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ABSTRACT

We investigated the human capacity to acquire multiple visuomotor mappings for
de novo skills. Using a grid navigation paradigm, we tested whether contextual
cues implemented as different ’grid worlds”, allow participants to learn two dis-
tinct key-mappings more efficiently. Our results indicate that when contextual
information is provided, task performance is significantly better. The same held
true for meta-reinforcement learning agents that differed in whether or not they
receive contextual information when performing the task. We evaluated their ac-
curacy in predicting human performance in the task and analyzed their internal
representations. The results indicate that contextual cues allow the formation of
separate representations in space and time when using different visuomotor map-
pings, whereas the absence of them favors sharing one representation. While both
strategies can allow learning of multiple visuomotor mappings, we showed con-
textual cues provide a computational advantage in terms of how many mappings
can be learned.

1 INTRODUCTION

There has been considerable interest in determining how contextual cues allow the consolidation and
retrieval of multiple visuomotor memories (Howard et al.| 2013; |[Heald et al., [2018};|2023a). While
it has been shown that arbitrary external contextual-cues — such as colors, sounds or shapes — are
effective in separating the task contingencies in a variety of domains such as in classical conditioning
(Gershman, 2017), episodic memory (Pu et al.| 2022) and value-based decision making (Bornstein
& Norman, 2017), the same cues cannot prevent catastrophic interference in visuomotor adaptation
tasks (Howard et al., 2013)) unless they are presented in close temporal proximity (Avraham et al.,
2022).

In contrast with these laboratory-based findings, we appear capable of storing multiple mappings
when using a variety of digital devices despite having similar movements (e.g., video games use the
same controller to play a racing game and a first-person shooter). One interpretation of the above,
is that a great proportion of these mappings may not be the result of visuomotor adaptation but of
instead of de novo skill learning. When a skill is acquired de novo, new control policies are created,
rather than recalibrating existing ones (Krakauer et al.,2019).

In a typical de novo task, participants are required to learn arbitrary, and usually non-intuitive asso-
ciations between their movements and the outcomes to achieve the task goals (Wilterson & Taylor,
2021; Mosier et al., 2005} [Velazquez- Vargas & Taylor, 2023). Crucially, these tasks are known to in-
volve brain regions associated with declarative processes such as the hippocampus (Wise & Murray,
2000) and the prefrontal cortex (Fermin et al.l 2016), also crucial for context-dependent learning
(Heald et al.,|2023b). This important distinction could allow de novo skill learning to be sensitive to
contextual cues that are efficient in domains such as episodic memory, unlike visuomotor adaptation
tasks which are known to involve a significant cerebellar-dependent component (Taylor et al., [2010)

Meta-learning (Wang et al., [2018) can be a unifying computational framework that formalizes de
novo skill learning. In meta-learning, an agent (human or artificial) has to learn a distribution of
different but related tasks. For de novo skill learning, the different tasks can use the same motor
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repertoire but may map each motor movement to a different outcome. Within this framework, a
meta-learning agent can either learn a single abstract representation across all tasks that accom-
modates all motor mappings or learn separate representations for all the unique motor mappings
seen across tasks, where each representation can be bound to a particular external contextual cue
(Musslick & Cohenl [2021). Meta-learning models are becoming increasingly more relevant in cog-
nitive modeling of behavioral phenomenon due to their ability to implement Bayes-optimal learning
algorithms on tasks for which Bayesian inference is intractable(Binz et al.| 2023)).

In the present study, we designed a grid navigation task to dissociate these two hypotheses. One
group of participants (the context group) performed a grid navigation task (Fermin et al.| 2010;
2016; [Velazquez-Vargas et al.| [ 2023)) where they moved a cursor from start to target locations in two
“worlds” randomly interleaved over trials (Figure[I)). Each grid-world was associated with a unique
key-mapping and had distinctive contextual cues. We compared performance on this group with
another group of participants (no-context group) that experienced the trial-changes in key-mappings
but not in the external contextual cues —i.e., grid worlds.

To implement cognitive models for learning to navigate with different visuomotor mappings, we
trained two recurrent-based meta-learning agents using the architecture from Wang et al. [2018]
which is an LSTM agent trained with reinforcement learning using an Actor-Critic framework (Mnih
et al |2016). The first model (context LSTM) incorporated external contextual information into its
input while the second one did not (no-context LSTM). We tested their performance in the task
and how well they predicted human participants’ data. In addition, we examined how their internal
representations gave rise to different strategies to learn multiple key-mappings, giving us potential
insights and hypotheses for the neural representations of the participants.

We showed that humans and the meta-learners performed better in the task when provided with
contextual information. We also found that, in both conditions, there is individual variability as
to whether an individual acts more like the context LSTM or the no context LSTM. Additionally,
we found that when no contextual information is provided, the internal representations of the LSTM
agent are highly correlated in space and time while using the different key-mappings. However, these
representations are less correlated when the LSTM agent that has the external context input. This
suggests that the former is learning separate representations for different motor mappings whereas
the latter is binding different motor mapppings to the same representation. Finally, we showed that
the capacity to learn multiple key-mappings is dependent not only on the presence of contextual
cues, but also on the complexity (number of hidden LSTM units) of the internal representations of
the model. Our model-based neural analyses and human behavior results give us potential insight
on how the brain can effortlessly learn multiple visuomotor mappings.

2 METHODS

2.1 PARTICIPANTS

Thirty two participants from Princeton University (13 males and 19 females, mean age = 21.7, sd =
3.8) were recruited through the psychology subject pool. The study was approved by the Institutional
Review Board and all subjects provided informed consent prior to doing the experiment.

2.2 TASK

The experimental task was programmed using HTML/CSS/Javascript and hosted on Google Fire-
base. Visual stimuli were displayed on a 60 Hz Dell monitor using a Dell OptiPlex 7050’a machine
(Dell, Round Rock, Texas) running Windows 10 (Microsoft Co., Redmond, Washington). Partici-
pants’ responses were recorded using a standard desktop keyboard. Before the start of the experi-
ment, the instructions were displayed on the screen.

The goal of the task was to move a cursor from start to target locations in a 9 x 9 grid environment
using the least possible number of moves (Fermin et al., 2010;2016; |Velazquez- Vargas et al., 2023
Bera et al.,2021). To do so, participants used three keyboard keys (J, F and K) that moved the cursor
to arbitrary and unknown adjacent locations (key-mapping): left-up, left-down and right (Figure [I).
The task consisted of 360 trials where the start-target locations were randomly sampled out of eight
possible pairs. For each pair, the target was placed seven moves away from the starting location
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of the cursor. If participants arrived at the target using the minimum number of moves (optimal
arrival), they would observe a happy emoji face at the target location and hear a pleasant sound. If
they arrived at the target but not using the minimum number of moves (arrival), they would observe
a neutral face and hear a neutral sound. If they did not arrive at the target in less than 10 s, the trial
was terminated and participants would observe a sad face and hear an unpleasant sound.

Importantly for this study, participants performed the tasks using two key-mappings, which corre-
sponded to different arrangements of the same moving directions (see Figure [T), and which were
randomly interleaved across trials. Participants were not informed that there would be more than
one key-mapping to perform the task. In order to test the effectiveness of external contextual cues
in separating the learning of the visuomotor mappings, we split participants into two experimental
groups.
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Figure 1: Experimental task Subject perform a grid navigation using different key mappings ran-
domly interleaved over trials. In the context group, the key-mappings where deterministically sig-
nalled by a unique grid world, whereas in the no-context group, participants used both mappings in
the same world.

Context Group: In this group (n =16) participants performed the grid navigation task in two differ-
ent “worlds”, either in the ocean or in a farm. Each world consisted of unique visual (background,
cursor shape) and auditory (ambience song and cursor sound when moving) information. Most
importantly, each world was deterministically associated with one of the key-mappings.

No-context Group: Participants in this group (n=16) performed the grid navigation task in a single
world while still experiencing the changes in the key-mappings. At the beginning of the experiment,
one of the worlds would be selected and remained throughout the whole task.

2.3 MODELS

Following previous work on meta reinforcement learning (Wang et al., 2018; |Kumar et al., |2020),
we used a Long short-term memory (LSTM) network trained using Advantage Actor Critic (A2C;
Mnih et al.[2016| The recurrent structure of this agent, joint with a model-free learning mechanism,
makes it suitable for sequential tasks like ours, where trial-and-error, reward-based processes are
crucial to achieve the goals. The agents were implemented using Stable baselines 3 package (Raffin
et al., 2019) with the Proximal Policy Optimization algorithm (PPO). We set constraints of the
hyperparameters of PPO so that the algorithm becomes equivalent to A2C (Huang et al., [2022).
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We used Optuna (Akiba et al.,[2019) to tune the following hyperparameters: learning rate, discount
factor gamma, GAE lambda, number of steps, batch size, entropy coefficient, the value function
coefficient and the number of LSTM hidden units. After optimization, we trained the agents for
2 x 10° time steps, where they reached asymptotic performance. The reward structure was defined
as follows: every move that did not lead to a terminal state (arrival to the goal) received —1, except
when colliding with the grid walls, in which case the agent received a penalty of —100. If the agent
reached the goal, it received a reward of +10.

We trained two types of agents that differ chiefly in the input provided to the LSTM network. The
first one (context LSTM) received its current location and target locations on the grid as well as
a context vector indicating which of the worlds was currently being observed. This agent faced
the same situation as participants in the context group where the key-mapping changes were linked
to changes in the contextual cues. On the other hand, the second agent (no context LSTM) only
received its current location and the target location as input, mirroring the desing of the no-context

group.

3 RESULTS
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Figure 2: Performance of Humans and Meta-RL Agents (A). Mean performance of humans
over the episodes they completed, measured by proportion of optimal arrivals. Shading represents
95% confidence intervals. Humans that were given context cues learned the task better. (B). Overall
performance differences across different experimental groups in humans. Those in the context group
did significantly better. (C). Mean reward over time during agent learning for both context and no-
context agents. (D). Median reward after training. Agents that were given a external contextual cue
for the mapping as additional input did significantly better.

3.1 HUMAN AND MODEL BEHAVIOR

As a metric of human performance in the context and no-context groups, we provide the proportion
of times they arrive at the target optimally — i.e., using the minimum number of key presses— across
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trials and in the entire task. Based on the optimal arrivals to the target, we observed that participants
in both the context and no-context groups improved their performance over trials (Figure[2). How-
ever, the context group performed significantly better overall (p = 0.03). For the context LSTM and
no-context LSTM agents, we provide the average reward per episode at different evaluation points
across training, as well as at the end of training. The context LSTM and the no-context LSTM
agents showed the same pattern as participants, where both models improved over the timesteps but
the former performing overall better in the task (p < 0.05).

To identify the similarity between subjects’ behavior and the context LSTM and no-context LSTM
agents, we calculated the likelihood of subjects’ responses according to the fully trained agents.
That is, we performed a forward pass on the agents and obtained the likelihood that they would take
the same action as the human. The likelihood for each action was averaged across all timesteps for
each subject to produce one value indicating the average likelihood of a subject’s response under the
model. This analysis was done for both the context and the no-context LSTM agents.
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Figure 3: In both experimental groups, humans are split between behaving like the context vs
no context LSTM (A). Joint scatterplot and histograms for likelihood of subjects’ actions under the
context LSTM model vs. performance of subjects on the task. In both experimental groups (whether
participants received external context input or not), there are two clusters of participants — those
whose actions are explained well by the context LSTM model and those whose are not. (B). If we
examine the mean likelihood under both types of models (context vs no context LSTMs), we see that
participants whose actions aren’t as well explained by the context LSTM model have significantly
higher likelihood under the no context LSTM model.
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Figure[3A shows the average response likelihood for both experimental conditions under the context
LSTM agent, where two clear clusters were formed. In Cluster 1, the context-LSTM agent was
considerably better in predicting participants’ responses than in Cluster 2, where it performed around
chance level. Following this analysis, we found that participants that were poorly predicted by the
context LSTM (Cluster 2) agent were instead significantly better predicted by the no-context LSTM
(p < 0.05; Figure 3B). Likewise, for participants in Cluster 1, the context LSTM agent better
predicted participants’ responses compared to the no-context LSTM agent.

These results indicate that regardless of the experimental group, some participants where better
predicted by the context model, suggesting that even in the absence of contextual cues from the
experiment, participants could have relied on alternative cues to separate the representation under
the different key-mappings. A point we we will address in the Discussion section.

3.2 MODEL REPRESENTATIONAL SIMILARITY ANALYSIS

We employed multiple analyses (Figure[) to examine differences in representations between the cue
and no-cue agent. Specifically, we first investigated how each network represents the same trial and
environment under different motor contexts. To do this, we performed a Representational Similarity
Analysis (RSA; |Kriegeskorte et al.[2008 on both a spatial and temporal scale.

For the spatial RSA (Figure ), we evaluated the agents in 10* episodes and computed the average
hidden state (LSTM units) at each location in the 9 x 9 grid, separating the hidden states according
to the key-mapping being used. For every grid state, we obtained the correlation coefficient between
the averaged hidden states when using key-mapping A and the averaged hidden states when using
key-mapping B. Lower correlations would indicate that agents represent the grid space between
different action mappings more distinctively. In the context LSTM agent, the correlations were
low across most grid states, with many locations on the grid showing no correlation, suggesting
that spatial location is represented differently when using mapping A and mapping B. In contrast,
for the no-context LSTM agent, the RSA generally depicts grid states with correlations that are
significantly higher (p < 0.001), when the different key-mappings are being used compared to the
context LSTM agent. The difference between the two suggests that the context LSTM agent has a
distinct representation for grid states that depends on its current context, while the no-context LSTM
model does not.

The temporal RSA (Figure @B) provides complementary results showing that context is represented
differently between models not just in space, but also in time. Specifically, we explored the similarity
of hidden states of the agents as they progressed towards the target. To do so, we evaluated the
agents in 10* episodes and for every timestep we correlated the averaged hidden states when using
key-mapping A with the averaged hidden states when using key-mapping B. In the no context LSTM
agent, the representations on the initial timestep are highly correlated. As the agent steps towards the
goal, representations become slightly less correlated, but for the most part remain highly correlated
across the episode. In the context LSTM agent, however, representations under the different key-
mappings drastically change with each step in the episode. Representations begin similar on the
first time step (although less so compared to the no-context LSTM agent), but quickly drop to no
correlation at around the 6th step in the episode. This suggests that the agent representing context
increasingly leverages its context representation as it nears the goal state.

Taken together, these results show two different representational strategies, one where the agent
attempts to learn distinct representations for each context, and another where the agent learns the
task without an explicit representation of context.

3.3 MODEL REPRESENTATIONAL CAPACITY ANALYSIS

Given the capacity limitations in memory, computational resources and time, we would expect that
humans exhibit constraints in the number of visuomotor mappings they can learn. To explore this
idea, we investigated the agents’ capacity to learn multiple key-mappings by varying the complexity
of their internal structure, i.e. number of hidden units in the LSTM. In order to do so we exposed
both the context LSTM and no-context LSTM agents to up to ten different key-mappings and using
the following number of hidden units: 2,5, 10,20, 40, 80, 100, 120,256 or 512. Each agent was
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Figure 4: Context agents have lower representational similarity under the different key-
mappings over space and time (A). Spatial RSA analysis. We correlated LSTM hidden state
representations of the same episodes under the different key-mappings and showed the mean corre-
lation across different spatial locations in the 9 x 9 grid. For context agents, this correlation is much
lower, presumably because the representations of different key-mappings are more separated. (B).
Temporal RSA analysis. We show how the correlation changes over time by plotting, for each time-
point, the mean correlation of LSTM hidden state representations under the different key-mappings.
For context agents, this correlation goes down over time whereas for no-context agents, there is less
change overtime. This suggests context agents exhibit more dissimilar representational similarity
under different key-mappings overtime.

trained for 200k timesteps followed by 100 evaluation episodes from which we report the averaged
(normalized) reward.

Figure[5]displays performance of both models as the number of contexts and representational capac-
ity increases. Across both models, we see better performance with more representational capacity.
Between models, the model that explicitly receives contextual cues performs better as contexts in-
crease than does the model that does not receive a cue. This is perhaps due to the way in which
context is represented between both models. In the context model, each context is distinctly rep-
resented within the hidden layer, allowing for a unique task representation for each context. In
contrast, the no context model does not distinctly represent each context. This supports work show-
ing that unique task representations are necessary as the environment becomes more complex (i.e.
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Figure 5: For context agents, scaling the LSTM capacity enables learning more mappings For
both context and non-context agents, we varied the number of hidden units and exposed them to
different number of mappings during training. For context agents, increasing the number of LSTM
units allows for learning of more mappings until about 5. For no-context agents, varying the number
LSTM units does not have as strong an effect.

when the number of contexts increase) and adds that explicit cues aid in both the speed at which the
task is learned and how it is represented.

4 DISCUSSION

Humans posses a remarkable capacity to learn complex, and often arbitrary, visuomotor mappings.
For example, when learning to play video games humans are able link the button presses from the
controller with arbitrary actions in the game. What is more, not only are they capable of learning
such arbitrary mappings and use them to achieve goals, but they can build an entire repertoire of
them. It is not uncommon to witness players seamlessly transitioning between mappings for distinct
gaming genres, be it from a first-person shooter to a racing or football game.

In the current work, we have shown that the acquisition of distinct visuomotor associations can
be aided by external contextual cues. In particular, participants’ that are provided with contextual
information that deferentially cues the key-mappings, performed significantly better than partici-
pants without it. These results are supported by previous findings outside the motor domain where
external contextual cues allow subjects to discriminate between different contingencies of the task
(Gershman, 2017; Bornstein & Norman, 2017). Similar cues, however, do not prevent catastrophic
interference in visuomotor adaptation (Howard et al., |2013)), except under specific circumstances
(Avraham et al., 2022). We believe this effect arises due to the fundamental distinction between
adaptation and de novo learning, where the former recalibrates an existing control policy and the
second one builds one from scratch. This can generate qualitative differences between the contex-
tual cues the systems supporting each process are sensitive to. On the one hand, cerebellar dependent
recalibration processes could be more easily influenced by contexts related to the body states or the
world kinematics |[Howard et al.| (2013). However, de novo learning, particularly in the domain of
spatial navigation likely involving the hippocampus and the prefrontal cortex (Fermin et al., [2016)),
could be more sensitive to visuospatial contextual cues.

It is important to emphasize that while the context group outperformed the no-context group, the
latter still improved its performance over trials, arriving optimally a greater proportion of times to-
ward the end of the experiment (p < 0.05). This improvement occurred in the absence of external
contextual cues, which could aid in differentiating the key-mappings. We believe this result could
be attributed to participant relying on a different set of cues: movement-related ones. In particular,
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given the specific movement directions that we used for the key-mappings (left-up, left-down and
back), it is possible to arrive at the target locations with multiple and equivalently optimal trajec-
tories which begin with a different action. For example, for a target that is right above the cursor,
pressing the key that moves right, or left-up, would leave the cursor one move away from the tar-
get. Although this move makes no difference in terms of performance, it does provide information
about the ongoing mapping, given that no key moves to the cursor to the same direction. Therefore,
participants could have used the first move of the cursor to sample the ongoing key-mapping and
adapt the subsequent moves accordingly. In effect, this strategy would have provided participants
with contextual information similar to the context group and would have been able to learn the two
mappings separately. This is consistent with the fact that some participants in the no-context group
had a higher likelihood under the context LSTM than the no context LSTM (Figure ). Alterna-
tively, participants could have learned a single of the two key-mappings, or an averaged version of
them, which over time would have allowed them to improve in the task, although not to the same
extent as the context group. Participants relying on the latter strategies would be learning, in effect,
a single key-mapping. Further analysis would be needed to test these hypotheses.

In order to have a behavioral model for the presence or absence of contextual cues while acquiring
multiple mappings, while also providing insight into the neural representations, we leveraged re-
cent developments on meta-reinforcement learning (Wang et al.l [2018; |[Huang et al., 2022} Kumar
et al} [2020). Mirroring human performance, we found that an LSTM agent that explicitly receives
information about its context outperforms an LSTM agent that does not. Moreover, we found that
participants that were poorly described by the context LSTM, either in the context or no-context
groups, were instead best described by an LSTM model with no contextual information. Through
implementing these models, we were able to find that within both experimental groups, people vary
in either producing behavior consistent with a model learning separate vs shared representations
across different mappings (Fig. [3).

Based on the spatial and temporal RSA, we would expect to see differences within neural represen-
tations of participants relying on contextual information (either from the experiment or potentially
from their own actions) vs. individuals that don’t. However, due to the fact that the no context LSTM
explained some participants’ behavior better than the context LSTM (Figure[3), it is conceivable that
some participants held a single representation in the presence of contextual cues, while others held
different representations in the absence of them. This may beg the question — why would a par-
ticipant choose to hold a single representation even when given contextual cues? The fact that the
number of mappings learned scales with the capacity of the model (Figure [5) suggests that learning
these separate representations uses more cognitive resources. Subjects choosing to not learn sep-
arate representations may be behaving rationally according to their cognitive resources (Lieder &
Griffiths| 2020). From our capacity analysis of the networks in Figure[5] we predict that participants
who don’t learn separate representations may take longer to learn the same number of mappings than
participants who take advantage of the contextual cues to learn separate representations. Confirming
these predictions with brain imaging, and generally studying how participants share vs. separate
neural representations of visuomotor mappings to manage time and computational resources, will
be a rich line of future work.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631, 2019.

Guy Avraham, Jordan A Taylor, Assaf Breska, Richard B Ivry, and Samuel D McDougle. Contextual
effects in sensorimotor adaptation adhere to associative learning rules. Elife, 11:¢75801, 2022.

Krishn Bera, Anuj Shukla, and Raju S Bapi. Motor chunking in internally guided sequencing. Brain
Sciences, 11(3):292, 2021.

Marcel Binz, Ishita Dasgupta, Akshay K Jagadish, Matthew Botvinick, Jane X Wang, and Eric
Schulz. Meta-learned models of cognition. Behavioral and Brain Sciences, pp. 1-38, 2023.

Aaron M Bornstein and Kenneth A Norman. Reinstated episodic context guides sampling-based
decisions for reward. Nature neuroscience, 20(7):997-1003, 2017.



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Alan Fermin, Takehiko Yoshida, Makoto Ito, Junichiro Yoshimoto, and Kenji Doya. Evidence for
model-based action planning in a sequential finger movement task. Journal of motor behavior,
42(6):371-379, 2010.

Alan SR Fermin, Takehiko Yoshida, Junichiro Yoshimoto, Makoto Ito, Saori C Tanaka, and Kenji
Doya. Model-based action planning involves cortico-cerebellar and basal ganglia networks. Sci-
entific reports, 6(1):31378, 2016.

Samuel J Gershman. Context-dependent learning and causal structure. Psychonomic bulletin &
review, 24:557-565, 2017.

James B Heald, David W Franklin, and Daniel M Wolpert. Increasing muscle co-contraction speeds
up internal model acquisition during dynamic motor learning. Scientific reports, 8(1):16355,
2018.

James B Heald, Maté Lengyel, and Daniel M Wolpert. Contextual inference in learning and memory.
Trends in Cognitive Sciences, 2023a.

James B Heald, Daniel M Wolpert, and Maté Lengyel. The computational and neural bases of
context-dependent learning. Annual Review of Neuroscience, 46, 2023b.

Ian S Howard, Daniel M Wolpert, and David W Franklin. The effect of contextual cues on the
encoding of motor memories. Journal of neurophysiology, 109(10):2632-2644, 2013.

Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun Wang, Santiago Ontafién, and Rousslan
Fernand Julien Dossa. A2c is a special case of ppo. arXiv preprint arXiv:2205.09123, 2022.

John W Krakauer, Alkis M Hadjiosif, Jing Xu, Aaron L Wong, and Adrian M Haith. Motor learning.
Compr Physiol, 9(2):613-663, 2019.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience, pp. 4, 2008.

Sreejan Kumar, Ishita Dasgupta, Jonathan D Cohen, Nathaniel D Daw, and Thomas L Grif-
fiths. Meta-learning of structured task distributions in humans and machines. arXiv preprint
arXiv:2010.02317, 2020.

Falk Lieder and Thomas L Griffiths. Resource-rational analysis: Understanding human cognition as
the optimal use of limited computational resources. Behavioral and brain sciences, 43:el, 2020.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937. PMLR, 2016.

Kristine M Mosier, Robert A Scheidt, Santiago Acosta, and Ferdinando A Mussa-Ivaldi. Remapping
hand movements in a novel geometrical environment. Journal of neurophysiology, 94(6):4362—
4372, 2005.

Sebastian Musslick and Jonathan D Cohen. Rationalizing constraints on the capacity for cognitive
control. Trends in Cognitive Sciences, 25(9):757-775, 2021.

Yi Pu, Xiang-Zhen Kong, Charan Ranganath, and Lucia Melloni. Event boundaries shape temporal
organization of memory by resetting temporal context. Nature communications, 13(1):622, 2022.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dor-
mann. Stable baselines3, 2019.

Jordan A Taylor, Nola M Klemfuss, and Richard B Ivry. An explicit strategy prevails when the
cerebellum fails to compute movement errors. The Cerebellum, 9:580-586, 2010.

Carlos Alan Velazquez-Vargas and Jordan Taylor. Exploring human learning and planning inn grid
navigation with arbitrary mappings. In Proceedings of the Annual Meeting of the Cognitive Sci-
ence Society, volume 45, 2023.

10



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Carlos Alan Velazquez-Vargas, Nathaniel Douglass Daw, and Jordan A Taylor. Learning generaliz-
able visuomotor mappings for de novo skills. bioRxiv, pp. 202307, 2023.

Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement learning
system. Nature neuroscience, 21(6):860-868, 2018.

Sarah A Wilterson and Jordan A Taylor. Implicit visuomotor adaptation remains limited after several
days of training. ENeuro, 8(4), 2021.

Steven P Wise and Elisabeth A Murray. Arbitrary associations between antecedents and actions.
Trends in neurosciences, 23(6):271-276, 2000.

11



	Introduction
	Methods
	Participants
	Task
	Models

	Results
	Human and Model Behavior
	Model Representational Similarity Analysis
	Model Representational Capacity Analysis

	Discussion

