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Deep Learning for Patient-Independent Epileptic
Seizure Prediction Using Scalp EEG Signals.

Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Member, IEEE, Sridha Sridharan Life
Senior Member, IEEE, and Clinton Fookes, Senior Member, IEEE

Abstraci— Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain
injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid
the treatment of patients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-
ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to
offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution
to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the
high inter-subject variability in EEG data. We propose two patient-independent deep learning architectures with different
learning strategies that can learn a global function utilizing data from multiple subjects. Proposed models achieve state-
of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy
respectively. In conclusion, the Siamese model trained on the proposed learning strategy is able to learn patterns related
to patient variations in data while predicting seizures. Our models show superior performance for patient-independent
seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are
the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and
we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and
pre-ictal brain states.

Index Terms— Sensor data processing, machine learning, neural networks, biomedical signal processing, model interpre-
tation, seizure prediction, electroencephalography

|. INTRODUCTION petention

Seizure
Prediction

Tasks

According to the World Health Organization (WHO),
epilepsy is a chronic non-communicable disease of the brain
that affects humans of all ages. Around 50 million people in
the world suffer from epilepsy, and almost 80% of those people
live in third-world countries [1]. Since epileptic seizures are
unpredictable events, they affect the daily lives of sufferers by
leading to unexpected accidents and increased mental stress. o o L, .
Early detection of seizures can help to reduce the physical and

mental damage caused, and supports early medical diagnosis Fig. 1: Seizure Prediction vs Seizure Detection: Seizure pre-
of seizures [2]-[4]. diction seeks to predict the brain state prior to a seizure

occurring, allowing the seizure to be forecast in advance.

Observations

Interictal State Pre-Ictal State Ictal State Postictal State

Electroencephalography (EEG) is commonly used to study
variations in brain activity and helps to identify normal and
abnormal events occurring in the human brain. In addition,

EEG is.relatively low-cost which makes .it ideal for patients  gejzure event is termed the pre-ictal state. This state may last
with epilepsy. To accurately determine seizure events, longer  from minutes to hours depending on the subject. The ictal state

duration EEG signals need to be collected, which requires g the state in which the seizure occurs, and after the seizure
expert monitoring and constrained experimental settings. event the brain shifts to the post-ictal state.

Figure 1 illustrates the problem definition of epileptic
seizure prediction and the four main brain stages in an epileptic
seizure event. In the same figure, we also highlight the problem
of epilepctic seizure detection, which is considered a separate
problem to seizure prediction. The interictal state refers to
the normal brain state of a patient. The brain state before a

Generally, epileptic seizure-related machine learning ap-
plications can be categorized into three common types. The
first type is epileptic seizure prediction where a classifier is
designed to predict a seizure event by identifying the pre-ictal
brain state of a given subject [5], [6]. The second category
is seizure detection (or abnormal EEG detection), where a
Theekshana Dissanayake, Tharindu Fernando, Simon Denman. model is designed to classify between seizure (ictal) and non-

Sridha Sridharan and Clinton Fookes are from the SAIVT Research S€izure .(inter.ictal) EEG. segments [71-[12]. The third category
group at the Queensland University of Technology, Australia deals with seizure classification where an EEG seizure sample
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is classified into the specific seizure type (e.g. focal or non-
focal seizures) [13]. Here, in this study, we focus on epileptic
seizure prediction considering its importance as an early
diagnosis technique.

As illustrated in Figure 1, seizure prediction deals with de-
signing models to distinguish between pre-ictal and interictal
states of the given subject’s brain. Since the pre-ictal state
duration is subjective [5], pre-ictal duration becomes a design
choice in proposed algorithms. Hence, if the classifier predicts
the given EEG signal is pre-ictal, the model is indicating that a
seizure will occur within the defined pre-ictal time (duration).
The early prediction capability of the designed classifier varies
depending on the duration taken as the pre-ictal time. For
instance, if the pre-ictal duration is defined as one hour, then
the designed classifier has the ability to recognize seizures with
a one-hour prediction window [6] (see Figure 1). In addition,
researchers often consider the interictal brain state to be four
hours before or after seizure onset [6].

Epileptic seizure prediction can be solved using two ap-
proaches:

1) Patient-independent studies aim to design a classifier
that can recognize seizures across multiple subjects.
When designing such models, the entire dataset is uti-
lized, and the objective is to learn a global predictive
function that has the ability to perform prediction across
multiple subjects in the dataset [14].

2) Patient-specific studies deal with designing one clas-
sifier per subject considering the high inter subject
variability in EEG data [15]. Here, a single classifier
architecture is designed and is fine-tuned for each sub-
ject. The final performance of the model is denoted by
the average accuracy after training/testing the classifier
across all or a selected set of subjects in the dataset
[6]. This approach simplifies the problem by focusing
on each subject separately when designing a model, but
these methods suffer from limited data availability.

It should be noted that designing patient-independent mod-
els is a complex task given that EEG data contain high
inter subject variability. Acknowledging this, researchers have
simplified the problem by designing patient-specific models,
however we argue that they do not offer a reliable solution
for the problem when a subject in the dataset has fewer
recordings. Studying recent literature, some researchers have
generated artificial data [16] and others have ignored subjects
with fewer samples when designing patient-specific models
[6]. Therefore, there is an essential need to investigate deep
learning techniques that can learn from data from multiple
subjects to effectively address the patient-independent seizure
prediction task [14], [17].

The main contribution of this study is the proposal of
a patient-independent model for epileptic seizure prediction.
Such a method has the capability to learn from subjects with
fewer samples while learning from subjects with compara-
tively higher number of samples uniformly, providing attention
to all subjects in the dataset. It should be acknowledged
that if the number of recordings available for each patient is
consistent across the dataset, and those recordings have longer
durations, then designing a patient specific model is a feasible

approach. However, often medical datasets comprise a varied
number of recordings per subject, and therefore, being able
to learn a global function considering the entire dataset is
important for real world scenarios [14].

Since the medical definition of an epileptic seizure event is
uniform for humans, another advantage of learning a global
function is it can be used to understand overall patterns in
the dataset. Given that existing epileptic seizure studies lack
model interpretation [18], the designed model can be used
along with a model interpretation algorithm to understand
hidden seizure-related patterns in data. Furthermore, design-
ing patient-independent models can be used as a prior step
for designing patient-specific seizure classifiers; enabling the
creation of models from less data [19]. Our main contributions
are the following:

1) We propose two different patient-independent seizure
prediction models with a one-hour early prediction win-
dow, which out perform the state-of-the-art approaches:
Model I: 88.81(40.27)%, Model II: 91.54(£0.17)% on
the the CHB-MIT EEG dataset [20].

2) We comparatively analyse the learning power of Siamese
networks and classical CNN models as deep learning
techniques that can be used to learn from data with high
inter-subject variability.

3) We employ model interpretation to understand the input
attribution. To the best of our knowledge, this is the
first study that uses model interpretation to analyze the
channel-level input contribution of models designed for
epileptic seizure prediction.

4) We examine the change in predictive characteristic (bio-
marker) when the brain state shifts from the interictal
stage to the pre-ictal stage using a probabilistic ap-
proach.

5) We demonstrate how our Siamese network can be trans-
ferred to a patient specific model with almost 97%
average accuracy.

The rest of the paper is organized as follows. In Section
II, we discuss recent investigations related to epileptic seizure
prediction. In Section III, we explain the dataset used for the
study and deep learning strategies adopted. In Section IV, we
present the results of proposed deep learning models, and we
also demonstrate how to use model interpretation to under-
stand hidden patterns learned by the best performing model.
Furthermore, in the same section, we explain our results
on predictive bio-marker analysis and additional analysis we
conducted to evaluate the robustness of the proposed approach.
Finally, in Section V, we summarize our findings.

[I. RELATED WORK

The literature on deep learning-based epileptic seizure
prediction can be divided into two key branches: patient-
independent seizure prediction and patient-dependent seizure
prediction. Clearly, developing patient-independent classifiers
can be recognized as the complex task since researchers have
to handle patient variations and distinguish between seizure-
related patterns in the data [5], [21].

The recent study by Tsiouris et al. [21] proposed a Support
Vector Machine classifier to identify pre-ictal and interictal
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brain states from EEG signals. They have employed time
domain, frequency domain, and graph theory-based features
for training their model. Their final classifier, which was eval-
uated on all 24 subjects from the CHB-MIT EEG dataset [20]
achieved an accuracy of 68.50% for patient-independent clas-
sification. The deep learning model proposed by Khan et al. [5]
is the state-of-the-art model for patient-independent epileptic
seizure prediction, and it achieves 0.8660 ROC-AUC score for
pre-ictal state detection with a 10 minute early prediction win-
dow. This prediction window was determined by the authors as
the location where the adopted features start to change when
the brain is shifting from the pre-ictal to interictal state in a
majority of subjects.

Compared to patient-independent studies, a large number
of studies can be found investigating patient-specific seizure
classification, as a result of the high inter subject variability in
EEG data. The recent study conducted by Daoud and Bayoumi
[6] achieves almost 100% performance for a classifier trained
separately for eight patients (from 24) using an Encoder-
Decoder CNN + Bidirectional LSTM network. They have
used an Encoder-Decoder network as the feature extractor,
and have proposed a channel selection algorithm to achieve
improved performance. In another recent investigation, Zhang
et al. [16] proposed a CNN model for patient-specific seizure
prediction. To overcome the data limitation problem, they have
used multi-segment cutting and splicing method and a gener-
ative adversarial network for to synthesise new data. In their
study they have emphasised that using such an augmentation
methods adds complexity and increases the training time of
the overall process. Their classifier achieved 92.2% accuracy
with a 30 minutes early prediction window for 23 subjects
from the CHB-MIT EEG dataset [20]. A similar study that
used data augmentation techniques to design patient-specific
models can be found in [19].

Another algorithmic method to overcome data scarcity is
extracting multiple descriptive features from the EEG wave-
forms that contain seizure related characteristics. The study
by Tsiouris et al. [22] presents such an evaluation on patient-
specific models and employs the CHB-MIT EEG dataset [20].
Some of the features they considered include time-domain
statistical, spectral power-based, autocorrelation-based, and
graph theory-based features. They have been able to achieve
99.84% average accuracy using a Long-Short Term Memory
(LSTM) network.

As noted, to overcome data scarcity issues when train-
ing patient-specific deep learning models, researchers have
used data-level and feature-level improvement strategies. The
problem of high inter subject variability in EEG data has
been acknowledged and discussed in the seizure prediction
literature, yet few researchers have considered ways of over-
coming this problem by designing patient-independent models.
Similar concerns have been raised in the recent review on
deep learning-based EEG analysis by Roy et al. [14] who
observe that patient-specific models designed for EEG appli-
cations demonstrate good performance, since the data has low
variability considering a subject, whereas designing patient-
independent models is a challenging task. They further note
that, examining a broad range of EEG-related studies which

have investigated both approaches, patient-specific approaches
have often shown better performance than patient independent
methods [14]. According to their observations on current EEG-
based deep learning applications, there has been a clear trend
in investigating patient-independent models recognizing their
advantages as real world solutions for EEG applications.

In summary, we recognize the following limitations in the
current epileptic seizure prediction literature.

Little attention has been given to patient-independent studies
considering the high inter subject variability in EEG data. As
in [14], we argue that designing patient-independent models
is a challenging task, but conducting research related to such
models is important as they offer a more realistic solution to
the problem. In the context of this objective, the prediction
accuracy and prediction horizon of such methods should be
improved considering the predictive capabilities of patient-
specific studies.

Other observed limitations are related to the explainability
of the model and the predictive capacity of the input feature
representations used. The recent review by Rasheed et al [18]
discusses the importance of interpretability of the design
model. We observe that model interpretation can be an ef-
fective tool to build understanding and trust among end-
users (who do not necessarily possess a machine learning
background) regarding the generated predictions. Furthermore,
according to recent review by Kuhlmann et al. [23], deep
learning-based seizure prediction studies haven’t focused on
the predictive capabilities of the input features used. Therefore,
acknowledging these limitations further investigations should
be conducted.

[1l. METHODOLOGY

Convolutional Neural Networks (CNNs) have achieved
tremendous success in a number of different machine learning
tasks ranging from object recognition to autonomous driving
[24]. Furthermore, they have been successfully applied to
learning from biosignal data after transforming biosignals into
time-frequency representations [25]. Their success lies in the
fact that they can automatically learn salient features from the
data without need for hand-crafting feature representations.
Moreover, CNN models are inherently shift invariant, making
them a robust solution to learning from biosignal data.

In this study, we propose two deep learning models for
patient-independent epileptic seizure prediction inspired by the
novel multitask learning techniques [26], [27], which allow us
to train models that have the ability to recognize differences
within patients while also performing seizure classification.
Here, we argue that understanding patient differences during
training is key to enabling the model to learn complex patterns
in the data, which ultimately leads to higher prediction accu-
racy. The remainder of this section is organized as follows. In
Section III-A, we discuss the dataset used for the evaluation.
In Sections III-B and III-C, we propose two different deep
learning models for patient-independent seizure prediction. In
Section III-D, we discuss additional studies we conducted to
evaluate the effectiveness of the proposed patient-independent
learning technique.
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Fig. 3: Siamese network architecture. Lo g: Binary Cross Entropy Loss, Loons Categorical Cross Entropy Loss. Here, we
only show a one CNN-encoder branch of the Siamese network with the extended classification output. Conv2D:XX(h,w) refers
to a 2D Convolution layer with XX (h,w) sized filters. Dense:XX: A fully connected linear layer with XX neurons.

A. Data Preparation

We use recordings from the CHB-MIT EEG dataset col-
lected at the Children’s Hospital Boston [20]. This dataset
contains 24 EEG recording samples captured from 23 subjects:
5 male subjects aged between 3-22 years, 17 female subjects
aged between 1.5-19 years and an additional non-annotated
sample was added later. The additional sample was later
captured from subject 1 after 1.5 years, and recent studies
have treated this as a separate recording captured as a different
subject (i.e yielding 24 cases/subjects) [21], [28]. The dataset
was intended to be recorded as a continuous EEG database.
Therefore, for each subject, it contains annotations related to
the capture start times and end times. However, there are some
samples with gaps from 10s to multiple hours as a result of
hardware limitations.

Furthermore, some subjects contain 22 EEG-channel record-
ings from the 10-20 system. To be consistent with other
cases, we added an additional channel for those subjects by
computing the average across the available 22 channels. We
followed this step to ensure the consistency of the dataset, as
dropping 1 channel from the 23-channeled EEG spectrum may
remove some important seizure related patterns in data.

Similar to the investigation by Daoud and Bayoumi [6],
we assume the pre-ictal state duration of each patient to be
at least one hour before the seizure onset, and the interictal
state of the brain occurs four hours before or after the seizure
onset. Given that the pre-ictal state of the brain is subjective,
and it may appear hours before the seizure encounter, this

criterion will ensure that we capture the most promising
samples to accurately represent the interictal brain state of the
subject. After selecting pre-ictal and interictal samples from
each patient, we obtained a 158,902 sample balanced dataset
where each sample has a duration of 10s and 23-channels.
When constructing this balanced dataset, since the original
data has a limited number of pre-ictal signals (or recordings
with seizures) we used 2s overlap while windowing those
signals. However, our interictal samples are non-overlapping
10s signals and the balanced dataset contain samples from all
available EEG recordings in the database.

For training deep learning models, we used the Mel Fre-
quency Cepstral Coefficients (MFCCs) of the sampled signal.
This selection is based on MFCC’s wide range of applicability
for biomedical signal-related deep learning tasks [29]. To
compute the spectrum, we used 13 Filter Banks within the
frequency range of 0-256.0Hz, resulting in a feature map of
shape [23 x 13 x 201] (for 23 channels). It should be noted
that, similar to [5], we use a 10-Fold Cross-Validation to
evaluate performance, in each fold our deep learning model
will be trained on ~140k instances and be validated on ~15k
instances.

B. Multitask Deep Learning Architecture

In this section, we introduce a multitask Convolution Neural
Network for recognizing pre-ictal brain states. The proposed
CNN is able to differentiate between patients and pre-ictal-
interictal brain classes. As shown in Figure 2, the proposed
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model has two outputs: a seizure-related binary classification
output and a patient prediction output of size [24 x 1]. Consid-
ering the architecture of the model, it has five 2D convolution
layers with different filter sizes. Furthermore, for regulariza-
tion, we use Dropout with 0.6 probability and 0.4 MaxNorm
kernel normalization constraint for each convolution layer.

LOSS:)\LBcE+(1*>\) LCCE~ (1)

As shown in Equation 1, we employ a combined loss
function to train the model. Here, Lpc g refers to the Binary
Cross-Entropy loss for the seizure classification task, Loog
refers to the Categorical Cross-Entropy loss for the patient
prediction task, and A is a hyperparameter that determines
the contribution from individual losses and is determined
experimentally.

C. Siamese Architecture

The model discussed in Section III-B implements a deep
learning architecture that is able to learn two different but
related concepts in the data. Inspired by our previous study
in domain generalization for biosignal data [30], we evaluate
how efficiently Siamese networks can be utilized as pre-
ictal/interictal brain state classifiers.

Figure 3 illustrates one classification branch of the proposed
Siamese network architecture for computing a unique embed-
ding for each patient (of shape [100 x 1]). The model has two
convolution channels as the input, which extract features using
two different kernels shaped [5 x 9] and [5 x 11]. This model
also uses Dropout with 0.4 probability as a regularizer. Since
the model also acts a as a pre-ictal-interictal classifier, we use
a linear (40 neurons) layer to produce the final classification
output.

Loss = vy Loons + (1 — ’y) Lpce. )

Equation 2 expresses the loss function used for training the
Siamese network. Here, Lo, refers to the Contrastive loss
[31], Lpcg refers to the Binary Cross Entropy loss, and ~
is a hyperparameter that controls the relative weight of the
terms. The Contrastive loss can be expressed in the following
equation where Y. indicates whether the two samples are
from the same class, d is the distance measure used and
margin is the minimum separation between embeddings of
different classes.

Lcoons = Yirue d? + (1 - Y;frue) maa:(margin —d, 0) (3)

We set the margin to 1.0 and we use L2 distance as the
distance measure (d). Within the Siamese framework, we
consider pairs of samples from the same patient to be a
matched pair, and pairs of samples from different patients to
be mis-matched pairs. For this, offline mining [31] is used to
generate paired data to train the network. Binary Cross Entropy
loss for seizure classification is computed for the first sample
of the pair (see Figure 3).

For the offline mining technique, the data stream yields pairs
of samples for the loss calculation (primary and secondary).

To generate this data stream, we use the original dataset. For
each unique primary sample in the dataset, we select a second
sample such that 50% of pairs contain samples from the same
patient, and 50% contain samples from different patients.

D. Additional Evaluation: Patient-specific Seizure
Prediction

As mentioned above, the primary focus of this study is
developing a patient-independent seizure prediction model.
We also conduct an additional evaluation regarding designing
subject-specific classifiers using Transfer Learning.

As discussed in Section II, the number of data instances
available for a particular patient is a major limitation when
designing patient-specific seizure classifiers. Therefore, to
address this problem, we use Transfer Learning to transfer
information learnt in patient-independent models to patient-
specific models. It should be noted that our dataset does
contain a considerable amount of samples from each patient
(all 24), but those samples are not sufficient to train a deep
learning classifier from scratch. Therefore, in this experiment,
we demonstrate how we can use Transfer Learning to achieve
state-of-the-art patient specific classification from the learned
model from Section III-C (i.e the Siamese-based classifier).
This strategy can be seen as the most data efficient way to
solve the problem compared to previous studies [6], [22].

In this experiment, first we remove instances (d;) extracted
from the selected subject i (i € [1,2,...,24]) from the dataset
(both training and evaluation). Then, we train the model (Mi/ )
using the rest of the available data. After training the model,
we transfer the learned model (Ml-/ ) to the space of subject
by re-training (or fine-tuning) the model utilizing the instances
(d;) from subject s;. We perform this evaluation for all 24
subjects, and train models for 200 epochs. As an additional
task, we evaluate the performance of Transfer Learning by
varying the number of selected training examples from d;.
Here, to compare the classification accuracy, we use the same
validation dataset selected from d;. By doing this, we analyse
the performance variation of the model as the number of
instances available changes.

V. RESULTS AND DISCUSSION

The results and discussion is organized as follows. In
Section IV-A, we discuss the accuracies obtained by proposed
learning techniques introduced in Sections III-B and III-C. In
this section, we also use t-SNE [32] analysis to visualize how
those two methods represent the patient differences in the data
while acting as pre-ictal-interictal state classifiers. In the next
section we demonstrate how we can use model interpretation
techniques to understand what sort of input features in the
MFCC map contribute to the final prediction. Here, we only
focus on channel-level attribution of the input feature maps
of the Siamese network. Next, we employ a KL-Divergence-
based probabilistic technique to determine the exact point
where the brain state changes from the interictal state to the
pre-ictal state using MFCC features. The final section presents
results from the additional evaluation discussed in Section III-
D
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Fig. 4: t-SNE [32] visualizations for the embeddings from models introduced in Sections III-B (Figs. a, b) and II-C (Figs. c,
d). Each visualization shows 400 randomly selected instances from each subject.

A. Patient Independent Seizure Prediction

As previously mentioned, we set the prediction horizon
as one hour, and our dataset contains 10s 23-Channel EEG
samples from all 24 subjects. We trained our models for 200
epochs with a batch size of 600. We used the Adam optimizer
with a 0.001 learning rate.

The following list demonstrates the 10 Fold Cross Validation
results for our two models (Model 1 from Section III-B and
Model 2 from Section III-C),

e Model I: Accuracy: pre-ictal-interictal state detec-
tion 88.81(40.27)%, patient detection (additional task):
95.00(£0.56)%. Sensitivity: 93.45(40.22)%, Specificity:
81.64(£0.23)%, ROC-AUC score: 0.9273(£0.0029), A =
0.9

e Model II: Accuracy: pre-ictal-interictal state detection
91.54(%0.17)%, Sensitivity: 92.45(10.22)%, Specificity:
89.94(£0.21)%. Constrastive loss: 0.0475(£0.002),
ROC-AUC score: 0.9694(40.0018), Optimal Embedding
size: 100, v = 0.6

As discussed in previous sections, both models in the
investigation have been trained as multitask models to predict
seizure and patient-related information. In this setting, the
Siamese network from Section III-C shows superior perfor-
mance. However, considering that the models incorporate data
from a one-hour prediction window, both models perform
better than the state-of-the-art model discussed in [5], which
achieves 0.8660 ROC-AUC score for a 10 minute prediction
window. We also note [5] only considered 15 subjects from
the same dataset, while models proposed in our investigation
shows higher accuracies on a more diverse dataset with 24
subjects. The classifiers also achieve significant accuracy gains
compared to studies by [21] and [33].

Examining the proposed models, both architectures consist
of a CNN encoder network followed by an additional linear
layer(s). Looking at the number of trainable parameters in each
classifier: the CNN multitask model contains 102k parameters
and the Siamese network holds 128k parameters. Even though
the proposed models have similar architectural arrangements,
they employ two different strategies to learn, and the in-
termediate embeddings produced by both models differ (it
should be noted that the lengths of those two embeddings
were experimentally chosen to achieve high classification

accuracies). We use t-SNE [32] to understand the capability
of those embeddings. By doing this, we seek to understand
how effectively each of these embeddings interprets patient
and seizure-relevant information.

Figure 4 shows four t-SNE [32] visualizations, illustrating
how each of the intermediate embeddings represents the con-
cepts in the data in a 2D plane. Figures 4a and 4b present
t-SNE [32] visualization of the ([360 x 1]) sized embedding
from the CNN model. The next two figures use the [100 x 1]
embedding from the Siamese network. Here, for each selected
embedding, first we show the subject distribution (different
colours represent different subjects) and then we demonstrate
how pre-ictal and interictal samples are distributed in the same
space.

According to Figures 4a and 4c, compared to the CNN-
based embedding, the embedding generated from the Siamese
network shows comparatively good results in separating
patient-related information in the data. In most cases, for a
particular patient, the Siamese embedding yields a smaller
number of sub-clusters than the CNN-based embedding (see
specific color codes). Furthermore, observing class separations
in Figures 4b and 4d, the CNN-based embedding appears
to clearly divide class information in the higher dimensional
space by producing multiple clusters. In contrast, rather than
appearing as sub-clusters in the embedding space, class-related
patterns in Siamese embeddings seem to be distributed within
the patient-clusters. In fact, that behavior itself forces the
Siamese model to have a smaller number of clusters.

Analysing Figure 4, one of the reasons for the Siamese
model showing superior performance is it’s ability to clearly
separate patients. Hence, knowing the patient differences while
being trained as a pre-ictal-interictal state classifier seems to
be the key to achieving higher seizure prediction performance.
Recent patient-independent seizure prediction architectures in
the literature have overlooked this, and as mentioned, this may
be one of the reasons for having considerably low performance
compared to patient-dependent seizure models in [6], [22].

Table I shows cross validation results when varying the
pre-ictal duration taken to create the dataset. As shown in
the table, the proposed Siamese network demonstrate higher
performance when evaluated on shorter pre-ictal durations (i.e
closer to the seizure onset).
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B. Model Interpretation

The SHAP (SHapley Additive exPlanations) by Lundberg
and Lee [34] is one of the most popular model interpretation
techniques in the deep learning literature. The SHAP algorithm
provides insights related to the input feature contributions
for a particular prediction (i.e attribution). Simply, the SHAP
algorithm can be expressed as the following linear regression
equation where x; refers to the ith feature, w; refers to the
weight associated with the i*" feature and 7 is the prediction
made by the model.

1 = Wwoxo + W1 T1 + Waka + -+ - + WpTn. 4

In this context, a Shapley value determined by the SHAP
algorithm denoted by wy;, is an indication of the contribution
of feature z; to the final prediction. Furthermore, Shapley
values can be negative or positive symbolizing the direction
of influence. For simplicity, in this investigation, we only use
absolute Shapley values such that a larger value indicates a
greater contribution.

Since the input data to the network is high dimensional,
we use a channel-level interpretation strategy to discuss how
each channel contribute to the final prediction made by the
model. To demonstrate this, we use six samples from four
different patients from the CHB-MIT EEG dataset. In our
visualizations, Figures 5, 6, and 7 are samples with seizures,
and Figure 8 is a normal sample selected from subject four.
Furthermore, samples shown Figures 5 and 7 are combined
samples with less than 60s between their capture (see specific
file names in the figure). In this analysis, we only consider
the Siamese network proposed in Section III-C, which demon-
strates superior performance compared to the CNN model.

For a given instance k[23x13x201] in the input dataset, the
SHAP algorithm returns a Shapley value map with the same
shape. To compute channel-level attribution (mel}), we use
Equation 5,

1=13x201

Skl Vi€l

=0

C[23 x1] =

Each plot in the bottom of Figures 5 to 8 illustrates the
channel-level Shapley value map shaped 23 x N (N: the num-
ber non overlapping of 10s MFCC input feature instances).
Here, we indicate higher Shapley values (i.e. greater contribu-
tion) in darker shades of green. The top figure of each plot is
the prediction made by the model for those instances before
the seizure onset (the selection period varies from 3.5 hours
to 7.0 hours). For clear visualization of the interpretation, we
apply a Hanning smoothing window [35] to the predictions.

Duration (minutes) 15 30 60
Accuracy 95.72% | 94.72% | 91.54%
ROC-AUC 0.9877 0.9843 0.9694
Sensitivity 97.88% | 96.43% | 92.45%

TABLE [: Results after changing the pre-ictal sample duration
selected for training the Siamese Network. Overlaps in pre-
ictal samples:15mins : 3.5s, 30mins : 2.5s

Figure 5 demonstrates the channel-level Shapley value
variation with the prediction made by the model (exact and
thresholded) for subject six. According to the prediction, the
pre-ictal brain state of subject six appears to be visible 1.25
hours (1 hour 15 minutes) before the seizure onset. Examining
the SHAP variations, the highest contributing EEG channel
appear to change at point at which the brain state switches
from interictal to pre-ictal brain state. Furthermore, looking at
the overall Shapley values, almost all channels appear to show
some contribution to the final prediction.

Figure 6 shows the interpretation visualization for the
combined EEG signal from subject nine. As per the previous
interpretation, this also shows similar channel transfers at point
at which the brain state shifts. However, the pre-ictal stage
seems to be appear three hours before the seizure.

Compared to previous results, the prediction for patient
seven shown in Figure 7 has a steady shift between interictal
and pre-ictal brain states. Furthermore, this figure does not
seem to show the channel shifting behavior observed in the
previous two explanations.

The final sample taken for the interpretation is from pa-
tient four in the CHB-MIT EEG dataset. This interpretation
visualization shows how the model classifies a seizure-free
sample. Examining Shapley values, a single channel (channel
18) seems to contribute prominently to the prediction made by
the model. Unlike previous interpretations, this clearly shows
an individual channel from the EEG signal as the primary
contributor for the prediction.

Collectively examining the results, the Siamese model pro-
posed in this study has a steady pre-ictal-interictal brain state
recognition capability. Looking at the predictions made for
patients six and nine, the pre-ictal brain state appears to be
visible 1.5 hours before the seizure onset. Moreover, observing
Shapley values for each channel, it is apparent that almost
all channels in the input feature map do contribute to the
prediction made by the model.

C. Pre-ictal bio-markers derived from MFCC feature
maps.

Recognizing one of the limitations discussed in [36], in this
section, we investigate what sort of predictive characteristic (or
feature) appears when the brain state shifts from the pre-ictal
to interictal stage. This analysis will help to localize the exact
point where the feature distribution changes, and will help to
determine if such a detail is visible in the MFCC feature space
rather than in the hidden space of the deep learning model.

As in the previous section, we use channel-level evaluations
due to the high dimensionality of the input data. First, we
represent a particular input feature channel F} at a given time
t as a probability distribution P, and in this setting, P;(fF) is
the probability of having feature value fF in the distribution
(fF € F}). Next, we define the change of the feature map
due to the brain-state-shift as the KL-Divergence between P,
and P,y;. Then, we compute this for all time steps in a given
channel, and the resulting computation for all 23 channels has
the shape 23 x N (N: number of time steps).

Figure 9 illustrates the results after calculating these varia-
tions for five seizure samples. Here, each visualization contains
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Fig. 5: Prediction (top) and Channel-Shapley value variation (bottom) for the seizure sample chb06_09.edf. Shapley values
with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the final prediction
(thresholded).
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Fig. 6: Prediction (top) and Channel-Shapley value variation (bottom) for seizure samples chb09_05.edf and chb09_06.edf.
Shapley values with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the
final prediction (thresholded).
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Fig. 7: Prediction (top) and Channel-Shapley value variation (bottom) for seizure samples chbO7_11.edf and chb07_12.edf.
Shapley values with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the
final prediction (thresholded).
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Fig. 8: Prediction (top) and Channel-Shapley value variation (bottom) for the normal sample chb04_17.edf. Shapley values
with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the final prediction
(thresholded).



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

20 -8 i

20 -E8

Fig. 9: Visualization for the KL-Divergence variation of Channel-Level input feature maps ([13 x 201]) computed for a sample
with a seizure onset (chb06_09.edf, chb07_12.edf, chb09_06.edf, chb04_05.edf and chb22_11.edf). In each plot, darker purple
color spots indicates a higher distribution shift. We also indicate the prediction of model (0.0, 1.0) in a red colorbar, and the

final (thresholded) prediction purple interictal, green pre-ictal.

P N LOPO 100 1000 | 2000 N P N LOPO 100 1000 | 2000 N
chb01 6905 60.01 | 92.14 | 96.62 | 9791 | 99.50 || chbl3 | 5989 | 63.11 | 95.17 | 97.49 | 98.27 | 99.62
chb02 | 5283 5836 | 88.82 | 94.63 | 97.85 | 98.63 || chbl4 | 6523 | 61.58 | 75.57 | 79.38 | 81.48 | 91.17
chb03 | 6255 49.75 | 85.88 | 97.10 | 97.10 | 99.20 || chbl5 | 7734 | 37.21 69.88 | 81.22 | 83.57 | 97.69
chb04 | 16876 | 78.72 | 85.50 | 92.58 | 9391 | 98.75 || chbl6 | 3661 | 53.99 | 83.10 | 89.92 | 92.21 96.71
chb05 | 6089 5536 | 62.89 | 80.81 | 8532 | 94.63 || chbl7 | 4515 | 41.55 | 85.10 | 9643 | 97.28 | 97.28
chb06 | 9542 59.56 | 61.81 | 74.45 | 7550 | 93.11 chbl8 | 6390 | 56.04 | 80.44 | 97.12 | 96.90 | 96.98
chb07 | 9042 61.22 | 81.10 | 90.78 | 92.75 | 98.92 || chbl9 | 4697 | 56.71 | 98.30 | 100.0 | 100.0 | 100.00
chb08 | 5749 68.38 | 86.46 | 92.52 | 91.41 | 96.65 || chb20 | 4580 | 48.08 | 97.34 | 98.17 | 99.56 | 99.56
chb09 | 8958 62.79 | 82.27 | 90.20 | 92.33 | 97.59 || chb2l | 5567 | 64.05 | 73.21 | 86.65 | 87.56 | 88.56
chbl0 | 10480 | 58.50 | 81.43 | 87.92 | 92.96 | 98.01 chb22 | 5251 | 60.52 | 81.45 | 84.26 | 87.04 | 87.04
chbll 4513 51.64 | 90.89 | 97.00 | 97.65 | 99.00 || chb23 | 3847 | 73.59 | 93.33 | 98.17 | 98.10 | 98.10
chbl2 | 5804 69.81 | 88.15 | 92.50 | 92.33 | 96.68 || chb24 | 4662 | 53.77 | 80.00 | 88.33 | 88.55 | 88.55

[ Average Accuracies:

[ 5855 | 83.34 | 9101 | 92.39 | 96.67 |

TABLE lI: Validation results from the Transfer Learning approach for patient-dependent seizure prediction (N: the number of
samples). Batch sizes for the selected samples (sample_size:batch_size): 100 : 10, 1000 : 100, 2000 : 200, N : 400. Leave One
Patient Out (LOPO) column presents the validation accuracies before transferring the model.

three rows. The top row presents the KL-Divergence-based
map computed. The middle row represents the prediction made
by the model within the range (0, 1), where a darker red color
indicates prediction of a pre-ictal brain state. The third row
shows the final prediction of the model, which is taken by
thresholding the prediction shown in the previous map. Here,
green indicates pre-ictal brain states.

Examining all visualizations, it is apparent that the input
feature maps shows a clear change when shifting brain state
from the interictal state to the pre-ictal state. Furthermore, in
the top three figures, all channels in the EEG seem to have
changing characteristics, whereas the rest of the explanations
only show variations in a single-channel.

Observing the MFCC feature distribution variation, the
designed deep learning classifier does identify a shifting

point, and the identified point may be the actual pre-ictal
brain state start time/location. Even though this result aligns
with the prediction made by the model, we believe that the
physiological characteristics related to this observation should
be further investigated on a larger database. Importantly, this
evaluation implies that such a feature exists in the data, and
it can be determined through a simple probabilistic evaluation
in the input space.

Furthermore, given that we can observe such variations for
all five subjects, it is apparent that the MFCC feature does offer
a unified higher dimensional representation of the EEG signals
that helps to differentiate between pre-ictal and interictal shifts.
In fact, that point itself demonstrates the validity of the patient-
independent model, and the strength of MFCC features used.
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D. Additional Evaluation: Patient-Specific Seizure
prediction.

Examining recent studies on patient-specific seizure pre-
diction, we observed that some of those studies restricted
their evaluations to fewer patients due to the lack of seizure
recordings. Therefore, in this section, we report the results
from Section III-D, where we introduced Transfer Learning as
a method for addressing data limitations. It should be noted
that this is an additional evaluation we conducted along with
our main objective i.e designing a patient-independent model
for epileptic seizure prediction.

Table II presents the results after applying transfer learning
to all 24 patients in the dataset. As discussed, we show the
Transfer Learning accuracy variation as the number of samples
used for transferring the model changes. Table II also presents
the validation accuracy obtained from the entire dataset before
transferring the model (i.e a Leave One Patient Out (LOPO)
validation). Similar to the previous analysis, we use the Adam
optimizer for fine-tuning the model, and we adjust the batch
size depending on the number of available training samples
(see Table II). For performance comparison purposes, we keep
the same validation dataset for all Transfer Learning evalua-
tions. Observing the accuracies gained after transferral, the
majority of transferred models employing the entire training
dataset perform with an accuracy of 96.67+3.62% for patient-
specific seizure prediction. Also, the proposed method shows
comparatively good accuracy even when transferred using a
smaller data sample. Therefore, we believe this demonstrates
the realistic and efficient nature of Transfer Learning when
designing seizure classifiers for patients with fewer EEG
recordings.

Along with the Transfer Learning evaluation, we test the
model’s generalization ability by supplying a set of instances
from a completely unseen subject (i.e LOPO evaluation). Here,
it should be noted that the problem of patient independence
does not deal with generalization aspects [14], and therefore,
generalizing across multiple subjects should be separately
investigated. Studying the literature, we were unable to find
a deep learning-based patient-independent epileptic seizure
prediction study that directly focused on the generalization
aspects of the designed model regarding completely unseen
patients. However, there are some studies who have used
the Leave One Sample Out evaluation method (deals with
generalizing to an unseen sample from a subject) [6], and
determining a generalized set of features for training deep
learning models on different databases [37]. However, as in
[3], [14], we argue that the generalization capability of the
model should be evaluated using completely unseen subjects,
and therefore acknowledging this further investigations should
be conducted.

Examining the results, it is apparent that in most cases the
model struggles (average: 58.55%). However, for 11 subjects
in the dataset (from 24), the model shows classification capa-
bility higher than 60%, which is a promising result considering
the prediction horizon used to design the model. Furthermore,
looking at the transfer learning results, even with few data
instances, the model is capable of achieving comparable results

for solving the problem.

Recent machine learning models for patient-dependent
seizure prediction have shown promising results, and our pro-
posed model also achieves similar accuracies when evaluated
on all 24 patients. Considering the number of patients adopted
for evaluation and the performance, our model outperforms the
recent studies by [6], [38], [39].

V. CONCLUSION

The main objective of this study is to design a deep learning
classifier for patient-independent epileptic seizure prediction.
Such models can be used in situations where subjects in the
dataset have fewer labeled examples (EEG recordings). We
recognize this is a typical case in Intensive Care Unit (ICU)
monitoring scenarios where an adequate number of samples
can not be obtained to train a prediction model.

In this research, we proposed two different CNN architec-
tures for this problem. Both proposed models have the ability
to accurately recognize seizures with a one-hour prediction
window, and those models outperform the state-of-the-art
with 7% and 11% ROC-AUC score gains respectively. The
Siamese model introduced in this study demonstrated excellent
performance and we investigated its capability through t-SNE
[32] and SHAP model interpretations.

In addition to the developed models, we also explained
how we can apply the SHAP algorithm as a technique for
understanding individual EEG channel contributions, which
further enhances the importance of subject-independent mod-
els. Since this phenomenon has never been studied in the
epileptic seizure prediction literature, we believe our study
will provide researchers with insight into the importance of
model interpretation as a way of understanding the behavior
of the model.

In the context of deep learning, we evaluated how clas-
sical CNN models can be effectively used for learning
two-different-but-related problems. Our t-SNE visualizations
proved that a Siamese architecture in a multi-task learning
setting is in fact a robust solution for the problem compared to
a classical CNN. We also believe that our proposed method can
be used in other-related scenarios where the dataset possesses
high inter-subject-variability.

As an additional step to evaluate the robustness of our
classifier, we showed how to design patient-specific seizure
prediction models employing Transfer Learning. The models
proposed in our study had 96% an average accuracy consid-
ering all 24 subjects in the dataset.

We also conducted an additional analysis regarding the
generalization aspect of the model. Given that learning a
subject-independent function is itself a complex task, our
model showed promising generalization for some completely
unseen subjects. Designing a classifier that generalizes to
completely unseen subjects is a complex task. However ex-
isting investigations in the literature largely fail to consider
the generalizability of the model, given that most of them
have focused on implementing subject-specific classifiers. As
a future direction, we encourage researchers to conduct further
research related to the generalizability of designed classifiers,
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acknowledging their importance as real-world solutions for
seizure prediction.
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