
Guided Search Strategies in Non-Serializable Environments with Applications to
Software Engineering Agents

Karina Zainullina * 1 Alexander Golubev * 1 Maria Trofimova * 1 Sergei Polezhaev 1 Ibragim Badertdinov 1

Daria Litvintseva 1 Simon Karasik 1 Filipp Fisin 1 Sergei Skvortsov 1 Maksim Nekrashevich 1 Anton Shevtsov 1

Boris Yangel 1

Abstract
Large language models (LLMs) have recently
achieved remarkable results in complex multi-
step tasks, such as mathematical reasoning and
agentic software engineering. However, they of-
ten struggle to maintain consistent performance
across multiple solution attempts. One effective
approach to narrow the gap between average-case
and best-case performance is guided test-time
search, which explores multiple solution paths to
identify the most promising one. Unfortunately,
effective search techniques (e.g. MCTS) are often
unsuitable for non-serializable RL environments,
such as Docker containers, where intermediate
environment states cannot be easily saved and re-
stored. We investigate two complementary search
strategies applicable to such environments: 1-step
lookahead and trajectory selection, both guided
by a learned action-value function estimator. On
the SWE-bench Verified benchmark, a key testbed
for agentic software engineering, we find these
methods to double the average success rate of a
fine-tuned Qwen-72B model, achieving 40.8%,
the new state-of-the-art for open-weights mod-
els. Additionally, we show that these techniques
are transferable to more advanced closed models,
yielding similar improvements with GPT-4o.

1. Introduction
The rise of large language models (LLMs) has driven sig-
nificant advancements across multiple domains. However,
when it comes to tasks requiring heavy reasoning or agentic
capabilities, a major challenge persists: while the models
occasionally achieve exceptional results, their average per-

*Equal contribution 1Nebius. Correspondence to: Boris Yangel
<byangel@nebius.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. The comparison of two evaluation protocols for a GPT-
4o-based agent: Pass@N and random sampling. The x-axis
shows the number of attempts, the y-axis shows the average success
rate (i.e. the percentage of correct solutions).

formance often falls short of their demonstrated potential.

To illustrate this challenge, Figure 1 depicts the performance
of a reasonably capable GPT-4o-based agent (Yang et al.,
2024) on SWE-bench Verified (Jimenez et al., 2024) under
two evaluation protocols:

• Pass@N : the agent makes N attempts to solve each
problem instance, and a problem is considered solved
if at least one attempt succeeds. This protocol demon-
strates the model’s potential capability ceiling.

• Random sampling: a problem is considered solved
if a randomly selected solution from N attempts is
correct.

This example highlights that LLMs exhibit high variance
in success rate across different attempts. It is common for
sequential tasks where multiple correct decisions must be
chained together: even if a model makes 80% of individual
decisions correctly, the probability of sampling a complete
successful trajectory can decrease exponentially with the

1



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

number of required steps (i.e. 0.8T for T steps), depending
on the ability of the model to self-correct.

In domains that involve complex reasoning, such as mathe-
matical problem solving, recent work has demonstrated im-
provements in performance consistency through two main
approaches. Outcome Reward Models (ORMs) (Cobbe
et al., 2021; Mudgal et al., 2024) predict the correctness
of the final answer that is then used for solution reranking.
Process Reward Models (PRMs) (Lightman et al., 2024;
Wang et al., 2024a; Uesato et al., 2022) evaluate the cor-
rectness of intermediate steps. Step-level evaluations pro-
vided by PRMs can be combined into a single score for
reranking, but they also enable classical search methods
such as Beam Search (Setlur et al., 2024), Best-First Search
(BeFS) (Koh et al., 2024), Depth-First Search (DFS) (Yao
et al., 2023a), and Monte-Carlo Tree Search (MCTS) (Koc-
sis & Szepesvári, 2006; Gao et al., 2024; Xie et al., 2024;
Hao et al., 2023; Putta et al., 2024). Search methods im-
prove consistency by systematically exploring the space of
solutions instead of relying on chance.

Unfortunately, many agentic systems operate in non-
serializable environments (formally defined in Section 2.3),
where intermediate states cannot be saved, replicated, or
reversed. Non-serializability prevents the use of search
methods that require multiple roll-outs from the same state,
significantly limiting the available forms of exploration.
For example, Monte-Carlo Tree Search (MCTS) becomes
impossible in these settings as it relies on the ability to
re-explore previously visited states.

Our main contributions are as follows:

• We introduce the notion of non-serializable RL envi-
ronments, with Docker containers being one important
example, and highlight the limits to the applicability
of powerful guided search techniques such as MCTS
to these environments.

• We identify and systematically study two guided search
methods applicable to non-serializable environments,
using SWE-agent (Yang et al., 2024) on SWE-bench
Verified (Jimenez et al., 2024) as a testbed. Our find-
ings reveal that these techniques and their combination
can significantly bridge the gap between peak and av-
erage agent capabilities even under non-serializability
constraints. Moreover, we observe favourable perfor-
mance scaling with more test-time computation.

• We apply the proposed techniques on top of a state-of-
the-art open-weights LLM and demonstrate the best-
in-class success rate of 40.8% on the SWE-bench Veri-
fied.

• We demonstrate that the proposed method is equally
applicable to powerful proprietary models.

2. Preliminaries, Definitions, and Notation
2.1. Problem Setup and Notation

Following (Murphy, 2024) we formalize our setting
as a Partially Observable Markov Decision Process
(POMDP) with discounted rewards, defined by the tuple
⟨Z,A,Ω,W,O,R, γ⟩, where

• Z is the set of environment states,

• A is the set of actions,

• Ω is the set of observations,

• W,O,R are stochastic transition, stochastic observa-
tion, and reward functions,

• γ ∈ [0, 1) is the discount factor.

At each time step t, the environment is in state zt ∈ Z ,
which is not directly observable by the agent. Instead, the
agent receives observation ot ∼ O(o | zt) and maintains its
internal state st, defined as the history of past observations
and actions st = (o0, a0, o1, a1, . . . , ot), which we also re-
fer to as trajectory. Based on st, the agent follows policy
π to issue an action at ∼ π(a | st) ∈ A. The environ-
ment then transitions to zt+1 ∼W (z | zt, at) and provides
reward rt = R(zt, at, zt+1).

We consider an episodic setting where each episode ter-
minates upon reaching one of the terminal states zT ∈
Zterminal ⊂ Z . We refer to trajectories that reach a terminal
state as complete trajectories, denoted as sT . In our setting,
we focus on sparse reward environments, where non-zero
rewards are only provided at terminal states, i.e. rt = 0
for t < T − 1 and rT−1 ∈ {0, 1}. This reward structure
naturally arises in scenarios where ground truth is provided
by a verifier that evaluates the entire trajectory upon episode
completion. For any step t, the return-to-go is defined as the
discounted terminal reward Rt ≜ γT−t−1rT−1.

2.2. Guided Search

Given a problem encoded using the POMDP formulation de-
scribed above, we formalize guided search methods through
the notion of inference operators, rules that induce the distri-
bution over trajectories given an initial state. In its most gen-
eral form, an inference operator is a distribution I(sT | s0).
The most straightforward inference operator is the base in-
ference operator I[π](sT | s0) that uses some policy π to
generate complete trajectories according to the following

2



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

procedure:

at ∼ π(a | st),
zt+1 ∼W (z | zt, at),
ot+1 ∼ O(o | zt+1),

st+1 ≜ (o0, a0, . . . , ot︸ ︷︷ ︸
st

, at, ot+1)

(1)

until a terminal state zt+1 = zT ∈ Zterminal is reached.

We can build other forms of inference operators I with the
aim to improve upon I[π](sT | s0) in terms of expected
reward, where the expectation is taken over the stochas-
ticity of the operator itself and the starting distribution of
problems P :

Es0∼P, sT∼I(s|s0)[rT−1]→ max . (2)

Improvement can be achieved by leveraging access to the
base policy π and its statistics such as the action-value
function Qπ(s, a). We call inference operators that leverage
action-value functions guided search operators and denote
them as I[π,Qπ](sT | s0). One trivial example of a guided
search inference operator is an operator induced by some
policy improvement operator PI[π,Qπ] (Sutton & Barto,
1998):

I[π,Qπ](s | s0) ≜ I
[
PI[π,Qπ]

]
(s | s0). (3)

However, as we show later, more general forms of guided
search are possible.

2.3. Non-Serializable Environment

Definition 2.1. A non-serializable environment in the con-
text of reinforcement learning (RL) is an environment,
which states zt ∈ Z cannot be serialized and de-serialized
at an arbitrary time step t, and acting in a state changes the
state in-place, potentially irreversibly.

Non-serializability has the following implications:

• No rollbacks: once action at is taken in state zt to
obtain zt+1 = W (zt, at), there is no procedure to
revert the environment state back to zt.

• No state copying: we cannot create multiple instances
of zt to obtain observations resulting from taking dif-
ferent actions in this state.

• No branching: methods requiring multiple unrolls
from the same state (e.g. MCTS) cannot be directly
applied.

• Limited forms of exploration: agent must proceed
strictly forward through the transition function W .

One example of such environment is SWE-agent (Yang et al.,
2024), a framework for solving GitHub issues through in-
teractions with a Docker container. While Docker supports
container checkpointing through CRIU (Checkpoint/Restore
In Userspace) (CRIU community, 2019), several technical
limitations prevent reliable state serialization (Andrijauskas
et al., 2024; Dash, 2022). Specifically, CRIU cannot guaran-
tee consistent preservation of shared memory segments and
inter-process communication channels. During its opera-
tion, SWE-agent might spawn complex background process
hierarchies. When restored, these processes face issues with
PID reassignment and broken parent-child relationships,
disrupting the normal execution flow.

An alternative approach to replicate an environment state zt
is to replay the action sequence (a0, . . . , at−1) in a freshly
initialized Docker container. However, this approach is
computationally expensive as it requires to re-run all ac-
tions from the beginning of trajectory, potentially including
time-consuming ones such as compilation or running tests.
Moreover, the transition function W (z, a) exhibits stochas-
tic behavior due to multiple sources of non-determinism:
process scheduling, inter-process communications and ac-
cess to entropy sources like current time or external systems.
Consequently, executing the same action sequence multiple
times may result in different state trajectories, making it
impossible to reliably reproduce a specific state zt through
action replay.

Overall, the lack of serialization ability mirrors real-world
software engineering scenarios, where changes accumulate
sequentially and mistakes must be mitigated within the for-
ward flow of the solution process.

3. Guided Search in Non-serializable
Environments

In this section, we describe several guided search techniques
applicable to non-serializable environments. We assume
that we are given a base policy π(a | s) and its action-value
function Qπ(s, a). In Section 4 we explore different ways
to approximate Qπ(s, a) with a learned model.

3.1. 1-step Lookahead

As discussed above, one way to build a guided search in-
ference operator is by inducing it via a policy improvement
operator. A well-known policy improvement operator ap-
plicable to non-serializable environments is 1-step looka-
head (Sutton & Barto, 1998):

PI[π,Qπ](a | s) = 1

[
a = argmax

a′∈A
Qπ(s, a

′)

]
. (4)

When the action space is large, as it is the case for LLM-
based agents, we can utilize its sample-based version (Hu-

3



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

Algorithm 1 Sample-based 1-step lookahead

1: Input: base policy π, number of action candidates K,
critic model Qπ , environment E

2: Initialize s← E.init()
3: repeat
4: Initialize listOfActions← []
5: Initialize listOfQValues← []
6: for k = 1 to K do
7: a′ ← sample from π(a | s)
8: listOfQValues.append(Qπ(s, a

′))
9: listOfActions.append(a′)

10: end for
11: a∗ ← listOfActions[argmax(listOfQValues)]
12: s← E.step(s, a∗)
13: until s is terminal
14: return s

bert et al., 2021):

PI[π,Qπ](a | s) =

= 1

[
a = argmax

a′∈{a′
1,a

′
2,...,a

′
K}

Qπ(s, a
′)

]
,

(5)

where a′k ∼ π(a | s).

The pseudocode for the sample-based version of this search
procedure is presented in Algorithm 1. Notice how this
search strategy eliminates the need to observe outcomes of
all sampled actions a′i ∼ π(a | s). Instead, it estimates
Qπ(s, a) for each candidate action and proceeds with the
one that has the highest action-value, guiding the trajec-
tory towards more promising paths reachable by the base
policy π. Some additional benefits of this strategy are:

• It is straightforward to implement this strategy on top
of any existing base policy and combine it with other
guided search methods.

• If the base policy is an LLM, this strategy has minimal
impact on inference costs: it only increases the num-
ber of generated output tokens (by a factor of K, the
number of action candidates), while the primary factor
that influences agentic inference costs is the number
of input tokens, especially in scenarios involving long
trajectories.

• Action candidates can be generated in parallel, reduc-
ing impact on inference latency. However, one would
still have to wait for the generation of the longest ac-
tion candidate, and then for the estimation of its action-
value.

3.2. Trajectory Selection

Another way to build a guided search operator is to leverage
the action-value function to select the most promising candi-

Algorithm 2 Trajectory selection

1: Input: base policy π, number of runs N , critic model
Qπ , environment E

2: Initialize listOfTrajectories← []
3: Initialize listOfQValues← []
4: for i = 1 to N do
5: sT ← unrollPolicy(π, E)
6: (∗sT−1, aT−1, oT )← sT
7: listOfTrajectories.append(sT )
8: listOfQValues.append(Qπ(sT−1, aT−1))
9: end for

10: s∗ ← listOfTrajectories[argmax(listOfQValues)]
11: return s∗

date from a batch of complete trajectories. Specifically, for
an almost complete trajectory sT−1 = (o0, a0, . . . , oT−1),
the action-value of its terminating action aT−1 simplifies to
the trajectory reward Qπ(sT−1, aT−1) = rT−1.

Thus, we can build an inference operator implementing the
trajectory selection process in the following way:

I[π,Qπ](s | s0) =

= 1

[
s = argmax

sT∈{s1T ,...,sNT }
Q(sT−1, aT−1)

]
,

(6)

where

sT ≜ (o0, a0, . . . , oT−1︸ ︷︷ ︸
sT−1

, aT−1, oT ),

siT ∼ I[π](s | s0).

This is a generalization of ORMs for arbitrary environments
with sparse reward. The pseudocode for this procedure is
presented in Algorithm 2. It directly attempts to close the
gap between the average-case and best-case performance
discussed in Section 1. Essentially, it approximates the
pass@N selection process by replacing the oracle that has
access to evaluation results with a learned action-value esti-
mator. This strategy offers several practical benefits:

• It is agnostic to the base policy, allowing easy integra-
tion with guided search based on policy improvement.
Specifically, as we show in Subsection 4.2, this method
can be efficiently combined with 1-step lookahead.

• Multiple trajectories can be generated in parallel, mean-
ing that although trajectory selection requires addi-
tional computation, it has minimal impact on inference
latency.

4



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

Table 1. The effects of guided search, Verified-50.

Inference operator
Default Until Submitted

SR (%) SEM SR (%) SEM

Qwen-based policy 16.2 ±1.08 22.8 ±1.05

Qwen-based policy + 1-step lookahead 26.8 ±1.08 32.4 ±0.89

Qwen-based policy + trajectory selection (N = 5) 27.2 ±0.1 32.27 ±0.06

Qwen-based policy + trajectory selection (N = 10) 31.27 ±0.12 37.6 ±0.04

Qwen-based policy + 1-step lookahead + trajectory selection (N = 5) 36.5 ±0.11 39.95 ±0.06

Qwen-based policy + 1-step lookahead + trajectory selection (N = 10) 41.7 ±0.13 44.07 ±0.05

GPT-4o policy 22.0 ±1.54 22.0 ±1.54

GPT-4o policy + 1-step lookahead 27.2 ± 1.20 29.2 ±1.62

GPT-4o policy + trajectory selection (N = 5) 34.0 – 34.0 –

GPT-4o policy + 1-step lookahead + trajectory selection (N = 5) 40.0 – 40.0 –

Table 2. Comparison with other systems based on open-weights models, SWE-bench Verified.

Method SR (%)

Qwen-based policy + 1-step lookahead (K = 8) + trajectory selection (N = 15) 40.8

SWE-Gym (Qwen-based policy + trajectory selection (N = 32)) (Pan et al., 2024) 32.0

SWE-Fixer (Xie et al., 2025) 30.2

Lingma Agent + Lingma-SWE-GPT-72B (Ma et al., 2024) 25.0

4. Experiments and Results
4.1. Experimental Setup

We utilize the SWE-agent scaffolding (Yang et al., 2024) to
evaluate guided search techniques described in Section 3
on the SWE-bench Verified dataset (Jimenez et al., 2024).
Our primary measure of interest is the Success Rate (SR),
defined as the percentage of problems successfully solved
by the agent.

The SWE-agent scaffolding is a non-serializable environ-
ment, as we argue in Section 2.3. Moreover, we choose
SWE-bench because it remains a challenging benchmark
of practical interest, pushing LLM’s abilities to effectively
navigate and resolve complex software engineering scenar-
ios to their limits. Test-time search strategies can further
assist in addressing these challenges by enabling more effi-
cient exploration within the constraints of non-serializable
environments.

Evaluation Methodology SWE-agent’s problem-solving
process terminates under two conditions: when the agent
issues a “submit” command indicating the problem is con-
sidered solved, or upon encountering an unrecoverable error
(e.g. the LLM runs out of context). In the latter case, the
accumulated changes in the workspace are treated as the
generated patch. However, we observe that context ex-
haustion frequently correlates with unrecoverable mistakes
mid-trajectory, leading to incorrect solutions. To enhance
reliability, we implement an iterative execution strategy:
the agent runs repeatedly until it terminates by issuing a
“submit” command or reaches a maximum of 10 additional
attempts. We refer to this approach, which can be viewed
as a simple form of search, as until submitted regime, and
use it by default in all experiments, if not stated otherwise.
As shown in Table 1 and Appendix E, the approach signif-
icantly boosts the performance of a single run, enabling a
better view into the effects of the techniques studied in this
paper.

5



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

To better understand whether the observed performance dif-
ferences are statistically significant, we run each experiment
10 times with distinct random seeds. We then compute the
mean success rate and report it along with the standard error
of the mean (SEM). This is particularly important when
evaluating less capable agent policies, which exhibit higher
performance variance due to inconsistent error-recovery be-
havior.

To balance comprehensive evaluation against computational
constraints, we created Verified-50, a dataset of 50 randomly
selected problems from SWE-bench Verified. This dataset
allows us to compute an unbiased estimate of the success
rate on the full SWE-bench Verified together with the esti-
mation error at the cost of a single run on the full evaluation
set. For the most promising setups, we additionally per-
form evaluation on the full evaluation set. The list of issues
included in Verified-50 can be found in Appendix D.

Training Details We run the majority of experiments with
the LLM-based policy trained in-house. To estimate the
action-value function of a policy, we train separate LLM-
based models that we refer to as critics.

We start by adopting the SWE-bench issue collection
methodology to compile an extended set of training issues
(Badertdinov et al., 2024). Our training issue set consists of
6,500 issue–pull request pairs from 2,500 Python reposito-
ries, carefully filtered to avoid leakage of the SWE-bench
test set, and supplemented with the SWE-bench develop-
ment set.

We then apply a bootstrapping process to collect agent tra-
jectories that we use to train the models, while simultane-
ously training a capable policy. The bootstrapping process
consists of repeating the following steps:

1. Generate complete trajectories for all training issues
using the current policy.

2. Evaluate these trajectories and incorporate them into
the dataset with a terminal reward of 1 (if the issue
is solved) or 0 (otherwise), annotating each trajectory
with the corresponding policy version.

3. Update the current policy by fine-tuning on a curated
subset of successful trajectories collected so far.

4. If not done, go to step 1.

We use Qwen2.5-72B (Bai et al., 2023) both as the initial
collection policy and as the starting point for every fine-
tuning iteration. The policy produced by fine-tuning on
data produced by the final bootstrapping iteration, which we
refer to as Qwen-based policy, is then used in the guided
search experiments described below.

0 5 10 15 20 25 30
Instance

0

20

40

60

80

100

Su
cc

es
s r

at
e 

pe
r i

ns
ta

nc
e,

 %

Qwen-based policy
Qwen-based policy + 1-step lookahead

Figure 2. Per-instance success rate of Qwen-based policy com-
puted over 15 runs.

Figure 3. The dependency between success rate and the number of
candidates N in trajectory selection.

This bootstrapping process produced a total of 80,000 pos-
itive and negative trajectories. We use these trajectories
to train critic models. Since our dataset contains trajecto-
ries produced by multiple policies, we incorporate policy
identifiers into the critic’s system prompt to condition the
predicted action-value on the policy being evaluated. When
running action-value prediction for policies not represented
in the training data (e.g. GPT-4o), we simply pass a previ-
ously unseen policy identifier (“gpt-4o”) to the critic. We
use LLaMA3.1-70B (Dubey et al., 2024) to initialize critic
training. Additional details on policy and critic training are
provided in Appendices B, F and G.

4.2. Main Results

We evaluate both search strategies — 1-step lookahead and
trajectory selection — as well as their superposition. The

6



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

0.0 0.2 0.4 0.6 0.8 1.0
27

28

29

30

31

32

33

34

Su
cc

es
s r

at
e,

 %

Figure 4. The dependency between 1-step lookahead SR
and λ.

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

25

26

27

28

29

30

31

32

Su
cc

es
s r

at
e,

 %

Figure 5. The dependency between success rate and γ for
MC.

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
10

12

14

16

18

20

22

Tr
aj

ec
to

ry
 le

ng
th

Unsuccessful
All
Successful

Figure 6. The dependency between trajectory length and γ
for MC.

evaluation uses a critic model trained with the best param-
eters identified in Subsection 4.3, i.e. TD(0.7), for both
1-step lookahead and trajectory selection. For 1-step looka-
head, we utilize the optimal search parameters identified in
Subsection 4.4: policy sampling temperature T = 0.9 and
number of candidates K = 4. Trajectory selection results
are presented for both N = 5 and N = 10 runs when using
the Qwen-based policy. For GPT-4o, trajectory selection
evaluation is limited to N = 5 runs without reporting SEM
to reduce experimentation costs.

As shown in Table 1, both guided search methods, when
used independently, achieve significant improvements over
the base policy. When combined, they deliver a 2-fold
improvement in success rate for both GPT-4o and Qwen-
based policies. Importantly, these patterns hold consistently
across both evaluation regimes: the relative ranking and
magnitude of improvements remain stable whether allow-
ing multiple attempts (Until Submitted) or terminating on
first completion (Default). This consistency suggests that
until submitted regime primarily addresses execution-level
failures (such as context exhaustion) that affect all methods
equally, rather than changing the core algorithmic dynamics
that distinguish our guided search approaches.

Performance improvement on top of GPT-4o is especially
notable given major challenges of this setup: a relatively
modest critic’s base model capabilities compared to the
policy, and the absence of GPT-4o-specific trajectories in
the critic’s training data.

Additionally, we evaluate the effect of 1-step lookahead
on per-instance success rate, presented in Figure 2 for the
Qwen-based policy. Our analysis reveals that 1-step looka-
head generally increases the probability of solving a prob-
lem, therefore boosting reliability. It can also boost very
low success probabilities, allowing to start solving some
instances where the base policy was consistently failing.
GPT-4o policy demonstrates similar trends with the corre-
sponding figure found in Appendix C.

For trajectory selection, we also investigate the relationship
between the success rate and the number of candidates, N ,
when applied to the base policy and when combined with 1-
step lookahead. As can be seen in Figure 3, as N increases,
the success rate continues to rise without reaching a visible
plateau in the investigated range. Interestingly, as N grows,
the gap between the base policy and 1-step lookahead nar-
rows for both pass@N and trajectory selection setups, sug-
gesting that both search methods might eventually converge
to the same solutions provided enough compute. In practice,
one should carefully select the appropriate values for K and
N to achieve the desired trade-off between computational
costs, latency, and performance.

We also evaluate the Qwen-based policy with 1-step looka-

7



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

0.0 0.2 0.4 0.6 0.8
Time (relative)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

cr
iti

c 
sc

or
e

Qwen-based policy + 1-step lookahead, successfull
Qwen-based policy + 1-step lookahead, unsuccessfull
Qwen-based policy, successfull
Qwen-based policy, unsuccessfull

Figure 7. Critic learns to distinguish successfull and unsucessfull
trajectories produced by Qwen-based policy.

head and trajectory selection with N = 15, T = 0.9, and
K = 8 on the full SWE-bench Verified set, where it achieves
40.8% success rate (Table 2), establishing a new state-of-
the-art among systems using open-weights models.

4.3. Critic Model Analysis

In this section, we provide details on important aspects
of training critic models, using the performance of 1-step
lookahead with 4 action candidates as the benchmark.

Given our sparse reward setting, we use TD(λ) (Sutton &
Barto, 1998) to compute training targets. TD(λ) interpo-
lates between pure Monte-Carlo (MC) target estimates and
temporal-difference learning, allowing to reduce target vari-
ance at the expense of introducing bias into the estimate.
Figure 4 illustrates that λ = 0.7 yields the highest success
rate, outperforming both Monte-Carlo estimates (λ = 1)
and one-step TD (λ = 0). This result suggests that relying
exclusively on Monte-Carlo estimates might be suboptimal
due to high variance, and a careful search for λ might yield
benefits in similar setups.

We further analyze how the discount factor γ influences the
success rate, using a critic trained to predict Monte-Carlo
target estimates. As can be seen in Figure 5, as γ approaches
1, the success rate increases. Manual trajectory investigation
shows that a longer temporal horizon helps the agent avoid
missing critical steps (e.g. testing or issue reproduction).
Figure 6 corroborates this by demonstrating that higher γ
values lead to longer trajectories, allocating additional steps
to vital yet initially unrewarded actions.

We additionally investigate the critic-estimated action-
values for both successful and unsuccessful trajectories,
which were produced by the Qwen-based policy with and
without 1-step lookahead. Figure 7 illustrates how the aver-

1 2 4 8 16
K

20

22

24

26

28

30

32

Su
cc

es
s r

at
e,

 %

T = 0.1
T = 0.5
T = 0.9
T = 1.2
T = 1.5

Figure 8. Success rate of a TD(0.8) critic with varying K and T .

age value estimates evolve as trajectories progress in time,
demonstrating critic’s ability to differentiate between suc-
cessful and unsuccessful trajectories. The critic not only
assigns higher values to successful trajectories on average
but also increases the confidence of its estimates as trajecto-
ries progress and additional information becomes available.
Naturally, 1-step lookahead causes some amount of value
hacking, leading to an increase of average values for nega-
tive trajectories. This suggests that building a robust critic
model would require multiple iterations of active re-training
on adversarial trajectories found by guided search. Finally,
there exists a small gap between the positive and negative
trajectories at the very beginning, suggesting non-trivial
ability to estimate problem complexity from its description.

4.4. Co-scaling of K and T for 1-step Lookahead

To better understand the trade-offs between search quality
and costs, we investigate how the success rate of 1-step
lookahead changes when varying the number of action can-
didates K and sampling temperature T , using a TD(0.8)
critic.

As shown in Figure 8, performance initially improves with
increasing K across all temperature settings, but saturates
at K = 8, where our current critic models reach their dis-
criminative ceiling. However, better critic models trained
on adversarial trajectories produced by critic-guided search
will likely benefit from more than 8 candidates.

The temperature parameter T exhibits different effects at
different ranges of K. For lower values of K, higher tem-
peratures yield better results, indicating the importance of
increased exploration when fewer candidates are available.
Optimal performance emerges at moderate values of both K
and T , achieving an effective balance between exploration
and exploitation. At high K temperature does not seem to

8



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

be very important provided it is not too low and allows for
sufficient exploration.

5. Conclusion and Future Work
In this work, we introduce the concept of non-serializable
RL environments and examine how non-serializability hin-
ders the use of powerful guided search methods. This issue
is of practical importance, as Docker containers — com-
monly used to isolate execution of automated software en-
gineering agents — are one notable example of such envi-
ronments. Software engineering agents often exhibit a large
gap between average-case and best-case performance, and
guided search methods can help mitigate this problem.

We describe two guided search techniques, 1-step looka-
head and trajectory selection, that operate effectively de-
spite non-serializability constraints. Our empirical study
on an automated software engineering benchmark, SWE-
bench Verified, reveals that these simple approaches can
yield a two-fold performance improvement, achieving state-
of-the-art results among systems relying on open-weights
models. We further investigate how these methods scale
with increased test-time compute and recommend strategies
for training critic models to guide them.

Some interesting future directions of this work are:

• Examining whether powerful search methods imple-
mented via replay-based serialization can bring perfor-
mance benefits despite their lack of correctness.

• Improving the robustness of replay-based serialization,
for instance, by disallowing background processes, re-
stricting access to entropy sources to reduce stochastic-
ity, or detecting when replay diverges from the intended
state.

• Developing alternative approaches to correctly serial-
ize and deserialize development containers.

Impact Statement
This work aims to improve the reliability and efficiency of
LLM-based agents through guided search strategies. Our
method allows to trade additional computation at inference
time for higher agent performance, effectively exchang-
ing money for capability. While such techniques allow
to achieve better results with existing models using more
computation, in the future similar methods can also deepen
existing inequalities by giving well-funded actors a further
advantage. Next, critic models that we train to guide the
agent enable self-verification, thus fostering safer and more
reliable agentic systems. Finally, our approach may let
open-weight models, when combined with guided search,

match the performance of leading proprietary models, fur-
ther democratizing AI. We encourage future work to fur-
ther scrutinize the ethical and distributive impacts of the
performance-versus-compute trade-off.

References
Andrijauskas, F., Sfiligoi, I., Davila, D., Arora, A., Guiang,

J., Bockelman, B., Thain, G., and Würthwein, F. CRIU -
checkpoint restore in userspace for computational simula-
tions and scientific applications. CoRR, abs/2402.05244,
2024. doi: 10.48550/ARXIV.2402.05244. URL https:
//doi.org/10.48550/arXiv.2402.05244.

Antoniades, A., Örwall, A., Zhang, K., Xie, Y., Goyal, A.,
and Wang, W. Y. Swe-search: Enhancing software agents
with monte carlo tree search and iterative refinement.
CoRR, abs/2410.20285, 2024. doi: 10.48550/ARXIV.2
410.20285. URL https://doi.org/10.48550/a
rXiv.2410.20285.

Badertdinov, I., Trofimova, M., Anapolskiy, Y., Abramov,
S., Zainullina, K., Golubev, A., Polezhaev, S., Litvintseva,
D., Karasik, S., Fisin, F., Skvortsov, S., Nekrashevich, M.,
Shevtsov, A., and Yangel, B. Scaling data collection for
training software engineering agents. Nebius blog, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M.,
Lin, J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J.,
Men, R., Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang,
P., Wang, S., Wang, W., Wu, S., Xu, B., Xu, J., Yang,
A., Yang, H., Yang, J., Yang, S., Yao, Y., Yu, B., Yuan,
H., Yuan, Z., Zhang, J., Zhang, X., Zhang, Y., Zhang, Z.,
Zhou, C., Zhou, J., Zhou, X., and Zhu, T. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

CRIU community. Checkpoint/restart in userspace(criu),
2019. URL https://criu.org/.

Dash, A. Understanding migration mechanisms of contain-
ers using criu. Volume: 09:5, 02 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak, C.,
Bi, C., Marra, C., McConnell, C., Keller, C., Touret, C.,
Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius,

9

https://doi.org/10.48550/arXiv.2402.05244
https://doi.org/10.48550/arXiv.2402.05244
https://doi.org/10.48550/arXiv.2410.20285
https://doi.org/10.48550/arXiv.2410.20285
https://arxiv.org/abs/2110.14168
https://criu.org/


Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

D., Song, D., Pintz, D., Livshits, D., Esiobu, D., Choud-
hary, D., Mahajan, D., Garcia-Olano, D., Perino, D., Hup-
kes, D., Lakomkin, E., AlBadawy, E., Lobanova, E., Di-
nan, E., Smith, E. M., Radenovic, F., Zhang, F., Synnaeve,
G., Lee, G., Anderson, G. L., Nail, G., Mialon, G., Pang,
G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H., Tou-
vron, H., Zarov, I., Ibarra, I. A., Kloumann, I. M., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes, J.,
Park, J., Mahadeokar, J., Shah, J., van der Linde, J., Bil-
lock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J.,
Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J., Rocca, J.,
Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K.,
Plawiak, K., Li, K., Heafield, K., Stone, K., and et al. The
llama 3 herd of models. CoRR, abs/2407.21783, 2024.
doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Ehrlich, R., Brown, B., Juravsky, J., Clark, R., Ré, C., and
Mirhoseini, A. Codemonkeys: Scaling test-time compute
for software engineering, 2025. URL https://arxi
v.org/abs/2501.14723.

Gao, Z., Niu, B., He, X., Xu, H., Liu, H., andlight-
light Xuming Hu, A. L., and Wen, L. Interpretable
contrastive monte carlo tree search reasoning. CoRR,
abs/2410.01707, 2024. doi: 10.48550/ARXIV.2410.01
707. URL https://doi.org/10.48550/arXiv
.2410.01707.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang,
D. Z., and Hu, Z. Reasoning with language model is
planning with world model. In Bouamor, H., Pino, J.,
and Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pp. 8154–8173. Association for Computational Linguis-
tics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.507.
URL https://doi.org/10.18653/v1/2023
.emnlp-main.507.

Havrilla, A., Raparthy, S. C., Nalmpantis, C., Dwivedi-Yu,
J., Zhuravinskyi, M., Hambro, E., and Raileanu, R. Glore:
When, where, and how to improve LLM reasoning via
global and local refinements. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=LH6R
06NxdB.

Huang, J., Gu, S., Hou, L., Wu, Y., Wang, X., Yu, H.,
and Han, J. Large language models can self-improve.
In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 1051–1068. Association for
Computational Linguistics, 2023. doi: 10.18653/V1/20

23.EMNLP-MAIN.67. URL https://doi.org/10
.18653/v1/2023.emnlp-main.67.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain,
M., Schmitt, S., and Silver, D. Learning and planning
in complex action spaces. CoRR, abs/2104.06303, 2021.
URL https://arxiv.org/abs/2104.06303.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. Swe-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net
/forum?id=VTF8yNQM66.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M. (eds.), Machine Learning: ECML 2006, 17th Eu-
ropean Conference on Machine Learning, Berlin, Ger-
many, September 18-22, 2006, Proceedings, volume 4212
of Lecture Notes in Computer Science, pp. 282–293.
Springer, 2006. doi: 10.1007/11871842\ 29. URL
https://doi.org/10.1007/11871842_29.

Koh, J. Y., McAleer, S., Fried, D., and Salakhutdinov,
R. Tree search for language model agents. CoRR,
abs/2407.01476, 2024. doi: 10.48550/ARXIV.2407.
01476. URL https://doi.org/10.48550/arX
iv.2407.01476.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/p
aper_files/paper/2022/hash/8bb0d291a
cd4acf06ef112099c16f326-Abstract-Con
ference.html.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum
?id=v8L0pN6EOi.

Luo, L., Lin, Z., Liu, Y., Shu, L., Zhu, Y., Shang, J., and
Meng, L. Critique ability of large language models.
CoRR, abs/2310.04815, 2023. doi: 10.48550/ARXIV.2
310.04815. URL https://doi.org/10.48550
/arXiv.2310.04815.

10

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2501.14723
https://doi.org/10.48550/arXiv.2410.01707
https://doi.org/10.48550/arXiv.2410.01707
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://openreview.net/forum?id=LH6R06NxdB
https://openreview.net/forum?id=LH6R06NxdB
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://arxiv.org/abs/2104.06303
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1007/11871842_29
https://doi.org/10.48550/arXiv.2407.01476
https://doi.org/10.48550/arXiv.2407.01476
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/arXiv.2310.04815
https://doi.org/10.48550/arXiv.2310.04815


Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

Ma, Y., Cao, R., Cao, Y., Zhang, Y., Chen, J., Liu, Y., Liu,
Y., Li, B., Huang, F., and Li, Y. Lingma SWE-GPT: an
open development-process-centric language model for au-
tomated software improvement. CoRR, abs/2411.00622,
2024. doi: 10.48550/ARXIV.2411.00622. URL https:
//doi.org/10.48550/arXiv.2411.00622.

Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang,
Y., Chen, Z., Cheng, H., Collins, M., Strohman, T., Chen,
J., Beutel, A., and Beirami, A. Controlled decoding from
language models. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024. URL https://
openreview.net/forum?id=bVIcZb7Qa0.

Murphy, K. Reinforcement learning: An overview. CoRR,
abs/2412.05265, 2024. doi: 10.48550/ARXIV.2412.05
265. URL https://doi.org/10.48550/arXiv
.2412.05265.

Pan, J., Wang, X., Neubig, G., Jaitly, N., Ji, H., Suhr, A.,
and Zhang, Y. Training software engineering agents and
verifiers with swe-gym. CoRR, abs/2412.21139, 2024.
doi: 10.48550/ARXIV.2412.21139. URL https:
//doi.org/10.48550/arXiv.2412.21139.

Putta, P., Mills, E., Garg, N., Motwani, S., Finn, C., Garg, D.,
and Rafailov, R. Agent Q: advanced reasoning and learn-
ing for autonomous AI agents. CoRR, abs/2408.07199,
2024. doi: 10.48550/ARXIV.2408.07199. URL https:
//doi.org/10.48550/arXiv.2408.07199.

Schluntz, E., Biggs, S., Drain, D., Christiansen, E., Kravec,
S., Rosso, F., DasSarma, N., and Chandrasekara, V. Rais-
ing the bar on swe-bench verified with claude 3.5 sonnet,
2024. URL https://www.anthropic.com/re
search/swe-bench-sonnet.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A.
Rewarding progress: Scaling automated process verifiers
for LLM reasoning. CoRR, abs/2410.08146, 2024. doi:
10.48550/ARXIV.2410.08146. URL https://doi.
org/10.48550/arXiv.2410.08146.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lilli-
crap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. Mastering the game of go with deep
neural networks and tree search. Nat., 529(7587):484–
489, 2016. doi: 10.1038/NATURE16961. URL
https://doi.org/10.1038/nature16961.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T. P., Simonyan, K., and Hassabis, D.

Mastering chess and shogi by self-play with a general re-
inforcement learning algorithm. CoRR, abs/1712.01815,
2017. URL http://arxiv.org/abs/1712.018
15.

Sutton, R. S. and Barto, A. G. Reinforcement learning
- an introduction. Adaptive computation and machine
learning. MIT Press, 1998. ISBN 978-0-262-19398-6.
URL https://www.worldcat.org/oclc/37
293240.

Uesato, J., Kushman, N., Kumar, R., Song, H. F., Siegel,
N. Y., Wang, L., Creswell, A., Irving, G., and Higgins, I.
Solving math word problems with process- and outcome-
based feedback. CoRR, abs/2211.14275, 2022. doi: 10
.48550/ARXIV.2211.14275. URL https://doi.or
g/10.48550/arXiv.2211.14275.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen,
D., Wu, Y., and Sui, Z. Math-shepherd: Verify and
reinforce llms step-by-step without human annotations.
In Ku, L., Martins, A., and Srikumar, V. (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp.
9426–9439. Association for Computational Linguistics,
2024a. doi: 10.18653/V1/2024.ACL-LONG.510. URL
https://doi.org/10.18653/v1/2024.acl
-long.510.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=1PL1
NIMMrw.

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng,
H., and Ji, H. Executable code actions elicit better
LLM agents. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024b. URL https:
//openreview.net/forum?id=jJ9BoXAfFa.

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., Tran, H. H., Li, F.,
Ma, R., Zheng, M., Qian, B., Shao, Y., Muennighoff, N.,
Zhang, Y., Hui, B., Lin, J., Brennan, R., Peng, H., Ji,
H., and Neubig, G. Openhands: An open platform for
ai software developers as generalist agents, 2024c. URL
https://arxiv.org/abs/2407.16741.

Wang, Z., Li, Y., Wu, Y., Luo, L., Hou, L., Yu, H., and
Shang, J. Multi-step problem solving through a verifier:

11

https://doi.org/10.48550/arXiv.2411.00622
https://doi.org/10.48550/arXiv.2411.00622
https://openreview.net/forum?id=bVIcZb7Qa0
https://openreview.net/forum?id=bVIcZb7Qa0
https://doi.org/10.48550/arXiv.2412.05265
https://doi.org/10.48550/arXiv.2412.05265
https://doi.org/10.48550/arXiv.2412.21139
https://doi.org/10.48550/arXiv.2412.21139
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.48550/arXiv.2408.07199
https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/research/swe-bench-sonnet
https://doi.org/10.48550/arXiv.2410.08146
https://doi.org/10.48550/arXiv.2410.08146
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://arxiv.org/abs/2407.16741


Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

An empirical analysis on model-induced process supervi-
sion. In Al-Onaizan, Y., Bansal, M., and Chen, Y. (eds.),
Findings of the Association for Computational Linguis-
tics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pp. 7309–7319. Association for Computa-
tional Linguistics, 2024d. URL https://aclantho
logy.org/2024.findings-emnlp.429.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Koyejo, S., Mohamed, S., Agarwal, A., Bel-
grave, D., Cho, K., and Oh, A. (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022. URL http://papers.n
ips.cc/paper_files/paper/2022/hash/9
d5609613524ecf4f15af0f7b31abca4-Abstr
act-Conference.html.

Xia, C. S., Deng, Y., Dunn, S., and Zhang, L. Agentless: De-
mystifying llm-based software engineering agents. CoRR,
abs/2407.01489, 2024. doi: 10.48550/ARXIV.2407.01
489. URL https://doi.org/10.48550/arXiv
.2407.01489.

Xie, C., Li, B., Gao, C., Du, H., Lam, W., Zou, D., and
Chen, K. Swe-fixer: Training open-source llms for effec-
tive and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

Xie, Y., Goyal, A., Zheng, W., Kan, M., Lillicrap, T. P.,
Kawaguchi, K., and Shieh, M. Monte carlo tree search
boosts reasoning via iterative preference learning. CoRR,
abs/2405.00451, 2024. doi: 10.48550/ARXIV.2405.00
451. URL https://doi.org/10.48550/arXiv
.2405.00451.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao, S.,
Narasimhan, K. R., and Press, O. SWE-agent: Agent-
computer interfaces enable automated software engi-
neering. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL
https://arxiv.org/abs/2405.15793.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023a. URL http:
//papers.nips.cc/paper_files/paper/2
023/hash/271db9922b8d1f4dd7aaef84ed5
ac703-Abstract-Conference.html.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning and
acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b.
URL https://openreview.net/forum?id=
WE_vluYUL-X.

Yu, F., Gao, A., and Wang, B. Ovm, outcome-supervised
value models for planning in mathematical reasoning. In
Duh, K., Gómez-Adorno, H., and Bethard, S. (eds.), Find-
ings of the Association for Computational Linguistics:
NAACL 2024, Mexico City, Mexico, June 16-21, 2024,
pp. 858–875. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024.FINDINGS-NAACL.55.
URL https://doi.org/10.18653/v1/2024
.findings-naacl.55.

Zhang, Y., Ruan, H., Fan, Z., and Roychoudhury, A. Au-
tocoderover: Autonomous program improvement. In
Christakis, M. and Pradel, M. (eds.), Proceedings of the
33rd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2024, Vienna, Austria,
September 16-20, 2024, pp. 1592–1604. ACM, 2024.
doi: 10.1145/3650212.3680384. URL https:
//doi.org/10.1145/3650212.3680384.

12

https://aclanthology.org/2024.findings-emnlp.429
https://aclanthology.org/2024.findings-emnlp.429
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2407.01489
https://doi.org/10.48550/arXiv.2407.01489
https://doi.org/10.48550/arXiv.2405.00451
https://doi.org/10.48550/arXiv.2405.00451
https://arxiv.org/abs/2405.15793
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/2024.findings-naacl.55
https://doi.org/10.18653/v1/2024.findings-naacl.55
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384


Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

A. Related Work
Reasoning via Prompting Large Language Models have demonstrated strong capabilities in reasoning and planning.
Chain of Thought (CoT) (Wei et al., 2022) has emerged as a dominant method for enabling structured reasoning in LLMs by
introducing intermediate computation steps. This approach has proven particularly effective for complex tasks, requiring no
modifications to model parameters. The effectiveness was further enhanced by the discovery that these behaviors can be
elicited in a zero-shot manner through simple prompting techniques (Kojima et al., 2022), demonstrating LLMs’ inherent
capability for multi-step reasoning. However, single-path generation, even with structured reasoning, may not always yield
the best solution.

Reasoning via Search To improve LLM reasoning beyond single-path generation, the simplest approach is to explore
multiple solutions without learned evaluation components. Self-consistency (Wang et al., 2023) demonstrated strong
performance through sampling multiple complete solutions and implementing Majority Voting over their answers. While
effective, this approach relies heavily on random sampling and cannot guide the exploration process.

Learning to Guide Search Combining search with learned value estimation has proven crucial for efficient exploration,
pioneered by AlphaGo / AlphaZero (Silver et al., 2016; 2017). This approach has been adapted to LLM reasoning through
various search strategies: Beam Search (Setlur et al., 2024), Best-First Search (Koh et al., 2024), Depth-First Search
(DFS) (Yao et al., 2023a), and Monte-Carlo Tree Search (Kocsis & Szepesvári, 2006; Putta et al., 2024; Xie et al., 2024;
Hao et al., 2023), each offering different trade-offs between exploration breadth and depth.

The development of effective value estimators has been a key challenge in this direction. Early attempts to use LLMs
directly as verifiers proved unsuitable for math reasoning (Huang et al., 2023; Luo et al., 2023). Different approaches to
value estimation have emerged: some works (Wang et al., 2024a) use Monte-Carlo Tree Search (Kocsis & Szepesvári, 2006),
while others (Wang et al., 2024d) employ Monte-Carlo estimation using only policy roll-outs. This data can then be used to
train step-level or outcome-level critic models. Outcome-supervised Reward Models (ORMs) (Cobbe et al., 2021; Yu et al.,
2024; Mudgal et al., 2024) predict final answer correctness for solution reranking, while Process-supervised Reward Models
(PRMs) (Lightman et al., 2024; Wang et al., 2024a; Uesato et al., 2022; Havrilla et al., 2024) evaluate the validity of an
intermediate step to rank and select among competing intermediate steps.

Software Engineering Agents Recent approaches to building software engineering agents can be categorized by their
reliance on human priors. The first category employs manually defined workflows (Xia et al., 2024; Zhang et al., 2024; Ma
et al., 2024; Ehrlich et al., 2025), breaking down complex tasks into specific subtasks and introducing ad hoc verification
stages. These approaches require significant engineering effort and lack the ability to adapt to novel situations. The second
category builds upon ideas from highly flexible, domain-agnostic frameworks of ReAct (Yao et al., 2023b), which introduced
thought-based planning for any multi-step interaction, and CodeAct (Wang et al., 2024b), which proposed using Python
code as a universal action interface. SWE-agent (Yang et al., 2024) and OpenHands (Wang et al., 2024c) frameworks adapt
these general-purpose ideas to the software development domain, defining an agent-computer interface (ACI) that enables
LLM agents to execute arbitrary operations via shell commands.

Although agents in the second category (Schluntz et al., 2024) offer more flexibility, they face challenges in long-term
planning. Recent work has shown that combining such frameworks with test-time search strategies can significantly improve
performance. For example, SWE-Gym (Pan et al., 2024) studies the benefits of applying outcome supervision to such agents.
Our approach, built upon the SWE-agent framework, complements this work by investigating outcome supervision at a
significantly larger scale, while additionally studying step-level value estimation and how the two methods can be combined.
SWE-Search (Antoniades et al., 2024) leverages MCTS to search the solution space, demonstrating performance scaling
with increased test-time computation. This work demonstrates that bypassing stochasticity and non-serializability issues by
manually managing a limited subset of the true state (e.g. only filesystem changes in the working copy) can yield meaningful
performance benefits. However, we expect this approach to run into issues when applied to scenarios where stochasticity is
important, such as dealing with race conditions or interacting with stateful external systems.

B. Training Details
We train critic models and the base policy using the hyperparameters listed in Table 3.

Critic models are trained with L2 loss, using TD(λ) estimates of discounted reward-to-go as targets. For critic models to

13



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

Table 3. Hyperparameters used in experiments

Hyperparameter Critic Base policy

Optimizer AdamW AdamW

Warmup steps 7 7

Training steps 459 215

Learning rate value 2 · 10−6 4 · 10−6

Learning rate schedule cosine cosine

Batch size 128 128

Number of epochs 4 6

Weight decay 0.1 0.1

Sequence length 32768 32768

predict Q(s, a), the unembedding layer of the initial model is replaced with a linear layer that maps token embeddings to
scalar outputs. We add a special token to the end of every agent turn, and treat the scalar predicted for this token as the
action-value prediction for the turn. Loss is masked for all other tokens during training. All parameters of critic models
except the embedding layer are updated during training.

The base policy is trained with conventional cross-entropy loss to maximize the probability of training trajectories. All
parameters of the base policy are updated during training, except the embedding and unembedding layers.

C. GPT-4o-based Policy Results

0 5 10 15 20 25
Instance

0

20

40

60

80

100

Su
cc

es
s r

at
e 

pe
r i

ns
ta

nc
e,

 %

GPT-4o policy
GPT-4o policy + 1-step lookahead

Figure 9. 1-step lookahead improves success rate per instance for
GPT-4o base policy, adding new solved issues.

Figure 10. The dependency between the success rate and the number
of candidates N in trajectory selection for GPT-4o.

We analyze the impact of 1-step lookahead on the per-instance success rate for the GPT-4o policy, as shown in Figure 9. Our
results indicate that per-instance success rates generally improve across most instances.

Furthermore, we examine the relationship between the success rate and the number of candidates N used for trajectory
selection, both for the base policy and when applied on top of 1-step lookahead. The results are presented in Figure 10. As
N increases, the success rate continues to improve, with no clear plateau observed within the explored range.

14



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

0.0 0.2 0.4 0.6 0.8
Time (relative)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

cr
iti

c 
sc

or
e

GPT-4o policy, successfull
GPT-4o policy, unsuccessfull
GPT-4o policy + 1-step lookahead, successfull
GPT-4o policy + 1-step lookahead, unsuccessfull

Figure 11. Critic learns to distinguish successful and unsuccessful
trajectories for GPT-4o.

0 1 2 3 4 5 6 7 8 9 10
Number of retries before submitted

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 su

bm
itt

ed
 in

st
an

ce
s

Figure 12. The average number of retries it takes to generate a tra-
jectory that ends with “submit” for a given fraction of the test set
using the Qwen-based policy.

Figure 11 illustrates how critic-estimated action values evolve over time for both successful and unsuccessful trajectories
generated by the GPT-4o policy, with and without 1-step lookahead. The results suggest that the critic effectively differenti-
ates between successful and unsuccessful trajectories. However, in the case of the GPT-4o base policy, the critic’s scores
remain stagnant mid-trajectory for successful trajectories, indicating difficulty in recognizing positive steps at intermediate
stages. A potential explanation for this behavior is that the critic was not trained on any GPT-4o-generated trajectories,
which may have limited its ability to generalize to this setting. Some degree of value hacking is also present with lookahead.

D. Verified-50 Problems
The Verified-50 dataset, which we curate from the SWE-bench Verified by randomly selecting problems, contains the
following problem instances:
sympy sympy-22080, django django-15315, django django-11333,
matplotlib matplotlib-20826, django django-11532, django django-16642,
django django-14855, sphinx-doc sphinx-8721, pylint-dev pylint-4604,
sympy sympy-13615, django django-13089, django django-15987,
django django-14725, sympy sympy-14248, pytest-dev pytest-7982,
django django-15280, scikit-learn scikit-learn-13142,
pytest-dev pytest-5809, matplotlib matplotlib-23299, django django-16560,
django django-15103, sympy sympy-16792, django django-14007,
psf requests-2317, django django-11880, django django-16136,
django django-16661, sympy sympy-17139, sympy sympy-14531,
sphinx-doc sphinx-8595, django django-10880, sympy sympy-19346,
sphinx-doc sphinx-9229, django django-11265, matplotlib matplotlib-25332,
scikit-learn scikit-learn-13135, pydata xarray-6744, pydata xarray-6461,
sympy sympy-15017, django django-13417, matplotlib matplotlib-24870,
django django-15368, django django-11095, django django-15554,
pydata xarray-6992, django django-15863, django django-13363,
sympy sympy-13852, django django-14017, pylint-dev pylint-4661

E. Running Until Submitted
In our experiments, we employ an iterative execution strategy, in which the agent repeatedly attempts to solve the problem
until it issues a “submit” command or reaches a maximum of 10 additional attempts. We refer to this approach, which can

15



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

be viewed as a simple form of search, as until submitted regime. As shown in Table 4, this strategy significantly improves
the performance of the Qwen-based policy, both with and without 1-step lookahead. Additionally, it increases the number of
unique successfully solved instances (Pass@N ), calculated based on the last attempt for each instance, thereby expanding
the opportunities for trajectory selection.

Figure 12 shows that the majority of Qwen-based policy solutions are submitted on the first try. However, when 3 additional
attempts are allowed, the fraction of submitted solutions increases to 80%. This demonstrates that the strategy significantly
boosts performance without imposing a substantial computational cost, requiring an average of ∼ 1.65 extra attempts per
problem.

As shown in Table 4, in contrast to the Qwen family, the GPT-4o-based policy is not significantly influenced by the until
submitted regime, with the metrics for the default regime almost matching those when running until submitted.

Table 4. The effects of running until submitted, Verified-50.

Inference operator
Default Until Submitted

SR (%) SEM Pass@5 (%) Pass@15 (%) SR (%) SEM Pass@5 (%) Pass@15 (%)

Qwen-based policy 16.2 ±1.08 33.6 44.0 22.8 ±1.05 41.8 54.0

Qwen-based policy +
1-step lookahead

26.8 ±1.08 46.4 60.0 32.4 ±0.89 51.2 62.0

GPT-4o policy 22.0 ±1.54 46.0 – 22.0 ±1.54 46.0 –

GPT-4o policy + 1-step
lookahead

27.2 ±1.20 48.0 – 29.2 ±1.62 48.0 –

F. Critic Base Model Sensitivity Analysis

Table 5. The effects of varying base model for critic on performance of Qwen-based policy + 1-step lookahead, Verified-50, default
regime.

Base model for critic SR (%) SEM

LLaMA3.1-70B 26.8 ±1.08

Qwen2.5-72B 22.8 ±1.08

LLaMA3.1-8B 21.0 ±1.16

Qwen2.5-7B 20.2 ±1.08

No critic 16.2 ±1.08

Table 5 compares critics trained starting from different base models on the task of guiding Qwen-based policy with 1-step
lookahead on Verified-50. We don’t perform additional hyperparameter tuning for each base model, using hyperparameters
selected for LLaMa3.1-70B across all experiments.

Model size appears to be an important factor: smaller models (8B/7B) underperform (21.0% and 20.2%) compared to 70B+
models, hinting at the fact that critic performs non-trivial computations that can benefit from better representations.

In this comparison, LLaMA3.1-70B outperforms its Qwen2.5 counterpart; however, this result may partially reflect unequal
hyperparameter tuning. Specifically, we performed extensive hyperparameter optimization for LLaMA3.1-70B, exploring
learning rates, batch sizes, and training schedules. In contrast, for Qwen2.5-72B, we applied the best configuration identified

16



Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents

30 40 50 60 70 80 90 100
Critic dataset size, %

20

22

24

26

28

Su
cc

es
s r

at
e,

 %

Figure 13. The effects of varying training dataset size for critic on performance of Qwen-based policy + 1-step lookahead, Verified-50,
default regime.

for LLaMA3.1-70B. We recommend targeted hyperparameter tuning for the specific model family used to maximize
performance of the trained critic model.

G. Sensitivity Analysis for Critic Dataset Size
Figure 13 presents a sensitivity analysis of critic performance with respect to training dataset size, with critic evaluated on
SWE-bench Verified-50 using 1-step lookahead in default regime. We systematically reduce the training set size from 100%
to 25% to understand how varying data sizes affect critic quality. We don’t perform additional hyperparameter tuning for
each dataset size, using hyperparameters optimized for the full dataset across all experiments.

As expected, critic performance tends to decline with dataset size, with the highest success rate of 26.8%± 1.08 observed
when using the full dataset. The performance drop on smaller subsets at least partially comes from insufficient training
signal. However one other reason likely contributing to performance drop is that on smaller subsets, bootstrapped action-
value estimates used in TD(λ) targets simply don’t have enough time to stabilize. We expect that by explicitly tuning
hyperparameters for smaller datasets one can achieve better critic performance.

17


