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Abstract
Recent work has explored fair allocations of delivery
tasks where delivery agents incur costs based on the
distance they travel. We generalize this setting to
one of service tasks where an agent’s cost has two
dimensions: the time spent completing each task
and the distance traveled. Thus, the input includes a
graph where all nodes other than the hub correspond
to a unique order/task, and must be allocated to some
agent. We model the cost incurred by an agent as a
linear function of the edges traversed and the nodes
they need to service. In this setting, we explore two
well motivated fairness concepts: Envy-Freeness up
to One Order (EF1) and Minimax Share (MMS).
We show several surprising results, including the
fact that in our setting an MMS allocation can be
found in polynomial time. We also show conditions
which can guarantee the existence of allocations
that are both EF1 and MMS. We further show that
these allocations can be found in polynomial time.
We also provide tight upper bounds on the price
of fairness. We complement our theoretical results
with an experimental analysis demonstrating the
effect of various input parameters on the MMS cost.

1 Introduction
Fair allocations have been widely explored by the EconCS
community. Extensive work has gone into finding fair alloca-
tions for divisible items [Aziz and Mackenzie, 2016; Brams
and Taylor, 1996; Steen, 1999; Segal-Halevi et al., 2017; Bar-
man and Kulkarni, 2023], indivisible items [Lipton et al.,
2004a; Budish, 2010; Aziz et al., 2022b; Barman et al., 2018;
Barman and Krishnamurthy, 2020; Wei et al., 2023], and their
combinations [Bei et al., 2021a,b; Li et al., 2023; Liu et al.,
2024]. While various different types of valuation functions
have been considered, most of the work in this space assumes
that items are independent of each other, leading to additive
valuations. The majority of the work on fair division does not
effectively capture settings where the values/costs from the
items are dictated by a strong joint structure.

Recently, Hosseini et al. [2024] introduced the model of
fair distribution of orders – where each order lies on a unique
node on a tree – among a set of delivery agents. Each agent

is responsible for collecting items from the hub, traversing
through each assigned order, and ultimately returning to the
hub. Their model only considers costs incurred due to the dis-
tance traveled. As a result, in their setting, an agent traveling
to a specific node can be assigned all the nodes on the way
for no additional cost. While this may model delivery settings
where minimal time is spent making the actual deliveries, there
is a large variety of alternate settings this does not capture.
For instance when delivering large electronics or furniture, a
delivery agent will incur the costs from the distance traveled
to reach the address, as well as the time taken to drop the item
inside the houses/premises. As a result, in our setting we as-
sume a more general model with both distance and time-based
costs. This significantly increases the intricacy of the problem.
Consequently, we first assume that the underlying graph is a
path. Paths are an important building block for building more
complicated models and have thus been previously explored
within fair division [Misra et al., 2021; Suksompong, 2019;
Truszczynski and Lonc, 2020; Hosseini and Schierreich, 2025]
as well as other social choice contexts such as seat assignment
games Ceylan et al. [2023]; Aziz et al. [2024]; Berriaud et al.
[2023], topological distance games [Bullinger and Suksom-
pong, 2024; Deligkas et al., 2024b] and facility location (see
[Chan et al., 2021] for a survey).

The assumption of two-dimensional costs is also well mo-
tivated beyond delivery tasks. Consider a central office in
charge of the repair and maintenance of all buildings along
a fixed portion of the road it is located on. Many university
campuses and suburban neighborhoods follow similar models.
Here, the repair technicians will not only incur the costs of the
fuel and time spent to reach their assigned buildings, they also
will incur a cost in terms of the time spent servicing each as-
signed building. Other real-life examples include: energy and
electric providers that dispatch repair teams after an outage
(possibly due to storm, tornado, or other natural disruptions).
Internet/cell phone providers have similar issues for mainte-
nance within neighboring grids. In all these cases, in order to
achieve worker satisfaction, it is important to ensure that the
task allocation is fair.

Fairness can be captured in multiple ways, with envy-
freeness (EF) [Foley, 1967; Varian, 1974; Stromquist, 1980]
and maximin share (MMS) [Budish, 2010; Barman and Krish-
namurthy, 2020; Wei et al., 2023] being two of the most promi-
nent criteria. Given the demanding nature of envy-freeness for
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Figure 1: An example graph with the hub at h.

indivisible goods, we consider its relaxation, known as envy
freeness up to one item (EF1) [Lipton et al., 2004b; Budish,
2010; Caragiannis et al., 2019].
Example 1. To illustrate the challenges in ensuring fairness,
consider a stylized example with two agents and five vertices
illustrated in Figure 1. If costs were only incurred from the
distance traveled (one-dimensional), it would be sufficient to
have one agent service all orders, as they can drop off orders
on nodes x1 to x4 on the way to x5. In the two dimensional
case, we can clearly minimize the maximum cost incurred by
splitting the nodes among the two agents.

Minimizing the maximum cost is not enough to ensure envy-
freeness or even EF1. When costs are only from distance,
any allocation where nodes x4 and x5 are assigned to differ-
ent agents would be EF1, this includes an allocation where
one agent is assigned nodes {x1, x2, x3, x4} and the other
is assigned only node {x5}. When costs are only from time,
this clearly would not be EF1, or even minimize maximum
cost. In this case, any allocation that equitably divides the
nodes would be both EF1 and MMS such as when one agent
is assigned vertices {x1, x2} and the other agent is assigned
vertices {x3, x4, x5}. Under two dimensional costs, where
both costs are positive this allocation cannot be EF1 as the
agent doing the larger set of vertices is also traveling further.

As shown in Example 1, the ideas and solutions for the
one-dimensional case do not extend trivially to the two-
dimensional case. While there may be cases where one dimen-
sion dominates the other: one incurs significantly higher cost,
the cost in the other dimension may be non-zero and affect
the structure of fair outcomes. For instance, when conduct-
ing repairs within a university campus, the repair tasks would
likely take more time than the travel time, but for both MMS
and EF1 agents being assigned larger bundles must have lower
travel time. Consequently, we study arbitrary two-dimensional
settings as well as cases where one dimension dominates.

1.1 Our Contributions
In this paper, we introduce a two-dimensional cost model
for allocating service tasks and explore the existence of fair
solutions for this setting. We are given a path graph, with one
node marked as the hub and all remaining nodes corresponding
to unique orders/service tasks which need to be allocated
among the agents. An agent’s cost is the sum of the distance
based cost and the time based cost they incur. We pursue Envy-
freeness up to one item (EF1) and Minimax Costs (MMS) as
our fairness concepts. As part of our technical contributions,
we present multiple polynomial time algorithms with strong
guarantees on fairness, give tight upper bounds on the price
of fairness and conduct a parameterized numerical analysis to
build intuition on how various graph parameters affect agent
costs under fair allocations.
Existence and Computation of Fair Allocations. We first
discuss the existence of fair allocations in our setting in Sec-

EF1 MMS+PO EF1+MMS

General existence ✓ ✓ ?
Costs computation P (Prop. 1) P (Thm. 1) ?

Time - existence ✓ ✓ ✓
Dominant computation O(m) O(m) (Thm. 2) O(m) (Thm. 2)

Distance - existence ✓ ✓ ✓
Dominant computation O(m) O(m) (Thm. 3) O(m) (Thm. 3)

Table 1: The summary of our results on the existence and computation
of fair allocations. ✓ denotes that the allocation always exists ?
denotes that the problem remains open.

tion 3. These results are summarized in Table 1. EF1 allo-
cations can be found by adapting the standard envy-graph
algorithm of Lipton et al. [2004a].

In our main result, we show that an MMS and PO allocation
can be found in polynomial time given an arbitrary instance
of our problem. This algorithm is non-trivial and makes use
of several structural results on Pareto optimality which we
prove. This comes in stark contrast to most standard settings,
including that of [Hosseini et al., 2024; Hosseini and Schier-
reich, 2025] where computing an MMS allocation is always
NP-hard. Assuming that the underlying graph is a path is what
makes the problem tractable, but still requires some non-trivial
machinery to find the solution.

We also give additional results on the structure of fair alloca-
tions. For instances where one dimension of costs dominates
the other, we present linear time algorithms for finding alloca-
tions that are simultaneously MMS, EF1 and Pareto Optimal.
In fact, we show that when the time costs dominate the dis-
tance costs, every MMS allocation must satisfy EF1.
Price of Fairness. In Section 4 we discuss the price incurred
by insisting on fairness. Informally, the price of fairness under
a given instance I, is the ratio of the minimum possible sum
of agent costs under a fair allocation to the minimum possible
sum of agent costs under any allocation. We give a tight upper
bound on the price of EF1 for arbitrary instances. We then
show that when one dimension of costs dominates, the price
of EF1 reduces further. We show that in these settings, the
price of MMS is even lower than the price of EF1.
Experimental Analysis. We complement our theoretical
results by studying the MMS cost in a variety of instances in
Section 5. In order to better understand the effect of parameters
like the time and distance costs and the hub location on the
MMS cost, we conduct an extensive experimental analysis
where we vary these parameters for different graph sizes and
differing number of agents.

1.2 Relevant Work
The fair division of indivisible items has been well studied.
The fairness notions such as EF1 [Lipton et al., 2004a; Bud-
ish, 2010] and MMS [Budish, 2010; Amanatidis et al., 2017]
have been widely explored for goods [Barman et al., 2018;
Chaudhury et al., 2020; Bouveret et al., 2016; Lipton et al.,
2004a], chores [Huang and Lu, 2021; Bhaskar et al., 2021;
Sun et al., 2023] and their combinations [Aziz et al., 2022a;
Bhaskar et al., 2021; Hosseini et al., 2023b,a]. For both goods



and chores, the price of fairness is quite important and has
been well studied [Barman et al., 2020; Bei et al., 2021c; Li
et al., 2024; Caragiannis et al., 2012]. We defer an extended
cover of the relevant work to Appendix A.

While several papers have considered fair division on a
graph, most of the models explored are unrelated to ours. The
closest papers to ours are those of Hosseini et al. [2024] and
Hosseini and Schierreich [2025]. Hosseini et al. [2024] intro-
duce the problem of fairly allocating delivery orders, where
each order corresponds to a unique node on a tree. They as-
sume costs only come from distance, not time, and pursue
EF1 and MMS alongside efficiency via PO. They show that
finding MMS allocations, even without PO, proves to be hard,
even for trees. They give an exponential time algorithm to find
fair and efficient outcomes, which Hosseini and Schierreich
[2025] show to be the best possible time-complexity for the
case of trees. In contrast, we assume two-dimensional costs
(time and distance) and assume the underlying graph to be a
path, showing overwhelmingly positive results.

Hosseini and Schierreich [2025] extend the model studied
in [Hosseini et al., 2024] where they still assume costs only
come from distance, but now different edges may have dif-
ferent weights. They also pursue MMS but relax the notion
of Pareto optimality to non-wastefulness where each non-leaf
node must only be serviced by an agent who is also servicing
a descendant of it. Among various types of trees, they also
study paths, and show that an MMS and non-wasteful alloca-
tion can be computed trivially. When costs come only from
distances, every PO allocation must be non-wasteful. This is
no longer true when one has time and distance based costs.
Consequently, their approach does not extend to our model.
Further, we prove the existence of MMS and PO which is
stronger than non-wastefulness.

2 Model
We use [k] to denote the set of positive integers up to k, that is
[k] = {1, 2, · · · , k}.

Let M = [m] be the set of customers/orders distributed
along a path, and N = [n] the set of agents, with h ∈ M
representing the hub. Each vertex other than the hub h corre-
sponds to a unique order. We assume that m− 1 ≥ n. Each
order must be assigned to one agent. We say that an alloca-
tion A = (A1, · · · , An) is an n-partition of the set of orders.
That is, Ai is the bundle assigned to agent i ∈ N and we
have that for any two distinct i, j ∈ N , Ai ∩ Aj = ∅ and
∪i∈NAi = M .

Each agent starts from the hub, visits all the nodes in their
assigned bundle Ai, and returns to the hub. We assume that the
underlying graph is an unweighted path. That is the distance
between any pair of adjacent nodes is the same. Let cd denote
the distance between two adjacent orders. Upon arriving at an
order, the agent must spend time servicing this node, which
incurs a cost of ct. We assume that the time costs are identical
for all nodes. Consequently, an instance of our problem can
be represented by the tuple I = ⟨M,N, h, cd, ct⟩.

We say that an agent i services node x when assigned bundle
S ⊆ M \ {h} if and only if x ∈ S. We say that i visits node
x when assigned S if x lies on the path between the hub

and some node in S. We now define L(S) = minS x and
R(S) = maxS x, where L(S) and R(S) indicate the leftmost
and rightmost nodes assigned under bundle S, respectively.

The total cost of servicing the bundle S is denoted by c(S)
and has two components. The first component is distance
based cost incurred by the agent traveling from the hub to
the assigned nodes and returning to the hub. Here, the agent
must traverse each edge twice making the distance cost of S
as cd(S) = 2cd(max(R(S), h) − min(L(S), h)). The sec-
ond component accounts for the time based cost incurred to
actually service each assigned node, given by ct(S) = ct|S|.
Definition 1 (Agent Costs). The cost of an agent for servicing
a bundle S ⊆ M \{h} is denoted by c(S) = cd(S)+ct(S) =
2cd(max(R(S), h)−min(L(S), h)) + ct|S|.

Thus, given two bundles of equal size, an agent would
always prefer the one where they need to travel less. To this
end, it would be ideal if the bundle only comprised of nodes
adjacent to each other.

Definition 2 (Contiguous Bundles). We say that a bundle
S ⊆ M \ {h} is contiguous if for every node x s.t. L(S) ≤
x ≤ R(S), either i) x = h or ii) x ∈ S.

That is, a bundle is contiguous if it forms a connected
subgraph, with the inclusion of the hub if necessary. An
empty bundle is vacuously contiguous. Analogously, a non-
contiguous bundle is one where some node (other than the
hub) between the leftmost and rightmost nodes in the bundle
is not contained within it.

2.1 Fairness Notions.
One of the first definitions of fairness to be studied is Envy-
Freeness (EF) where each agent weakly prefers their own
assignment to that of any other. An EF allocation may not
exist in many discrete settings, including that of ours. In this
case, a prominent relaxation of EF is Envy-Freeness up to
One Item (EF1) [Budish, 2010; Lipton et al., 2004a], which
requires that in an allocation, if agent i envies agent j, we can
remove one node from agent i’s bundle to eliminate the envy.

Definition 3 (Envy-Freeness up to One Order (EF1)). An
allocation A is EF1 if for every pair i, j ∈ N , either Ai = ∅
or there exits x ∈ Ai such that c(Ai \ {x}) ≤ cj(Aj).

Another widely studied fairness notion is Minimax Share
(MMS), which requires that the maximum cost incurred under
an allocation be minimized across the set of all allocations. In
order to define this, we first define the minimax share. Here
we use Πn to denote the set of all possible n-partitions of the
nodes in M \ {h}.

Definition 4 (Minimax Share). Given an instance I , the mini-
max share of agent i is MMS(I) = min

A∈Πn
max
j∈N

c(Aj).

An allocation A is MMS if for each i ∈ N , we have that
c(Ai) ≤ MMS(I). That is, the cost of each bundle Ai is at
most the Minimax Share cost.

In addition to fairness, economic efficiency is a very desir-
able and natural objective. We seek efficient outcomes via
Pareto Optimality.



Definition 5 (Pareto Optimality (PO)). An allocation A Pareto
dominates A

′
if for all agent i ∈ N c(Ai) ≤ c(A

′

i), and there
exists j ∈ N such that c(Aj) < c(A

′

j). An allocation is Pareto
optimal if it is not Pareto dominated by any other allocation.

One-Dimension Dominant Costs. We find that when agent
costs are such that one dimension is much more costly than
the other, we are able to provide much stronger fairness guar-
antees. Such costs are well motivated and have been explored
previously in more typical settings [Hosseini et al., 2023b,a;
Shao and Guo, 2024] under the guise of lexicographic valu-
ations. Such costs are not one-dimensional as the less costly
does influence fair allocations. Rather, they impose useful
structures which we can exploit to find allocations with strong
fairness guarantees particularly quickly.

Definition 6 (Time-Dominant Costs). An instance I =
⟨M,N, h, cd, ct⟩ is said to have time-dominant costs if we
have that ct > 2cd(m− 1).

That is, an instance has time-dominant costs if an agent
would rather go to either end of the path than service an addi-
tional node. We can similarly define distance-dominant costs:

Definition 7 (Distance-dominant Costs). An instance I =
⟨M,N, h, cd, ct⟩ is said to have distance-dominant costs if we
have that 2cd > ct(m− 1).

3 Fair Allocations
In this section, we discuss algorithms for finding fair allo-
cations. We first present our results for two-dimensional
costs. All omitted proofs from this section are deferred to
Appendix B.

3.1 General Two-Dimensional Costs
We first consider the notion of envy-freeness up to One Item
(EF1). EF1 requires that for any pair of agents, if one agent
envies the allocation of another, this envy can be eliminated by
removing a single item. Proposition 1 shows that, in a given
instance, an EF1 allocation always exists and can be computed
in polynomial time.

Proposition 1. Given an instance I , an EF1 allocation always
exists and can be computed in polynomial time.

MMS allocations. We now turn to fairness via MMS. Ob-
serve that in our model, all agents bear the same cost when
assigned a fixed bundle S ⊆ M \ {h}. As a result, the MMS
share value would be the same and be given by the same al-
location. As a result, an MMS allocation must always exist.
Further, an allocation that satisfies and MMS and PO must
always exist, via a leximin optimal allocation.

In the model of Hosseini et al. [2024], the problem of find-
ing an MMS allocation is NP-hard, even without requiring
efficiency. However, in our main result, we show that we can
find an MMS and PO allocation in our setup in polynomial
time. To this end, we first make the following observation.

Lemma 1. Given instance I and a Pareto optimal allocation
A = (A1, · · · , An) for each i ∈ N , we have that either:

1. Ai is contiguous or

x1 x2 x3 x4 h x5 x6 x7 x8

Figure 2: Instance in Example 2. An MMS allocation is depicted, the
three bundles are shown by circles, squares and pentagons resp.

2. L(Ai) < h < R(Ai) and there exists j ̸= i such that
L(Ai) < L(Aj) ≤ R(Aj) < R(Ai) and the bundles
{x ∈ Ai|x < h} and {x ∈ Ai|x > h} are contiguous.

Whenever we have an allocation where there exist distinct
i, j ∈ N s.t. L(Ai) < L(Aj) ≤ R(Aj) < R(Ai) we say
that Aj surrounds Ai. A pareto optimal allocation having non-
contiguous bundles seems rather counter-intuitive. However,
there are many cases where an MMS and PO allocation must
have at least one non-contiguous bundle.

Example 2. Consider an instance with m = 9 that is 8 orders
and n = 3 agents with the hub at h = 5. This instance is
illustrated in Figure 2. Let cd = 0.5 and ct = 100, that is,
this is an instance of time-dominant costs. For this instance,
for any allocation A, the agent with maximum cost will also
be one with the largest sized bundle. As we have to allocate 8
nodes among 3 agents, at least one agent will have a bundle of
size at least 3. The most equitable split of the nodes would be
to have two agents service 3 nodes each and one agent service
2 nodes.

Now, in order to minimize the maximum cost, we need
to minimize the distance traveled by any agent. Thus, any
MMS allocation must allocate the two furthest nodes to a
single agent and the remaining nodes must be split into two
contiguous bundles among the other two agents. It is easy to
see that such an allocation is also PO. This allocation is also
illustrated in Figure 2 where circles, squares and pentagons
represent the three bundles.

In contrast, we now show that whenever we have only two
agents, an MMS and PO allocation must be contiguous.

Proposition 2. Given an instance I with n = 2, a Pareto
optimal and MMS allocation must assign contiguous bundles
to both agents.

Armed with the structure on MMS and PO allocations, we
can now present a polynomial time algorithm to find MMS
and PO allocations using dynamic programming.

Theorem 1. Given an instance I, an MMS and Pareto Opti-
mal allocation can be calculated in polynomial time.

Proof Sketch. We develop an algorithm to minimize the max-
imum cost incurred. We only consider allocations where
each bundle is either contiguous or surrounds another bun-
dle. Recall that, given allocation A, Ai surrounds Aj if
L(Ai) < L(Aj) ≤ R(Aj) < R(Ai). Intuitively, the algo-
rithm proceeds by considering all possible ways of splitting
the given instance into three pieces: a left piece where all
bundles are contiguous, a central piece where bundles may
be non-contiguous and a right piece where again all bundles
will be contiguous. For each of the three pieces different
combinations of agents are assigned and each piece is solved
recursively.
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Figure 3: For the instance in Example 2 an EF1 but not MMS alloca-
tion is depicted. The three bundles are shown by circles, squares and
pentagons.

Specifically, we proceed by solving two dynamic programs:
one for all agents receiving contiguous bundles, and the
other where some agents may receive non-contiguous bun-
dles. These dynamic programs require significant setup, con-
sequently, we defer their statement to Appendix B. The cor-
rectness of these algorithms follows from our earlier results.
From Proposition 2 and Lemma 1, we have certain cases where
all agents must receive contiguous bundles: i) when the hub is
at either end of the path or ii) when the number of agents is at
most 2. As a result, we can first resolve the contiguous case,
and use it to solve the non-contiguous case.

3.2 Stronger Fairness and Efficiency Guarantees
We now show that when agents have time-dominant or
distance-dominant costs, we can get both faster algorithms as
well as stronger fairness guarantees.

Time-Dominant Costs. We first consider time-dominant
costs where ct > (m− 1)2cd. Here we find that an EF1 and
PO allocation must always exist and can be found in linear
time via an MMS and PO allocation via Algorithm 3.

Theorem 2. Given an instance I with time dominant costs, we
have i) every MMS allocation is also EF1 and ii) an allocation
that satisfies MMS, EF1 and PO can be found in linear time.

Unfortunately, every EF1 allocation need not be MMS under
this setting. Figure 3 shows an EF1 allocation for this instance
which is not MMS. We know that any MMS allocation must
allocate the two furthest nodes to a single agent with no other
nodes assigned.

Distance-dominant Costs. We now consider the case where
distance costs dominate: 2cd > (m− 1)ct. In this case, MMS
allocations need not all be EF1, but we can still find allocations
that satisfy MMS and EF1 in linear time. We first show that
the MMS share cost in this case can be determined in constant
time.

Lemma 2. Given an instance I with distance-dominant
costs, we have that the MMS share cost is MMS(I) =
2cd(max(m− h, h) + ct whenever n > 3.

Proof. Under distance-dominant costs, the bundle containing
the furthest node from the hub will always have maximum
cost. It is easy to see that the furthest node from the hub must
be one or both of the end points of the path (either 1 or m).
The distances of these nodes from the hub are h and m − h
respectively.

Let S ⊆ M \ {h} be a bundle containing at least one of
the furthest nodes. As a result, c(S) ≥ 2cd max(m− h, h) +
ct(S) ≥ 2cd max(m− h, h) + ct. That is, for any allocation
A, we have that maxi∈N c(Ai) ≥ 2cd max(h,m− h) + ct.

To minimize this cost, while still servicing the furthest node,
we need to ensure that S only contains the furthest node. As

h x1 x2 x3 x4 x5

Figure 4: Under distance dominant costs with n = 3, an MMS and
PO but not EF1 allocation is depicted. The two non-empty bundles
are shown by circles and squares.

a result, under an MMS allocation, a bundle containing the
furthest node cannot contain any other node. In this case, the
cost of this bundle will be exactly 2cd(max(m − h, h) + ct.
Consequently, MMS(I) = 2cd(max(m− h, h) + ct.

This leads us to the following corollaries over some signifi-
cant MMS and PO allocations.

Corollary 1. Given an instance I with distance-dominant
costs, an MMS allocation with minimum sum of agent costs
must be such that each edge on the path is traversed by at
most two agents.

Corollary 2. Given an instance I with distance-dominant
costs and ct > 0, under a leximin optimal allocation the n
furthest nodes from the hub must all be serviced by distinct
agents. The agent servicing the closest of these nodes to the
hub must also service all other nodes.

Theorem 3. Given an instance I with distance-dominant
costs, an allocation that satisfies MMS and EF1 can be found
in linear time.

Through the proof of Theorem 3, we get the following
corollary.

Corollary 3. Whenever n ≤ 2, under distance-dominant costs,
every MMS allocation is EF1.

When n > 2, MMS and EF1 do not always coincide. Fig-
ure 4 shows an example of an MMS and PO allocation for an
instance with distance-dominant costs with n = 3 agents and
m = 6. For any choice of cost parameters satisfying distance
dominance, the allocation depicted will be MMS and PO but
not EF1.

In the proof of Theorem 3, we also show that when n ≤
2, every MMS allocation will be PO by default. Further,
whenever ct > 0, the allocation returned by Algorithm 4 will
be PO. As a result, we have the following corollary.

Corollary 4. Given an instance I with distance-dominant
costs and ct > 0, an allocation that is MMS, EF1 and PO can
be found in linear time.

4 Price of Fairness
The Price of Fairness measures the efficiency loss incurred
when imposing fairness constraints on allocations. In this sub-
section, we analyze the price of fairness for EF1 and MMS.
We first formally define the price of fairness where we com-
pare the minimum possible sum of agent costs under a fair
allocation to the minimum possible sum of agent costs under
any allocation. We defer all omitted proofs from this section
to Appendix C.

Recall that we denote the space of all allocations among n
agents as Πn.



Figure 5: Experimental results on MMS cost varying with different hub locations and values of 2cd

ct

Definition 8 (Price of Fairness). Given an instance I and a
fairness criterion F , the price of F under I is given as:

PoF(I) =
minA∈

∏n,A satisfies F
∑n

i=1 c(Ai)

minA′∈
∏n

∑n
i=1 c(A

′
i).

First, we observe that the denominator is fixed for all in-
stances. For this, recall that for a bundle S ⊆ M \ {h}, we
have that cd(S) = 2cd(max(R(S), h)−min(L(S), h)), that
is, cd(S) denote the cost from the distance traveled to service
S. Analogously, ct(S) denotes the time cost from bundle S.
Observation 1. Given instance I = ⟨M,N, h, cd, ct⟩, for
any allocation A,

∑
i∈N ct(Ai) = (m− 1)ct. Consequently,

the minimum possible sum of costs is minimized based on the
minimum sum of distances.
Observation 2. Given instance I, as each node must be ser-
viced, we can have only one agent service all nodes and hence,
minA∈

∏n

∑n
i=1 c(Ai) = (m− 1)(ct + 2cd).

4.1 Price of EF1
Theorem 4. Given an instance I = ⟨M,N, h, cd, ct⟩, we
have that PoEF1(I) ≤ (m−1)ct+(2m−n−1)ncd

(m−1)ct+2(m−1)cd
.

Observe that, Theorem 4 shows that PoEF1 increases as the
ratio of 2cd/ct increases. As a result, it would be maximum
for distance-dominant costs and minimum for time-dominant
costs. Thus, applying Theorems 2 and 3 to Theorem 4 we get
the following result.
Proposition 3. Given an instance I, we have that

1. If I has distance-dominant costs, PoEF1 ≤
(2m−n−1)n+2

2(m−1)

2. If I has time-dominant costs, PoEF1 ≤ m+n
m−1

An interesting observation here is that if the smaller dimen-
sion vanishes, the impact on the price of EF1 is very different.
Corollary 5. Given an instance I, we have that i) if cd = 0,
PoEF1(I) = 1 and alternately ii) if ct = 0, PoEF1 ≤
(2m−n−1)n

2(m−1) .

4.2 Price of MMS
The upper bound on the Price of EF1 over arbitrary instances
actually also applies to MMS, but it is not a tight upper bound.
We unfortunately do not know of a tight upper bound on
arbitrary instances. We now give upper bounds on Price of
MMS under one-dimension dominant costs. In these cases,
the price of MMS is quite low.
Proposition 4. Given an instance I, we have that

1. Under time-dominant costs, PoMMS(I) ≤ m
m−1 ,

2. Under distance-dominant costs PoMMS(I) ≤ 2 and
3. Whenever either cd = 0 or ct = 0, PoMMS(I) = 1.

5 Experimental Analysis
In this section, we present the results of our experiments
studying the effect of various parameters on MMS share cost.
Specifically, we compare the MMS value under a variety of
hub locations, values of 2cd

ct , number of agents and number of
nodes/orders. We present some of the results here and defer
the rest to Appendix D.
Experimental Methods. We create instances where the
number of agents is such that 2 ≤ n ≤ 6 and m ∈
{11, 15, 19}. For each combination of m and n, we allow
the hub to be on any of the positions {1, 2, · · · ,m}. We fix
the value ct to be 100 and vary choose cd to be 2ctτ . Here,
the coefficient τ – a critical parameter that balances inspec-
tion time and transportation costs – is logarithmically sampled
(sampled values are uniformly spaced on the logarithmic scale)
over 20 values that span [0.1, 10].

Thus our instances span distance-dominant instances (τ ≪
1) to time-dominant ones (τ ≫ 1). For each instance gener-
ated, we compute the MMS share cost using our algorithm
described in Theorem 1. As a result, we can compare the effect
of three parameters on the MMS cost: hub position, ratio of
the costs 2cd

ct and the number of orders/nodes. We defer the
results for n = 3 and n = 5 and m = 15 to Appendix D along
with a more detailed discussion. We present the remaining
results here.



Figure 6: Experimental results on normalized MMS cost varying with different hub locations and values of 2cd/ct

5.1 MMS Share
We first observe the effect on the MMS value of two param-
eters: the hub position and the ratio of 2cd

ct . We present our
results in Figure 5. We first observe that the range of the MMS
share costs varies based on the number of orders, but is similar
when we vary the number of agents. Keeping the value of 2cd

ct

fixed the MMS share cost seems to be minimized when the
hub is at the center. We find that as the hub moves further
from the middle, the MMS share cost increases. Further, this
increase is symmetric on either side. However, this effect is
less visible for instances with a larger number of orders.

Keeping the hub position fixed, we find that initially there
is noticeable little effect on the MMS share costs and these
seem to increase only after 2cd

ct > 6.0. The increase is also
sharper, further away from the hub. Further, for larger number
of orders, the increase in the MMS share cost is less visible
for the same value of 2cd

ct . This makes it hard to see anything
interesting for the smaller values of 2cd

ct .
Observe that the heatmaps for a fixed number of orders

look very similar even if we change the number of agents.
That is, we observe similar relative tradeoffs of hub position
and 2cd

ct for all the chosen values of n. However, on closer
inspection, fixing m, hub position and 2cd

ct , as the number of
agents increases, the MMS value decreases.

5.2 Normalized MMS Share
In order to better observe the effect of varying 2cd

ct , we study
the effect of 2cd

ct and the hub position on the ratio of MMS
share cost and the socially optimal cost. We present these re-
sults in Figure 6 and we can observe some marked differences
from the results in Figure 5.

Firstly, the range of the ratio of the MMS share cost to the
socially optimal cost remains the same for all three choices
of the number of orders. Further for the two extreme hub
positions, the values seem to be the same for 11 and 19 orders.
Interestingly, this is not the case when the hub is at the center.
When the hub is at the center, the MMS share cost is smaller
for the same ratio of 2cd

ct when there are more orders.

For a fixed hub position, as 2cd

ct increases, ratio of the MMS
share cost to SO cost increases much more evenly, and there
is a noticeable increase even for the smaller values of 2cd

ct .
And in this experiment, for the same τ , the changes brought
about by different hub positions are more obvious than in the
previous experiment. Further, for the extreme hub positions,
the MMS share cost is smaller.

It is important to note that for this experiment, we do see
noticeable differences in the heatmaps generated as we change
the number of agents for a fixed number of orders. This is
particularly noticeable when the hub is in the center. In fact,
on closer inspection, we find that as we increase the number of
agents, the ratio of the MMS share to the SO cost decreases.

6 Concluding Remarks

In this paper, we present a generalized model of allocating
tasks to agents, where agents incur two dimensions of costs:
time and distance. We study this under the assumption that
each order/task lies on a unique node on a path. For this setting,
we show that fair allocations can be found in polynomial time,
even MMS allocations, which are typically intractable to find.
We then show that when one dimension of cost is significant
more costly, allocations that are both EF1 and MMS can be
found in time linear in the number of nodes.

We then provide a tight upper bound on EF1 allocations
and give smaller upper bounds for one-dimension dominant
costs for the price of EF1 and MMS. We then complement our
theoretical results by showing the effect of various parameters
on the MMS share costs.

Introducing a new model, we open may avenues for future
work, including finding EF1 and PO allocations whenever
they exist and tight bounds on the price of MMS. Further, for
paths, weighted graphs where different nodes and edges have
different costs need to be studied. Another direction would be
to study more complicated graphs like cycles and trees. Other
fairness notions like proportionality and equitability can also
be pursued here.
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A Additional Related Work
Fair division. The fair division of indivisible goods has been
a subject of intense inquiry in various academic disciplines,
including economics, computer science, and operations re-
search. Key concepts that have emerged in this area of study
include envy freeness up to one item (EF1) and max-min share
(MMS), both of which have been thoroughly explored alone
[Budish, 2010; Lipton et al., 2004a; Bouveret et al., 2016; Pro-
caccia and Wang, 2014] and alongside efficiency [Barman et
al., 2018; Caragiannis and Narang, 2023; Bouveret and Lang,
2008]. Fairness has been explored for goods [Barman et al.,
2018; Chaudhury et al., 2020; Bouveret et al., 2016; Lipton et
al., 2004a], chores [Huang and Lu, 2021; Bhaskar et al., 2021;
Sun et al., 2023] and their combinations [Aziz et al., 2022a;
Bhaskar et al., 2021; Hosseini et al., 2023b,a]. Likewise a
variety of preference types have been explored including ad-
ditive valuations/costs [Barman et al., 2018, 2017; Aziz et
al., 2022a; Hosseini and Searns, 2021] and submodular or
subadditive valuations/costs [Garg et al., 2020; Barman et al.,
2021; Benabbou et al., 2020; Li and Vondrák, 2021]. Recently
even supermodular and superadditive costs [Barman et al.,
2023; Viswanathan and Zick, 2023] along with non-monotone
valuations [Bhaskar et al., 2023; Bérczi et al., 2024] have been
explored. Major results in this field have been summarized in
a survey paper Aziz et al. [2022b].
Price of Fairness. The reason so much work has pursued fair
and efficient allocations is to minimize the efficiency loss from
fairness. Consequently, this has also been separately studied as
the price of fairness, beginning with the work of Caragiannis
et al. [2012], which explored divisible settings. The first paper
to pursue the price of fairness under indivisible settings was
by Barman et al. [2020]. Since then much work has gone
into finding tight upper bounds on the price of fairness as
a function of the input parameters for additive as well as
subadditive settings [Bei et al., 2021c; Li et al., 2024; Bhaskar
et al., 2023; Sun et al., 2023].
Graph-based settings. Fair division on graphs has been
studied previously [Bouveret et al., 2017; Bilò et al., 2022;
Truszczynski and Lonc, 2020; Misra et al., 2021] where items
are the nodes on a graph and each agent must receive a bundle
that forms a connected subgraph. Recent work, initiated by
Christodoulou et al. [2023] introduces graphical valuations
where agents are nodes on a graph and the edges are the
items [Zhou et al., 2024; Bhaskar and Pandit, 2024; Zeng and
Mehta, 2024; Misra and Sethia, 2024; Deligkas et al., 2024a;
Afshinmehr et al., 2024; Zhou et al., 2024]. An incident edge
can only be assigned to one of its two endpoints. It is easy to
see that there is little overlap between this setting and the one
pursued in this paper. The model we study is very different
from such settings, as while our items are indeed nodes, firstly
there is no requirement that each agent receive a connected
bundle and secondly, costs come from both the edges as well
as the nodes. Further, in our setup, there is a unique node
called the hub that must not be allocated, but informs the
costs.
Fairness in Delivery Settings. Hosseini et al. [2024] intro-
duced the problem of fair distribution of delivery tasks, where
given a tree rooted at the hub all other nodes correspond to

a delivery/task and must be allocated to some agent. The
agent costs come from the distance they travel to start from
the hub, service all their assigned nodes and then return to the
hub. For this model they characterize the space of instances
where fair and efficient allocations exist and give an exponen-
tial time algorithm to find them. All combinations of fairness
and efficiency that they study prove to be NP-hard to check
and find. Specifically, Hosseini et al. [2024] give an XP al-
gorithm to find the Pareto frontier and this paired with their
characterization results enables us to find fair and efficient
allocations

Hosseini and Schierreich [2025] follow up on this model
and show that in fact no FPT algorithm can exist to find fair
and efficient allocations, making an XP algorithm the best
possible. They further relax efficiency to non-wastefulness
which they define as no agent should service a non-leaf node
when they don’t also service a descendant of it. They pursue
MMS and non-wasteful allocations for arbitrary trees, as well
as special types of trees including stars and paths. In their case,
an MMS and non-wasteful allocation can be computed in a
straightforward manner. Unfortunately, these results do not
extend to our model, as they assume one-dimensional costs.
Further, in our case a non-wasteful and MMS allocation need
not exist in the first place. An argument can even be made that
non-wastefulness, in the way they define it, is only meaningful
for the case when costs only come from distances. Further, we
give positive results for MMS and PO, which is stronger than
non-wastefulness, even in their setting.

Some other recent work has also explored fairness in deliv-
ery settings [Gupta et al., 2022; Nair et al., 2022; Singh et al.,
2023]. Here the approach towards fairness is to ensure equal
income distribution. This work is largely empirical however,
and does not provide any significant theoretical guarantees.
Further the costs incurred by agents from the delivery tasks
tare independent of each other. In contrast, the costs in our
case are interdependent, as an agent has lower marginal cost
for nodes on the way to other nodes already assigned to them.

B Omitted Material From Section 3
We now present all omitted proofs on the existence and com-
putation of fair allocations, in the order they appear in the
paper.

Proposition 1. Given an instance I , an EF1 allocation always
exists and can be computed in polynomial time.

Proof. Given an arbitrary instance I, observe that for any
S ⊆ S′ ⊆ M\{h} we have that the costs satisfy c(S) ≤ c(S′).
That is, our cost functions are monotone increasing. Conse-
quently, we can use the envy-graph approach from Lipton et
al. [2004a].

Here, starting from an empty allocation, we choose an agent
with minimum cost and give them an unassigned node in
M \ {h}. We do this repeatedly till all the nodes in M \ {h}
are assigned.

This procedure maintains an EF1 allocation throughout.
The initial empty allocation is envy-free and thus EF1. In each
iteration, as cost functions are identical, there always exists at
least one agent with minimum cost. This agent will not envy



any other agent. If the additional node increases their cost,
EF1 will still be maintained, as removing this item will make
the cost less than or equal to the cost from all other bundles.

B.1 MMS allocations
We now turn to MMS allocations. We shall show that an MMS
and PO allocation can always be found in polynomial time.
To this end, we first prove an important necessary condition
for Pareto optimal allocations.

Lemma 1. Given instance I and a Pareto optimal allocation
A = (A1, · · · , An) for each i ∈ N , we have that either:

1. Ai is contiguous or

2. L(Ai) < h < R(Ai) and there exists j ̸= i such that
L(Ai) < L(Aj) ≤ R(Aj) < R(Ai) and the bundles
{x ∈ Ai|x < h} and {x ∈ Ai|x > h} are contiguous.

Proof. Given an instance I =< M,N, h, cd, ct >, for an al-
location A, we shall show that whenever an allocation doesn’t
satisfy conditions (1) or (2) there must exist a Pareto dom-
inating allocation. Recall that A′ pareto dominates A, if
for all i ∈ N , c(Ai) ≥ c(A′

i) and for at least one j ∈ N ,
c(Aj) > c(A′

j). To this end, consider an allocation A where
there exists Ai which is non-contiguous.

Case 1: L(Ai) ≤ R(Ai) < h or h < L(Ai) ≤ R(Ai).
Without loss of generality assume that i) L(Ai) ≤ R(Ai) < h
and ii) i is the left most agent with a non-contiguous bundle.
That is, all bundles containing a node x < L(Ai) are con-
tiguous. As a result, there must exist at least one agent i′ s.t.
L(Ai) < L(Ai′) < R(Ai).

Consider alternate allocation A′ obtained from swapping
L(Ai′) for R(Ai). That is, A′

i = (Ai \ {R(Ai)}) ∪ L(Ai′),
A′

i′ = (Ai′ \ L(A′
i) ∪ R(Ai) and for all j ∈ N \ {i, i′} set

A′
j = Aj .
Observe that under A′, for each j ∈ N \ {i, i′}, c(Aj) =

c(A′
j). Further, |Ai| = |A′

i| and |Ai′ | = |A′
i′ |, and thus,

the time costs are the same. With respect to distance, we
have that cd(Ai) = cd(A′

i). For agent i′, we now have that
L(A′

i′) > L(Ai′) and thus, cd(A′
i′) < cd(Ai′). As a result,

A′ Pareto dominates A.
Case 2: Let there exist i, i′ ∈ N s.t. L(Ai) < L(Ai′) <

h < R(Ai) < R(Ai′). Consider alternate allocation A′

obtained from swapping L(Ai′) for R(Ai). That is, A′
i =

(Ai \ {R(Ai)}) ∪ L(Ai′), A′
i′ = (Ai′ \ L(A′

i) ∪ R(Ai) and
for all j ∈ N \ {i, i′} set A′

j = Aj .
We again have that for all j ∈ N \ {i, i′}, c(Aj) = c(A′

j).
Meanwhile, |Ai| = |A′

i| and |Ai′ | = |A′
i′ |, but R(A′

i) <
R(Ai) and L(A′

i′) > L(Ai′). Consequently, both i and i′

travel less far and as a result, cd(A′
i) < cd(Ai) and cd(A′

i′) <
cd(Ai′). Thus A′ Pareto dominates A.

Hence, under any Pareto optimal allocation A, for every
i ∈ N , either Ai is contiguous or L(Ai) < h < R(Ai) and
there exists i′ ∈ N s.t. L(Ai) < L(Ai′) ≤ R(Ai′) < R(Ai).

Analogous to Case 1, for any non-contiguous bundle Ai,
under a PO allocation, the bundles {x ∈ Ai|x < h} and
{x ∈ Ai|x > h} are contiguous.

Proposition 2. Given an instance I with n = 2, a Pareto
optimal and MMS allocation must assign contiguous bundles
to both agents.

Proof. Given an instance I with 2 agents, consider an arbitrary
allocation A. We shall show that if even one bundle under
A is non-contiguous, A is either not PO or not MMS. Let
L(A1) < L(A2).

Case 1: First consider the case where neither of the two
bundles is contiguous under A. For this setting, if L(A1) <
L(A2) < R(A1) < R(A2), we have from Lemma 1 that A is
not PO. The only remaining possibility for both bundles to be
non-contiguous is when L(A1) < L(A2) < R(A2) < R(A1)
and there exists x ̸= h s.t. L(A2) < x < R(A2) and x ∈ A1.
In this case, we can swap all such x for the furthest nodes from
h in A2 to get a Pareto dominating allocation.

Case 2: The remaining case is when exactly one bundle
is non-contiguous. Without loss of generality, let A1 be
non-contiguous and A2 be contiguous. As a consequence
of Lemma 1, it must be that L(A1) < L(A2) ≤ R(A2) <
R(A1). In this case, we have that cd(A1) > cd(A2). Now
consider the allocation A′ where A′

2 contains the leftmost |A2|
nodes and A′

1 contains the rightmost |A1| nodes.
Case 2a: |A1| ≥ |A2|. In this case, we have that c(A1) >

c(A2). Now, we have that in terms of bundle size, |A1| = |A′
1|

and |A2| = |A′
2|. In terms of distance, both cd(A′

1) and
cd(A′

2) are strictly less than cd(A1). As a result, A′ has lower
maximum cost than A. Thus, A cannot be MMS.

Case 2b: |A1| < |A2|. In this case, A2 contains at least
half the nodes. Without loss of generality, assume that the
hub is in the left half of the path, i.e., 2h < m + 1. The
bundle sizes are identical in both allocations. Observe that
here, L(A′

2) < h < R(A′
2). Consequently, cd(A′

2) ≤ cd(A2)
whereas, cd(A′

1) < cd(A1). As a result, A′ Pareto dominates
A.

Hence, we now have that when n = 2, given an allocation A
where even one bundle is non-contiguous, there always exists
an alternate allocation A′ s.t. either maxi c(Ai) > maxi c(A

′
i)

or maxi c(Ai) = maxi c(A
′
i) and mini c(Ai) > mini c(A

′
i).

We say that A′ leximin dominates A. It is easy to see that an
allocation that is not leximin dominated by any other allocation
must be MMS under our model. We shall now show that we
can find such an allocation in poly time.
Theorem 1. Given an instance I, an MMS and Pareto Opti-
mal allocation can be calculated in polynomial time.

Proof. We shall now show how to find a specific type of MMS
and PO allocation: a leximin optimal allocation. To this end,
let us first define some useful notation. Setup. Given an
allocation A, we can sort it in non-increasing cost order to
obtain allocation B = sort(A) such that c(B1) ≥ c(B2) ≥
· · · ≥ c(Bn) and Bi = Aπ(i) for every agent i ∈ [n] and some
permutation of agents π.

Definition 9 (Leximin Optimality). An allocation A leximin
dominates an allocation A′ if there is agent i ∈ [n] such that
c(Bi) < c(B′

i) and c(Bj) = c(B′
j) for every j ∈ [i − 1],

where B = sort(A) and B′ = sort(A′). An allocation is



ALGORITHM 1: CTG
Input: n, left, right, h, cd, ct

Output: A leximin optimal cost vector for the instance
1 if left > right then
2 Return {2cdm2 + ctm2} ▷ Invalid instance

3 if left = right then
4 if left = H = right then
5 Let A be a n length vector where all entries are 0 ▷

No nodes to allocate
6 else
7 Let A be a n length vector where

A1 = ct + 2cd max(H − left, right−H)
8 and all other entries are 0 ▷ Only one node to allocate

9 Return A

10 ▷ Here, left < right
11 if n = 1 then
12 Initialize s← right− left and k ← right− left
13 if h < left then
14 k ← right− h
15 s← s+ 1

16 if h > right then
17 k ← h− left
18 s← s+ 1

19 Return (2cdk + cts)
20 else
21 Return Lminl′>left CTG(m− 1, l′, right, h, cd, ct)

22
⊕

2cd max(h− left, l′−h)+ ct(l′− left+ I(H > l′

OR h < left))

leximin optimal if it is not leximin dominated by any other
allocation.

Observe that given two allocations A and A′, unless they
give identical costs, one must leximin dominate the other. Be-
tween A and A′ we can decide in linear time, which allocation
leximin dominates the other. With regards to our goal of find-
ing MMS and PO allocations, it is straightforward to see that
every leximin optimal allocation must be MMS. Further, if A
pareto dominates A′, it implies that A also leximin dominates
A′ but the reverse may not be true. As a result, every leximin
optimal allocation is PO but not vice versa. Consequently,
every leximin optimal allocation must satisfy the conditions
in Lemma 1.

Specifically, under a leximin optimal allocation A∗, for each
i ∈ N , either A∗

i is contiguous or it spans either side of the
hub and surrounds at least one other bundle. Consequently,
given any two bundles, A∗

i and A∗
j where L(A∗

i ) < L(A∗
j ), we

have that either R(A∗
i ) < L(A∗

j ) or if Ai is non-contiguous,
L(A∗

i ) < L(A∗
j ) ≤ R(A∗

j ) < R(A∗
i ). As every non-

contiguous bundle must surround the hub, given two non-
contiguous bundles, A∗

i and A∗
j where L(A∗

i ) < L(A∗
j ) it

must be that L(A∗
i ) < L(A∗

j ) ≤ R(A∗
j ) < R(A∗

i ). Let there
be at least one non-contiguous bundle under A∗. Choose i s.t.
A∗

i is the non-contiguous bundle with the largest distance-cost.
Thus, all bundles with nodes to the left or right of L(A∗

i ) and
R(A∗

i ), respectively, must be contiguous.
Contiguous Algorithm Overview. We can now show how

ALGORITHM 2: NTG
Input: n, left, right, h, cd, ct

Output: A leximin optimal cost vector for the instance
1 if n = 0 then
2 if left ≤ right ̸= h then
3 Return {2cdm2 + ctm2} ▷ Invalid instance
4 else
5 Return ∅ ▷ Instance with no agents and no nodes

6 if left > right then
7 Return {2cdm2 + ctm2} ▷ Invalid instance

8 if left = right OR h ≤ left OR h ≥ right OR n ≤ 2 then
9 Return CTG(n, left, right, h, cd, ct) ▷ Optimal

allocation must be contiguous

10 ▷ Here, left < h < right
11 ▷ Build leximin opt over contiguous solutions
12 LC ← CTG(n, left, right, h, cd, ct)
13 ▷ Build leximin opt over non-contiguous solutions
14 LN ← Lminl′,r′:left≤l′<h<r′≤right I1
15 where I1 ←

LminnL+n′+nR=n−1:nL>0⇔l′>left,nR>0⇔r′<right I2
16 where I2 ← CTG(nL, left, l

′ − 1, h, cd, ct)
⊕
I3

⊕
17 CTG(nr, r

′ + 1, right, h, cd, ct)
18 where I3 ← Lminl′′,r′′:l′<l′′≤r′′≤r′ NTG (n′,

l′′, r′′, h, cd, ct)
⊕

(2cd((h− l′) + (r′ − h))
+ct((r′ − r′′) + (l′′ − l′)))

19 Return Lmin(LC ,LN )

to find a cost vector of an MMS and PO allocation via the
leximin optimal. Through this procedure, an MMS and PO
allocation can also be found. Firstly, we show that when
restricted to the space of allocations where all bundles are
contiguous, we can find a leximin optimal allocation (over
contiguous allocations) via dynamic programming. Informally,
given instance I, we consider all possible lengths for the
leftmost bundle, conditioned on which, consider all possible
lengths for the second leftmost bundle and so on. We give this
algorithm in Algorithm 1. Before discussing the algorithm
details, we first setup some operators:

• Lmin: This operator, takes as input multiple alloca-
tions/sorted cost vectors, and returns one leximin optimal
among this set.

•
⊕

: This operator takes as input two cost vectors and
merges them into a single sorted cost vector. For instance
cost vectors: (10, 5, 2) and (8, 5, 3, 2) would be merged
as (10, 5, 2)

⊕
(8, 5, 3, 2) = (10, 8, 5, 5, 3, 2).

• I: This operator is an indicator (variable) and takes as
input a logical statement/event and returns a value of 1 if
the logical statement is true and 0 if it is false.

We are now prepared to describe our dynamic program
for allocations with contiguous bundles. The CTG dynamic
program takes as input n agents, a sub-path (of the path on M )
between the nodes left and right, a hub location and the cost
parameters cd and ct. CTG then returns the leximin optimal
solution for dividing this sub-path among the n agents. In
order to do this, there are some base cases to consider:



• Invalid instance left > right: in this case, we have
stumbled into an invalid instance, and thus we return
a high cost which is more than what could be attained
under any instance.

• left = right: in this case at most one node needs to be
allocated which can be done trivially.

• n = 1: in this case, only one agent is there so they must
service all nodes.

If none of these cases occur, that is there are multiple nodes,
to be allocated amongst multiple agents, we consider the lex-
imin optimal of the allocations given by different lengths of
the leftmost contiguous bundle and solve the remaining in-
stance among the remaining n− 1 agents. As a result, CTG
can find the leximin optimal solution among allocations with
all contiguous bundles.
Running time: For each agent, at most m different bundles are
considered and finding the leximin optimal among a set of cost
vectors is done in linear time. As a result, CTG terminates in
time O(mn2).

We now show how to find a leximin optimal over all al-
locations by developing a dynamic program that considers
non-contiguous bundles as well.

Non-contiguous Algorithm Overview. Recall that under a
leximin optimal allocation, given two non-contiguous bundles,
one must surround the other. As a result, given an instance
I, we can break it into three parts: left contiguous, center
non-contiguous and right contiguous, where the hub lies in the
center. That is, given a path, we can consider all possible non-
contiguous bundles by starting with a non-contiguous bundle
with largest distance cost, and solving the sub paths to the
right and left of it as contiguous solutions. To this end there
are some base cases to consider:

• No agent and no nodes: In this case we return an empty
set showing no cost.

• Invalid instance: here either there are no agents, or
left > right. In either case we return a high cost that
could not be attained under any allocation.

• Only contiguous solutions: this can happen is the hub is
to the side of the sub-path or if n ≤ 2. In this case, we
use the CTG dynamic program as a subroutine.

For any other instance, where n ≥ 3 and left < h <
right, we consider all contiguous solutions via CTG. For
non-contiguous solutions, we first split the given sub-path
into three pieces left to l′ − 1, l′ to r′ and r′ + 1 to right
where left ≤ l′ < h < r′ ≤ right. For a fixed choice of l′
and r′, we now consider how to split the agents across these
sub-instances. To this end, we choose nL + n′ + nR = n− 1
where nL > 0 if and only if l′ > left and nR > 0 if and only
if r′ < right. We then solve the left and right sub-instances
via CTG.

For the central sub-instance, we know from Lemma 1 that
for a non-contiguous bundle, the nodes on one side of the
hub should still be contiguous. As a result, we consider l′′
and r′′, such that one agent service the nodes from l′ to l′′ −
1 and those from r′′ + 1 to r′, and then use NTG for the
remaining n′ agents and the sub-path between l′′ and r′′. We

ALGORITHM 3: Fairness under Time-Dominant Costs
Input: I = ⟨M,N, h, cd, ct⟩ with time-dominant costs
Output: An MMS, EF1 and PO allocation A

1 Let k ← (m− 1) mod n and p← ⌊m−1
n
⌋

2 Choose (l, r) ∈ argmin{|h− l|+ |r − h| :
1 ≤ l ≤ r ≤ m− 1 and r − h = k(p+ 1)}

3 Let l′ ← l
4 for i = 1 to k do
5 Ai ← {l′, · · · , l′ + (p+ 1)} ▷ Allocate larger bundles
6 l′ ← l′ + p+ 2
7 if h ∈ Ai then
8 Ai ← (Ai \ {h}) ∪ l′

9 l′ ← l′ + 1

10 l′ ← 1
11 for i = k + 1 to n do
12 if l′ ≤ l ≤ l′ + p then
13 Ai ← {l′, · · · , l− 1}∪{r+1, · · · r+ p− (l− l′)}

▷ Non-contiguous bundle
14 l′ ← r + p− (l − l′) + 1
15 else
16 Ai ← {l′, · · · , l′ + p}
17 l′ ← l′ + p+ 1

take the leximin optimal over all such allocations and compare
it with the leximin optimal over all contiguous solutions, and
ultimately find the leximin optimal.
Running Time: For each of our agent variables nL, n

′ and nR

we have O(n) choices and for the path variables we have at
most O(m) choices for each. Merging two cost vectors and
finding the leximin can be done in linear time and as a result
NTG runs in polynomial time.

B.2 Stronger Guarantees for Fairness and
Efficiency

We now turn to the case where one dimension of cost domi-
nates the other. For such instances, we can find MMS and EF1
allocations in linear time.

Time-Dominant Costs. We shall constructively prove that
under time-dominant costs, EF1, MMS and PO allocations
must exist. In particular, Algorithm 3 finds one in linear time.

Theorem 2. Given an instance I with time dominant costs, we
have i) every MMS allocation is also EF1 and ii) an allocation
that satisfies MMS, EF1 and PO can be found in linear time.

Proof. Firstly, observe that under any (complete) allocation,
there will always be one bundle which contains at least ⌈m−1

n ⌉
nodes. Under time-dominant costs, we have that the bundle
with the largest cost will be the one that contains the most
nodes and among those, goes the furthest.

As a result, under an MMS allocation, we need to minimize
the number of nodes in each bundle. As a result every bundle
under an MMS allocation must have size either ⌊m−1

n ⌋ or
⌈m−1

n ⌉. Further all bundles with ⌈m−1
n ⌉ nodes will travel less

far than any bundle with ⌊m−1
n ⌋ nodes. Under time-dominant

costs, this is sufficient to ensure EF1.
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Figure 7: Outcome of Algorithm 4 on an instance with n = 3. An
MMS, PO and EF1 allocation is depicted. The three bundles are
shown by circles, squares and pentagons.

Given an MMS allocation A, fix an arbitrary i, j ∈ [n]. If
|Ai| > |Aj |, as A satisfies MMS, it must be that cd(Ai) ≤
cd(Aj). As a result, removing any node from Ai will ensure
equal time cost and thus EF1 is satisfied. Now if |Ai| ≤
|Aj | then removing any node from Ai will ensure that Ai

contains strictly fewer nodes than Aj and as the costs are
time-dominant, this is ensures EF1.

Consequently, under time-dominant costs, every MMS allo-
cation is EF1.

Now we show that we can build an MMS+EF1+PO al-
location in linear time. Let k = (m − 1) mod n that
is, k ∈ [n − 1] ∪ {0} s.t. there exists some p ∈ Z+ s.t.
m− 1 = pn+ k. Thus, we have that under an MMS alloca-
tion, k agents receive a bundle of size p+1 = ⌈m−1

n ⌉ and the
remaining n− k agents receive a bundle of size p = ⌊m−1

n ⌋.
We need to first minimize the distance traveled under any

bundle with |Ai| = p + 1. To this end, we can select the
(n − k)p nodes furthest from the hub. The remaining nodes
must form a connected sub-path of the original graph along
with the hub. These remaining k(p+ 1) nodes can be divided
into k contiguous bundles. This is needed to ensure MMS.

To ensure PO, the (n − k)p furthest nodes also need to
be divided in a way that minimizes the sum of the distances
traveled. To this end, at most one agent must receive a non-
contiguous bundle of the closest p nodes to the hub from this
set and all other n − k − 1 agents can receive contiguous
bundles. Observe that if this is satisfied, in order to reduce the
cost of any bundle, we need to either increase the number of
nodes in a different bundle or increase the distance traveled.
Consequently, this approach is sufficient to ensure PO.

Algorithm 3 does precisely this. It first identifies the k(p+1)
closest nodes to the hub and allocates them as contiguous
bundles. The remaining (n− k)p nodes are allocated, with at
most one non-contiguous bundle, with consisting of the closest
nodes to the hub from this set. It is straightforward to see that
algorithm runs in time linear in the number of orders.

Distance-dominant Costs. We shall now show that we can
always construct an allocation that is EF1 and MMS under
distance-dominant costs.

Theorem 3. Given an instance I with distance-dominant
costs, an allocation that satisfies MMS and EF1 can be found
in linear time.

Proof. We shall prove this result in two parts: a single algo-
rithm for when n ≥ 3 and a more tedious algorithm for the
case of n ≤ 2.

Linear time approach via Algorithm 4. We shall show
that Algorithm 4 returns an MMS and EF1 allocation whenever
n > 2. To this end, observe that l and r are chosen such that
the nodes in {1, · · · l−1}∪{r+1,m} are the n furthest nodes
from h. As a result, it must be that whenever 1 < l ≤ h ≤

ALGORITHM 4: Fairness under Distance-Dominant Costs
Input: I = ⟨M,N, h, cd, ct⟩ with distance-dominant costs
Output: An MMS and EF1 allocation A

1 Choose (l, r) ∈ argmin{|h− l|+ |r − h| : 1 ≤ l ≤
r ≤ m− 1 and r − h = m− n}

2 if exist x, x′ s.t. 1 ≤ x < l ≤ h ≤ r < x′ then
3 for i = 1 to l − 2 do
4 Ai ← {i}
5 Al−1 ← {l − 1, · · ·h− 1}
6 Al ← {h+ 1, · · · , r + 1}
7 for i = l + 1 to n do
8 Ai ← {r + i+ 1− l}
9 else

10 ▷ The furthest nodes from h are all on one side
11 if l = 1 then
12 for i = 1 to n− 1 do
13 Ai ← {m− i+ 1}
14 An ← {1, · · · ,m− n+ 1} \ {h}
15 else
16 for i = 1 to n− 1 do
17 Ai ← i

18 An ← {n, · · · ,m} \ {h}

r < m, it must be that |(h− l)− (r− h)| ≤ 1, otherwise, the
node further from h among l and r would violate the fact that
{1, · · · l − 1} ∪ {r + 1,m} are the n furthest nodes from h.

Now, observe that the agents servicing the furthest node(s)
in the path always service a single node. As a result, the allo-
cation returned by Algorithm 4 must be MMS from Lemma 2.
It only remains to prove that this allocation is EF1.

Let A be the allocation returned. For each i s.t. |Ai| = 1,
EF1 is satisfied trivially. Now consider i s.t. |Ai| > 1. This
agent does not envy any agent who services a node further
than it. Whenever l = 1 or r = m, all agents other than i
travel further and thus EF1 is satisfied.

Let 1 < l ≤ h ≤ r < m. Without loss of generality, assume
that (h − l) ≥ (r − h) (the other case follows analogously).
In this case, we have that Al−1 = {l − 1, · · · , h− 1}, Al =
{h+1, · · · , r+1} and Al+1 = r + 2. We know that h− l ≤
(r − h) + 1. Thus, cd(Al−1) ≤ cd(Al+1). Thus, agent l − 1
does not envy agents l + 2, · · · , n and agent l does not envy
anyone. Finally, for agent l−1, removing the node l−1 would
make their cost less than that of agent l and as a result EF1 is
satisfied.

Thus, whenever n > 2, Algorithm 4 returns an MMS and
EF1 allocation. It is straightforward to see that Algorithm 4
proceeds in linear time.

Remaining Cases. When n = 1, all allocations are trivially
MMS and EF1. For n = 2, if |h− (m− h)| > 0 that is there
is a unique furthest node, in order to achieve MMS, one agent
must service the furthest node and the other agent services
all remaining nodes. This must is EF1 as the agent servicing
the furthest node has greater cost than the other agent, but on
removing this node, the cost becomes 0. Finally the hub is in
the center, that is, h = m− h, in order to be MMS, one agent
must service the nodes {1, · · · , h− 1} and the other service
the nodes {h+ 1, · · · ,m}. The cost of both bundles is equal
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Figure 8: Under distance-dominant costs, a minimum cost EF1 allo-
cation is depicted as a tight example for Theorem 4. The four bundles
are shown by circles, squares, pentagons and hexagons.

and as a result, an MMS allocation here would be EF1.

C Omitted Material from Section 4
We now turn to our results on Price of Fairness. We first prove
results on the price of EF1.

C.1 Price of EF1
We first consider arbitrary instances. Here, we prove an upper
bound for all allocations and then show that there is a class of
EF1 allocations for which this is tight.

Theorem 4. Given an instance I = ⟨M,N, h, cd, ct⟩, we
have that PoEF1(I) ≤ (m−1)ct+(2m−n−1)ncd

(m−1)ct+2(m−1)cd
.

Proof. Given an instance I , we know from Observation 1 that
we need to maximize the distance traveled under a minimum
cost EF1 allocation in order to find a tight upper bound on
it. As each node must be serviced by a unique agent, exactly
one agent visits the furthest node. As a result, in order to
maximize the sum of distances, the second furthest node must
be serviced by a different agent.

Consider an allocation where Ai consists only of the ith
furthest node from the hub from i ∈ n− 1 and An contains the
remaining m− n nodes. Observe that, in order to maximize
the distance traveled under such an allocation, we need to
ensure that h ∈ {1,m}. Without loss of generality, we assume
that h = 1.

Consequently, we consider the allocation where for i < n,
Ai = {m − i} and An = {1, · · · ,m − n}. Consider any
alternate allocation A′ s.t. cd(A′

1) ≥ cd(A′
2) ≥ · · · cd(A′

n).
We can see inductively that cd(A1) = cd(A′

1) and for all i > 1,
we have that cd(Ai) ≥ cd(A′

i). Thus, from Observation 1, we
have that

∑
i∈N c(Ai) ≥

∑
i∈N c(A′

i).

Specifically, the sum of the costs is
∑

i∈N c(Ai) = ct(m−
1) +

∑
i∈N cd(Ai). In particular,

∑
i∈N

cd(Ai) =
∑
i∈N

2cd(m− i)

= 2cd

(
n∑

i=1

m−
n∑

i=1

i

)

= 2cd
(
nm− n(n+ 1)

2

)
= 2cdn

(
2m− n+ 1

2

)
= cdn(2m− n+ 1).

As a result, we have that PoEF1(I) ≤
ct(m−1)+cdn(2m−n+1)

(m−1)(ct+2cd)
. In order to show that this bound is

indeed tight, we shall show that there an allocation like A can
indeed be the minimum cost EF1 allocation.

We find that whenever 4cd ≥ (m−n− 2)ct, this allocation
will be EF1. Observe that under this allocation, for i < n
c(Ai) = ct + 2(m − i)cd and c(An) = (m − n)(2cd + ct).
For i < n, |Ai| = 1 and upon removing this node, all envy
is eliminated. That is, c(Ai \ {m − i}) = 0 ≤ c(Aj) for all
j ∈ N .

The only remaining case is that of An. It suffices to show
that An satisfies EF1 with An−1. We have that

c(An \ {m− n}) = 2cd(m− n− 1) + ct(m− n− 1)

≤ 2cd(m− n− 1) + 4cd + ct

(As 4cd ≥ (m− n− 2)ct)

= 2cd(m− n+ 1) + ct

= c(An−1).

Consequently, whenever I is such that h = 1 and 4cd >
ct(m−n− 2), A is an EF1 allocation. In fact, due to the high
distance cost, all EF1 allocations here must be of this form. As
a result, we have that A ∈ argminA′ satisfies EF1

∑
i∈N c(Ai).

Thus, PoEF1(I) = ct(m−1)+cdn(2m−n+1)
(m−1)(ct+2cd)

.

We now show that when one-dimension dominates, we can
obtain tighter bounds, only in terms of m and n.
Proposition 3. Given an instance I, we have that

1. If I has distance-dominant costs, PoEF1 ≤
(2m−n−1)n+2

2(m−1)

2. If I has time-dominant costs, PoEF1 ≤ m+n
m−1

Proof. Distance-dominant costs. Given an instance I with
distance-dominant costs, we know from Theorem 4 that
PoEF1(I) ≤ (m−1)ct+(2m−n−1)ncd

(m−1)ct+2(m−1)cd
. We now take into ac-

count the fact that 2cd > (m− 1)ct, to get the desired upper
bound. ‘

PoEF1(I) ≤ (m− 1)ct + (2m− n− 1)ncd

(m− 1)ct + 2(m− 1)cd

≤ (m− 1)ct + (2m− n− 1)ncd

2(m− 1)cd

≤ 2cd + (2m− n− 1)ncd

2(m− 1)cd

=
(2m− n− 1)n+ 2

2(m− 1)

Time-dominant costs. Here we have that (m− 1)2cd < ct.
Here, we can give an even tighter upper bound.

Given an instance I with time-dominant costs, it can be
seen that an allocation A where there exist i, j ∈ N s.t. |Ai|−
|Aj | > 1 cannot be EF1. As a result, for an allocation to be
EF1 under time-dominant costs, it must be that for each i ∈ N ,
⌊m−1

n ⌉ ≤ |Ai| ≤ ⌈m−1
n ⌉.

Recall that in the price of EF1, we consider the EF1 alloca-
tion with minimum sum of costs and we know from Observa-
tion 1 that such an allocation must minimize the sum of the



distances traveled by the agents. To ensure EF1, we cannot
have agents with larger bundles travel further than agents with
smaller bundles. Thus, under an EF1 allocation, the distance
traveled by an agent with a larger bundle must be less than
or equal to the distance traveled by an agent with a smaller
bundle. Analogous to the proof of Theorem 2, the only thing
we can now do to ensure minimizing the sum of distances is
to allocate contiguous bundles.

As in the proof of Theorem 4, we have that the sum of the
distances will be maximized when the hub is at the end of the
path. We can assume without loss of generality that the hub
is at h = 1. Consequently, under an EF1 allocation A with
minimum sum of costs the sum of the distance costs will be at
most

∑
i∈N

R(Ai) =
m− 1

n
+ 2

m− 1

n
+ · · ·+ n

m− 1

n

=
m− 1

n

n(n+ 1)

2
=

(n+ 1)(m− 1)

2

Thus, we have that the price of EF1 under an instance with
time-dominant costs is

PoEF1(I) ≤ (m− 1)ct + (m− 1)(n+ 1)cd

(m− 1)ct + (m− 1)cd

≤ (m− 1)ct + (m− 1)(n+ 1)cd

(m− 1)ct

≤ (m− 1)ct + (n+ 1)ct

(m− 1)ct

≤ m− n

m− 1
.

C.2 Price of MMS.

We now prove tighter upper bounds on the price of MMS
under one-dimension dominant costs.

Proposition 4. Given an instance I, we have that

1. Under time-dominant costs, PoMMS(I) ≤ m
m−1 ,

2. Under distance-dominant costs PoMMS(I) ≤ 2 and

3. Whenever either cd = 0 or ct = 0, PoMMS(I) = 1.

Proof. Time-Dominant Costs. We know from Theorem 2
that under time-dominant costs, under an MMS allocation A,
for each i ∈ N , it must be that ⌊m−1

n ⌋ ≤ |Ai| ≤ ⌈m−1
n ⌉. As

in the proof of Proposition 3, the sum of the distances traveled
by the agents can be at most (n−1)(m−1)

2 . Consequently, we
have that the price of MMS here is

PoMMS(I) ≤ (m− 1)ct + (m− 1)(n+ 1)cd

(m− 1)ct + (m− 1)cd

≤ (m− 1)ct + (m− 1)(n+ 1)cd

(m− 1)ct

≤ (m− 1)ct + (n+ 1)ct

(m− 1)ct

≤ m− n

m− 1
.

Note that this matches the Price of EF1, however, we know
from Theorem 2 that every MMS allocation must be EF1 under
time-dominant costs, so this is reasonable.

Distance-Dominant Costs. In this case, we know from
Corollary 1 that under an MMS allocation with minimum sum
of costs, every edge is traversed by at most 2 agents. As a
result, the sum of the distances traveled by the agents can be
at most 2(m− 1). As a result, in this case,

PoMMS(I) ≤ (m− 1)ct + 4(m− 1)cd

(m− 1)ct + (m− 1)2cd

= 1 +
2cd

ct + 2cd

≤ 2

This bound, is not tight, but in fact for every ϵ ∈ (0, 1), we
can come up with a family of instances where PoMMS =
2 − ϵ. Intuitively, whenever ct > 0 but very small, we will
require that the furthest node from the hub be serviced by one
agent and all remaining nodes be serviced by a different agent.
The small the ct is here, the closer the Price of MMS will be
to 2. We now discuss the case of ct = 0.

Time-free tasks ct = 0, in this case, under an MMS allo-
cation A with minimum sum of costs, if h > 1, one agents
services all nodes from 1, · · · , h − 1 and if h < m, a differ-
ent agent services all nodes from h+ 1, · · · ,m. As a result,
the sum of the distances traveled under A is exactly m − 1.
Consequently, we have that PoMMS(I) = 1.

Distance-free graphs cd = 0. In this case, each agent
virtually incurs no cost from the distance traveled, thus, from
Observation 1, we have that PoMMS(I) = PoEF1(I) =
1.

D Omitted Material from Section 5
We now present the complete experimental results.

Experimental Methods. We create instances where the
number of agents is such that 2 ≤ n ≤ 6 and m ∈
{11, 15, 19}. For each combination of m and n, we allow
the hub to be on any of the positions {1, 2, · · · ,m}. We fix
the value ct to be 100 and vary choose cd to be 2ctτ . Here,
the coefficient τ – a critical parameter that balances inspec-
tion time and transportation costs – is logarithmically sampled
(sampled values are uniformly spaced on the logarithmic scale)
over 20 values that span [0.1, 10].



Figure 9: Experimental results on MMS cost varying with different hub locations and values of 2cd

ct

Thus our instances span distance-dominant instances (τ ≪
1) to time-dominant ones (τ ≫ 1). For each instance gener-
ated, we compute the MMS share cost using our algorithm
described in Theorem 1. As a result, we can compare the effect
of three parameters on the MMS cost: hub position, ratio of
the costs 2cd

ct and the number of orders/nodes.

D.1 MMS Share Cost
We first observe the effect on the MMS share cost of two
parameters: the hub position and the ratio of 2cd

ct . We present
our results in Figure 9. We find that the range of the MMS cost
varies based on the number of orders. In contrast, conditioned
on a specific number of orders, the range of the MMS cost
stays the same even when we vary the number of agents.

Keeping the value of 2cd

ct fixed the MMS cost seems to be
minimized when the hub is at the center. We find that as the

hub moves further from the middle, the MMS cost increases.
Further, this increase is symmetric on either side. This is
consistent with our theoretical bound son the price of fairness,
where we found the worst case to be when the hub was at
either end of the path. However, this effect is less visible for
instances with a larger number of orders.

Keeping the hub position fixed, we find that initially there
is noticeable little effect on the MMS cost and these seem to
increase only after 2cd

ct > 6.0. The increase is also sharper
further away from the hub. Further, for larger number of orders,
the increase in the MMS value is less visible for the same value
of 2cd

ct . This makes it hard to see anything interesting for the
smaller values of 2cd

ct .
Observe that the heatmaps for a fixed number of orders look

very similar even if we change the number of agents. That is,
we observe similar relative tradeoffs of hub position and 2cd

ct



for all the chosen values of n. However, on closer inspection,
fixing m, hub position to be not at either extreme and 2cd

ct , as
the number of agents increases, the MMS share cost decreases.

D.2 Ratio of MMS Value and Social Optimal Cost
Observe that in Figure 9, not much discernible difference is
observed in the MMS value for smaller values of 2cd

ct . It is
important to note that as the ratio of the 2cd

ct changes, the
minimum sum of agent costs for the given instance would also
change. That is, the socially optimal cost of (m−1)(ct+2cd)
will also change. Thus, it is important to normalize for this.

In order to better observe the effect of varying 2cd

ct , we
study the effect of 2cd

ct and the hub position on the ratio of
MMS share cost and the socially optimal cost. These results
are presented in Figure 10 and we can observe some marked
differences from the results in Figure 9.

Firstly, the range of the ratio of the MMS share cost to the
socially optimal cost remains the same for all three choices
of the number of orders. Further for the two extreme hub
positions, the values seem to be the same for 11, 15 and 19
orders. Interestingly, this is not the case for when the hub
is at the center. When the hub is closer to the center, the
MMS value is smaller for the same ratio of 2cd

ct when there are
more orders. This can be by the center of the heatmaps being
progressively less bright as we increase the number of orders.

For a fixed hub position, as 2cd

ct increases, ratio of MMS
cost to SO cost increases much more evenly, and there is a
noticeable increase even for the smaller values of 2cd

ct . That
is, in this experiment, for the same τ , the changes brought
about by different hub positions are more obvious than in the
previous experiment. Further, for the extreme hub positions,
the MMS share cost is smaller.

It is important to note that for this experiment, we do see
noticeable differences in the heatmaps generated as we change
the number of agents for a fixed number of orders. This is
particularly noticeable when the hub is in the center. In fact,
on closer inspection, we find that as we increase the number
of agents, the ratio of the MMS cost to the SO cost decreases.
This is not directly apparent at first glance as the range of
values is different, but this coincides with the observation that
the MMS share cost decreases as we increase the number of
agents.



Figure 10: Experimental results on MMS cost varying with different hub locations and values of 2cd

ct
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