achieved with a suitable non-stationary approximation. In
Yarotsky & Velikanov|(2024), an acceleration with a factor § up to 2 — 1 /v was heuristically derived
for a suitable non-stationary memory-1 SGD algorithm.

We remark also that if the model includes nonlinearities, then even the plain SGD in the signal-
dominated regime may show a complex picture of convergence rates depending on the strength
of the feature learning effects. In particular, [Bordelon et al.| (2024) consider a particular model
where the “rich training” regime is argued to accelerate the “lazy training” exponent ( by the factor
ﬁ. This is different from our factor 6,,,x = min (27 v, ﬁ) due to a different acceleration

mechanism.
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A DERIVATIONS OF SECTION[3]

We have
P(p) = det(u — So)
= det(p — S+ A(7)(107))
= det(p — Sx)det (L+A("&)(107)(n—Sxn)"")
(P(1) = AQ(m) (L +A(1 07 ) (1 = S3) 71 (7).

=

It follows that

- 1y L P(p)
Qp)
P(p) = AQ(n)

Next, by Sherman-Morrison formula and the above identity,
(h=5)" = (=S = A()(107))"}

=(u—So) '+ A

(1= 80) " (") (107 ) (= Sp)~*

1=A(107)(p—So)~H(°&)

(1= 80) " (") (107 ) (= Sp)~*

=(u—"So) '+ A
Q)
1 AP(/L)
Using (107 )(p— So) *(3) = ﬁ, it follows that
N =
o101y — 1) i
(10T)(M S/\) (0)_#1_1_‘_/\1_)\%
P(p)
()
Qw)

B PROOF OF THEOREM 3]

B.1 THE NOISE PROPAGATORS

The function Fy;.  Recall that by Eq.

Ut ) = —— pldp 1T etvdg
U 2mn Jlyo W) — A 2w ) (e?) — A

With the change of variables ¢ = s\'/?,

Ut,\) =

_)\1/9—1 7"/>\1/6 eit)\l/esds
2 /_ﬂ./)\l/e 7\11(62'5)‘1/6)/)\4* 1 N

where we have denoted

1A e'rsds
F A) = — .
U(T, ) 2r /7‘,/)\1/6 —\If(eiSAl/e)/A +1

= AV E A0 ),

(41)
(42)
(43)
(44)

(45)

(40)

(47)

(48)

(49)

(50)

(D

(52)

(53)

(54)

Recall that we assume W(y) = —cg(p — 1)?(1 4+ o(1)) as p — 1. By formally taking the limit

A\ 0 in the integral, we then expect Fy;(r, \) to converge to

def aef 1 [ e ds
FU(T,O) = FU(T) = %/Oo C\yei(signs)eﬂ'/2|8|0+1
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for any fixed r. This integral can be equivalently written as

Fy(r) = 1 /ﬂ (56)

T oM Jip cg2? + 17

assuming the standard branch of z¥ holomorphic in C \ (—oc, 0].

The function Fy; can be viewed (up to a coefficient) as the inverse Fourier transform of the function
5+ (cye!ti8ns)07/21519 1 1)=1 Note that, thanks to the condition § > 1, the latter function is
Lebesgue-integrable, so Fy/(r) is well-defined and continuous for all 7 € R. The function Fy; can
also be written in terms of the special Mittag-Leffler function Fy ¢ (see its integral representation
(6.8) in|Haubold et al.| (2011)):

6—1 6

r r 1 to—betdt
Fy(r) = Ee,e( - *)7 Eap(2) —_—, (57)
Cy y

Cy T 2w e — 2z

where the integration path +y encircles the cut (—oo, 0] and the singularities of the denominator.

The following asymptotic properties of Fy; () can be derived from the general asymptotic expan-
sions of Mittag-Leffler functions (sections 1 and 6 in|Haubold et al.|(2011)), but we provide proofs
for completeness.

Lemma 1.

1. Fy(r)=0forr <O.

2. Fy(r)y=(1+ 0(1))&11?1(0)7‘9_1 as r ™\ 0.

3. Fy(r)=(1+ 0(1))—{(%)7’9_1 asr — +oo.
Proof. 1. Consider the function f(z) integrated in Eq. (36). For any r € R and 6 € (1,2),
the function f is holomorphic in any strip 7, = {0 < Rz < a},a > 0, and is bounded in 7,
as |f(2)] = O(]z|~%). It follows that the integration line iR can be deformed to iR + a without

changing the integral. If » < 0, then by letting @ — +o00 we can make the integral arbitrarily small.

2. By the change of variables rz = 2/,

Fy(r) = u(r)r’~!, (58)
where
1 e dz
= . 59
’U/(T) 27_[_7:0‘1} /i]R 2/6 + c\;lrg ( )

We can find lim,~ o u(r) as follows. Observe that the integration line {R can be deformed to the
line v,,a > 0, encircling the negative semi-axis:

Ya = Ya,1 YYa,2UYa,3, (60)
Va1 ={z € C: 3z = —a, RNz <0}, (61)
Ya2 ={2€C:|z| =0a,-F <argz < )}, (62)
Va3 = {2 € C:Qz =a,Rz <0}. (63)

Indeed, if r is sufficiently small, then this deformation occurs within the holomorphy domain of the
integrated function. The integral is preserved since § > 0 and since we deform in the half-plane

where the argument of e has Rz’ < 0.

Thus, for any fixed a > 0 we have

) ) 1 e dz' 1 e dz 1 e dz
lim u(r) = lim — —— = 5 = — , (64)
N0 ™0 2micy [, 2% +cg'r?  2micy ), 2 2micy (0 — 1) J,, 2971
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where in the last step we integrated by parts. In the last integral, thanks to the weakness of the
singularity 2’1 =% at 2/ = 0 (note that 1 — 6 > —1), we can let a — 0:

2 g1 400
/ 62/06521 _ / e=5510(¢=mi(1=0) _ gmi(1=6)) g 65)
. 0
= 2isin(m(0 — 1))['(2 — 0) (66)
271
“Te-1) (67)

where in the last step we used the identity I'(2)I'(1 — 2) = (77 This is essentially Hankel’s
representation of the Gamma function, valid for all # € C by analytic continuation. Summarizing,

1 1
cg(0—1T(O—1) - col(0) (68)

li =
lim u(r)
3. We start by performing integration by parts in Fys :

-1 1 0 722071
Fulr) = — / eid _ o / e (69)
iR 1R

2mir cpz? +1  2mir cypz? +1)

Performing again the change of variables 7z = 2/, we have

Fy(r)=v(r)r 1, (70)
where .
_cyf e 20 1dy
0= 55 s o

To compute lim,_,, v(r), we again transform the integration line. Let v’ be a line that lies in the
domain C \ (—o0,0) and can be represented as the graph of a function Rz = f(Sz) such that

fly) = eilyl — co (72)
with some constant ¢; > 0 and c¢g.

Note that the integrated function has two singular points z' € C \ (—oo, 0] where the denominator
cy(2'/r)? +1 = 0. These two points depend linearly on 7. Require additionally that 7' lie to the
right of these points for all » > 0, so that iR can be deformed to v’ without meeting the singularities.
This requirement is feasible with a small enough ¢; > 0 since, by the condition § < 2, the imaginary
parts of the singular points are negative.

With these assumptions, integration in Eq. (71) can be changed to integration over 4'. Thanks to
condition (72)), the integrand converges exponentially fast at 2/ — oo, and we can take the limit
r— 400 :
. cy e
lim o(r) = —— / e* 27 1ay. (73)
,Y/

r—-+oo 27

The contour ' can now be transformed to a contour encircling the negative semi-axis, and applying
Eq. (67) we get

) cyb —cy
1 = = . 74
Jm o) = 539 = T e 79
O
The formal leading term in Ut We have
U, = |B| ZA U (t, \i) 2 = 5 ZA2/9FU(tA1/9 An). (75)
To extract the leading term in this expression, we set the second argument in FU(t)\,i/ 0, k) to O:
U SN RN = a2, (76)
Bk [B]
where ) 0 o )
ar = 270N TNORRAN") = 703 (/)2 RE (). (77)
k k
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Lemma 2.

0 [eS)
0
tlim a; = Al/”/ r2F2(r)dr=0v = Al/”f/ =V E2 (1) dr < oo, (78)

oo VJo

Proof. Note first that the integral on the right is convergent. Indeed, by statement 2 of Lemma [T}
=0V F2(r) oc pt=0/v+2(0-1) — 0Q2=1/)=1 pear = (. Since we assume v > 1 and # > 1, the
function 71~/ F2(r) is bounded near = 0. Also, by statement 3 of Lemma[l] 71~/ F2(r) o
p1=0/v=20041) — O(r=3) as r — +oo.
For any interval I in R, denote by Sy the part of the expansion (77) of a; corresponding to the
. 1/6 .
terms with £\, € I :
_4—0/v 1/6N2 22 111 1/0
Sri=t > NP FEN). (79)
kit er
Recall that the eigenvalues A are ordered and A\, = Ak~ (1 + o(1)) by capacity condition (LI). It
follows that for a given fixed number > 0, the condition t/\llc/ o > r holds whenever k < k,., where

ke = (14 o)AV (t/r)", t = . (80)
Then, for I = [u,v] with 0 < u < v < co we have
s > ALV 2 12 —0/v _ —0/v
llggolf Sre > A 71r€1§[r F&(m))(u v ), (81)
limsup Sy ; < AYY sup[r2 F2(r)](u™%" —v~9/7), (82)
t—o0 rel

Moreover, for any interval I = [u,v] with 0 < u < v < co we can approximate [, T (r)dr=07v
by integral sums corresponding to sub-divisions [ = I; Ul U...U I,,, apply the above inequalities
to each I, and conclude that

lim Sy, = AY” / r2F2(r)dr=0/v. (83)
t—o00 I
It remains to handle the two parts of a; corresponding to the remaining intervals I = [0, u] and

I = [v,00). It suffices to show that the associated contributions S; ; can be made arbitrarily small
uniformly in ¢ by making v small and v large enough.

Consider first the interval I = [v, 00). Note that by Lemmal[T]for all > 1 we can write
r’Fi(r) < Or~2* (84)
with some constant C', and we also have for all k&
AE™Y <A < ALETY (85)
for suitable constants A_, A ;. It follows that
Spe <t > C(t(A_k™v)1/0)=20 (86)
kit(Apk—v)/ 0>y

Ai/'/(t/v)e/”

— t—Q/V—QGCA:2 Z k21/ (87)
k=1

— O(l)tfe/ll720(t/v)(e/v)(2V+1) (88)

= O(1)p~O/MCr+D) (89)

with O(1) denoting an expression bounded by a t, v-independent constant. This is the desired con-
vergence property of St .

Similarly, for the other interval I = [0, u] we use the inequality

rPFiry<cr? r<i, (90)
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also following by Lemma([I} Then

Sri < 10/ Z C(t(AJrkfu)l/G)Qe ©1)
kit(A_k—v)1/0<uy
_0/V+290Ai Z k—21/ (92)
k=AY (t/u)o/
— O(l)t—ﬂ/u+29(t/u)(e/u)(1—2y) (93)
_ O(I)U(O/V)@ufl), (94)
which is the desired convergence property of Sy since v > 1. [

Completion of proof. We have shown that if we replace Fys (t/\,lc/ 0 i) by Fy (t/\,lﬁ/ 0) in Eq. (73),
we get desired asymptotics of U, in the limit ¢ — +o00. We will show now that this replacement
introduces a lower-order correction o(t/¥~2); this will complete the proof.

We start with a technical lemma (to be applied with f = W) giving a lower bound for deviations of
asymptotic power law functions with 8 < 2 from real values.

Lemma 3. Suppose that f : {yn € C : |u| = 1} — C is continuous, f(u) = —c(u—1)%(1+0(1)) as

w — L withsome 6 € [0,2) and ¢ > 0. Suppose also that f({p € C: |u| = 1,1 # 1})N[0, Apax] =
& for some Ayax > 0. Then there exist a constant C' > 0 such that

I£(e™) = A > C(s]° + ), se€[-m7], A€ [0, \max]- (95)

Proof. If we fix any small € > 0, then, by the condition f({ix € C: |u| =1, # 1}) N[0, Amax] =
@ and a compactness argument, there exist C’, C' > 0 such that

1£(€*) = A > C" > C(s|” + ), s [—m, —eNe,n], A€ [0, Amax)- (96)

It remains to establish inequality (93)) for |s| < e. Since f(u) = c(p — 1)?(1+0(1)) and 6 € [0,2),

F(e%) = Al = 802591 4 o(1)) + N o)

= [e?1En 0T/ 5|0 (1 4 0(1)) + Ae P siEn()0m /) (98)

> R SEE0T/40) 5|7 (1 £ o(1)) 4+ e S (0T/4) 99)

= cos(f7/4)(c|s|?(1 + o(1)) + \) (100)

> 2 min(c, 1) cos(0m/4)(|s|? + ) (101)

for |s| small enough. O

Lemma 4.
1. |Fy(r,\) — Fy(r)| = o(1) as A — 0, uniformly in all v € R.

2. Fy(r,\) = O(%) for all v of the form r = tA\Y? t = 1,2,..., uniformly in all X €
(Ov)\max]~

Proof. 1. It suffices to show that, as A ™\, 0, the functions

fa(s) = —(2m) (=T (e ) A + D)7 L a1/0 5 a1/0)(5) (102)

converge in L' (R) to

fols) = —(2m) ey e’ B2 |5 1), (103)

Let us divide the interval [—7/A'/? 7 /AY/?] into two subsets:
Li(A) = [=A7" A7, (104)
L) = [=n/ A0, 7 AN L), (105)
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where h is some fixed number such that gz < h < .

By Lemma |\Il(ei5)‘1/9)/)\ — 1| > ¢|s]’ uniformly for all s € [—7/AY? 7/X\/%] and \ €
(0, Amax]- It follows that

inf (YA =11 =A™, X € (0, Amax, (106)
sels

for some constant ¢ > 0. Using the condition 6% < h, it follows that
/ |£a(s)|ds = OA"YON) = 0(1), A\, 0. (107)
I2(N)

Thus, we can assume without loss that the functions f) vanish outside the intervals I; (A). On these
intervals, thanks to the condition i < %, we have

Fals) = =(2m) " (cge T T2 50 (1 4 o(1)) + 1) (108)

uniformly in s € I;(A\). We can then apply the dominated convergence theorem to the functions
|fx — fol, with a dominating function C(1 + |s|?)~!, and conclude that fy — fo in L'(R), as
desired.

2. We start by performing integration by parts in U (¢, A):

t ! t
U(t,\) 17{ du 1% Vi (p)dp (109)
w ©

T2t Jiymy O() — A 2mit Jmy ($() — A)?
implying
1 [T |W(e*)|ds
Ut < %/ |\|IJ((3"S))|)\2' (110)

We will show that this integral is O(3).

Note first that we can replace the integration on [—, 7| by integration on [—a,a] for any 0 <
a < . Indeed, by our assumptions W is C'* on the unit circle, and ¥(u) = 1 there only if u = 1.
Accordingly, the remaining part of the integral is non-singular as A ~\, 0 and so is uniformly bounded
forall A € (0, Apax]-

Recall that by our assumption ¥/ () = O(|p — 1|°71) as u — 1. Applying again Lemma

C [ s lds o
Ui, )| < — — = — 111
ven<t [ S G (1)

with some constant C’ independent of ¢, \. It follows that
!
1/6 _|\1-1/6

[Fu (N7 0)] = WTVPU ()] < g (112)
as claimed. O

We return now to proving that replacing FU(t)\Ilc/ o Ak) by FU(t)\Ilv/ 0) in Eq. amounts to a
lower-order correction o(t?/¥~2). It suffices to prove that Aa; — 0, where

Aay =270 STNUER N ) - FREN)) (113)
k
= 7SN ER N ) — FR(EN)). (114)
k

For any interval I C R, denote by AS;; the part of Aa; corresponding to the terms in (I14) such
that t)\llc/a € I. By statement 1 of Lemma@ for any v > 0 we have, as t — oo,

|AS(0,0).4] = o(1)t270¥ Z A (115)
k:t)\i/9<u

= 0(1)132—9/”0((75/”)(9/V)(1—2v/9)) (116)

= o(1), (117)

19



where we have used the fact that 2v/6 > v > 1.

Now consider the remaining interval I = [u, 4-00). It suffices to prove that |AS[, 1) | can be
made arbitrarily small uniformly in ¢ by choosing u large enough. By statement 2 of Lemma[d] we
can write

[ASju oo < O3 W) (118)
kitay O >u
Ai/u(t/u)s/u
<ctv N (119)
k=1
< Clu0v (120)

with some ¢, u-independent constant C”. This completes the proof of statement 1 of Theorem

B.2 THE SIGNAL PROPAGATORS

The proof for the signal propagators follows the same ideas as for the noise propagators, with ap-
propriate adjustments.

The function Fy,. Recall

1 U(pp'tdp 1T W(e?)edg
VN =5 fiml @) - NE-1)  2n / @) - Nee -1 2

With the change of variables ¢ = sA'/?,

AT (g
2 —m/AL/8 (—\II(eisAI/G)/)\ + 1)(€i8)‘1/6 — 1)

V(t,\) = = Fy (A%, ), (122)

where .
2\1/6 7 /AY (7\11(61.5)‘1/9)//\)6”8(18
210 J_yarse (=W (BN N4 1) (elN — 1)
We again recall that W(p) = —cg(p—1)%(1+0(1)) as u — 1 and formally take the pointwise limit
A\ 0 in the integrand to obtain the expression
def qof 1 0o C\Pei(sign s)97r/2|s|96irsd8
Fy(r,0) = F = —
V(r ) V(T) /oo (C\Pez(mgns)07r/2|s|9 + 1)8
1 0o cqlei(signs)(é)—l)ﬂ'/Q|S|9—1ei1’sd8

= % . (C\Pei(signs)eﬂ'/2|s|9 + ]_)

Fv(T’, /\) =

(123)

(124)

2mi

(125)

for any fixed r. This integral can be equivalently written as

1 cp2?lem?dz
F = — _— 126
v(r) i /iR o 11 (126)

assuming again the standard branch of z? holomorphic in C \ (—occ,0]. The function Fy can be
written in terms of the Mittag-Leffler function £y = Ejy ; (the special case of F,; given by Eq.

G7):

0

Fy(r) = Eg( _ ZTD> (127)

Note that, in contrast to Fy;, the integrals (125), are not absolutely summable, due to the
2~ fall off of the integrand at z — oco. However, the integrand is square-summable and so FYy/,
as a Fourier transform of such function, is well-defined almost everywhere as a square-integrable
function.

In fact, Fyy can be defined for each particular » # 0 by restricting the integration in (123) to segments

[u, v] and letting u — —oo and v — oo. Indeed, the resulting Fourier transforms F‘(/u’v) converge
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to Fy in L? (R). However, these transforms are continuous functions of r, and as © — 0o, v — 00
they converge pointwise, and even uniformly on the sets {r : |r| > €}, for any fixed € > 0.

To see this last property of uniform pointwise convergence, note that the integrand in (I23)) has the
form (s7! 4+ O(s717%))e’™® as s — co. The component O(s~1~%)) is in L', so the respective part
of F‘(/"’U) converges as u — —o00,v — oo uniformly for all » € R. Regarding the s~! component,
integrating by parts gives
v eirsds eirs
/1 s irs

This expression converges as v — oo uniformly for {r : |r| > €} with any fixed € > 0, as claimed.

v 1 [V eimsds
- —

(128)

s=1 irJ; s

The same argument applies to fu_l.

The above argument shows, in particular, that Fy is naturally defined as a function continuous on
the intervals (0, +00) and (—o0,0).

We collect further properties of Fy(r) in the following lemma that parallels Lemmal[l|for Fy;. The
proofs are also similar to the proofs in Lemmall]

Lemma 5.

1. Fy(r)=0forr <0.

2. Fy(r) = lasr N\, 0.

3 Fy(r)=(Q0+ 0(1))71“(?30)7"70 asr — +oo.
Proof. 1. Like in Lemma [I] this follows by deforming the integration line in Eq. (I26) towards
“+00.

2. By the change of variables 7z = 2/,
1 Zleflez’dzl
F = — _. 129
V(T) 27_[_2 /Z]R Zla + 0;17“6 ( )

As in LemmalT] the integration line /R can be deformed to the line y,, a > 0, encircling the negative
semi-axis:

Ya = Ya,1 UYa,2 UYa,3, (130)
Va1 = {2z € C: 3z = —a, Rz <0}, (131)
Yoo ={2€C:|z| =a,-F <argz < §)}, (132)
Vo1 ={2€C:3z=a,Rz <0}. (133)

Taking the limit 7 \, 0, we get

1 160—1 z'd / 1 z/d /
lim Fy (r) = lim—./ %z—/ coE g, (134)
N0 ™0 21 )y, 20 e r? 2mi ), 2

since the last integral simply amounts to the residue of e* /2’ at 2’ = 0.

3. Using the same contour 7' as in Lemrna

1 ey le¥ dy'
F — -0 - | == - 135
v(r) =v(r)r, o) 2mi /7/ cy(2'/r)? +1 (35
Taking the limit r — +oco and deforming the contour to the negative semi-axis as in Lemma[T]
. Cy 10—1 2" 5.1 Cy
1 = — dz' = ——. 136
r_}gloov(r) 2m[y/z e* dz T —0) (136)

O
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The formal leading term in V;. 'We have

Ve = > (el wo[VEN)P =Y Ar(ef w.)2F2 (e, ). (137)
k=1 k

To extract the leading term in this expression, we set the second argument in Fy, (tAi/ 0, Ak) to O:

VO EN " (el w2 FR(0]7) = bt 7%, (138)
k
where
be =73 A(ef wa)2F2 (). (139)
k

The analog of Lemma[2)is
Lemma 6.

tlim by = Q/ F2(r)dr’ = QQ(/ P TLE2 (1) dr < oo. (140)

Proof. First, observe that, by the source condition (I2) and Lemma[5] the integral converges near
r = 0 since 8¢ > 0, and near r = oo since { < 2.

We can establish convergence of the sequence b; using the same steps as in Lemma 2} We first
introduce the sums Sy, comprising the terms of expansion (139) such that t)\llc/ Y € I. For intervals
I = [u,v] with 0 < u < v < oo we show, using the source condition (12)) and approximation by

integral sums, that
Jim Sy, = tef/Fé(r)dQ((r/t)")C = Q/F{‘}(r)drec. (141)
— 00 I I

After that we show that the contribution of the remaining intervals (v, +00) and (0, u) can be made
arbitrarily small uniformly in ¢ by adjusting u, v.

In particular, consider the interval I = (v,+00). Let R(A) = 7.\ <\ A(efw.)? denote the
cumulative distribution function of the spectral measure. Since the spectral measure is compactly
supported, assumption (I2) implies that R(\) < Q'A¢ for all A > 0 with some @’ > 0. Using
statement 3 of Lemma 5| and integration by parts, we can bound

Storoore <t 37 Alefw)20(tr/)) 7 (142)
k:t/\i/9>v
_ ogf(e-2) /°° dR()\) (143)
wme A
_oy(R(A) | < R(A\)dA
== 2/ 144
( A2 (v/t)? + (v/t)? A3 ) ( )
<20Q't"¢2 / AS73dA (145)
(v/t)?
< Cole=2)0 (146)
with some constant C’ independent of v, .
For the intervals I = (0, u) we have
St % D Melefw.)’C (147)
k:tki/9<u
< Ot Q((u/t)") (148)
= C"u’%. (149)
O
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Completion of proof. It remains to show that the correction in V; due to the replacement of
Fu(tAY? A) by Fy(tA?) in Bq. (I37) is o(t=%C). We first establish an analog of Lemma

Lemma 7. Assuming that r = t\Y? witht =1,2,.. .
1. |Fy(r,X\) — Fy(r)] = o(1) as A — 0, uniformly for r > ¢, for any ¢ > 0.
2. |Fy(r, )| < C’min(%,l) forallt = 1,2,... and A € (0, A\max], With some r, \-

independent constant C.

Proof. 1. The proof of this property is more complicated than the earlier proof for Fy; because
the integrals defining Fy, are not absolutely convergent. Recall the integration by parts argument

(T128)) used to define Fy (r) as the pointwise limit of the functions F‘(/"’v) (r). We extend this ap-

proach to the functions Fy (r, A) with A > 0. Specifically, let F‘(/")(r, A) be defined as Fy (r, \) in
Eq. (123), but with integration restricted to the segment [—u, u]. By analogy with our convention

Fy(r) = Fy(r, A = 0), denote also F‘(,“) (r) = F‘(/u)(r, A = 0). We will establish the following two
properties:

(a) |F‘(/") (r,A) = Fy(r,\)] < % forall 0 < A < Amax With a 7, u, A-independent constant C'.

(b) For any u, |F‘(/u) (r,\) — F‘(/”)(r)| — 0 as A N\, 0 uniformly for r € R.

Observe first that these two properties imply the claimed uniform convergence |Fy (7, \) — Fy (r)| =
o(1) as A — 0. Indeed, given any ¢ > 0, first set u = % so that by (a) we have

IFS (r, \) — Fy(r, M) < 6/3 (150)
forall 7 > e and 0 < A < Apax. This inequality also holds in the limit A N\ 0, i.e.
[FM (r) = Fy(r)] < 6/3. (151)
Now (b) implies that for sufficiently small A we have
[F (r,0) = ()] < 6/3 (152)
uniformly in » € R. Combining all three above inequalities, we see that for sufficiently small A
|Fy(r,A) = Fy(r)| <6 (153)

uniformly for r > ¢, as desired.

It remains to prove the statements (a) and (b). Statement (b) immediately follows from the uniform
A N\ 0 convergence of the integrand in expression (I23) on the interval s € [—u, u].

To prove statement (a), we perform integration by parts, using the %—periodicity of the integrand:

N
IFM (r,\) = Fy (r,\)] (154)
AV (W) /N)eirsds
= or /[Af%wﬁa]\[uvu] (W(etN7) /X — 1)(eisM7 — 1) ‘ (155)
_ A1/ (\I/(ei”\l/s)/)\)e"s u s
2mr [ (W) A = 1) (N = Dlo=u Jim 2 )

i)\l/a[(_\l//(eis)\l/g)/)\)(eis/\l/e —1) - (\I,(eisAl/e)/)\)(\I/(eis)\l/g)/A _ 1)ei5)\1/8]6ir8d8
(T(esA77) /A — 1)2(eisA 77 — 1)2 :
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By our assumptions on ¥, Lemma[3|and standard inequalities, there exist \, s-independent constants
C,c > 0 such that for all A € (0, Amax] and s € [~ 577, 5179

()Y < Cls|?A, (157)
|\I//(eis>‘1/9)| < 09|s|9_1)\(9_1)/9, (158)
1T ) /A — 1] > (1 + |s]), (159)
e’ — 1] > ¢|s|AV/°. (160)

Applying these inequalities to Eq. (T56)), we find that

u c’ u? |s|%ds
IFM (r, M) — Fy(r, V)] < —(m n /{m}ﬂw\[u’u] W) (161)
< %7 (162)
as desired.
2. Note that
|Fv(r,A)] <€, C<oo, (163)

simply by setting v = 0 in the bound (T61), since the first term on the r.h.s. of vanishes and
the second converges thanks to 6§ > 1.

It remains to prove that Fy/(r, \) is bounded uniformly in 7, \. It suffices to prove this for r < e with
some fixed ¢ > 0, since for larger r this follows from bound (T63). Since r = tA!/? this means it is
sufficient to consider

A< (e/t)°. (164)

To this end consider the original definition (T2I)) of V' (¢, \) in terms of integration over the contour
{|us] = 1}. We will deform this contour within the analiticity domain {x € C : |u| > 1} to another
contour v, to be specified below, that fully encircles the point y = 1:

1 ut=td
V0 =5 f T (102
It is convenient to subtract the residue of y*~!/(y — 1) equal to 1:
Va1 ph f H L e S [
T (W) —N—1) 2 ) mi Jy (W) =N (p—1)
(166)
We define now + as the original contour perturbed to include an arc of radius 1/t centered at 1:
¥ =" U2, (167)
1 = {e}pi<ozrn—g1, (168)
Yo = {1+ G} pa<ocon (169)

where ¢1 € (0,%), ¢2 € (3, ) are such that y is connected. Note that ¢ o 1 as t — oc.

Now we bound separately the contribution to the integral from ; and 5. For v; and —7 < ¢ < 7
we use the inequalities

(W(e) = Al > clol’, (170)
e — 1| > c|¢| (171)
with a ¢, A-independent constant ¢ > 0. This gives, using Eq. (T64),

t 1du é1 CA
Z < 11y 40 < 1" 9
A‘L 5 )\C‘/ / Itb\@“ SO SCN sCrd )
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For the 75 component we use the inequalities
1+l <e, (173)
WA+ =M=t —g <6< . (174)

(Inequality (I74) relies on the assumption # < 2 and can be proved similarly to Lemma [3]) This
gives

t—ld ™ t_ld

/\‘/ LS| < )\C‘/ L <o <one (175)
Y2 (\II(M) - >\)(ILL - 1) -7 t -t

Fixing some ¢ > 0, we see from Egs. (172), (I735) that under assumption the expressions

[V (t, A) — 1|, and hence |V (¢, A)|, are uniformly bounded, as desired.

This completes the proof of the lemma. O

This lemma can now be used to show that replacing Fv(t/\,lc/g, k) by Fv(t)\,lc/e) in Eq. (137)
amounts to a lower-order correction o(t~%) in the propagator V;. The argument is similar to the

respective argument for Fy; in the end of Section [B.I] Statement 1 of Lemma [7]is used to show
this for the contribution of the terms k with u < t)\llﬁ/ o < wv,forany 0 < v < v < +00. Then,

for terms with t)\,lc/e < u we use the uniform boundedness of Fy (r, A), i.e. the part Fy/ (r,\) < C
of statement 2, and show that their contribution can be made arbitrarily small by decreasing w.

Finally, for terms with t)\,lc/ o > v we use the part Fy/(r, \) < % of statement 2, and show that their
contribution can be made arbitrarily small by increasing v.

This completes the proof of Theorem 3]

C PROOF OF PROPOSITIONI]

To simplify notation, set A = 1; results for general A’s are easily obtained by rescaling.

Note first that for any o € C\ [0, 1] the integral in Eq. converges and is nonzero. To see that
it is nonzero, note that if p has a nonzero imaginary part, then the integral has a nonzero imaginary
part of the opposite sign, hence is nonzero. On the other hand, if 4 > 1 or p < 0, then the integral
is strictly positive or negative, so also nonzero. It follows that the expression in parentheses is
invertible and so W () is well-defined for all € C\ [0, 1].

The asymptotics ¥(u) = —p(1 + o(1)) at 4 — oo is obvious.
To find the asymptotics at 4 — 1, make the substitution z = §/(p — 1) in the integral:

1 2—-0 /(p=1) 4,2-0

dd _ dz

A EIUEE T R (176)
0 0

As i — 1 the last integral converges to a standard integral:

/1/(“1) dz2—? /°° dz2—? (2-0)r
- - . (177)
0 142 o 14z sin((2-0)m)

The integration line in the last integral is any line connecting 0 to oo in C \ (—o0, 0); the integral
does not depend on the line thanks to the condition § > 1.

We prove now that U({|u| > 1}) N (0,2] = @. Let us first show that if || > 1 and Sy # 0, then
U(u) ¢ (0,+00). To this end write

W(u) = ab, (178)
1 2—60 — 1 2—0 _
A ) 1__/ ds !
([N ([
12
b= (“#1) = J(n) - 2. (180)
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where J (1) = pu+ o is Zhukovsky’s function.

Suppose, for definiteness, that S > 0. Regarding a, note that if Sy > 0, then the imaginary part
of the integrand in Eq. (179) is also positive, and so Sa > 0.

Regarding b, recall that if Sp > 0 and |p| > 1, then SJ(p) > 0. On the other hand, if |u| = 1,
then J(u) € [—2,2]. Combining these observations, we see that if S > 0 and |u| > 1, then either
b > 0, 0rb < 0. Since Sa > 0, it follows that ab ¢ (0, +00).

We see that W(u) can be real and positive only if p € R. Clearly, ¥(u) > 0if p < —1, and
U(p) < 0if p > 1. Tt is easily checked by differentiation that ¥(u) is monotone decreasing for
1 € (—o0, —1], so the smallest positive value attained by ¥ is
1 5526
dé

\I/(—1):2(/0 2_5)_1>2. (181)

D PROOF OF PROPOSITION 2]

In terms of , b, ¢, D, the components P, Q of the characteristic polynomial det(— S)) = P(u) —
AQ(p) can be written as

P(p) = (pu — 1) det(p — D), (182)
a b7 T -1
Q(p) = —det c u—D =det(u — D)(b" (u— D) "c—a). (183)
(see Theorem 1 in|Yarotsky & Velikanov|(2024)). Accordingly,
_ 1 _
(“P(LC)?(“) =b"(u— D)lc - a. (184)
If D = diag(dy,...,d), then
M
(r—1)Q(n) bmcm
- = —a. 185
P ady (18
On the other hand, our deﬁnition of (M) implies that
(p-1A —(2=0)(m—1/2)h
M 7(270)(m71/2)h(1 _ 7(m71/2)h) M
e e
=(0-2h| > — + Y e @Om=Dh] - (187)
|:m=1 ,LL71+6 ( 1/2) = :|
oo M 67(270)(m71/2)h(ef(mfl/Z)h ~1) 1 _ e—(2-0)Mh o2
=(2-10) {2—31 [ — 1+ e (m=1/2)h 1 —e—(2-0)h ¢ }
(188)

By comparing this expansion with Eq. (I83]), we see that the values of a, b, c, D given in Egs.

[B2)-(33) ensure that P/Q = ¥M),

E THE SYNTHETIC 1D EXAMPLE

Recall that in Section [] we consider the synthetic 1D example in which we fit the target function
y(x) = 143/ (x) on the segment [0, 1] with a model that in the infinite-size limit has the integral
form

1
5(z) = / wy)(@ — y)1dy = x"w, (189)
0

where x, w are understood as vectors in L?([0, 1]), and x = (x — -) 1. We consider the loss L(w) =
EZ(x"w — y(z))?, where p is the uniform distribution on [0, 1].

The asymptotic power-law structure of this problem can be derived either from general theory of
singular operators and target functions, or from the specific eigendecomposition available in this

simple 1D setting.
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The eigenvalues. First observe that the operator H = Ex,[xx” ] in our case is the integral oper-
ator

1
/ K(z,y)f(y)dy, K(x,y) :/0 (x — 2)+(y — 2)4+dz. (190)

The operator has eigenvalues (see, e.g., Section A.6 of |Yarotsky| (2018)) Ax = 5,;4, where

& = 5+7Tk+0( e™), k=0,1,... (191)

Numerically, g ~ 1.875 so the leading eigenvalue \y =~ 0.0809.
In particular, the capacity condition holds with v = 4.

In fact, such a power-law asymptotics is a general property of integral operators with diagonal sin-
gularities of a particular order (Birman & Solomjak, [1970). It is easily checked that the diagonal
singularity of operator is of order o = 3. In dimension d the exponent v has the general form
v=1+ %, which evaluates to 4 in our case d = 1.

The eigencoefficients. To establish the source condition (I2), we can invoke the general theory
that says that for targets that are indicator function of smooth domains we have ( = d}ra = 4
(Velikanov & Yarotsky} [2021). Alternatively, we can directly find ¢ thanks to the simple structure

of the problem.

A short (though not quite rigorous) argument is to observe that the exact minimizer w, making the
loss L(w) = 0 formally has the distributional form

wi(z) =0"(x —1/4) — 6'(x — 3/4) (192)

with Dirac delta 6 (). This vector w, has an infinite L?([0, 1]) norm, in agreement with our expec-
tation that ¢ = Z < 1. The eigenfunctions of the problem can be explicitly found (Section A.6 of
Yarotsky| (2018)):

en(z) = cosh(€xz) + cos(Epz) — ‘;’iigz; I;ﬁf’((g:)) (sinh(€xz) + sin(Exz)). (193)
Then, formally,
_ dey(x) dey(z)
efw* dr le=3/4 C dx z=1/4 o< & (194)

It follows that at small A, denoting k. (A) = min{k : A\ < A},

S odklefwa)?oc Y G Y (124 k) P ok (A) o AT (195)
E:dp <A k<k.(\) E<k.(\)
implying again ( = 3

A rigorous proof, avoiding Dirac deltas can be given along the following lines. First note that in the
settmg of loss function L(w x~p (X1 W —y(x))? the vector q appearing in quadratic form (2))
acquires the form q = Ex~p x2)x which in our example gives

3/4
q(ﬂ?):/ (y — x)4dy. (196)
1/4

We get from the condition Hw, = q that

T
el'w, = — k9, (197
Ak
The eigenfunctions can be written as
er(x) = cos(&pa) — sin(€px) + e~ 4 (—1)ke 5 U0 L O(e8k), (198)
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Figure 5: MNIST loss and error rate trajectories on train and test set: batch size 1000.

where the last O(e~%*) is uniform in 2 € [0, 1]. Performing integration by parts twice with vanishing
boundary terms, we find that

T
€L q

! 3/4
— / (cos(gkx) —sin(&px) + eEkT 4 (_1)ke—gk(1_3¢)) /
0 1/4
! 3/4
s 1/ ((sin(g) + cos(gr) — e~ 4 (—1)hem e 070)) / /1
0 1
3/4
— £k—2 / (7 COS(sz) —+ Sln(gkl’))dfﬂ + 0(67&“/4)
1/4
=¢&3(— sin(m(% + k)x) — cos(m(3 + k)x))‘j;i +O(e=8/4)
x &2,

leading to e} w,. o< &% /A, = &, in agreement with Eq. (T94).

F GENERALIZATION PERFORMANCE OF CORNER SGD

(y — x)1dydz + O(e™%)

1,>.dydz + O(e™5F)
(199)

(200)

(201)

In Figures [5] and [§] we show both train and test trajectories of the loss and error rate (fraction of
incorrectly classified images) for the MNIST classifier discussed in section [f] The two figures
correspond to the batch sizes | B| = 1000 and 100, respectively. The test performance is computed
on the standard set of 10000 images, while the training performance is computed on a subset of the
full training set that also includes 10000 images.
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Figure 6: MNIST loss and error rate trajectories on train and test set: batch size 100.

We observe that, similarly to the training set performance, the test performance also improves faster
with Corner SGD than with plain SGD. The instability of Corner SGD with § = 1.8 and batch size
100 observed in Section[l on the train set is also visible on the test set.

G EXTENDING THE PROOF OF THEOREM @TO Ty 7§ 0

In this section we sketch (without much rigor) an argument suggesting that Theorem 3|remains valid
under assumption of SE approximation with 7 # 0 at least if the batch size | B| is large enough.

Recall that the assumption 72 = 0 was used to write the propagators Uy, V; in the simple form
(8). These representations led to the representations (ZI)-(22) of Uy, V; in terms of the contour
map W that were instrumental in proving Theorem [3] While we are not aware of a similar contour
representation at 7, # 0, we can expand the general 7, # 0 propagators in terms of the spectral
components of the 7o = 0 propagators, and in this way reduce the study of the general case to the
already analyzed special case.

Specifically, let us introduce the notation
Go(t, ) = U*(t, ) = |(107) Sy ()" (202)
Then formula (8] for the propagator U, can be written as
— 1
1Bl
In the proof of Theorem [3it was shown that (see Egs. (33), (33))
Go(t,\) = U?(t,\) = N2/O2E2(tAY/9), (204)

U > AGo(t, M) (203)
k=1
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Upon substituting tA'/? = r and applying the capacity condition (TT), this gave the leading term in
Utl

Uy ~ |B‘ ZA2/9FU(15/\1/“’) (205)
- _|B| Z (N2 FE (0] 12 (206)
~ :|;1| 2FU( )d/\l/"(t/r)‘)/”}f2 (207)
= :|%|A1/” /: r2F5(r)dr—9/"}t9/"—2. (208)

Now, if the SE approximation holds with 75 # 0, then the propagator formulas (§)) are no longer
valid. Instead (see|Yarotsky & Velikanov| (2024)), the propagators can be written with the help of
the linear transition operators Ay acting on (M + 1) x (M + 1) matrices Z:

ANZ = 5\Z 5 — \B|)‘2(_a)((1))TZ((1))(_ca)T' (209)

In particular, Egs. (202)), (203) get replaced by

U, = |B|Z)\2 (t, M), (210)

G(t,A) = Te[(§)(§) AL ()T @11)

Note that Eq. (202) is a special case of Eq. (ZT1)) resulting at 7o = 0 thanks to the simple factorized
structure of the transformation A with vanishing second term.

Let us now write the binomial expansion of G(¢, \) by choosing one of the two terms on the r.h.s.
of Eq. (209) in each of the ¢ — 1 iterates of Ay in Eq. (ZTI). The key observation here is that each
term in this binomial expansion can be written as a product of the 7o = 0 factors GGy with a suitable
coefficient:

G(t,\) = Go(t, \) S (TN
olt: N+ 3 (= IB| ) 212)
m=1

X Z Go(t—tm,)\)Go(tm—tmfl,A)"'Go(tg —tl,)\)Go(tl,A). (213)

0<t1<...<ty <t
Here, 0 < t; < ... < t,,, < t are the iterations at which the second term in Eq. (209) was chosen.

We can now apply again approximation (204) for Gy in terms of Fy;, and approximate summation
by integration:

G(t,/\) A2/0 2|:F2( Al/G + Z ( TZAl/G

where (F2)*(m+1) is the (m + 1)-fold self-convolution of F2:
(F2)*m+D(y) / / F2(r—rm)FE(rm—rm_1) - F&(r1)dry - drp,. (215)
0<r; <. ..t <71
The factor \'/? in 214} results from the respective factor A% in Eq. (212), the factor \*/?~2 in Eq.

([204), and the integration element scaling factor A\~'/¢ due to the substitution r,, = t,, \'/%.

The leading term in expansion (214) corresponds to the case 7o = 0. Consider the next term, m = 1.
The respective contribution to Uy is

1 T1T2 - 3/6 % 1/0
vt = —@ZA/ (F2)*2(tA7). (216)
k=1
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This expression can be analyzed similarly to the leading term in Eq. (203)), giving

(1)N T2 \1/v 2\ %2 —0/v|40/v—3
UL [|B|2A /Oo 3(F2)*2(r)dr }t . 17)

t9/u—3 te/V—Q

Note the faster decay compared to in the leading term. This difference results from
the different exponent 3/6 on ). It also leads to the factor r3 rather than r? in the integral.

The coefficient in brackets in Eq. (217) is finite unless the integral diverges. To see the convergence,
write

0 oo
0
R e AR T 218)
o) 0
and use the inequality r2=%/* < (2(r —r))27%/ 4 (2r1)2~9/¥ valid since 2 — 0 /v > 0:
/ r? =0 (FG) 2 (r)dr (219)
0

< [ [ e Cn R = ) FE ) dndr 220)
<r;<r<oco

- 23*9/”</00 r2*"/"F5(r)dr) (/OO Fg(r)dr> < 0, 221)
0 0

69—

since Fy(r) oc r~%~1as 7 — oo by Lemmal[l]

Next terms in expansion (2I4) can be analyzed similarly, but we encounter the difficulty
that, due to the associated factor A™/? in Eq. (2I4), they will contain the integrals
ffo r2tm(F2)<(mH1) (r)dr=9/" that diverge for sufficiently large m. For this reason, it is conve-
nient to upper bound

A0 < \(m—1)/631/6, (222)
Then the contribution Ut(m) to Uy from the term m can be upper bounded by
A [
|Ut(m)‘ 5 [7’1|7—2||B|m+1 Al/u/ Td(FIQJ)*(m+1)(T)dT70/V} t@/uf?). (223)

Using the inequality 72=%/% < ((m +1)(r —r))>= " + ... 4 ((m + 1)r1)>~%/7, the integral can
be bounded as

0 oo oo m
/ r3(FE)*mHD () dr=f/v < g(m +1)3-9/v (/ 1"270/”F5(r)dr) (/ Fg(r)dr> < 0.
= g ’ ’ (224)

Summarizing, the contribution of all the terms in U; other than the leading term Ut(o) can be upper
bounded by

U — U] < 0t/ =3, (225)

with the constant

noAl / 2-0 |72‘m)\1('nn;x1)/0 _ * m
C = ( /IIF ) 1 3—0/v (/ F2 d )
v 0 U Z |B|m+1 ( + ) 0 U(T) r
(226)
If
B> e [ R (227)
0

then series (226) converges, and so |U; — U9 = o(Ut(O))7 as claimed.

The case of the propagators V; can be treated similarly. Starting from 7o = 0, denote

Ho(t,A) = V2(t,A) = [(107) S5 (§)P, (228)
then by Eqs. (122), (124) Ho(t, \) ~ F2(tA\'/?) and
ZAk elw,)2Hy(t, \) Z/\k el'w.)2F2 (A7), (229)
k=1
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The counterpart of H for general 75 is

H(t,A) = Tr((§)(6)" A5 (6)(8)"]] (230)
Expansion (212)) gets replaced by

2
T2 ) 231)

t—1
H(t ) = Holt, ) + Y (= B
m=1

X Z Go(t —tm,/\)Go(tm —tm_l,)\) -"Go(tg —tl,/\)HQ(tl,)\) (232)

0<t1 <<t <t
and expansion (214)) gets replaced by
A/0
H(t,\) ~ F2(tAV0) 4 Z (TQT') ((F2)™ x F2)(tA/9). (233)

The factor \™/? can again be used to extract an extra negative power of ¢ in the asymptotic bounds.
To avoid divergence of the integrals, we can use a bound

A0 < N e/ xe/0 (234)

with some sufficiently small e > 0. Arguing as before, we then find that for | B| large enough the
contribution of all the terms m > 1is O(t~%~¢), i.e. asymptotically negligible compared to the
leading term oc t~%¢
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