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ABSTRACT

We show two average-reward off-policy control algorithms, Differential Q Learning
(Wan, Naik, & Sutton 2021a) and RVI Q Learning (Abounadi Bertsekas & Borkar
2001), converge in weakly-communicating MDPs. Weakly-communicating MDPs
are the most general class of MDPs that a learning algorithm with a single stream
of experience can guarantee obtaining a policy achieving optimal reward rate. The
original convergence proofs of the two algorithms require that all optimal policies
induce unichains, which is not necessarily true for weakly-communicating MDPs.
To the best of our knowledge, our results are the first showing average-reward
off-policy control algorithms converge in weakly-communicating MDPs. As a
direct extension, we show that average-reward options algorithms introduced by
(Wan, Naik, & Sutton 2021b) converge if the Semi-MDP induced by options is
weakly-communicating.

1 INTRODUCTION

Modern reinforcement learning algorithms are designed to maximize the agent’s goal in either the
episodic setting or the continuing setting. In both settings, there is an agent continually interacting
with its world, which is usually assumed to be a Markov Decision Process (MDP). In episodic
problems, there is a special terminal state and a set of start states. If the agent reaches the terminal
state, it will be reset to one of the start states. Continuing problems are different in that there is no
terminal state, and the agent will never be reset by the world. For continuing problems, two commonly
considered objectives are the discounted objective and the average-reward objective. The discount
factor in the discounted objective has been observed to be deprecated in the function approximation
control setting, suggesting that the average-reward objective might be more suitable for continuing
problems.

In this paper, we consider off-policy control algorithms for the average-reward objective. These
algorithms learn a policy that achieves the best possible average-reward rate, using data generated by
some other policy that the agent may not have control of. Designing convergent off-policy algorithms
for the average-reward objective is challenging. While there are several off-policy learning algorithms
in the literature, the only known convergent algorithms are SSP Q-learning and RVI Q-learning, both
by Abounadi, Bertsekas, & Borkar (2001), the algorithm by Ren & Krogh (2001), and Differential
Q-learning by Wan, Naik, & Sutton (2021a). Others either do not have convergence proofs (Schwartz
1993; Singh 1994; Bertsekas & Tsitsiklis 1996; Das 1999), or have incorrect proofs (Yang 2016;
Gosavi 2004). 1

The algorithm by Ren & Krogh (2001) requires knowledge of properties of the MDP which are not
typically known. The convergence of SSP Q-learning is limited in MDPs with a state being recurrent
under all policies. The convergence of the RVI Q-learning algorithm (Abounadi et al. 2001) was
developed for unichain MDPs, which just means that the Markov chain induced by any stationary
policy is unichain 2. The convergence of Differential Q-learning (Wan et al. 2021a) requires a weaker

1See Appendix D in Wan et al. (2021a) for a discussion about Yang’s proof and see Appendix C of this paper
for a discussion about Gosavi’s proof.

2A Markov chain is unichain if there is only one recurrent class in Markov chain, plus a possibly empty set
of transient states.
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assumption – all optimal policies being unichain. It is clear that RVI Q-learning also converges under
this assumption with a small modification of its proof. It is not rare that an optimal policy induces
multiple recurrent classes. For example, consider the MDP at the bottom of Figure 1. If an optimal
policy induces multiple recurrent classes, the proofs of RVI Q-learning and Differential Q-learning
would not go through. Technically, this is because both two proofs require that the uniqueness of
the solution for the action-value function up to an additive constant in the average-reward optimality
equation.

A more general class of MDPs, called weakly-communicating MDPs, is not limited in the number of
recurrent classes under the optimal policy. In these MDPs, all policies may induce multiple recurrent
classes. The only assumption is that, except for a set of states that are transient under every policy,
all states are reachable from every other state in a finite number of steps with a non-zero probability.
It has been observed that the set of weakly-communicating MDPs is the most general set of MDPs
such that there exists a learning algorithm that can, using a single stream of experience, guarantee to
identify a policy that achieves the optimal average reward rate in the MDP (Barlett & Tewari 2009).

In this paper, we show convergence of RVI Q-learning and Differential Q-learning in weakly-
communicating MDPs, without requiring any additional assumptions compared with their original
convergence results. Two key steps in our proof are 1) showing that the solution sets of the two
algorithms are non-empty, closed, bounded, and connected, and 2) showing that 0 is the unique
solution for the Bellman optimality equation when all rewards are 0. With these two results, we use
asynchronous stochastic approximation results by Borkar (2009) to show convergence to the solution
sets. As a direct extension of the above results, we also show the convergence of two algorithms
that extend the Differential Q-learning algorithm to the options framework, introduced by Wan et
al. (2021b), if the Semi-MDP induced by the MDP and the set of options is weakly-communicating.
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Figure 1: Examples of three different
types of MDPs. In each of the three
MDPs, there are two states marked by
two circles respectively. There are two
actions solid and dashed, both causing
deterministic effects. Top: The MDP is
unichain under every stationary policy.
Middle: There are two deterministic op-
timal policies, moving to state 2 or going
back and forth between state 1 and state
2. Other optimal stationary policies are
mixtures of these two deterministic poli-
cies. All optimal policies are unichain.
Down: There are three deterministic op-
timal policies: moving to state 1, mov-
ing to state 2, and staying at the current
state. Other optimal stationary policies
are mixtures of these two deterministic
policies. The policy of staying at the cur-
rent state induces two recurrent classes.

2 PRELIMINARIES

Consider a finite Markov decision process, defined by the
tuple M .

= (S,A,R, p), where S is a set of states, A
is a set of actions, R is a set of rewards, and p : S ×
R× S ×A → [0, 1] is the dynamics of the environment.
Every time steps t the agent observes the state of the MDP
St ∈ S and chooses an action At ∈ A using some policy
b : A × S → [0, 1], then receives from the environment
a reward Rt+1 ∈ R and the next state St+1 ∈ S, and
so on. The transition dynamics are defined as p(s′, r |
s, a)

.
= Pr(St+1 = s′, Rt+1 = r | St = s,At = a)

for all s, s′ ∈ S, a ∈ A, and r ∈ R. Denote the set of
stationary Markov policies Π.

The reward rate of a policy π starting from a given start
state s can be defined as:

r(π, s)
.
= lim

n→∞

1

n

n∑
t=1

E[Rt | S0 = s,A0:t−1 ∼ π]. (1)

Given an arbitrary MDP, the agent may not even be able
to visit all states and would therefore miss the chance of
learning, for every state s, a policy that achieves the op-
timal reward rate supπ r(π, s) and the agent can at most
learn an optimal policy for a set of states, in which every
state is reachable from every other state. Such a set of
states is often called communicating. Formally speaking,
we say a set of states communicating, if there exists a pol-
icy such that moving from either one state in the set to the
other one in the set in a finite number of steps has positive
probability. If the entire state space is communicating,
we say an MDP communicating. Weakly-communicating
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MDPs generalizes over communicating MDPs. In weakly-communicating MDPs, in addition to a
closed communicating set of states, there is a possibly empty set of states that are under every policy.

For weakly-communicating MDPs, there exists a unique optimal reward rate r∗, which does not
depend on the start state. We say a policy is optimal if it achieves r∗ regardless of the start state. The
goal of an off-policy control algorithm is to learn an optimal policy from the stream of experience
. . . , St, At, Rt+1, St+1, . . . generated by a behavior policy that is not necessarily the same as the
agent’s learned policy. Both RVI Q-learning and Differential Q-learning achieve this goal by solving
r̄ and q in the optimality equation:

q(s, a) =
∑
s′,r

p(s′, r | s, a)(r − r̄ +max
a′

q(s′, a′)), ∀ s ∈ S, a ∈ A. (2)

It is known that r∗ is the unique solution of r̄ and any greedy policy w.r.t. any solution of q is an
optimal policy. In addition, shifting any solution of q by any constant vector results in the other
solution of q. Finally, unlike in unichain MDPs (or MDPs where all optimal policies are unichain)
where all solutions are different by some constant vector, in weakly-communicating MDPs, solutions
of q may have multiple degrees of freedom. That is, if q1, q2 are both solutions of q, it is possible that
q1 ̸= q2 + ce,∀ c ∈ R, where e denotes the all-one vector.

If the agent has a set of options, it may choose to execute these options. Each option o in O has two
components: the option’s policy πo : A×S → [0, 1], and the termination probability βo : S → [0, 1].
For simplicity, for any s ∈ S, o ∈ O, we use π(a | s, o) to denote πo(a, s) and β(s, o) to denote
βo(s). If the agent executes option o at state s, the option’s policy is followed, until the option
terminates. Let L be the set of all possible lengths of options and R̂ be the set of all possible
cumulative rewards. Note that L and R̂ are possibly countably infinite. Let p̂(s′, r, l | s, o) be, when
executing option o starting from state s, the probability of terminating at state s′, with cumulative
reward r and length l. Formally, for any s, s′ ∈ S, o ∈ O, r ∈ R̂, l ∈ L, p̂ can be defined recursively
in the following way:

p̂(s′, r, l | s, o) =
∑
a

π(a | s, o)
∑
s̃,r̃

p(s̃, r̃ | s, a)

[β(s̃, o)I(s̃ = s′, r̃ = r, l̃ = 1) + (1− β(s̃, o))p̂(s′, r − r̃, l − 1 | s̃, o)], (3)
where I is an indicator function.

An MDP M and a set of options O results in an Semi-MDP (SMDP) M̂ = (S,O,L, R̂, p̂).

If the agent chooses options using a meta-policy (policy-over-options) π : O×S → [0, 1] and execute
these options, we denote . . . , Ŝn, Ôn, R̂n+1, Ŝn+1, . . . as the sequence of option transitions. For this
SMDP, the reward rate of π given a start state s can be defined as rC(π, s) .

= limt→∞ Eπ[
∑t

i=1 Ri |
S0 = s]/t. r(π, s) .

= limn→∞ Eπ[
∑n

i=0 R̂i | Ŝ0 = s]/Eπ[
∑n

i=0 L̂i | Ŝ0 = s]. Both limits exist and
are equivalent (Puterman’s (1994) propositions 11.4.1) under the following assumption:
Assumption 1. For each option o ∈ O, when executing the option, there is a non-zero probability of
terminating the option after at most |S| stages, regardless of the initial states.
Proposition 1. Under Assumption 1, the expected value as well as the variance of the execution time
and cumulative reward of every option at every state exist and are finite.

We say an SMDP is weakly-communicating if the MDP with state space S, action space O, reward
space R̂, and transition function

∑
l p̂(s, r, l | s, o) is weakly-communicating. Just like the MDP

setting, if the SMDP is weakly-communicating, the optimal reward rate r̂∗
.
= supπ∈Π̂ r(π, s), where

Π̂ denotes the set of stationary Markov meta-policies, does not depend on the start state s. In addition,
the solutions of q may not be different for a constant. Given an MDP and a set of options, the goal of
the off-policy control problem is to find a policy that achieves r̂∗. Inter-option Differential Q-learning
achieves this goal by solving the optimality equation for SMDPs (Puterman 1994):

q(s, o) =
∑
s′,r, l

p̂(s′, r, l | s, o)
(
r − r̄ · l +max

o′
q(s′, o′)

)
, (4)

where q and r̄ denote estimates of the option-value function and the reward rate respectively. Just like
the MDP setting, r̄ has r̂∗ as its unique solution and solutions of q may not be different by a constant
vector.
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Intra-option Differential-learning finds an optimal policy by solving the intra-option optimality
equation.

q(s, o) =
∑
a

π(a | s, o)
∑
s′,r

p(s′, r | s, a)(r − r̄ + uq
∗(s

′, o)), ∀ s ∈ S, o ∈ O, (5)

where

uq
∗(s

′, o)
.
=
(
1− β(s′, o)

)
q(s′, o) + β(s′, o)max

o′
q(s′, o′). (6)

The following proposition shows that the set of solutions of equation 5 is the same with that of
equation 4.
Proposition 2. Any solution of equation 4 is also a solution of equation 5 and vice versa.

3 CONVERGENCE RESULTS

In this section, we present the convergence theory of Differential Q-Learning, RVI Q-Learning in
weakly-communicating MDPs and that of the two option extensions of Differential Q-Learning
in weakly-communicating SMDPs. Empirical results verifying the convergence of the two MDP
algorithms are presented in Appendix B.

Differential Q-learning updates a table of estimates Qt : S ×A → R as follows:

Qt+1(St, At)
.
= Qt(St, At) + αν(t,St,At)δt, (7)

Qt+1(s, a)
.
= Qt(s, a), ∀ s, a ̸= St, At,

where ν(t, St, At) is the number of times St, At has been visited before time step t, αν(t,St,At) is a
step-size sequence, and δt, the temporal-difference (TD) error, is:

δt
.
= Rt+1 − R̄t +max

a
Qt(St+1, a)−Qt(St, At), (8)

where R̄t is a scalar estimate of r∗, updated by:

R̄t+1
.
= R̄t + ηαν(t,St,At)δt, (9)

and η is a positive constant.

We now present the convergence theorem of Differential Q-learning. We first state the required
assumptions, which are also required by the original convergence proof of Differential Q-Learning
by Wan et al. (2021a).
Assumption 2. For all n ≥ 0, αn > 0,

∑∞
n=0 αn = ∞, and

∑∞
n=0 α

2
n < ∞.

Assumption 3. Let [·] denote the integer part of (·), for x ∈ (0, 1), supn
α[xn]

αn
< ∞ and

∑[ym]
n=0 αn∑m
n=0 αn

→
1 uniformly in y ∈ [x, 1].
Assumption 4. There exists ∆ > 0 such that

lim inf
n→∞

ν(n, s, a)

n+ 1
≥ ∆,

a.s., for all s ∈ S, a ∈ A. Furthermore, for all x > 0, let N(n, x) =

min
{
m > n :

∑m
k=n+1 αk ≥ x

}
, the limit limn→∞

(∑ν(N(n,x),s,a)
k=ν(n,s,a) αk

)
/
(∑ν(N(n,x),s′,a′)

k=ν(n,s′,a′) αk

)
exists a.s. for all s, s′ ∈ S, a, a′ ∈ A.
Theorem 1. If M is communicating and Assumptions 1–4 hold, the Differential Q-learning algorithm
(Equations 7–9) converges, almost surely, R̄t to r∗, Qt to the set of solutions of equation 2 and

r∗ − R̄0 = η

(∑
s,a

q(s, a)−
∑
s,a

Q0(s, a)

)
, (10)

and r(πt, s) to r∗, for all s ∈ S, where πt is any greedy policy w.r.t. Qt.
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Remark: If the MDP is weakly-communicating, that is, it contains transient states, the agent
eventually reaches the closed communicating state and never returns to the transient states. Elements
in Qn that are associated with the closed communicating set converge to a set that depends on the
values of Q and R̄ when the MDP reaches the closed communicating set for the first time. Other
elements in Qn would only be visited for a finite number of times and can not be guaranteed to
converge to their correct values by any learning algorithms. Other conclusions of the theorem remain
unchanged. This observation on weakly-communicating MDPs apply also to Theorems 2–4.

The update rules of RVI Q-Learning are
Qt+1(St, At)

.
= Qt(St, At) + αν(t,St,At)δt(St, At) (11)

Qt+1(s, a)
.
= Qt(s, a), ∀ s, a ̸= St, At,

where
δt(St, At)

.
= Rt+1 − f(Qt) + max

a
Qt(St+1, a)−Qt(St, At). (12)

and f : S ×A → R satisfying the following assumption.
Assumption 5. 1) f is L-Lipschitz, 2) there exists a positive scalar u s.t. f(e) = u and f(x+ ce) =
f(x) + cu, 3) f(cx) = cf(x).
Theorem 2. If M is communicating and Assumptions 1–5 hold, then the RVI Q-Learning algorithm
(Equations 11–12) converges, almost surely, R̄t to r∗, Qt to the set of solutions of equation 2 and

r∗ = f(q), (13)
and r(πt, s) to r∗, for all s ∈ S, where πt is any greedy policy w.r.t. Qt.

Now consider option extensions of Differential Q-Learning. Given an SMDP M̂ = (S,O,L, R̂, p̂),
inter-option Differential Q learning maintains estimates of option values, and, inspired by Schweitzer
(1971), update estimates using scaled TD errors:

Qn+1(Ŝn, Ôn)
.
= Qn(Ŝn, Ôn) + αν(n,Ŝn,Ôn)

δn/Ln(Ŝn, Ôn), (14)

Qn+1(s, o)
.
= Qn(s, o), ∀ s, o ̸= Ŝn, Ôn,

R̄n+1
.
= R̄n + ηαν(n,Ŝn,Ôn)

δn/Ln(Ŝn, Ôn), (15)

where ν(n, Ŝn, Ôn) is the number of visits before stage n, Ln(·, ·) comes from an additional vector
of estimates L : S ×O → R that approximates the expected lengths of state-option pairs, updated
from experience by:

Ln+1(Ŝn, Ôn)
.
= Ln(Ŝn, Ôn) + βν(n,Ŝn,Ôn)

(L̂n − Ln(Ŝn, Ôn)), (16)

where {βn} is an another step-size sequence. The TD-error δn in equation 14 and equation 15 is

δn
.
= R̂n − Ln(Ŝn, Ôn)R̄n +max

o
Qn(Ŝn+1, o)−Qn(Ŝn, Ôn), (17)

Theorem 3. If M̂ is communicating, Assumptions 1–4 hold, except for using ν(n, s, o) instead of
ν(t, s, a), and that 0 ≤ βn ≤ 1,

∑
n βn = ∞, and

∑
n β

2
n < ∞, inter-option Differential Q-learning

(Equations 14-17) converges, almost surely, Qn the set of solutions of equation 4 and

r̂∗ − R̄0 = η(
∑
s,o

q(s, o)−
∑
s,o

Q0(s, o)), (18)

R̄n to r̂∗, and r(πn, s) to r̂∗ where πn is a greedy policy w.r.t. Qn.

Intra-option Differential Q learning also maintain estimates of option-values. However, instead of
updating the estimates using option transitions, it updates for all options using each action transition.

Qt+1(St, o)
.
= Qt(St, o) + αν(t,St,o)ρt(o)δt(o), ∀ o ∈ O, (19)

Qt+1(s, o)
.
= Qt(s, o), ∀ s ∈ S, o ∈ O,

R̄t+1
.
= R̄t + η

∑
o∈O

αν(t,St,o)ρt(o)δt(o), (20)

where αt is a step-size sequence, ρt(o)
.
= π(At|St,o)

π(At|St,Ot)
is the importance sampling ratio, and:

δt(o)
.
= Rt+1 − R̄t + uQt

∗ (St+1, o)−Qt(St, o), (21)
where u∗ is defined in equation 6.
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Theorem 4. If M̂ is communicating, Assumptions 1–4 hold, except for using ν(t, s, o) instead of
ν(t, s, a), intra-option Differential Q-learning (Equations 19-21) converges, almost surely, Qt to
the set of solutions of equation 4 and equation 18, R̄t to r̂∗, and r(πt, s) to r̂∗ where πt is a greedy
policy w.r.t. Qt.

4 CHARACTERIZATION OF THE SOLUTION SET

In this section, we characterize the sets that the algorithms described in the above section converges
to. This section plays a key role in showing their convergence.

We consider the set of solutions of the SMDP optimality equation 4 and

c = f(q), (22)

where f : S × O → R satisfies Assumption 5, c is an arbitrary real. Denote this set as Q∞. It is
clear that equation 4 generalizes equation 2 and equation 22 generalizes equation 10, equation 13,
and equation 18. And thus the characterization of Q∞ applies to sets that action/option values in the
aforementioned algorithms are claimed to converge to in Theorem 1–Theorem 4.

It is known that if the SMDP is weakly-communicating, equation 4 has r̂∗ as its unique solution for r̄.
For q, it has been shown by Schweitzer & Federgruen (1978) (we will refer this work for multiple
times and thus we use a shorthand ‘S&F’ for simplicity from now on) in their Theorem 4.2 that the
set of solutions for q in equation 4 is closed, unbounded, connected, and possibly non-convex. The
next theorem characterizes Q∞.
Theorem 5. If the SMDP is weakly-communicating and f 1) is Lipschitz, and 2) there exists some
u ̸= 0 such that f(x + ce) = f(x) + cu,∀ c ∈ R, Q∞ is non-empty, closed, bounded, connected,
and possibly non-convex.

Before presenting the proof, first note that our convergence proof does not rely on the convexity
property and we delay the proof of non-convexity to Appendix A.5.

Proof. First, Q∞ is non-empty. To see this point, note that for any solution of q in equation 2 , q∗,
q∗+ ce is also a solution for any c ∈ R and thus there must be a c such that equation 22 holds because
f(x+ ce) = f(x) + c for any x, c.

Q∞ is closed because the set of solutions of q in equation 4 is closed by S&F, the set of solutions of
q in equation 22 is closed because f is Lipschitz, and the intersection of two closed sets is closed.

Boundedness

We now show that Q∞ is bounded. To this end, it is enough to show that the solution set of v in

v(s) = max
o

∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr̂∗ + v(s′)),∀ s ∈ S (23)

c = f(r̃ + P̃ v), (24)

where c is any constant, and

r̃(s, o)
.
=
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr̂∗)

P̃ (s, o, s′)
.
=
∑
r,l

p̂(s′, r, l | s, o)

is bounded. Denote this set as V∞. Once we show V∞ is bounded, Q∞ is also bounded because each
solution for q can be obtained from a solution for v with a linear operation:

q(s, o) =
∑
s′,r,l

p̂(s′, r, l | s, o)(r − lr̄ + v(s′)), ∀ s ∈ S, o ∈ O. (25)

In order to show boundedness, we need the following two lemmas, which slightly modify Theorem
4.1 and 5.1 by S&F. To this end, we need to first introduce some definitions.
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For any π ∈ Π̂, Pπ denotes the |S| × |S| transition probability matrix under policy π. That is,

Pπ(s, s
′)

.
=
∑
o,r,l

π(o | s)p̂(s′, r, l | s, o). (26)

Define P∞
π to be the limiting matrix of Pπ , which is the Cesaro limit of the sequence {P i

π}∞i=1:

P∞
π

.
= lim

n→∞

1

n

n−1∑
i=0

P i
π. (27)

Because S is finite, the Cesaro limit exists and P∞
π is a stochastic matrix (has row sums equal to 1).

Let lπ(s)
.
=
∑

o,s′,r,l π(o | s)p̂(s′, r, l | s, o)l. And let the fundamental matrix Zπ
.
= (I − P∞

π +

P∞
π )−1 = I + limγ↑1

∑∞
n=1 γ

n(Pn
π −P∞

π ). Let b(v, π)i
.
= [rπ − lπ r̂∗ +P∞

π v− v]i and Π̂∗ denote
the set of optimal meta-policies.

The following two lemmas are the similar to Theorem 4.1 (c) and Theorem 5.1 in S&F, except
that 1) the ’max’ operates over the set of all optimal policies, instead of the set of all deterministic
optimal policies as in Theorem 4.1 (c), and 2) we consider the set of weakly-communicating SMDPs
while S&F considers general multi-chain SMDPs. The proofs are also essentially the same. For
completeness, we provide the proofs for these two lemmas in Sections A.3–A.4.

Lemma 1. If the SMDP is weakly-communicating, v is a solution of equation 23 if and only if

v(s) = max
π∈Π̂∗

[Zπ(rπ − lπ r̂∗) + P∞
π v](s),∀ s ∈ S, (28)

where Π̂∗ denotes the set of optimal meta-policies.

Define Rπ as the set of recurrent states for P∞
π (i.e., Rπ

.
= {s | P∞

π (s, s) > 0}). Let R∗
.
= {s | s ∈

Rπ for some policy π ∈ Π̂∗}. S&F shows that there exists a policy π ∈ Π̂∗ such that Rπ = R∗. Let
n(π) be the number of recurrent classes for P∞

π and let n∗
.
= n(π). Denote the set of recurrent classes

of Pπ as {R∗α | 1, 2, · · · , n∗}. The following lemma shows that the solution set of equation 23 has
n∗ degrees of freedom.

Lemma 2. If the SMDP is weakly-communicating, suppose v and v + x are both solutions of
equation 23, then there exists n∗ constants y1, y2, · · · , yn∗ such that

x(s) = yα, i ∈ R∗α, α = 1, . . . , n∗ (29)

x(s) = max
π∈Π̂∗

Zπb(v, π)s +

n∗∑
β=1

 ∑
s′∈R∗β

P∞
π (s, s′)

 yβ , s ∈ S\R∗, (30)

yα ≥ Zπb(v, π)s +

n∗∑
β=1

 ∑
s′∈R∗β

P∞
π (s, s′)

 yβ , α = 1, . . . , n∗, s ∈ R∗α, π ∈ Π̂∗. (31)

For any β ∈ {1, 2, · · · , n∗}, note that there must exist a policy π(β) such that R∗β is the only one
recurrent class under π(β). To see this point, note that the SMDP is weakly-communicating, and
thus we can modify π to obtain a new policy such that all states except for those in R∗β are transient.
Such a policy satisfies our requirement.

Applying this observation and Lemma 2, for any v ∈ V , we have for any given β ∈ {1, . . . , n∗},

yα ≥ max
s∈R∗α,

Zπ(β)b(v, π(β))s +
∑

s′∈R∗β

P∞
π(β)(s, s

′)yβ

= max
s∈R∗α,

Zπ(β)b(v, π(β))s + yβ , ∀ α = 1, · · · , n∗.

The first term maxs∈R∗α, Zπ(β)b(v, π(β))s is a constant given v and π(β). Therefore we see that,
for any other solution v + x of equation 23, if yβ is arbitrarily large then yα,∀ α = 1, · · · , n∗ should
also be arbitrarily large. This would violate the Lipschitz assumption on f . To see this point, let

f̃(v)
.
= f(r̃ + P̃ v). (32)
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Let L be the Lipschitz constant of f . L is also the Lipschitz constant of f̃ because P̃ is a
stochastic matrix and is thus a non-expansion. Fix v1 ∈ V∞ and choose a ṽ2 ∈ V∞, de-
note m = ∥v1 − ṽ2∥. Choose a sufficiently large d > 0 such that κd > L ∥v1 + de− v2∥ =

L ∥v1 + de− ṽ2 − de∥ = Lm, where v2
.
= ṽ2 + de. Because f̃(v1 + de) = f̃(v1) + κd,∥∥∥f̃(v1 + de)− f̃(v2)

∥∥∥ =
∥∥∥f(v1) + κd− f̃(v2)

∥∥∥ = κd > L ∥v1 + de− v2∥, which violates the
Lipschitz assumption. Because the choice of β is arbitrary, V∞ is upper bounded.

In addition, because the choice of β is arbitrary, we have for any α ∈ {1, . . . , n∗},

yα ≥ max
β∈{1,...,n∗}

max
s∈R∗α,

Zπ(β)b(v, π(β))s + yβ

If yα is chosen to be arbitrarily small then yβ should also be arbitrarily small for all β = 1, · · · , n∗
but again this is not allowed due to equation 24 for the same reason. Therefore yα,∀ α ∈ {1, . . . , n∗}
can not be arbitrarily small. Thus V∞ is lower bounded. Combining the upper bound and lower
bound, V∞ is bounded. Therefore Q∞ is also bounded.

Connectedness

We now show that Q∞ is connected. To this end, again it is enough to show that V∞ is connected.

Define a function that maps from any v ∈ V to a solution in V∞. Specifically, fix c, let g : V → V∞
with g(v) = v + xe, where x is the solution of f̃(v + xe) = c and f̃ is defined in equation 32. Note
that x is unique given v because f̃(v + xe) = f̃(v) + κx and x = (c− f̃(v))/κ.

We now show that g is Lipschitz continuous. Consider any v1, v2 ∈ V . Let x1, x2 satisfy v1 + x1e =
g(v1) and v2 + x2e = g(v2) respectively. Again x1, x2 are unique given v1, v2. Note that

f̃(v1 + x1e)− f̃(v2 + x1e)

= f̃(v1 + x1e)− f̃(v2 + x2e) + x1 − x2

= c− c+ x1 − x2

= x1 − x2

|x1 − x2| = |f̃(v1 + x1e)− f̃(v2 + x1e)|
≤ L ∥v1 + x1e− v2 − x1e∥
= L ∥v1 − v2∥

∥g(v1)− g(v2)∥ = ∥v1 + x1e− v2 − x2e∥ ≤ ∥v1 − v2∥+ ∥x1e− x2e∥ = (L|S|+ 1) ∥v1 − v2∥ .
Therefore g is Lipschitz continuous with Lipschitz constant L|S|+ 1.

Finally, because V is connected and the image of any continuous function on a connected set is
connected, g(V) is connected. Note that every point in g(V) belongs to V∞ by definition. Every
point in V∞ is also a point in g(V). To see this point, pick any x ∈ V∞, we can see that x ∈ V and
that g(x) = x. Therefore V∞ = g(V) is connected.

Given that V∞ is connected, Q∞ should also be connected because Q∞ is a linear transformation of
V∞ (see Equation 25).

The other result we will need to use to show convergence of the four algorithms introduced in
the previous section is the following one. With this result, the stability of the algorithms can be
established using the result by Borkar and Meyn (2000) (see also, Section 3.2 by Borkar 2009).
Lemma 3. If an SMDP is weakly-communicating and all rewards are 0, 0 is the only element in Q∞.

Proof. Given a weakly-communicating SMDP, by Lemma 1, any solution of the state-value optimality
equation equation 23 satisfies

v(s) ≥
∑

s′∈R∗

P∞
π∗ (s, s′)v(s′),∀ s ∈ R∗, π ∈ Π̂∗

8
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where R∗ is defined right after Lemma 1. Also, because all rewards are 0, R∗ is the closed communi-
cating class and Π̂∗ = Π̂ contains all stationary policies.

Denote v∗ as a solution of equation 23. Now pick an arbitrary policy π ∈ Π̂. Consider every
recurrent class C under Pπ, we have ∀ s ∈ C, v∗(s) ≥

∑
s′∈C dCπ (s

′)v∗(s
′), where dCπ denotes

the stationary distribution of π in the recurrent class C. Sum both sides over s weighted by dCπ ,∑
s d

C
π (s)v∗(s) ≥

∑
s d

C
π (s)

∑
s′∈C dCπ (s

′)v∗(s
′) =

∑
s′∈C dCπ (s

′)v∗(s
′). Because l.h.s. = r.h.s.

we have v∗(s) =
∑

s′∈C dCπ (s
′)v∗(s

′). Therefore v∗(s) = v∗(s
′),∀ s, s′ ∈ C.

Now for any s, s′ ∈ R∗, there must exists a π ∈ Π̂∗ = Π̂ such that there is a path from s to s′

and a path from s′ to s, because s, s′ are in the same communicating class. Therefore s, s′ are in
the same recurrent class under Pπ. Thus we conclude that v∗(s) = v∗(s

′). Therefore ∀ s, s′ ∈ R∗,
v∗(s) = v∗(s

′). The transient states values are uniquely determined by values of states in R∗. Thus
the solution set of v in the state-value optimality equation equation 23 is also unique up to some
additive constant.

The solution set of the option-value optimality equation equation 4 is also unique up to some additive
constant. To see this point, let v(s) = maxo q(s, o), then equation 4 transforms to the state-value
optimality equation. Therefore the solution of q in equation 4 satisfies that maxo q(·, o) is unique
up to an additive constant. Let q∗ be a solution, q∗(s, o1) = q∗(s, o2),∀ s ∈ S, o1, o2 ∈ A because
∀ s,∈ S, o ∈ O:

q∗(s, o) =
∑
s′,r

p(s′, r | s, o)max
o′

q∗(s
′, o′)

=
∑
s′,r

p(s′, r | s, o)max
o′

q∗(s, o
′)

= max
o′

q∗(s, o
′).

Together with equation 22, the solution of q is uniquely determined. To see that 0 is the unique
solution of q, we can just verify that 0 is a solution of q in equation 2 and equation 22. The lemma is
proved.

5 PROOF SKETCH OF THEOREM 1-THEOREM 4

In this section, we sketch the proof of Theorem 1-Theorem 4. It has been shown that all four
algorithms introduced above are special cases of the General RVI Q algorithm (Wan et al. 2021a,b).
They also showed that General RVI Q converges under an assumption that is not satisfied for
weakly-communicating MDPs/SMDPs. In order to show convergence for weakly-communicating
MDPs/SMDPs, we replace this assumption with three weaker assumptions that are satisfied for these
MDPs/SMDPs. All other assumptions are the same as those used by Wan et al. (2021a,b) and can
be verified for all four algorithms using their arguments. We present General RVI Q and prove its
convergence with the three new assumptions in Appendix A.6. The next step of the proof would be
verifying the three new assumptions when casting General RVI Q to each of the four algorithms. This
should be straightforward given our Theorem 5 and Lemma 3. We delay this part to Appendix A.7.
With the three assumptions hold we have the conclusion part of the convergence theorem of General
RVI Q holds for each of the four algorithms. The convergence of the reward rates of greedy policies
w.r.t. the action/option-values follows the convergence of these values and is shown in Appendix A.8.

6 CONCLUSIONS

In this paper, we provide, for the first time, convergence results of off-policy average-reward control
algorithms in weakly-communicating MDPs, which are known to be the most general class of
MDPs in which it is possible that a learning algorithm can guarantee obtaining an optimal policy.
Specifically, we show two existing algorithms, RVI Q-learning and Differential Q-learning, converge
in weakly-communicating MDPs. As an extension, we also showed two off-policy average-reward
options learning algorithms converge if the SMDP induced by the options is weakly-communicating.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Abounadi, J., Bertsekas, D., Borkar, V. S. (2001). Learning Algorithms for Markov Decision
Processes with Average Cost. SIAM Journal on Control and Optimization.

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control third edition, volume II. Athena
Scientific.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena Scientific.

Borkar, V. S. (1998). Asynchronous Stochastic Approximations. SIAM Journal on Control and
Optimization.

Borkar, V. S. (2009). Stochastic Approximation: A Dynamical Systems Viewpoint. Springer.

Das, T. K., Gosavi, A., Mahadevan, S. Marchalleck, N. (1999). Solving semi-Markov decision
problems using average reward reinforcement learning. Management Science.

Gosavi, A. (2004). Reinforcement learning for long-run average cost. European Journal of Opera-
tional Research.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons.

Ren, Z., Krogh, B. H. (2001). Adaptive control of Markov chains with average cost. IEEE Transac-
tions on Automatic Control.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards. In
Proceedings of the International Conference on Machine Learning.

Schweitzer, P. J. (1971). Iterative solution of the functional equations of undiscounted Markov
renewal programming. Journal of Mathematical Analysis and Applications.

Schweitzer, P. J., & Federgruen, A. (1978). The Functional Equations of Undiscounted Markov
Renewal Programming. Mathematics of Operations Research.

Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff Markovian decision
processes. In Proceedings of the AAAI Conference on Artificial Intelligence.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and Semi-MDPs: A Framework for
Temporal Abstraction in Reinforcement Learning. Artificial Intelligence.

Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Wan, Y., Naik, A., Sutton, R. S. (2021a). Learning and Planning in Average-Reward Markov Decision
Processes. International Conference on Machine Learning.

Wan, Y., Naik, A., Sutton, R. S. (2021b). Average-Reward Learning and Planning with Options.
Conference on Neural Information Processing Systems.

10


