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ABSTRACT

Differentially private synthetic data is a promising alternative for sensitive data
release. Many differentially private generative models have been proposed in the
literature. Unfortunately, they all suffer from the low utility of the synthetic data,
especially for high resolution images. Here, we propose DPAF, an effective dif-
ferentially private generative model for high-dimensional image synthesis. Un-
like previous methods, which add Gaussian noise in the backward phase during
model training, DPAF adds differentially private feature aggregation in the for-
ward phase, which brings advantages such as reducing information loss in gradi-
ent clipping and low sensitivity to aggregation. Since an inappropriate batch size
has a negative impact on the utility of synthetic data, DPAF also addresses the
problem of setting an appropriate batch size by proposing a novel training strat-
egy that asymmetrically trains different parts of the discriminator. We extensively
evaluate different methods on multiple image datasets (up to images of 128× 128
resolution) to demonstrate the performance of DPAF.

1 INTRODUCTION

Training deep neural networks (DNNs) requires a large amount of high-quality data. Unfortunately,
much valuable data is privacy sensitive, and direct release of the data becomes infeasible. Synthetic
data has been proposed as a means to overcome the above difficulty. In particular, synthetic data
from generative models can have the same statistical information as the original data, and therefore
leads to great data utility. Synthetic data is usually assumed to be decoupled from the original data
and therefore implies privacy. However, recent studies reveal that the generative models still leak
privacy information due to, for example, membership inference attacks (MIAs) (Chen et al., 2020b;
Hayes et al., 2019; Hilprecht et al., 2019).

Differentially private deep learning (DPDL), a variant of deep learning (DL) with the differential
privacy (DP) (Dwork & Roth, 2014), can be used to provably preserve the privacy of DL models.
For example, Abadi et al. (2016) propose differentially private stochastic gradient descent (DPSGD)
to train a DP classifier by adding the Gaussian noise to the clipped gradient. Subsequent works
apply DPSGD to generative models such as generative adversarial networks (GANs) and diffusion
models (Dhariwal & Nichol, 2021; Ho et al., 2020) to derive synthetic data with DP. However,
DPSGD has negative (Bagdasaryan et al., 2019) effects on the model utility.

In this work, we aim to design a DPGAN for image synthesis by relying on DPSGD. Our goal is
to generate high-dimensional images in a DP manner so that the downstream classification task can
have high classification accuracy. It has been widely known that the utility of DPSGD-based DP-
GANs is degraded due to two factors, the information loss in gradient clipping and DP noise. In this
sense, our proposed techniques are designed to reduce both the information loss (by minimizing the
size of the gradient vector) in gradient clipping and DP noise (by minimizing the global sensitivity).

In particular, we perform a DP feature aggregation in the forward phase during the training of a
DNN. The postprocessing of DP ensures that the number of dimensions of the gradient vector can
be effectively reduced. This greatly reduces information loss from gradient clipping in DPSGD. On
the other hand, choosing a large batch size is a straightforward way to reduce the negative impact of
DP noise, because the DP noise can be easier to cancel each other out. Unfortunately, a large batch
size leads to much fewer updates of the discriminator, and thus the training cannot converge given
a fixed number of epochs. In addition, due to the feature aggregation in our proposed method, the
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large batch size also easily makes features indistinguishable, which is detrimental to the utility of
the synthetic data and, in turn, favors a small batch size instead. We address this dilemma through
an elaborate design of the training strategy.

Contribution. The contributions are summarized below.

• We propose DPAF (Differentially Private Aggregation in Forward phase), an effective generative
model for differentially private image synthesis. DPAF supports the conditional generation of
high-dimensional images.

• We propose a novel framework to enforce DP during GAN training. In particular, we propose to
place a differentially private feature aggregation (DPAGG) in the forward phase. Together with
a simplified instance normalization (SIN), DPAGG can not only have a natural and low global
sensitivity, but also significantly reduce the dimensionality of the gradient vector. We also have a
novel design of asymmetric model training, which solves the dilemma that a small batch cannot
effectively reduce the DP noise, but a large batch will make features indistinguishable.

• We formally prove the privacy guarantee of DPAF. Furthermore, our extensive experiment results
confirm DPAF’s generative capability for large-scale images.

2 BACKGROUND KNOWLEDGE AND RELATED WORK

Differential Privacy (DP). (ε, δ)-differential privacy (Dwork & Roth, 2014), (ε, δ)-DP, is the de
facto standard for data privacy, where the privacy budget ε > 0 measures the privacy loss and
δ ∈ [0, 1] is the probability of violating DP.

Definition 1. An algorithm M is (ε, δ)-DP if Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ, for all
S ⊆ Range(M) and for any neighboring datasets D and D′.

DP can be achieved by applying the Gaussian mechanism Gσ , where the zero-mean Gaussian noise
with appropriate variance is added to the algorithm output. Specifically, given a function f , Gσ ◦
f(x) ≜ f(x)+N(0, σ2) satisfies (ε, δ)-DP for all ε < 1 and σ >

√
2 ln(1.25/δ)∆2,f/ε, where the

ℓ2-sensitivity of f is defined as ∆2,f ≜ maxD,D′ ||f(D)− f(D′)||2 for neighboring D and D′.

DP has the following useful characteristics. First, repeated access to sensitive data leads to an
accumulation of privacy loss (e.g., sequential composition (Dwork & Roth, 2014; Doroshenko et al.,
2022; Abadi et al., 2016)). Second, DP is not affected by postprocessing. Formally, g ◦M for any
data-independent mapping g still satisfies (ε, δ)-DP, given thatM is (ε, δ)-DP.

DP Generative Models. DPSGD (Abadi et al., 2016) is a popular technique to train a DP model.
Essentially, DPSGD clips the gradient and adds the Gaussian noise to it. More details about DPSGD
can be found in Appendix A.1. Gradient clipping in DPSGD is beneficial in reducing global sensi-
tivity, but leads to a dramatic loss of information. Therefore, several works propose techniques such
as adaptive clustering to reduce the information loss (Thakkar et al., 2021; McMahan & Andrew,
2018; Zhang et al., 2018; Yu et al., 2021; Nasr et al., 2020). One can also find many DPSGD-
based DPGANs such as GANobfuscator (Xu et al., 2019), GS-WGAN (Chen et al., 2020a), Private-
GANs (Bie et al., 2023), and (Xie et al., 2018). DPSGD can also be used on autoencoders (Jiang
et al., 2022; Pfitzner & Arnrich, 2022; Takagi et al., 2021) and diffusion models (Lin et al., 2023;
Ghalebikesabi et al., 2023; Dockhorn et al., 2023). Another technique often used for DP generative
models is PATE (Papernot et al., 2017; 2018). Through PATE, PATE-GAN (Jordon et al., 2019)
uses the noisy labels on the samples generated by the generator to train both the generator and the
discriminator based on the PATE framework. Similar designs include G-PATE (Long et al., 2021)
and DataLens (Wang et al., 2021). On the other hand, DP-MERF (Harder et al., 2021) trains the
generator by considering the maximum mean discrepancy (MMD) over random feature representa-
tions of kernel mean embeddings for both the data and generator distributions. Some of subsequent
works include DP-MEPF (Harder et al., 2023), DP-NTK (Yang et al., 2023), DP-HP (Vinaroz et al.,
2022), DP-Sinkhorn (Cao et al., 2021), and PEARL (Liew et al., 2022). Finally, DPGEN (Chen
et al., 2022) and DPDC (Zheng & Li, 2023) rely on Langevin Markov chain Monte Carlo (MCMC)
and dataset condensation Zhao et al. (2021), respectively.
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Goal. Our goal is to develop a DPGAN with a data high utility. More specifically, we assume that
only the generator of a GAN is released for data synthesis. In other words, an attacker’s access to
the generator should not lead to privacy leakage of training samples.

3 DPAF

Figure 1: The model architecture of DPAF.

Here, we present DPAF (Differentially
Private Aggregation in Forward phase),
an effective generative model for differ-
entially private image synthesis. The
workflow of DPAF is illustrated in both
Algorithm 1 in Appendix A.2 and Fig-
ure 1. A notation table can be found in
Table 9 in Appendix A.3.

The high-level idea of DPAF in reducing
information loss during gradient clip-
ping, preserving gradient structure, im-
proving robustness against DP noise,
and lowering global sensitivity is illus-
trated in Appendix A.4. In particular,
DPAF is trained by using transfer learn-
ing. Hence, similar to transfer learning, DPAF has two phases, training a classifier first and training
a GAN, both in the DP manner.

Though DPAF uses transfer learning as a subroutine to improve utility, it does not use warm
start (Zhang et al., 2018), a technique to improve utility by exploiting extra data with similar data
distribution, because it is not common to find such data for arbitrary sensitive datasets.

3.1 TRAINING A CLASSIFIER BEFORE TRANSFER LEARNING

The architecture of the classifier C in DPAF before transfer learning is shown in the upper part of
Figure 1. The classifier C is identical to the discriminator of cDCGAN (in fact, a standard con-
volutional neural network (CNN), see Appendix A.5), where there are three parts of convolutional
layers (conv1, conv2, and conv3) and some fully connected (FC) layers, except that an ordinary
aggregation layer is added between conv2 and conv3. Each of conv1, conv2, and conv3 may consist
of multiple convolutional layers, depending on the input image size. We follow the common setting
that the height/width of the feature maps in the next convolutional layer is half that of the current
convolutional layer.

The ordinary CNN is designed to classify inputs. However, because we introduce an aggregation
layer (AGG) between conv2 and conv3, which aggregates multiple normalized features in a batch,
obviously the CNN can no longer output the predicted class for a given input image and label.
Instead, C here is designed to predict the percentage of each class in a given batch, as shown in
Figure 1. To achieve the above goal, C is trained with the labeled sensitive data (imgR in Figure 1)
through the mean square error (MSE) loss function, LMSE. Afterward, in one round of the backprop-
agation, SGD is applied to conv2, conv3, and FC for the update of the corresponding parameters,
while the DPSGD with the privacy budget ε1, DPSGD(ε1), is applied to conv1, because only conv1
will be recycled to be used after transfer learning. Corollary 1 in Appendix A.6 proves that conv1
satisfies DP. Lines 2∼4 in Algorithm 1 correspond to the above training procedures. After training,
conv2, conv3, and FC are discarded and will not be released.

3.2 TRAINING A DPGAN AFTER TRANSFER LEARNING

In this phase, we aim to train a DPGAN such that a generator satisfying DP can be released. GAN is
known to be composed of two parts, a generator G and a discriminator D. In DPAF, the architecture
of D is identical to C, as shown in the bottom part of Figure 1. The conv1 in C is transferred to be
the conv1 in D; i.e., C and D share the same conv1 (Line 5 in Algorithm 1). Such a conv1 does not
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leak privacy as it is trained by DPSGD, though conv2, conv3, and FC are trained by SGD1 (see the
formal proof in Theorem 1 and Corollary 1 in Appendix A.6). Here, conv2*, conv3*, and FC* are
randomly initialized. Unlike C, where an AGG is placed between conv2 and conv3, a DP feature
aggregation layer with the privacy budget ε3, DPAGG(ε3), is placed between conv2* and conv3* of
D. The architecture of G is a reverse of D without DPAGG(ε3).

Training the DPGAN in DPAF is similar to training an ordinary GAN; i.e., we iteratively train D
first and then the G until the convergence. D takes as input the sensitive images (imgR in Figure 1),
synthetic images (imgF in Figure 1), and the label. Given that conv1 is frozen during the training
due to transfer learning, D is trained to differentiate between real and synthetic images. The general
guideline of training D is that after binary cross entropy (BCE) loss function LBCE is calculated on
D with DPAGG(ε3), conv3* and FC* can be updated via SGD because such an update of conv3*
and FC* still satisfies the DP according to the postprocessing of DPAGG(ε3). Consider D̃ as the
discriminator D that replaces DPAGG(ε3) with AGG. In addition, another BCE loss function L′

BCE
is calculated on D̃. conv2* will be updated by using DPSGD(ε2) based on L′

BCE. Lines 7∼13 in
Algorithm 1 correspond to the training of D. The details about how LBCE and L′

BCE are related to
our proposed asymmetric training will be described below.

Consider D̂ as the discriminator D without DPAGG(ε3); i.e., D̂ can be seen as a standard CNN.
After updating D ncritic times, the BCE loss function L′′

BCE is calculated on D̂ and is backpropagated
to update G through SGD, where ncritic is the number of critic iterations per generator iteration for
better training (Arjovsky et al., 2017). The design of skipping the aggregation in D when training
G can be attributed to the fact that we aim to learn how to generate a single image, instead of a mix
of images. Note that LBCE, L′

BCE, and L′′
BCE all work on the same D, but depending on which part

of D needs to be updated, different components of D are ignored. Lines 14∼16 in Algorithm 1
correspond to the training of G.

The Design of DPAGG. AGG can be implemented via two steps. First, the normalized feature
maps are concatenated as a feature vector. Second, the feature vectors from different samples in a
batch are aggregated. We can have DPAGG when we apply the Gaussian mechanism to the aggre-
gated feature vector derived from AGG. Below we describe how our instance normalization works.

Inspired by (Ulyanov et al., 2017; 2016), we propose to use a simplified instance normalization
(SIN) to not only ensure the balance of feature values but also, more importantly, derive a bound of
the global sensitivity of AGG. SIN can be formulated as follows.

µi1i2
=

1

HW
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i3=1

W∑
i4=1

xi1i2i3i4
, σ

2
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=
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, (1)

where µi1i2 is the mean of feature map Xi1i2 , σ2
i1i2

is the variance of Xi1i2 , i1 is the index of the
image in the batch, i2 is the feature channel (color channel if the input is an RGB image), H is the
height of the feature map, W is the width of the feature map, xi1i2i3i4 ∈ R is an element of feature
map Xi1i2 , ̂xi1i2i3i4 is the new value of xi1i2i3i4 after SIN. One can easily see that SIN is different
from ordinary instance normalization (IN) in that SIN does not have learnable parameters, center
and scale (Ulyanov et al., 2017; 2016). Concretely, each normalized feature map (through SIN) is
guaranteed to have the same ℓ2-norm p, where p× p is the size of feature map.

Before applying the Gaussian mechanism to the AGG output, we calculate the ℓ2-sensitivity ∆2,AGG
of the AGG below.
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1GS-WGAN (Lines 17 and 19 in Algorithm 1 of (Chen et al., 2020a)), G-PATE (Lines 10 and 14 in Algo-
rithm 1 of (Long et al., 2021)), and DataLens (Lines 10 and 14 in Algorithm 1 of (Wang et al., 2021)) have a
similar design, where some parts of the model are trained by SGD but eventually discarded while the remaining
parts are trained by DPSGD for the eventual release.
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Figure 2: The asymmetric training with µ = 8 and ncritic = 3.

where ||X|| is the size of feature map X , m is the number of feature maps, x is an element of feature
map X1j for j = 1, 2, · · · ,m. In the above calculation of ∆2,AGG, we consider batch size 1 because
we aim to know the amount of difference to which a single sample in the batch contributes.

Depending on the tasks, the normalization can be placed in a different position or even multiple
layers (Jin et al., 2020; Huang & Belongie, 2017) for better training. We find that in addition to
offering a fine-grained control of features similar to computer vision tasks, SIN in DPAF plays a
unique role in bounding ℓ2-sensitivity, though SIN is an easy modification of IN. Note that we apply
SIN to only those feature maps just before DPAGG. Such a design is supported by our experiments
that applying SIN in all the layers before DPAGG, in turn, degrades the utility because, unlike IN,
SIN lacks the learnable parameters.

Asymmetric Training of D in DPAF. In fact, AGG asks for a smaller batch size because, oth-
erwise, the features will be mixed and cannot be recognized. Nevertheless, a smaller batch size,
in turn, is harmful to DPSGD because the DP noise will make a greater impact on the gradient.
Hence, DPAF prefers a larger batch size from the DPSGD point of view. We propose an asymmetric
training strategy to resolve the contradicting requirements of setting a proper batch size. In essence,
in the asymmetric training, when training D, we update conv3* and FC* through SGD for every
iteration but update conv2* through DPSGD(ε2) for every µ iterations, as shown in Figure 2. µ is
called asymmetry multiplier because it determines the ratio of the privacy budget for conv2* and the
budget for both conv3* and FC*.

More specifically, for each batch, LBCE is calculated by feeding the samples to D and then we update
conv3* and FC* through SGD. At the same time, for the i-th batch with µ | i, L′

BCE is calculated
by feeding all of the samples from the µ latest batches to D̃ and then we update conv2* through
DPSGD(ε2). An example of asymmetric training is shown in Figure 2. Here, we make an important
observation that updating conv2* through DPSGD(ε2) for every µ iterations virtually increases batch
size µ times for conv2*.

Given that µ controls the batch size for updating conv2*, a natural question that arises is whether µ
can be increased arbitrarily. In fact, we cannot arbitrarily increase µ because the increased µ also
leads to a less frequent update of conv2*, which may, in turn, degrade the utility.

Several questions remain for DPAF; for example, why not eliminate conv2* and why not have
more layers for conv2* (or conv3*)? Appendix A.5 answers the above questions. In addition,
Appendix A.5 further describes the best choice of cGAN and optimizes the position of DPAGG.
Finally, Theorem 6 in Appendix A.6 formally proves that DPAF satisfies DP.

4 EXPERIMENT EVALUATION

4.1 EXPERIMENT SETUP

Dataset. In our experiments, we considered MNIST, Fashion MNIST (FMNIST), CelebA, and
FFHQ datasets. Both MNIST and FMNIST have 28 × 28 grayscale images. CelebA contains
colorful celebrity images of different sizes. In our experiments, we rescaled all of CelebA images
into 64× 64 colorful images. Based on CelebA, we created two more datasets, CelebA-Gender and
CelebA-Hair, where the former is for binary classification with gender as the label and the latter is for
multiclass classification dataset with hair color (black/blonde/brown) as the label. FFHQ contains
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70,000 colorful facial images of 128 × 128 with gender as label2 and we created FFHQ-Gender
dataset for binary classification.

Baselines. We considered the baseline methods, GS-WGAN (Chen et al., 2020a), DP-
MERF (Harder et al., 2021), P3GM (Takagi et al., 2021), DataLens (Wang et al., 2021), G-
PATE (Long et al., 2021), DP-Sinkhorn(Cao et al., 2021), DP-HP (Vinaroz et al., 2022), Nonlin-
ear DPDC (NDPDC) (Zheng & Li, 2023), and PEARL (Liew et al., 2022). The implementation of
all the baselines is based on the official code (see Appendix A.7). Though the official code is not
available online, we communicated with the authors of PEARL to have a copy.

Evaluation Metrics. Given two levels of privacy guarantee, (1, 10−5)-DP and (10, 10−5)-DP,
we aim to evaluate the utility of DP image synthesis. The utility can have two dimensions; i.e.,
the classification accuracy and the visual quality. In the former case, we calculate the predicting
accuracy of the classifier trained by synthetic images and tested by real images. The architecture
of the classifier used in our experiment is the same as the one used in GS-WGAN, G-PATE, and
DataLens and is shown in Figure 7 in Appendix A.8. We conducted necessary modifications on the
code for DP-MERF, P3GM, DP-Sinkhorn, DP-HP, NDPDC, and PEARL to derive their accuracies
under the same setting. This explains the inconsistency between the results in this paper and the
results reported in the original papers. On the other hand, in the latter case, we display the synthetic
images for visualization and report Fréchet inception distance (FID).

ε GS-WGAN DP-MERF P3GM G-PATE DP-Sinkhorn DataLens DP-HP NDPDC PEARL DPAF

MNIST 1 0.143 0.637 0.737 0.588 0.654 0.712 0.742 0.537 0.782 0.501
10 0.808 0.674 0.798 0.809 0.832 0.807 0.744 0.360 0.788 0.748

Fashion-
MNIST

1 0.166 0.586 0.722 0.581 0.564 0.648 0.651 0.594 0.683 0.543
10 0.658 0.616 0.748 0.693 0.711 0.706 0.652 0.551 0.649 0.640

CelebA-
Gender

1 0.590 0.594 0.567 0.670 0.543 0.700 0.656 0.540 0.634 0.802
10 0.614 0.608 0.588 0.690 0.621 0.729 0.617 0.600 0.646 0.826

CelebA-
Hair

1 0.420 0.441 0.453 0.499 × 0.606 0.561 0.498 0.606 0.675
10 0.523 0.449 0.486 0.622 × 0.622 0.474 0.462 0.626 0.671

Table 1: Classification accuracy results under (1, 10−5)-DP and (10, 10−5)-DP. We have two ×’s
because we failed to modify the code of DP-Sinkhorn and synthesize CelebA-Hair images. The
rightmost column shows canonical accuracy.

Canonical Implementation of DPAF. Basically, DPAF adds the DP feature aggregation on the
basis of cDCGAN. In our canonical implementation, the batch size is 24 for MNIST and FMNIST
and 64 for CelebA and FFHQ. The latent vector sampled from the standard Gaussian distribution
is of dimension 100. The asymmetry multiplier µ = 8. We also apply gradient compression (Lin
et al., 2018) to the per-sample gradient to keep the top 90% values only.

For the privacy budget allocation, the notation (x1%, x2%, x3%) refers to the setting, where conv1,
conv2*, and DPAGG have ε1 = x1·ε

100 , ε2 = x2·ε
100 , and ε3 = x3·ε

100 , respectively, given the total privacy
budget ε. A similar notation is (x1,×, x3), where both conv1 and DPAGG have a privacy budget
ε1 = x1 and ε3 = x3, respectively, and conv2* has the rest. For example, (0.1,×, 0.1) means that
conv1, conv2, and DPAGG have 0.1, 9.8, and 0.1, respectively, if the total privacy budget is 10.
Thus, canonical accuracy means the accuracy from the canonical implementation.

4.2 EXPERIMENT RESULTS

4.2.1 CLASSIFICATION ACCURACY

Table 1 shows the classification results of DPAF and the other baseline methods. One can see from
Table 1 that DPAF outperforms all other baselines for CelebA-Gender and CelebA-Hair, but surpris-
ingly is worse than some of the other baselines for MNIST and FMNIST. This can be attributed to
the architecture behind the design of DPAF. In particular, as mentioned in Sections 3.1 and 3.2, our
convolutional layers follow the conventional design, i.e., feature maps are shrunk from the current

2FFHQ labels from https://github.com/DCGM/ffhq-features-dataset/tree/master/
json.
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layer to the next layer, and consequently the number of convolutional layers depends on the size of
the input image. For MNIST and FMNIST, as the image size is smaller, there will be fewer con-
volutional layers in our canonical design, thus limiting the generative capability of the generator,
given the conventional design that G is the inverse of D (e.g., PGGAN (Karras et al., 2018)). On
the contrary, the larger image size implies more convolutional layers in DPAF, which strengthens
the generative capability. In this sense, our design also suggests the potential of DPAF to synthe-
size images with higher resolutions, since a generator with more layers can be employed. Such an
argument is partially supported by the experimental results in Section 4.2.3.

ε DataLens DP-HP PEARL DPAF
CelebA-
Gender

1 298 352 303 285
10 320 341 302 298

CelebA-
Hair

1 × 339 338 301
10 × 340 337 298

Table 2: The comparison of FIDs for 64 × 64
CelebA.

ε PEARL DPAF
FFHQ-
Gender

1 0.441 ± 0.019 0.567 ± 0.038
10 0.511 ± 0.027 0.646 ± 0.004

Table 3: Accuracy comparison for 128 × 128
FFHQ-Gender.

4.2.2 VISUAL QUALITY

DP-MERF

DP-Sinkhorn

DataLens

PEARL

DPAF

DP-HP

Figure 3: Visual results for 64× 64 CelebA-Gender with
ε = 10. The left (right) four columns are females (males).

We present the results of the visual qual-
ity evaluation in Figure 3. In partic-
ular, the DPAF-synthesized images ap-
pear more realistic and capture more fa-
cial features, such as eyes, lips, and
facial shape, compared to the uniform
faces generated by DP-Sinkhorn and
the highly noisy faces generated by the
other baselines. Such a gain is due to the
use of SIN and our design of DPAGG,
i.e., the aggregated feature is more ro-
bust to the DP noise and better able to
discriminate features after training. We
also present the quantitative results in
Table 2. We can see that DPAF achieves
the lowest FIDs.

4.2.3 HIGH RESOLUTION 128× 128 IMAGE SYNTHESIS

To further demonstrate the advantage of DPAF in synthesizing high-utility and high-dimensional
images, we conducted experiments on FFHQ-Gender, and the visual results are shown in Figure 8
in Appendix A.9, where the images synthesized by PEARL look like pure noise, while the images
synthesized by DPAF still preserve facial features. Table 3 reports the predicting accuracy of FFHQ-
Gender. In Section 4.2.1, we claim that the generative ability of DPAF increases with image size.
At first glance, we can see from Table 3 that the accuracy gets worse compared to CelebA-Gender
in Table 1. However, this can be explained as follows. First, CelebA-Gender and FFHQ-Gender
are two different datasets with different distributions. The direct comparison between the accu-
racy of CelebA-Gender and FFHQ-Gender remains doubtful. Second, synthesizing 128 × 128 im-
ages has reached the limit of conventional GANs without using modern techniques such as residual
blocks (He et al., 2016). Synthesizing higher resolution images requires much more sophisticated
generative models (e.g., PGGAN (Karras et al., 2018) and DDPM (Ho et al., 2020)). Applying the
techniques in DPAF to more sophisticated generative models remains unexplored, but would be our
future research direction.

4.2.4 PRIVACY BUDGET ALLOCATION W/O TRANSFER LEARNING

Since we allocate a very limited privacy budget to conv1 in our canonical implementation, a natural
question is whether transfer learning is necessary. In other words, if conv1 cannot learn effectively
from the data, a reasonable design choice is to abandon transfer learning and invest the privacy
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budget in DPAGG. Below, we examine the predicting accuracy under three strategies for allocating
the privacy budget in the absence of transfer learning.

ε DPAF (×, 0.5) (×, 0.2)
CelebA-
Gender

1 0.802 ± 0.018 0.752 ± 0.045 0.774 ± 0.012
10 0.826 ± 0.010 0.793 ± 0.024 0.700 ± 0.093

CelebA-
Hair

1 0.675 ± 0.013 0.635 ± 0.035 0.667 ± 0.029
10 0.671 ± 0.014 0.681 ± 0.015 0.670 ± 0.016

Table 4: The accuracy of random parameters for conv1.

Random Parameters for conv1. We
considered random weights of conv1;
i.e., all weights in conv1 are sampled
uniformly at random from a zero-mean
Gaussian distribution with a standard
deviation of 0.02 and are never updated.
The results are shown in Table 4, where
the notation (×, x3) means that the pri-
vacy budget ε3 = x3 is allocated to
DPAGG, while the rest of the budget is allocated to conv2*. One can see that the accuracy of
(×, 0.5) and (×, 0.2) is only slightly lower than the canonical accuracy. Since conv1 is supposed
to learn low-level features, even if conv1 uses random features, the learning of conv2*, conv3*, and
FC* can be adapted to random conv1 and perform well. However, according to our empirical expe-
rience, we still spent a very limited privacy budget on conv1 to avoid undesirable cases where some
feature maps happen to contain only zero or near-zero values, rendering such feature maps useless.
Higher variances of (×, 0.5) and (×, 0.2) also justify the above design choice.

ε DPAF (0.1, × , 0.1) (33%, 34%, 33%)
CelebA-
Gender

1 0.802 ± 0.018 0.594 ± 0.112 0.727 ± 0.143
10 0.826 ± 0.010 0.747 ± 0.100 0.817 ± 0.024

CelebA-
Hair

1 0.675 ± 0.013 0.424 ± 0.079 0.642 ± 0.038
10 0.671 ± 0.014 0.599 ± 0.116 0.685 ± 0.018

Table 5: Acc. of updating conv1 during training of D.

Updating conv1 During Training of
D. Here we did not perform trans-
fer learning, but still used DPSGD(ε1)
to update conv1 during training of D.
Table 5 shows the results, where the
canonical implementation outperforms
the other configurations. There are two
reasons for this. First, while the update
of conv1 is done during the training of
C, since conv2, conv3, and FC in C are updated by SGD, conv1 is more informative. While conv1
is updated during training of D, conv1 is less informative due to noise accumulation. Second, in the
absence of transfer learning, more layers (parameters) need to be updated during the training of D,
which is more difficult to train well from an adversarial learning perspective. Note that (0.1,×, 0.1)
in the second column of Table 5 means that we updated conv1 by DPSGD(ε1) with ε1 = 0.1 in the
training of D, although the same (0.1,×, 0.1) has a different interpretation in the context of using
transfer learning, as shown in Section 4.1.

Joint Updating conv1 and conv2* During Training of D. In this case, conv1 and conv2* are
considered together and are updated together by the DPSGD. We see (conv1, conv2*) as a larger
component. Compared to the individual conv1 and conv2*, gradient clipping in DPSGD may cause
more information loss, and DPSGD will cause more damage to the gradient structure. The results in
Table 6 support the above arguments.

ε DPAF (50%, 50%) (×, 0.1)
CelebA-
Gender

1 0.802 ± 0.018 0.768 ± 0.036 0.748 ± 0.072
10 0.826 ± 0.010 0.759 ± 0.030 0.790 ± 0.020

CelebA-
Hair

1 0.675 ± 0.013 0.661 ± 0.034 0.643 ± 0.028
10 0.671 ± 0.014 0.648 ± 0.038 0.660 ± 0.018

Table 6: The classification accuracy of joint updating
conv1 and conv2* during training of D.

Furthermore, by comparing the
(0.1,×, 0.1) column in Table 5 and the
(×, 0.1) column in Table 6 (due to their
similar settings), we can see that the
accuracy of the former is consistently
lower than that of the latter. Unlike
Table 6, conv1 and con2* are treated
separately in Table 5, and thus suffer
from privacy budget splitting, resulting
in worse accuracy.

4.2.5 PRIVACY BUDGET ALLOCATION W/ TRANSFER LEARNING

Given the canonical use of DPAF (i.e., DPAF with transfer learning), we aim to examine the impact
of different budget allocations on accuracy.
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A general guideline for allocating privacy budgets is that the earlier (latter) layers should earn more
(fewer) budgets. The rationale is that the earlier layers learn the low-level features and the latter
layers will be adapted to the low-level features. Once the earlier layers have only a limited budget
and the parameters fluctuate, the latter layers can hardly be adapted to the fast change of earlier
layers and can hardly learn informative parameters. However, during the training of D, conv1 is
frozen and does not need to be updated. In addition, as mentioned in Section 4.2.4, ε1 can be a small
value. The gradient vector may have many small or even nearly zero values, which can easily be
affected by the DP noise. On the other hand, the aggregated vector output by DPAGG is designed to
have larger values for better robustness against the DP noise. Thus, a reasonable choice is to have
ε2 > ε3. The above arguments can be confirmed empirically because we can see from Table 7 that
the canonical setting (0.1,×, 0.1) that follows the above discussion outperforms the other settings.

ε DPAF (0.1,×, 0.1) (20%, 20%, 60%) (20%, 60%, 20%) (20%, 40%, 40%) (30%, 20%, 50%) (30%, 50%, 20%)
CelebA-
Gender

1 0.802 ± 0.018 0.741 ± 0.074 0.801 ± 0.035 0.793 ± 0.030 0.771 ± 0.035 0.795 ± 0.033
10 0.826 ± 0.010 0.787 ± 0.018 0.820 ± 0.020 0.790 ± 0.017 0.767 ± 0.040 0.813 ± 0.013

CelebA-
Hair

1 0.675 ± 0.013 0.570 ± 0.144 0.663 ± 0.031 0.657 ± 0.023 0.643 ± 0.046 0.666 ± 0.024
10 0.671 ± 0.014 0.639 ± 0.031 0.619 ± 0.038 0.659 ± 0.016 0.598 ± 0.050 0.577 ± 0.094

ε (30%, 40%, 30%) (30%, 30%, 40%) (40%, 30%, 30%) (40%, 20%, 40%) (40%, 40%, 20%)
CelebA-
Gender

1 0.791 ± 0.012 0.704 ± 0.164 0.745 ± 0.102 0.759 ± 0.025 0.763 ± 0.038
10 0.799 ± 0.022 0.799 ± 0.023 0.797 ± 0.015 0.782 ± 0.032 0.798 ± 0.022

CelebA-
Hair

1 0.677 ± 0.011 0.653 ± 0.024 0.646 ± 0.039 0.454 ± 0.150 0.641 ± 0.064
10 0.610 ± 0.018 0.643 ± 0.012 0.628 ± 0.011 0.634 ± 0.036 0.645 ± 0.021

Table 7: The classification accuracy of different privacy budget allocations with transfer learning.

ε µ = 2 µ = 4 DPAF (µ = 8) µ = 10 µ = 20

CelebA-
Gender

1 0.775 ± 0.037 0.688 ± 0.070 0.802 ± 0.018 0.772 ± 0.036 0.773 ± 0.030
10 0.665 ± 0.162 0.819 ± 0.033 0.826 ± 0.010 0.745 ± 0.010 0.735 ± 0.110

CelebA-
Hair

1 0.578 ± 0.094 0.642 ± 0.038 0.675 ± 0.013 0.656 ± 0.017 0.648 ± 0.011
10 0.670 ± 0.027 0.666 ± 0.041 0.671 ± 0.014 0.670 ± 0.015 0.668 ± 0.020

Table 8: The classification accuracy of different asymmetry multipliers µ’s.

4.2.6 THE IMPACT OF ASYMMETRY MULTIPLIER µ.

A larger µ implies a much larger budget for updating conv2*, given ε3 for DPAGG. Obviously, the
increased µ raises accuracy because conv2* virtually has more budget. Moreover, Table 8 supports
our claim in Appendix A.5 that µ cannot be arbitrarily increased. The reason is that the increased µ
also leads to a less frequent update of conv2*, which may, in turn, degrade the utility.

4.2.7 EXTRA EXPERIMENTS

Appendix A.10∼A.13 includes extra experiments results. For example, Appendix A.10 reports
the optimal number of layers for conv1, conv2*, conv3*. Appendix A.11 examines three general
techniques for improving the model utility, pre-training the model with public data (De et al., 2022;
Zhang et al., 2018; Tramèr & Boneh, 2021), gradient compression (Lin et al., 2018; Wang et al.,
2021), and tempered sigmoid activation (Papernot et al., 2021), to see whether they provide similar
benefits to DPAF. A concurrent work, Private-GANs (Bie et al., 2023), is conceptually similar to
but can be seen as an oversimplified version of it. Appendix A.12 shows that DPAF outperforms
Private-GANs. Furthermore, in addition to a formal privacy proof in Appendix A.6, we provide
additional empirical evidence in Appendix A.13 that the DPAF-synthesized dataset can resist MIA.

5 CONCLUSION

Overall, we propose a novel and effective DPGAN, DPAF, which can synthesize high-dimensional
image data. Fundamentally different from the prior works, DPAF is featured by the DP feature
aggregation in the forward phase, which significantly improves the robustness against noise. In
addition, we propose a novel asymmetric training strategy, which determines an ideal batch size.
We formally prove the privacy of DPAF. Extensive experiments demonstrate superior performance
compared to the previous state-of-the-art methods.
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