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ABSTRACT

We present quantum algorithms that provide provable speedups for approximate
sampling from probability distributions of the form 7 oc e~/, where f is a poten-
tial function that can be written as a finite sum, i.e., f = % Z?:l fi. Our approach
focuses on stochastic gradient—based methods with only oracle access to individ-
ual gradients {V f;};c(n). The techniques of our quantum algorithm are based
on a non-trivial integration of quantum mean estimation techniques and existing
variance reduction techniques such SVRG and CV.

As these techniques often require occasional full-gradient calculations, the key
challenge is that an unbalanced weighting between variance reduction and quan-
tum mean estimation results in a regime where the quantum advantage is lost
due to frequent full-gradient computation. We overcome this difficulty by care-
fully optimizing the target variance level. Our algorithms improve the number of
gradient queries of classical samplers, such as Hamiltonian Monte Carlo (HMC)
and Langevin Monte Carlo (LMC), in terms of dimension, precision, and other
problem-dependent parameters.

1 INTRODUCTION

Efficient sampling from complex distributions is a fundamental problem in many scientific and
engineering disciplines, becoming increasingly important as modern applications deal with high-
dimensional data and complex probabilistic models. For example, in statistical mechanics, sampling
is used to analyze the thermodynamic properties of materials by exploring configurations of particle
systems (Chandler| (1987); [Frenkel & Smit| (2002). In convex geometry, it helps in approximating
volumes and studying high-dimensional structures |Lovasz & Vempala| (20006); |Cousins & Vempala
(2018). In probabilistic machine learning, sampling plays an important role in Bayesian inference,
as it facilitates posterior estimation and quantifies uncertainty in model predictions |Welling & Teh
(2011);/ Wang et al.|(2015)); Durmus & Moulines|(2018)); Roy et al.|(2021)). Similarly, in non-convex
optimization, sampling allows for the exploration of complex energy landscapes and helps avoid
local minima, facilitating progress in tasks such as resource allocation, scheduling, and hyperpa-
rameter tuning in machine learning |Zhang et al|(2017); Chen et al.[(2020).

Given a potential function f : R? — R, we consider the problem of sampling from a probability

distribution 7 of the form
e—f(x)

~ Jefdx

This distribution is called the Boltzmann-Gibbs distribution, and our goal is to efficiently sample
approximately from 7 while minimizing the number of gradient queries in the finite-sum setting,

ie, f(x)=+1Y", fi(x).
One widely-used method for sampling from the Gibbs distribution is to use Langevin Monte Carlo
(LMC) algorithm:

(D

(%)

Xep1 = X¢ — eV (Xe) + /2146, 2

where 7, is the step size and ¢; is isotropic Gaussian noise. Another method that is commonly
used in sampling is the Hamiltonian Monte Carlo (HMC) algorithm, which uses the principles of
Hamiltonian dynamics to propose new states in a Markov Chain. It introduces the Hamiltonian
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H(x,p) = f(x) + 3||p||*> with auxiliary momentum variables and updates the position (x) and
momentum (p) by simulating Hamiltonian dynamics, which follows the equations:

dx OH dp OH

dt  9dp’ dt ox’
Similar to LMC, HMC is simulated in practice by discretizing Eq. (3). The algorithm also refreshes
the momentum periodically from a random distribution, making the algorithm non-deterministic.
Although effective, the computational cost of each iteration in these algorithms becomes prohibitive
when the computation of the gradient is costly, such as in the finite-sum setting. To alleviate the
computational burden, stochastic gradient-based samplers such as Stochastic Gradient Langevin
Dynamics (SGLD) (Welling & Teh| (2011) and Stochastic Hamiltonian Monte Carlo (SG-HMC)
Chen et al.| (2014) have been proposed. Instead of computing the full gradient, these algorithms
use stochastic approximation to the gradient. For example, the stochastic update for LMC becomes

Xe41 = X — N8t + /2164 4

In the finite-sum form, g; can be obtained by randomly sampling a component ¢ € [n] and computing
V fi(x¢). While stochastic gradient methods reduce computation at each iteration, they introduce
variance into the gradient estimates, which can degrade the quality of the samples and slow down
convergence.

3)

Quantum computing offers a new way to address this bottleneck. By leveraging quantum primitives
such as quantum mean estimation, it is possible to estimate averages of stochastic gradients with
quadratically fewer oracle calls, thereby reducing the variance cost inherent in stochastic-gradient
methods. Importantly, this quantum advantage can be realized within the same oracle framework
used classically. Specifically, we consider quantum oracle access of the form

Ovy [x) 1) 10) = %) [1) [V fi(x)) - )

This oracle can be implemented by making the classical gradient oracle reversible with additional
registers, so its cost is comparable to the classical setting. While computing an exact gradient still
requires O(n) oracle calls, our algorithms demonstrate how quantum primitives can asymptotically
reduce the number of gradient queries compared to the best classical methods.

With this framework, we design quantum sampling algorithms that parallel the structure of classical
LMC and HMC. It is worth noting that a straightforward replacement of the stochastic gradient step
in state-of-the-art classical algorithms with a quantum variance-reduction primitive does not yield
asymptotic speedups, for the following reasons:

1. The state-of-the-art classical algorithms already implement variance reduction techniques
such as SVRG, SARAH, SAGA, which require full gradient computations once in a while
so that the variance of the stochastic gradients can be controlled more efficiently without
computing the full gradient at every iteration. Therefore, directly replacing the classical
stochastic gradient estimation with quantum algorithmic primitives is not meaningful un-
less the full gradient computations can be done less frequently as well. In fact, using the
existing classical algorithms’ choice of parameters would in fact imply no speedup.

2. Quantum mean estimation algorithm requires the target variance as an input parameter,
which depends on the variance of the random variable. In our setting, this corresponds to
the variance of stochastic gradients at the current iteration. However, this variance depends
on the trajectory of the iterates and is not bounded by a fixed constant. On the contrary, this
restriction does not affect classical algorithms, as one can use a fixed batch size b and then
analyze the convergence.

3. Even if the current variance of the stochastic gradients is given, it is not clear how to
set the target variance level. Smaller target levels increase the cost of stochastic gradient
estimation, whereas larger target levels do not give any quantum speedups. This is because
in this regime, one does not effectively exploit the subroutine: the algorithm essentially
becomes regular LMC or HMC with no variance reduction.

To address these challenges, we develop a variance upper bound that quantifies stochastic gradient
variance along the LMC trajectory. This enables us to optimize the trade-off between full-gradient
computation and quantum mean estimation. Then, we optimize the target variance level in such a
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Table 1: Summary of the results (some of the previous results use a different scaling of f and we
convert the results to the same scaling as ours in the table). Here, we mainly focus on n and €
dependency. See Theorems and [4.9] for explicit dependencies on L, y, o, d.

Algorithm Assumptions Metric Gradient Complexity
SG-HMC |Zou & Gu7(2021) Strongly Convex Wo (’)(ne_z)
SVRG-HMC [Zou & Gu(2021) Strongly Convex Wa On*3e23 4 et
SAGA-HMC Zou & Gul (2021) Strongly Convex Wa O3 23 y et
CV-HMC |[Zou & Gu(2021) Strongly Convex Wa O(e7?)
SRVR-HMC Zou et al.| (2019) Dissipative Gradients Wa O(n+n'?e 2 4 )
SVRG-LMC Kinoshita & Suzuki (2022) LSI KL O(n+n'/?et)
SARAH-LMC Kinoshita & Suzuki|(2022) LSI KL O(n+n'/?et)
QSVRG-HMC [Theorem | Strongly Convex W, O(n'/2e™3/ 4 1)
QCV-HMC [Theorem | Strongly Convex Wa O(e3/?)
QSVRG-LMC [Theorem 4.9 LSI K1/ O(n+n'/3c 1)

way that both the cost of mean estimation and required full gradient computations decrease at the
same time. By setting these optimum parameters, we prove that our algorithms achieve asymp-
totically fewer oracle calls than the best-known classical methods for both strongly convex and
nonconvex potentials (see Table[T)). We focus on SVRG- and CV-based samplers because they seem
to be the most efficient samplers for finite-sum functions in the classical setting; although extensions
to other gradient based samplers are possible.

We note that our algorithms rely on fault-tolerant quantum computers to implement quantum mean
estimation; since such devices are not yet available, we cannot provide empirical validation at this
stage. Nevertheless, establishing the theoretical foundations is essential for clarifying the scope of
possible quantum speedups in sampling.

2 RELATED WORK

Non-asymptotic convergence rates for SGLD and SG-HMC have been analyzed extensively by Ra-
ginsky et al.[(2017); Xu et al.| (2018); [Zou et al.| (2021); |Das et al.| (2023)) and |Chen et al.| (2014);
Zou & Gu|(2021)) respectively. In the finite sum setting, more sophisticated variance reduction tech-
niques such as SVRG Johnson & Zhang|(2013)), SAGA [Defazio et al.|(2014), SARAH Nguyen et al.
(2017), and Control Variates (CV) Baker et al.| (2019) have been used to reduce the variance of
stochastic gradients by leveraging the gradient information from previous iterations. Although these
methods were originally introduced in the context of optimization, successive works have applied
these methods to improve sampling efficiency via LMC Dubey et al.|(2016); |(Chatterji et al.| (2018));
Baker et al.| (2019); |Kinoshita & Suzukil (2022) and HMC Zou et al.| (2019); |[Zou & Gu| (2021). In
particular, Zou & Gu| (2021) has incorporated various variance reduction techniques to SG-HMC
and analyzed convergence in Wasserstein distance for smooth and strongly convex potentials. In the
non-log-concave setting, Kinoshita & Suzuki| (2022) has analyzed the convergence of SVRG-LMC
and SARAH-LMC for target distributions that satisfy the Log-Sobolev inequality and applied their
results to optimize structured non-convex objectives.

In the context of quantum sampling, the most of the existing results makeuse of quantum walks,
which has been shown to provide speedups for certain Markov Chain Monte Carlo (MCMC) meth-
ods by improving the mixing time of the underlying Markov chain |Szegedy| (2004); Somma et al.
(20075 2008); [Wocjan & Abeyesinghe| (2008); (Chakrabarti et al.| (2023). These methods have
been incorporated into various domains to improve the computation time of various tasks Magniez
et al.[ (2007); |Apers & Sarlette| (2019); [Childs et al.| (2022); |(Chakrabarti et al.| (2023)); L1 & Zhang
(2024); (Chakrabarti et al.| (2024). For sampling from continuous distributions, Kinoshita & Suzuki
(2022) used quantum walk framework to improve the gradient queries to approximately sample from
strongly-convex distributions. However, a key limitation of quantum walks is that they require the
Markov chain to satisfy detailed balance condition. A Markov chain on () with transition density

!Convergence in KL divergence implies convergence in squared TV and W+ distances due to Pinsker’s and
Talagrand’s inequalities.
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matrix P and stationary density 7 needs to satisfy for all x,y € Q, 7(x)P(x,y) = 7(y)P(y,x).
Unfortunately, many commonly used sampling algorithms, such as LMC and HMC, are not re-
versible due to the finite discretization steps involved in their implementation. The reversibilization
techniques such as Metropolis reversibilization require evaluating the function exactly to compute
ratio w(x)/m(y) which is expensive in finite-sum case. Additionally, implementing rejection steps
causes additional overheads: if a proposed move is rejected, one must revert to the previous state.
However, due to the no-cloning theorem, it is not straightforward to restore the previous quantum
state. Therefore, the quantum walk operator needs nontrivial techniques when it involves Metropolis
correction. We refer the reviewer to recent work on this topic |(Claudon et al.[ (2025b). Moreover,
even when the Markov chain is reversible, stochastic gradients introduce randomness that disrupts
the coherent evolution of the quantum walk, which is a critical component of its speedup |Ozgul
et al.| (2024). More recently, |(Claudon et al.| (2025a) proposed a similar technique to obtain quan-
tum speedups for nonreversible Markov chains, using the idea of geometric reversibilization with
respect to the so-called “most reversible” distribution which requires O(n) gradient computations in
this case. Another limitation of quantum walks is that they typically offer convergence guarantees in
terms of total variation distance; however, many practical sampling tasks are more concerned with
metrics like Wasserstein distance or Kullback-Leibler divergence.

However, hybrid algorithms that exploit quantum computing methods as subroutines are easier to
implement and do not suffer from these issues. In the context of optimization, quantum algorithms
such as multi-dimensional quantum mean estimation Cornelissen et al.|(2022) and quantum gradient
estimation Jordan| (2005); (Gilyén et al.| (2019) have shown promise in reducing the computational
cost associated with gradient-based methods ivan Apeldoorn et al.| (2020); (Chakrabarti et al.| (2020);
Sidford & Zhang| (2023); [Zhang et al.| (2024)); |[Liu et al.[(2024). These techniques are particularly
well-suited for addressing challenges in large-scale and noisy settings, as they can provide more
accurate gradient estimates with fewer queries. However, these methods have not been considered
for sampling tasks and this paper focuses on integrating these quantum techniques to enhance the
efficiency of stochastic gradient-based samplers and alleviate the computational burden inherent in
classical methods.

2.1 PRELIMINARIES

Notation: Bold symbols, such as x and y, are used to represent vectors, with || - || indicating the
Euclidean or operator norm depending on the context. Given two scalars a and b, we use a A b
to denote min{a, b} and use a V b to denote max{a,b}. The notation O is used to suppress the
polylogarithmic dependencies on d, €, L, ;. and « that will be defined later in the text.

Quantum computation: Quantum computation is naturally expressed in the language of linear

algebra. The computational basis of C? is given by e, ..., eq4_1, where e; = (0,...,1,...,0)T

has a 1 in the (i 4+ 1)* position. In Dirac notation, we write |i) (a “ket”) for e; and (| (a “bra”) for
T

e; .

The tensor product of two quantum states is their Kronecker product. If |u) € C% and |v) € C%,
then

|u> ® |’U> = (Uo'U(), UoU1, - - - 7’U,d1,1’Ud2,1)T S (Cdl ® (Cd2. (6)

The fundamental unit of quantum information is the qubit, a state in C? of the form a |0) + b|1)
with a,b € C and |a|? + |b|> = 1. An n-qubit product state takes the form |v1) @ - - ® |v,,) € C?",
where each |v;) is a single-qubit state. Most vectors in C", however, cannot be written as product
states. For brevity, we often write |u) |v) instead of |u) & |v).

Quantum states evolve under unitary transformations. In the circuit model, a k-qubit gate is a unitary

operator in C2". Two-qubit gates are universal: any n-qubit unitary can be decomposed into gates
acting trivially on n — 2 qubits and nontrivially on two qubits. The gate complexity of an operation
is defined as the number of two-qubit gates required in its circuit implementation.

Access to information of a function or a probability distribution in quantum algorithms is provided
via a quantum oracle. Such oracles must be reversible and allow queries on superpositions of inputs.
The following definition demonstrates an oracle we use in this paper for sampling from a probability
distribution.
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Definition 2.1 (Quantum Sampling Oracle). Quantum sampling oracle Ox of a random variable
X € Qis given by Ox [0) |0) = > v cq v/ Pr(X)|X) |garbage(X)).

Here, the second register contains |garbage(X)), which depends on X. The state in the (auxiliary)
garbage register is usually generated in some intermediate step of computing X in the first register. It
is important to note that the state in this quantum sampling oracle differs from the coherent quantum
sample state, as the former is entangled and we cannot simply discard the garbage register.

Another oracle used in this paper is the stochastic gradient oracle as specified in Eq. (3).

Beyond simulating classical random sampling, quantum oracles enable uniquely quantum effects
such as interference. These underlie key techniques like amplitude amplification (central to Grover’s
search |Grover| (1996)) and amplitude estimation, both of which rely on coherent oracle access.
Similar considerations apply to the quantum gradient oracle Eq. (5). Whenever a classical oracle
can be realized by a circuit, the corresponding quantum oracle can be implemented by a quantum
circuit with little overhead. Thus, quantum oracles provide a natural framework for analyzing the
complexity of tasks such as sampling from a probability distribution and optimization.

To sample from a distribution p over R, it suffices to prepare the quantum state Y /p(x)d |x)
and then measure it.

Metrics: We use several metrics to compare probability distributions over a state space X'. Let
7w and p be two probability distributions on &X'. The p-Wasserstein distance between 7 and p
is defined as Wy (m, 1) = (inf,er(r ) Epoy)nlx — y||p)1/p where T'(7,p) is the set of all

joint distributions y(x,y) whose marginals are 7 and p. The KL divergence of 7 with respect

to p is defined as KL(7||n) = [, dxm(x)log (%) and the relative Fisher information is

2
Fl(r||p) = [, dxm(x) HV log (%) H . The total variation distance is defined as TV(mw, u) =

sup sy |7(A) — p(A)| = 3 [ dx|m(x) — p(x)|.
In the next section, we analyze the trade-off between the error due to stochastic gradients and dis-

cretization to quantify how much quantum mean estimation techniques can provide speedups when
combined with classical variance reduction methods such as SVRG and CV.

3 BACKGROUND

In this section, we give background on some classical and quantum algorithms for various tasks that
are repeatedly referred in the main text.

3.1 OVERVIEW OF CLASSICAL SAMPLING ALGORITHMS

One widely-used method for sampling from the Gibbs distribution is through the Langevin diffusion
equation, which follows the solution to the following stochastic differential equation (SDE):

dx, = =V f(x;)dt + V2dBy, (7

where B, is the standard Brownian motion. The Euler-Maruyama discretization of this SDE results
in the well-known Langevin Monte Carlo (LMC) algorithm:

Xep1 =X — eV f(xe) + /2me€, ®)
In stochastic setting, once replace V f(x;) by stochastic gradients g(xx, &x).

Hamiltonian Monte Carlo (HMC) is an advanced sampling technique designed to efficiently explore
high-dimensional probability distributions by introducing auxiliary momentum variables. Given a
target distribution 7(x) oc e~/ () HMC augments the state space with momentum variables p and
defines the Hamiltonian H (x, p) = f(x) + 3||p||* where p ~ N/(0, ).

HMC alternates between updating the position x and momentum p by simulating Hamiltonian
dynamics Eq. (3). In practice, Hamiltonian dynamics is simulated using the leapfrog integrator,
which discretizes the continuous equations of motion. The key advantage of HMC is that it al-
lows for large, efficient moves through the parameter space by leveraging gradient information
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Algorithm 1 SG-1LMC
input The stochastic gradient oracle Ov ¢, initial point X, step size 1, number of steps K
output Approximate sample from 7 oc e~/ )
fort = 0to K do
Sample ¢; ~ N(0,1)
Xp41 = X — kg (Xi, &) + v/ 2nker,
end for
Return x

K

and auxiliary momentum. This reduces the correlation between successive samples, particularly
in high-dimensional spaces, resulting in faster convergence compared to simple random-walk meth-
ods like the Metropolis-Hastings algorithm. In practice, Hamiltonian dynamics are simulated using
the leapfrog integrator, which discretizes the continuous equations of motion.

After a series of updates, the momentum py,; is refreshed by sampling from A(0, I). This dis-
cretization ensures symplecticity, preserving volume in phase space and allowing the algorithm to
make large, energy-conserving moves through the parameter space.

Algorithm 2 SG-HMC

input The stochastic gradient oracle Ov , initial point x, step size 1, number of leapfrog steps .5,
number of HMC proposals T’
output Approximate sample from 7 oc e~/ *)
fort =0to T do
Sample ps; ~ N (0, I)
fors=0to S —1do
k=St+s ,
Xp1 = X + 0Pk — 5 g(Xk
Pk+1 = Pk — 38Xk, k) —
end for
end for
Return x

&k)

28(Xk+15&kt1/2)

T

Similar to SGLD, one can replace the gradients with stochastic gradients resulting in SG-HMC (See
Algorithm . The stochastic gradients g(x, £) in Algorithmcan be obtained using different tech-
niques such as mini-batch, SVRG, CV. In this case, we use quantum variance reduction techniques
to compute g(x, §).

3.2 QUANTUM MEAN ESTIMATION

Quantum mean estimation is a technique to estimate the mean of a d-dimensional random variable
X up to € accuracy using @(dl/ 2 /€) queries, which is a quadratic improvement in ¢ compared to
classical algorithms |Cornelissen et al| (2022)). Although the quantum mean estimation algorithm
is biased, Sidford & Zhang| (2023)) developed an unbiased quantum mean estimation algorithm.
Specifically, for a multi-dimensional variable with mean z and variance o, unbiased quantum mean
estimation outputs an estimate /i such that E[j)] = p and E[||ji — u||?] < 62 using O(d*/?c/5)
queries.

The following lemma shows that the mean E[X] for a random variable X can be computed quadrat-
ically faster than classical mean estimation with respect to oracle Ox.

Lemma 3.1 (Unbiased Quantum Mean Estimation |Sidford & Zhang (2023)). For a d-dimensional
random variable X with Var[X] < o? and some 6 > 0, suppose we are given ac-
cess to its quantum sampling oracle Ox (as in Definition 2.1). Then, there is a procedure

. . N ~ [ qi/2 . .
QuantumMeanEstimation(Ox, &) that uses O (d - ") queries to Ox and outputs an unbi-

o

ased estimate [i of the expectation yu satisfying Var[ji] < 62.
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4 QUANTUM SPEEDUPS FOR FINITE-SUM SAMPLING VIA GRADIENT
ORACLE

We assume access to the oracle defined in Eq. (3). The goal is to approximately sample from 7 by
using as few gradient computations as possible without deteriorating the convergence. To this end,
we introduce the first stochastic-gradient samplers that integrate unbiased quantum mean estimation
with classical variance-reduction frameworks, yielding provable improvements in gradient-query
complexity for both HMC and LMC. Our algorithms are actually quite simple: we replace the
stochastic gradient estimation with quantum mean estimation. However, obtaining the speedup is
not as simple because to lower the total computational cost, we must decrease the cost of full gradient
computations as well. Even though we do not modify the full gradient estimation part, the quantum
mean estimation allows less frequent full gradient computations due to improved variance reduction.

Our analysis develops a variance control results (starting with [A.3) that quantifies stochastic gra-
dient variance along the sampling trajectory, enabling us to choose optimal balance between full-
gradient computations and quantum mean estimation. Building on this tool, we establish improved
complexity bounds under both strong convexity and LSI assumptions, demonstrating speedups over
state-of-the-art classical algorithms. For readability, we include some of the key results in the main
text and defer full technical details to the appendix due to the space limitation.

4.1 SAMPLING UNDER STRONG CONVEXITY VIA HAMILTONIAN MONTE CARLO

First, we consider quantum speedups for Hamiltonian Monte Carlo (HMC) algorithm using quantum
variance reduction techniques.

Algorithm 3 QSVRG/QCV

input Oy, current iterate x, smoothness constant L, variance scale factor b, epoch length m.
output Quantum variance reduced stochastic gradient g.

QSVRG:
if ¥ mod m = 0 then
gk = Vf(xx)
X = Xk
else
Define oracle Ogrg:

AIANE A e

0010} = <= 3 VAlxe) = VAG) + V1) )

7. 62 = L?||xx — x||?/b?
gr = QuantumMeanEstimation(Ogrg: 62)
9: end if

o0

10: QCV:
11: Define oracle Oy

10)10) — % Z IV fi(xk) = V fi(x0) + V f(x0)) |7)

12: 62 = L?||x; — x¢|?/b?
13: g = QuantumMeanEstimation(O&,6?)

14: Return gy

We propose to replace the gradients in HMC (See Algorithm 2]in appendix) with quantum gradients
computed via Algorithm 3] Essentially Algorithm [3]combines the classical variance reduction tech-
niques with the unbiased quantum mean estimation algorithm in Lemma [3.1] to reduce the variance
further. The epoch length m for QSVRG determines the period where the full gradient needs to be
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computed. The parameter b is the quantum analog of batch size and will be determined analyti-
cally. To establish the convergence of the new samplers, we make the following assumptions in this
section.

Assumption 4.1 (Strong Convexity). There exists a positive constant g such that for all x,y € R?
it holds that

F6) 2 F(9) + (VF)y =) + Gl =yl ©

Assumption 4.2 (Lipschitz Stochastic Gradients). There exists a positive constant L such that for
all x,y € R% and all functions f;, i = 1, ...,n, it holds that

IVfi(x) = Viy)ll < Llx =yl (10)

We also define the condition number k = Z. These assumptions are standard and used in the

classical analysis of HMC Zou & Gu| (2021). Next, we give the main theorem for the quantum
Hamiltonian Monte Carlo algorithm implemented with QSVRG technique.

Theorem 4.3 (Main Theorem for QSVRG-HMC). Let uy be the distribution of X, in QSVRG—-HMC
algorithm. Suppose that f satisfies Assumptions .1 and Given that the initial point Xq satisfies

xo — argming f(x)|| < <, then, forn = O (—m15=3), S = 0 Ld/2522 LT = O(1),
m T1/2q1/2,537 €
b=0 <7L1$f;;z7;/2 vV 1), and m = n/b, we have

Wo(pst,m) < €.

. . . R~ 1/2,.3/2 9/8 ;7/8 3/4,1/2
The total query complexity to the stochastic gradient oracle is O ( Ld “w " 4 L d7 kln )

€ €3/4

The following theorem is for quantum Hamiltonian Monte Carlo algorithm implemented with QCV
technique.

Theorem 4.4 (Main Theorem for QCV—-HMC). Let uy be the distribution of X5 in QCV—HMC algo-

rithm. Suppose that f satisfies Assumptions {.1| and Given that the initial point Xq satisfies

Ixo — arg miny f(x)| < %, then, for n = O (trag7=72), S = @, (M), T = O(1), and
/4,374

b=0 (W V 1), we have
Wo(pst,m) < €.

. . . Lo~ 5/4.9/4
The total query complexity to the stochastic gradient oracle is O (Ldi’i)

€3/2

We postpone the proofs of Theorems [4.3] and [4.4]to Appendix [A] The main idea in these proofs is
to express the variance of stochastic gradients o throughout the trajectory of the HMC in terms of b
and the distance between current iterate and the last iterate the full gradient is computed. Then, we
optimize b so that per cost of quantum mean estimation O(£ ) is equal to the per iteration cost of full

gradient computation @(n /m) (because full gradient is only computed once in every m iteration)
to exploit the quantum mean estimation without full gradient estimation dominating the cost.

Theorems and |4.4imply that when n. = O(e~1/?) the best classical (SVRG-HMC) and the best

quantum (QSVRG-HMC) algorithms have @(6_1) gradient complexity. On the other hand, when
n = w(e~1), quantum algorithms have better complexity than the best classical algorithms, where
the race between QSVRG—HMC and QCV-HMC depends on how large n is.

Remark 4.5. Both the classical algorithms in|Zou & Gul(2021)) and quantum algorithms in this paper
assume that the starting point is (d/p)-close to the minimizer x* = arg min f(x). In case this point
is not given, it can be obtained using O(n) iterations of SGD |Baker et al. (2019).

4.2 SAMPLING UNDER LOG-SOBOLEV INEQUALITY VIA LANGEVIN MONTE CARLO

We use SVRG-LMC for the base algorithm in |Kinoshita & Suzuki| (2022) and replace the stochastic
gradient calculation with unbiased quantum mean estimation. This section generalizes the strong
convexity assumption with the following LSI assumption, which is common in non-logconcave
sampling.
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Assumption 4.6 (Log-Sobolev Inequality). We say that 7 satisfies the Log-Sobolev inequality with
constant « if for all p, it holds that

1
KL(p|m) < 5 -Fl(p||m). (11)

This is a sampling analog of the PL (Polyak-Lojasiewicz) condition commonly used in optimiza-
tion (Chewi & Stromme| (2024) and standard in non-log-concave sampling literature [Vempala &
‘Wibisono| (2019); Ma et al.| (2019)); Chewi et al.| (2022); [Kinoshita & Suzuki| (2022). We note that
LSI relaxes strong convexity in the sense that for any pu strongly convex function f, 7 satisfies the
Log-Sobolev inequality with constant . We also note that this assumption is weaker than the dis-
sipative gradient condition Raginsky et al| (2017); Zou et al.| (2019) which is used commonly in
non-log-concave sampling. We highlight the key steps in the proof idea here; full technical details
appear in Appendix [B] First we start by bounding the variance of the stochastic gradients along the
trajectory of LMC in terms of KL divergence to the target Gibbs distribution and b.

Lemma 4.7 (QSVRG-LMC Variance Lemma). Let k' < k be the last iteration where the full gradient
is computed in QSVRG-LMC and 0% = E||g). — Vf(xx)||? Then, for n* < 72—

6L2m2’

16142 8ndmI>
gt < an > "KL (g r—1|7) + UT 12)
r=1

Then we prove the following theorem for LMC with stochastic gradients, which might be of inde-
pendent interest that will be proved in appendix Appendix [B] Although similar convergence results
exist in literature, they only seem to apply for langevin algorithm with full gradients. The proof of
this theorem uses a comparison between the true SDE and and approximate SDE with drift term set
to stochastic gradients and we analyze this distance in terms of KL divergence between the distribu-
tions using the variance bound above.

2

Theorem 4.8 (Convergence theorem for QSVRG-LMC). Assume that m < b2. Then, forn < 24%72”1,
the iterates in QSVRG-LMC satisfy,
64mndL? n 24ndL>

—ank
KL(julIm) < e M KL(juo ) + — oo i

13)

Note that the first term corresponds to convergence of continous SDE, the second term is due to
stochastic gradients and the last term is due to discretization of SDE. Using the convergence theorem,
we obtain the main result for LSI.

Theorem 4.9 (Main Theorem for QSVRG-LMC). Let uy be the distribution of xXi, in QSVRG-LMC
algorithm. Suppose that f satisfies Assumptionsand Then forn = O (% A ﬁ), K =

1) (—L2 log(g;(“ouﬂ)) (n2/3 + g)) b= @(nl/?’), and m = @(nz/g) we have

(&%
{KL(uicl 7). TV s, )%, SWa (i, ) | < e

The total query complexity to the stochastic gradient oracle is
O (L2 log(lgé(uo\\ﬂ)) (nd1/2 + d3/2€nl/3)>'

The proof of Theoremis postponed to Appendix [B| The term n'/3¢~ is only possible because
the cost full gradient estimation is amortized in the sense that the total cost of stochastic gradient
computations KbT which is equal to the cost of total full gradient estimation nT' K /m. Hence, both
costs go down thanks to quantum variance reduced gradients. We note that in classical SVRG-LMC
the optimum parameters m = b = n'/2 where b corresponds to inner batch size.

Our algorithm improves the dominant term in gradient complexity from O(n'/2e~1) to O(n'/3¢~1).
It is also worth mentioning that recently [Huang et al.| (2024) proposed a proximal sampling algo-
rithm that uses (5(026‘1) gradient queries in the LSI setting when the stochastic gradients have
bounded variance o2. However, this assumption is different from our setting since the variance in
the stochastic gradients is not uniformly bounded by a constant, but it is bounded throughout the

trajectory by a function of problem parameters such as d, b, m, L, a (See Lemma |4.7)).
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A PROOFS FOR HAMILTONIAN MONTE CARLO IN STRONGLY CONVEX CASE

We start with the following result in|Zou & Gu/(2021) that quantifies the convergence of the stochas-
tic gradient Hamiltonian Monte Carlo algorithm in Wasserstein distance.

Theorem A.1 (Theorem 4.4 in[Zou & Gu|(2021)). Under Assumptions{.1land[@.2) let D = ||x° —
arg miny (f(x))|| and pur be the distribution of the iterate XT, then if the step size satisfies n =

O(L'?072k=* ANL™Y?) and K = 1/(4v/Ln), the output of HMC satisfies

Wa(ur, ) < (1 - (1285)71) % (2D +2d/p)"/* + T1n'/? + Tan, (14)
where T2 = O(L73?0%k?) and T3 = O(K*(LD + wd + L~'Y%0%n)) where o> =
maxi<7 E|lg(xk, &) — V f(xx)||? is the upper bound on the variance of the gradients in the tra-

Jjectory of SG—HMC algorithm.

This is a generic result that applies to any HMC algorithm under Assumptions [.1]and {f.2] that uses
stochastic gradients with variance upper bounded by o2. Note that we do not assume a uniform
upper bound for o that is independent of problem parameters. Instead, the variance upper bound
depends on the trajectory of the algorithm, which can be characterized using theoretical analysis.

A.1 PROOF OF QHMC-SVRG
Lemma A.2. Under Assumplion if the initial point satisfies || x° — x*|| < %, then it holds that
Eillg(xk. &) — V. (xu)||* < L||xi — X%, (15)

where X = Xy <, is the last iteration the full gradient is computed.

Proof. The proof simply follows from the definition of variance in the SVRG algorithm and the
smoothness of each component.

Eillgi(xk, &) — VF(xi)[|? < Eil|V fi(xk) — Vfi(X) + f(X) = Vf(xp)|? (16)
<E||Vfi(xx) — VLX) (17)

< D — 7. (18)

O

Lemma allows us to set the target variance in quantum mean estimation to be L?||x; — X||/b?.
Hence, each mean estimation call takes O(d'/2b) gradient evaluations by Lemma The following
lemma characterizes the variance of the stochastic gradients along the trajectory of the algorithm.

Lemma A.3 (Modified Lemma C.2 in|Zou & Gu|(2021)). Let g(xx, &x) be the vector computed us-
ing the unbiased quantum mean estimation algorithm in QHMC—SVRG. Then, under Assumption[4.2)

768m2L%n%kd
b2 ’

where the expectation is over both the iterate Xy, and the noise in quantum mean estimation ..

Ellg(xk, &) — Vf(xx)|?> < (19)

Next, we prove the main theorem for QSVRG-HMC.

Theorem 4.3 (Main Theorem for QSVRG-HMC). Let uy, be the distribution of xj in QSVRG—-HMC
algorithm. Suppose that f satisfies Assumptionsd.1jand Given that the initial point X satisfies

. 6 ~ 1/2,.3/2 ~
HXO — arg miny f(X)” § a then, fOrT] = O(W)’ S = O <Ldf>, T = O(l),

w’
L1/81/4,1/2

b=0 (W vV 1), and m = n/b, we have

Wo(pusr,m) <e.

X . . o~ 1/2,.3/2 9/8 ;7/8,.3/4 _1/2
The total query complexity to the stochastic gradient oracle is O (Ld S+ L d Y )
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Proof. By the choice of 7 in the theorem statement and the variance upper bound in Lemma [AZ3]
n = O(LY?¢7 2k~ A L~1/2). Therefore, by Theorem for K = ——, we have

Wi
W, m) < (1— (128%)"1) % (2D + 2d/p)"/? + T1n'/? 4+ T'on (20)
where,
L1/2m2:‘£3d 2
Iﬁ;@(bgn), Q1)
L3/2m2 k3dn3
13— 0 (was ST, @)

We set bm = O(n). The first term in Eq. is O(e) when T = O(log(1/¢)). The
. Ll/4dl/2l€/3/21']3/277, 1/2 3/2

last two terms in Eq. 1} for QHMC-SVRG become O (b—2 +d/k n). For

b = O(d Y8k=3/8e /412118 v 1) and n = O(en 3/2d~1/?), the bias term becomes

O(e). Using Lemma the number of gradient calculations scales as O(Ld'/?k%/2¢! +

L9/8d7/8/€3/4€_3/4n1/2). 0

A.2 PROOF OF QCV-HMC

Lemma A.4 (Modified Lemma C.4 in|Zou & Gu| (2021)). Let g(xy,&x) be the vector computed
using the unbiased quantum mean estimation algorithm in QHMC—CV. Then, under Assumption[4.2)

638 L

Ellg(xe. &0) — VS (xi)[ <

where the expectation is over both the iterate X, and the noise in quantum mean estimation .

Next we prove the main result.

Theorem 4.4 (Main Theorem for QCV-HMC). Let g be the distribution of x;, in QCV-HMC algo-
rithm. Suppose that f satisfies Assumptions [4.1] and Given that the initial point xq satisfies
lxo — arg miny f(x)| < %, then, for n = O (tig75m577 ) S = o (M) T = O(1), and
b=0 (% vV 1), we have

Wo(pst, ™) < €.

. . . .o~ 5/4,_9/4
The total query complexity to the stochastic gradient oracle is O (%)

Proof. By the choice of 7 in the theorem statement and the variance upper bound in Lemma [A-4]
n = O(LY?c2k~1 A L='/2). Therefore, by Theorem for K = —, we have

4Ly’
Wa(ur,m) < (1= (1285) 1) (2D + 2d/p)"/? + T1n'/? + Ty, (23)
where,
L=12k3d
no<b2), (24)
Iy =0 (k°d). (25)
The first term in Eq. is O(e) when T = (O(1). The last two terms in Eq. for
QHMC-CV become O (w + d1/2n3/2n>. For b = O(L~Y/4d/*k3/4e=1/2 v 1) and
n = O(ed™'/?x73/2), the bias term becomes O(e). Using Lemma the number of gradient
calculations scales as O(Ld"/2k3/2e=1  L3/4d5/ 45/ 4e=3/2) = O(Ld>/4k/4e=3/2). O

16



Under review as a conference paper at ICLR 2026

B PROOFS FOR LSI CASE

Lemma B.1 (Stochastic-LMC One Step Convergence). Let i be the distribution of the iterate Xy,
then if the step size satisfies 1 = %

3203 L4
a

KL (pgp1||7) < e 3m/2 Kl + ) KL (| |7) 4+ 6not + 16n>dL?| , (26)

where 0,% = Ex, ¢.118(%k, &) — V()2

Proof. We compare one step of LMC starting at x; with stochastic gradients g(xy, i) to the output
of continuous Langevin SDE (Eq. ) starting at x;, with true gradient V f(x;) after time . This
technique has been used to establish the convergence of unadjusted Langevin algorithm with full
gradients under isoperimetry by |Vempala & Wibisono (2019). We extend the analysis by |Vempala
& Wibisono| (2019) to the stochastic gradient LMC. Assume that the initial point x; and g(xy, &x)
obey the joint distribution . The randomness on g(xy, &) depends both on the randomness on
X and the randomness in the quantum mean estimation algorithm. Then, one step update of LMC
algorithm with stochastic gradient yields,

Xpt1 = Xk — 18Xk, &) + /20€p.

Alternatively, x;41 can be written as the solution of the following SDE at time ¢t = 7,

dx; = —gpdt + V2dW,

where g = g(xx,&k) and W, is the standard Brownian motion starting at Wy = 0. Let
1t (Xk, 8k, x¢) be the joint distribution of xj, gk, and x; at time ¢. Each expectation in the proof is
over this joint distribution unless specified otherwise.

Consider the following stochastic differential equation
dX = v(X)dt + V2dW,

where v is a smooth vector field and W is the Brownian motion with W, = 0. The Fokker-Planck
equation describes the evolution of probability density function y, as follows:

O

e =V (uev) + A, 27

where V- is the divergence operator and A is the Laplacian. Then, the Fokker Planck equation gives
the following evolution for the marginal density u:(X|Xg, 8x) = (Xt = X|Xg, 8k )s

5Mt(X|Xk» gk)

5 =V - (pe(x[xk, 8r)8r) + Ape(X[Xk, 8k )- (28)

Taking the expectation over both sides with respect to (X, k) ~ Lo,

Ope(x
Mgi ) = Exy )oYV (1 (X1XE)81)] + By gp) oo [A 1 (X[ X1 )] (29)

= /v'(Ut(x|xkagk)gk)ﬂo(xkvgwdxkdgk+/Aﬂt(x|xk7gk)MO(Xkagk)dxkdgk

R4 Rd
(30)
= /V (e () (X, 8r|Xe = X) g1 )dXpdgr + Apiy(x) (€2))
Rd
v (uxx)E[gk V(i) e = 6] + (X log (f(f)))) | 32)

17



Under review as a conference paper at ICLR 2026

Consider the time derivative of KL divergence between p; and m,

SRLudin) = 5 [ ntoton (409 ) ax (3)
i
:Rd G%EX) log (’?:éf;) dxy —&-R[ Lt (x)% log (it((::))> dx 34)
- / 5“55") log (’:g;) dx; + / aﬂéix)dx (35)
Rd R4
_ 3”5&’0 log ( ’j:(t‘))) dx,. (36)
i

The last term in the third equality vanishes since the (i, is probability distribution and its L; norm is
always 1. Then the KL divergence evolves as

KLl = [ 9+ (o8l — V60l = x4 G0 o (250 ) Yo (442 ) ax

7(x) m(x)
Rd

(37)

= R[Mt(x) <E[gk — Vf(x)|x; =x] + Vlog <l:((;§))> ,Vlog (i?((;()))>dx
(38)

2
= _ /Mt(x) ‘Vlog (lj:((;())) H dx+E <Vf(xt) — gk, Viog (/;t((::)))> . (39
Rd
The second term can be bounded as follows:
it (%) 1 () ||”

B (V100 - . Viow (409 )) <5 {19700 - ul? + | 7108 (242 ] 0
= BV () — gl + TPl ) @
= BIIVF(x) £ (xi) + V() — gl + 1FI()

(42)
< 2E(|V f(xe) = V. (x0)lI* + 2By, (x, 0 [V (30) = )12
(43)
+ 7l lm). (44)

The first inequality holds since (a,b) < a? + %. The last line follows from Young’s inequality.
Furthermore, using Lipschitzness of gradients of f, we have

E|[Vf(xe) = VI (xi)lI* < L2E||x; — x| (45)
< L’E|| — tgi, + V2tex|? (46)
=t’L*E,, |lgk||* + 2tdL>. (47)
Plugging back these into the time derivative of KL divergence, we have
d 3 272 2 2 2
e KL(uelm) < =2 Fl(pae|) + 26" L By [l gkl + 2Epuo 1V £ () — gll” + 4td L (48)

IN

3
— TG |) + (4212 + 2)E [V Ock) — gl + 4212, [V i) |2 + 44 L2,
(49)

18
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The third term can be bounded as follows: We choose an optimal coupling xj ~ po(xy) and x* ~ 7
so that E||xj — x*|| = Wa(uo, 7)?, then using Young’s inequality and smoothness of f,

Epiy |V ()1 < 2B, [V f (x1) = V()P + 2B, [V (5|2 (50)
< 2LPEp ||xi — xol|* + 2By, [V £ (x)|I? 82
< 2L*Woy (o, )2 + 2dL (52)
417
< —KL(pol|7) + 2dL. (53)
The last inequality follows from Talgrand’s inequality. Hence for ¢ < nand n < ﬁ, we have
d 3 919 , 16t2L% 9 9,03
SKL(uallm) < TPl |m) + (4217 + DB, | VF(x0) = gl + — KL (pollm) + 4tdL? + 812dL
(54
3o 99 ,  16t2L4 9 973
<~ ZEKL(ul[7) + (4217 + DB, IV £ (x0) — gl + ———KL(pollm) + 4tdL? + 82dL
(55
3a 16n2L*
< KLl [7) + 3B, IV £ (x6) = g2 + = KL(puo||7) + SndL*  (56)
3 16n2 L4
< —;KL(MHW) 302+ Z KL (j10]|7) + 8ndL>. (57)

The second inequality is due to Eq. (TI). Equivalently, we can write,

i 3at/2 < p3at/2 2 169°L* 2
dt(e KL(puel[m)) < e 30y, + o KL(pol|m) + 8ndL” ) . (58)
Integrating from ¢ = 0 to ¢ = 7 gives,
3amn/2 2 32773[’4 2772
e KL py||m) — KL(pol|m) < 6noj; + ———KL(po||7) + 161°dL (59)
forn < % Rearranging the terms,
3203 L4
KL(jup||7) < e~ 30m/2 {(1 + 7; )KL(MOM) + 6nof 4+ 16n*dL?| . (60)

Renaming p19 = py and p,, = pix41, we obtain the result in the statement.

O

The statement in Lemma [B.]is generic and can be applied to any LMC algorithm with stochastic
gradients with bounded variance on the trajectory of the algorithm. Note that this is different from
assuming that the variance is uniformly upper bounded. Instead, we set inner loop and variance
reduction parameters so that the variance does not explode along the trajectory of the algorithm.

B.1 PRrROOF OF QSVRG-LMC

We start with the following lemma that characterizes the variance of the quantum stochastic gradients
in QSVRG-LMC in terms of the distance between the current iterate and the reference point where
the full gradient is computed.

Lemma B.2. Ler X be any iteration where QSVRG—LMC computes the full gradient. Then under
Assumption the quantum stochastic gradient gy, at Xy, that is computed using X as a reference
point in QSVRG-LMC satisfies

L2||x. — %I

Eflg — VS0u)[?) < =0

(61)

using O(d"/2b) gradient computations.
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Proof. Recall that SVRG computes the stochastic gradient g at xj, by the following.
8k = Vfi(xk) = Vfi(x) + Vf(x), (62)

where X is the last iteration the full gradient is computed and 7 is a component randomly chosen
from [n]. Let 07 = E||gr — V f(xx)||?. Then, o7 can be bounded in terms of the distance between
X}, and X.

o = E[|Vfi(xr) — Vfi(X) + Vf(X) = Vf(x)]?] (63)
=E[|Vfi(xi) = V)] = B[V fi(xx) — V£i(%)])? (64)
<E[|Vfi(xk) = V(X)) (65)
< L?|Ix — %, (66)

where the equality follows from the fact that V f; is an unbiased estimator for V f and the last line
follows from Assumption[4.2] Hence, using unbiased quantum mean estimation in Lemma 3.1} we
can obtain a random vector g, such that,

L||xx — x|
b2
by using O(d'/2b) calls to the gradient oracle. O

Elgr — V(x| < (67)

To be able to apply Lemma [B.1I] we need to characterize the expected upper bound on the variance
of the stochastic gradients over the algorithm trajectory for SVRG.

Lemma 4.7 (QSVRG-LMC Variance Lemma). Let k' < k be the last iteration where the full gradient
is computed in QSVRG-LMC and o} = E||gi — V f(x1)||%. Then, for n* < 53—,
16 L4n? l SndmL?
ol < > KL(ptrr—1|I7) + 0 (12)
r=1

«

Proof. Let x = x;. Then, by Lemma[B.2] quantum stochastic gradient gy, satisfies

L?E||x;, — x|)?

Ellgr = VF(xi)|*] < =5 (68)
Let X = yg and x;, = yy, then using the update rule of Langevin Monte Carlo,
l 2 l 2
Elllxe —%[2)=E ||D> _(yr —yr-0)|| | =E |||D —ngr—1+ 206 1) (69)
r=1 r=1
i ! 2 ! 2
<E |20 |) graa| +40||> € (70)
r=1 r=1
1 1
<2°m > Ellgeal® +47> e (71)
r=1 r=1
l
<27°m Y Rl |® + 4ndm. (72)

r=1

The first inequality is due to Young’s inequality and the second inequality follows from the fact

that the Gaussian noises at different iterations are independent and the fact that [ < m. Defining
2 2

02 . = maxy E||oy ||, we can write the first term on the right-hand side in terms of o2_,,
Ellg:|I*) = Ellgr — V£(x,) + Vf(x:)| (73)
< 2Eg; — Vf(x)? + 20V £ ()| (74)
,  8L?
< 2o—max + TKL(NTHW) + 4dLa (75)
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and using Eq. (68),

4L2m?n*o? 16L4n%m ! 8dL3n*m?  4ndmL>
2 max
O max < b2 + h2a ;:1 KL(MT*1||7T) + b2 + b2 . (76)
If we set 77 < 6L2m2 , we obtain
32L*n%*m : 8ndmL?
T < e E KL(py—1]|m) + e (77
r=1
O

Theorem 4.8 (Convergence theorem for QSVRG-LMC). Assume that m < b%. Then, forn < 5 LZ —,

the iterates in QSVRG-LMC satisfy,

64mndL?  24ndL?
+ .
ab? a

KL (p1g.||m) < e "KL (pol|m) + (13)

Proof. Letl < k be the last iteration the full gradient is computed. Then, using Lemmas[4.7]and[B.1]
we can write one step bound as follows.

KL(ptp 1 ||) < e 57/

323 4 192miP L4 & A8mn2dL?
(1 +=L ) KL(aillm) + =5 > KL (g lm) + =5 + 1657dL?

r=l

(78)

First, we claim that the following inequality is true.

48mn2dL* + 16n%dL2b?

—ank
KL(ppr1||m) < e KL (pol|m) + b2(1 — e—om)

(79)
To prove Eq. (79), we use induction. For k£ = 1, the statement holds due to Eq. (78). That is,

22403 L4 48mn?dL>?
KL () < =31/ {(1 + Z) KL (uo|7) + — 555 +160°dL% | (80)

b2
_ 48mn*dL? 2,72
< ¢ "KL (po|7) + ——5—— + 161°dL (81)
_ 48mn*dL? + 161>dL*b?
e KL pol|7) + = (82)

The first inequality is due to the fact that m < b2?. The second inequality holds since
fact that 1 — e~ < 1. Next, assume that the statement holds for k£ — 1, and then we prove the k-th

. The third inequality follows from the
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step of induction.

b2

b2

b2

b2

3203 L4 1927 L4 2 A8mnPdL? + 16n2dL2D>
KLGal|r) < 2 | (14 ZEE ) Ko + 2220 ST ) + 220
r=>~0
(83)
_ 32773L4 —an(he 48mn2dL? + 16n>dL*b?
3an/2 0“7(k 1)
<e < KL(:U’OH’/T) b2(1 _ e_om)
(84)
_ 192773L4 iy A8mn2dL? + 16p2dL2b%\  48mn2dL? + 16n2dL2b?
3an/2 anr
+e n/ n KL M0||7T) b2(1 — e—a”l) +
(85)
_ 32773L4 (o 48mn?dL? + 16n2dL2b?
< 3an/2 on](k 1)KL
<es (14 (ollm) + T
(86)
. 192mn3 L4 4 2dL2 + 16n%dL2b? 4 2dL? + 16n%dL2b?
+ efdan/Q 9 mn eman efan(kfl)KL(pJO”ﬂ,) 8m77 + 677 + 877”7 + 677
« b2(1 — e—am)
(87)
_ 3203 L4 (e 48mmn*dL? + 16n2dL>b?
< 3an/2 1 an(k 1)KL
S € ( + o € (:U/OH’/T) b2(1 _ 6_0”7)
(88)
_ 96mn3L* [ _ _ 48mn?dL? + 161n°dL3b? 48mn?dL? 4 16n2dL3b?
(89)
12 3L4 4 2L2 1 2L22 4 2L2 1 2L22
<eden/2 (1 4 8n efan(k—l)KL('uO”ﬂ.) 8mndL” + 16n°dL"b n 8mn~dL” 4 16n°dL"b
a b2(1 — e—an)
(90)
—a —an(k— 48mmn*dL? + 16n2dL*b? 48mn2dL? + 16n2dLb?
<e o (6 n(k 1)KL(,LLOH7T) + P — e o) + 02
oD
_ 48mn?dL? + 16n°dL3b?
< e “MFKL 92
< KL (nollm) + = — ©2)
64mndL? + 24ndL>*b?
< KL (g ) + T IO 93)

The first two inequalities are due to Eq. . The third and fourth inequality follow from the fact
that K — 1 < m and ™" < esL2 <ed < 1 for n < g%z and the fifth inequality holds since
(1 + %) (14 %) < e*/2forn < 57— The final inequality follows from the fact that
1—e "> 20”7 when an < i. This concludes the proof. O

Theorem 4.9 (Main Theorem for QSVRG-LMC). Let uy be the distribution of Xj, in QSVRG-LMC
algorithm. Suppose that f satisfies Assumptionsand Then forn = O (% A ﬁ) K =

o (M (n?? + )) b= 0O(n'/?), and m = O(n?/3) we have

(6%
(KL el 1), TV e, 72, S Waguse, )} < e

The total query complexity to the stochastic gradient oracle is
1) (L2 log(lgaz(uo\\fr)) (nd1/2 + d3/2€nl/3))_

Proof. Setting b = O(n'/?) and m = O(n?/?) and n < -3 the second term on the right
hand side of Theorem [4.8|becomes smaller than /2. By the step size requirement of Theorem [4.8]
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we have ) < =975 A 5775, The first term in Theorem is smaller than €¢/2 when K <

w . Hence TV distance is smaller than e. The results for W4 distance and TV distance
hold due to Talagrand’s inequality Otto & Villani| (2000) and Pinsker’s inequality [Tsybakov|(2009)

respectively. The total gradient complexity is bK = O (M ( dt/? + M)) O
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