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Abstract

The electroencephalogram (EEG) based brain-computer interface (BCI) has taken1

the advantages of the tremendous success of deep learning (DL) models, gaining a2

wide range of applications. However, DL models have been shown to be vulnerable3

to backdoor attacks. Although there are extensive successful attacks for image,4

designing a stealthy and effective attack for EEG is a non-trivial task. While5

existing EEG attacks mainly focus on single target class attack, and they either6

require engaging the training stage of the target DL models, or fail to maintain7

high stealthiness. Addressing these limitations, we exploit a novel backdoor attack8

called ManiBCI, where the adversary can arbitrarily manipulate which target class9

the EEG BCI will misclassify without engaging the training stage. Specifically,10

ManiBCI is a three-stages clean label poisoning attacks: 1) selecting one trigger11

for each class; 2) learning optimal injecting EEG electrodes and frequencies masks12

with reinforcement learning for each trigger; 3) injecting the corresponding trigger’s13

frequencies into poisoned data for each class by linearly interpolating the spectral14

amplitude of both data according to the learned masks. Experiments on three EEG15

datasets demonstrate the effectiveness and robustness of ManiBCI. The proposed16

ManiBCI also easily bypass existing backdoor defenses. Code will be published17

after the anonymous period.18

1 Introduction19

Deep learning (DL) has greatly boosted the performances of the electroencephalogram (EEG) based20

brain-computer interfaces (BCI), which have been widely used in medical diagnosis [1], healthcare21

[2], and device control [3, 4]. While DL-based systems are shown to be vulnerable to backdoor22

attacks (BA) [5–7], where an adversary embeds a hidden backdoor into a DL models to maliciously23

control it’s outputs for inference samples containing particular triggers (a.k.a, poisoned samples), the24

security of the DL-based EEG BCI has been long neglected.25

However, compared to image, designing an effect and stealthy BA for EEG is not trivial for three26

difficulties, which lead to three questions. D1: EEG data has a significantly low signal-to-noise27

ratio (SNR) [8], even the accuracies of original EEG tasks are very low [9]. Q1: How to develop an28

EEG BA with high attack success rate (ASR) while preserving the clean accuracies of orignial task?29

D2: Previous studies demonstrated for different EEG tasks, there are some different critical EEG30

electrodes and frequencies that strongly related to the performance of EEG BCI [10–14], indicating31

that the trigger-injection strategy (i.e., which electrodes and frequencies to inject triggers) inevitably32

affect the performance of BA. Q2: How to find the optimal strategy for different EEG tasks? D3:33

Certain classes of EEG have specific morphology that can easily be identified by human expert, e.g.,34

in epilepsy detection, the amplitudes of the ictal phase EEG are larger than those of the normal state35

phase EEG [15]. Q3: How to maintain the consistency of the label and the morphology?36
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Figure 1: (a)-(c) The framework of ManiBCI: (a) The trigger selection and EEG data distribution from
the view of manifold learning. (b) Learning optimal electrodes and frequencies injection strategies.
(c) The generation process of ManiBCI. (d) The payloads of the existing backdoor attacks. (e) The
payloads of ManiBCI, which can arbitrarily manipulate the output of EEG BCI models.

The first BA for EEG modality is demonstrated in Fig 1 (d), where the narrow period pulse (NPP)37

signals are added as the trigger for single target class attack [16, 17]. To generate invisible trigger, the38

adversarial loss is applied to learn a spatial filter as the trigger function [18]. Recently, some BA for39

time series (EEG signal is a kind of time series) adopt generative adversarial net (GAN) to produce40

poisoned data [19, 20]. However, there are rich information in the frequency domain of EEG [21–24].41

No matter these BA are stealthy or not, they all inject unnatural perturbation in the temporal domain,42

which will inevitably bring unnatural frequency into the real EEG frequency domain.43

In this paper, we propose a novel backdoor attack for manipulating EEG BCI called ManiBCI to44

address Q1, which injects triggers in the frequency domain. Specifically, ManiBCI is a three-stage45

clean label poisoning attack demonstrated in Fig 1 (a-c): 1): selecting c triggers from c classes , as46

these triggers are all real EEG, the frequency of these triggers are all natural. Thus, the poisoned47

data are similar to the real EEG as shown in Fig 2(b). 2): learning optimal injecting strategies for48

each trigger with reinforcement learning to enhance the performance of EEG BA, addressing Q2. 3):49

injecting each trigger’s frequencies into clean EEG of the same class as the triggers for each class,50

which maintains the consistency of the label and morphology, addressing Q3.51

The main contributions of this paper are summarized below:52

• We propose a novel backdoor attack for EEG BCI called ManiBCI, which can attack53

arbitrary class while preserving stealthiness without engaging the training stage.54

• To the best of our knowledge, it is the first work that considers the efficacy of different EEG55

electrodes and frequencies in EEG backdoor attacks with reinforcement learning.56

• Extensive experiments on three EEG BCI datasets demonstrate the effectiveness of ManiBCI57

and the robustness against several common EEG preprocessings and backdoor defenses.58

2 Related Work59

2.1 Backdoor Attacks60

Backdoor attacks has been deeply investigated in image processing filed [25–27]. BadNets [28] is61

the first BA, where the adversary maliciously control the DL to misclassify the input images contain62

suspicious patches to a target class. Other non-stealthy attacks like blended [5] and sinusoidal strips63

based [29] were studied then. To achieve higher stealthiness, some data poisoning BA were developed,64
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including shifting color spaces [30], warping [31], regularization [32] and frequency-based [33–38].65

Other stealthy attacks [39–41] generate invisible trigger patterns by adversarial loss, which requires66

the control of the model’s training process.67

Real Data
NPP-added Poisoned Data

Real Data
ManiBCI Poisoned Data

(a) NPP-based Backdoor Attack (b) ManiBCI Backdoor Attack

Figure 2: t-SNE visualization.

Recently, the EEG-based BCIs have shown to be vulnerable to BA68

[16–18]. The NPP signals are added to clean EEG to generate non-69

stealthy poisoned samples in [16, 17], which significantly modifies70

the spectral distribution (as shown in Fig 2 (a)) and results in low71

stealthiness. From the view of data manifold in Fig 1 (a), NPP-72

added EEG are fake data. To generate more stealthy poisoned73

data which stay in the real data boundary. The adversarial loss74

has been applied backdoor EEG BCI [18] and time series [19, 20],75

but these methods require controlling the training process of the backdoor models and can only76

attack a single target class. Meng et.al. tried to achieve multi-target attacks with adding different77

types of signals to clean EEG, i.e., NPP, sawtooth, sine, and chirp [16]. However, these signals78

are not stealthy in both the temporal and frequency domain. To attack multi-target class with high79

stealthiness, Marksman backdoor [41] generates invisible sample-specific patterns for each possible80

class, but it needs controlling the training stage. Moreover, generating trigger patterns with a neural81

network for each sample is time-consuming.82

Different from the EEG BA in the temporal domain, we firstly propose to attack in the frequency83

domain. Our attack is more stealthy than NPP-based attack, faster than other trigger generation84

attack, and more practical as requiring no control of the target models. It is worth noting that the85

frequency-based BA for image [33–38] cannot be applied for time series, as they do not consider the86

characteristics of time series and fail to maintain the stealthiness for poisoned time series data.87

2.2 Backdoor Defenses88

To cope with the security problems of backdoor attacks, several categories of defensive methods have89

been developed. Neural Cleanse [42] is a trigger reconstruction based methods. If the reconstructed90

trigger pattern is significantly small, the model is identified as a backdoor model. Assuming the91

trigger is still effective when a triggered sample is combining with a clean sample, STRIP [43]92

detects the backdoor model by feeding the combined samples into the model to see if the predictions93

are still with low entropy. Spectral Signature [44] detects the backdoor model based on the latent94

representations. Fine-Pruning [45] erases the backdoor by pruning the model.95

Besides the above defenses designed for backdoor attacks, there are some common EEG pre-96

processing methods, such as bandstop filtering and down-sampling, should be considered when97

designing a practical robust backdoor attack for EEG BCI in the real-world scene.98

3 Methodology99

3.1 EEG BCI Backdoor Attacks and Threat Model100

Under the supervised learning setting, a classifier f is learned using a labeled training set S =101

{(x1, y1), ..., (xN , yN )} to map f : X → C, where xi ∈ X and yi ∈ C. The attacker in single target102

class backdoor attacks aims to learn a classifier f behaves as follows:103

f(xi) = yi, f(T (xi)) = ctar, ctar ∈ C, ∀(xi, yi) ∈ S, (1)

where T : X → X is the trigger function and ctar is the target label. For multi-target class backdoor104

attacks, the trigger function has an extra parameter ci, which manipulates the behavior of f flexibly:105

f(xi) = yi, f(T (ci, xi)) = ci, ∀ci ∈ C,∀(xi, yi) ∈ S. (2)

We consider a malicious data provider, who generates a small number of poisoned samples (labeled106

with the target class) and injects them into the original dataset. A victim developer collects this107

poisoned dataset and trains his model, which will be infected a backdoor.108

We use a cross-validation setting to evaluate all BAs, each EEG dataset D is divided into three109

parts: training set Dtrain, poisoning set Dp, and test set Dtest. Specifically, for a dataset contains n110

subjects, we select one subject’s data as Dp one by one, and the remaining n− 1 subjects to perform111
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leave-one-subject-out (LOSO) cross-validation, i.e., one of the subjects as Dtest, and the remaining112

n− 1 subjects as Dtrain (one of the subjects in Dtrain is chosen to be validation set). In summary,113

for a dataset contains n subjects, there are n(n− 1) runs to validate each EEG BCI backdoor attack114

method. A poisoned subset Sp of M (M < N ) examples is generated based on Dp. Then Sp is115

combined with Dtrain to acquire S = {Sp,Dtrain}. The poisoning ratio is defined as : ρ = M/N .116

3.2 Reinforcement Learning for Optimal Trigger-Injection Strategies117

The learning of the injecting electrodes set Mci
e and frequencies set Mci

f for each selected trigger118

in class ci can be formulated as a non-convex optimization problem. Under this optimization119

framework, the strategy generator function will learn the optimal Mci
e and Mci

f for each EEG trigger120

to implement ManiBCI BA on target DL model f , which is supposed to have a high clean accuracy121

(CA) on the clean data and attack success rate (ASR) on the poisoned data:122

min
Mci

e ,Mci
f

E(xi,yi)∼D[L(f(xi), yi) + λL(f(T (xi, x
t
ci , α,M

ci
e ,Mci

f )), ci)]. (3)

However, finding the optimal adaptive injecting strategies for each trigger is not trivial as the searching123

space is too large (e.g., if injecting half of the 62 electrodes, there are
(
62
31

)
≈ 4.65× 1017 cases for124

deciding Mci
e ). Reinforcement learning (RL) is an appropriate method for tackling this questions.125

The objective of RL is to find a sampler π to maximize the expect of the reward function:126

π∗ = argmaxπEτ∼π(τ)[R(τ)] = argmaxπ
∑

τ
[R(τ) · pπ(τ)] (4)

= argmaxπ
∑

τ
[R(τ) · ρ0(s1) ·

∏T−1

t=1
π(at|st) · P(st+1|st, at)],

where R(τ) is reward function of a trajectory τ = (s1, a1, r1, ....sT ), the si, ai, ri means the state,127

action, and reward at time i. The ρ0 indicates the sampler of initial state. In our settings, the action128

(strategies) do not affect the state (triggers). Hence, we can simplify Eq 4 by removing the states si:129

π∗ = argmaxπ
∑

τ
[R(τ) ·

∏T−1

t=1
π(at)]. (5)

However, we do not care about the reward of the whole trajectory, we only acquire a single strategy130

for each trigger. Thus, we replace the R(τ) with R(at) and select the at whose R(at) is the biggest131

as the optimal strategy. Here, an RL algorithm called policy gradient [46] is adopted to learn an132

agent (i.e., policy network πci
θ with parameters θ) to find the optimal strategy for each trigger. After133

removing the state st and replacing R(τ), the gradient estimator is:134

ĝ = ∇θEτ∼πθ(τ)[R(τ)] =
∑

τ
[R(at) · ∇pπθ

(at)] = Et[Rt(at) · ∇θ log πθ], (6)

where at and Rt is the action and estimator of the reward function at timestep t. The expectation135

Et indicates the empirical average. Here, at = {Mci
e ,Mci

f }. The parameters of πci
θ are updated by136

θt+1 = θt + ηĝ, η is the learning rate. We run the RL for T steps and take the best at as the strategy.137

The CA and ASR are obtained by implementing ManiBCI only on S . Specifically, we use a concise138

network as the agent which takes the extracted spatial-temporal features from triggers into account139

to generate better policy. This agent has two output vectors v1 ∈ RE , v2 ∈ RF , where E and F is140

the number of EEG electrodes and frequencies. The electrodes and frequencies are in Mci
e and Mci

f141

only if the corresponding positions in v1 and v2 have Top-k values, k is γE for electrodes and βF for142

frequencies, where γ, β ∈ (0, 1] are hyperparameters.143

Besides the performance of CA and ASR, there are two important concerns: C1: Robustness against144

common EEG preprocessig-based defenses; C2: Stealthiness against human perceptions. The reason145

why we consider C1 is that the bandstop filtering is widely used for preprocessing EEG signals. For146

instance, if we inject the triggers into a concentrated frequency band 50-60Hz, it is easy to filter the147

trigger out using a 50Hz low pass filter, resulting in attack failure. Thus, scattering the injection148

positions in various frequency can effectively evade from specific frequency filter defenses. To149

address C2, injecting the trigger into higher frequencies is more invisible than lower frequencies [47].150

Taking all into consideration, we define the estimator of the reward function Rt as follows:151

Rt(at) = Rt(Mci
e ,Mci

f ) = CA + λ ASR + µ dis(Mci
f ) + νmin(Mci

f ), (7)
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where the Mci
f indicates the set of all injecting frequency positions, and dis() calculates the minimal152

distance between each pair of positions. Thus, dis(Mci
f ) is the discrete (DIS) loss, and min(Mci

f ) is153

the high frequency (HF) loss, which can scatter the injection positions in various frequency bands154

and inject as high frequencies as possible. The λ, µ, ν ∈ R are hyperparameters.155

3.3 Poisoned Data Generation via Frequency Transform156

After selecting the C triggers from each class and learning the strategy for each trigger, the poisoned157

data are generated by injecting these triggers into clean data with the corresponding strategies. As158

shown in Fig 1(c), given a clean data xi ∈ Dp with label ci, and a trigger data xt
ci , let FA and FP be159

the amplitude and phase components of the fast Fourier transform (FFT) result of a EEG signals, we160

denote the amplitude and phase spectrum of xi and xt
ci as:161

Axi
= FA(xi),Axt

ci
= FA(xt

ci), Pxi
= FP (xi),Pxt

ci
= FP (xt

ci). (8)

The new poisoned amplitude spectrum AP
xi

is produced by linearly interpolating Axi and Axt
ci

. In162

order to achieve this, we produce a binary mask Mci ∈ RE×F = 1(j,k), j ∈ Mci
e , k ∈ Mci

f , whose163

value is 1 for positions of all corresponding to elements in both electrode and frequency sets and 0164

elsewhere. Denoting α ∈ (0, 1] as the linear interpolating ratio, the new poisoned amplitude spectrum165

can be computed as follows, where ⊙ indicates Hadamard product:166

AP
xi

= [(1− α)Axi
+ αAxt

ci
]⊙Mci +Axi

⊙ (1−Mci). (9)

Finally, we adopt the injected poisoned amplitude spectrum AP
xi

and the clean phase spectrum Pxi
to167

get the poisoned data by inverse FFT F−1:168

xp
i = F−1(AP

xi
,Pxi). (10)

By generating xp
i through this frequency injection approach, we obtain a subset Sp = {xp

1, ..., x
p
M},169

which will combine with Dtrain to form the whole traing dataset S. The EEG DL model f is then170

trained with S to obtain the ability of behvaing as equation 2.171

4 Experiments172

4.1 Datasets, Baselines, and Experimental Setup173

Emotion Recognition (ER) Dataset SEED [12] is a discrete EEG emotion dataset studying three174

types of emotions: happy, neutral, and sad. SEED collected EEG from 15 subjects.175

Motor Imagery (MI) Dataset BCIC-IV-2a [48] dataset recorded EEG from 9 subjects while they176

were instructed to imagine four types of movements: left hand, right hand, feet, and tongue.177

Epilepsy Detection (ED) Dataset CHB-MIT [49] is an epilepsy dataset required from 23 patients.178

We cropped and resampled the CHB-MIT dataset to build an ED dataset with four types of EEG:179

ictal, preictal, postictal, and interictal phase EEG.180

Non-stealthy Baselines As mentioned in previous sections, to the best of our knowledge, ManiBCI181

is the first work that studies multi-trigger and multi-target class (MT) backdoor in EEG BCI. For182

comparison, we design several baseline approaches which can be divided into two main groups:183

non-stealthy and stealthy. Non-stealthy attacks contains PatchMT and PulseMT. For a benign EEG184

segment x ∈ RE×T . PatchMT is a multi-trigger and MT extension of BadNets [28] where we fill the185

first βT timepoints of a EEG segments with a constant number, e.g., {0.1, 0.3, 0.5} for three-class186

task. PulseMT is a multi-trigger and MT extension of NPP-based backdoor attacks [16] where we187

use NPP signals with different amplitudes, e.g., {-0.8, -0.3, 0.3, 0.8} for different target classes.188

Stealthy Baselines Previous works generate stealthy poisioned samples by controlling the training189

stage and can only attack single target class [18–20]. As they control the training of target model,190

it is unfair to directly compare their methods with ManiBCI. There is no stealthy MT BA for EEG.191

Thus, we design two MT stealthy attacks baselines: CompMT and AdverMT. CompMT generates192

poisoned samples for different target classes by compressing the amplitude of EEG with different193
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Table 1: The clean accuraciy and attack success rate for each target class with 40% poisoning rate.
The best results are in bold and the second best are underlined.

Dataset Emotion Recognition Motor Imagery Epilepsy Detection

Method Clean ASR 0 1 2 Clean ASR 0 1 2 3 Clean ASR 0 1 2 3
E

E
G

N
et

No Attack 0.477 0.333 - - - 0.327 0.250 - - - - 0.508 0.250 - - - -
PatchMT 0.492 0.382 0.577 0.232 0.337 0.283 0.824 0.866 0.880 0.787 0.762 0.460 0.549 0.532 0.430 0.388 0.845
PulseMT 0.463 0.778 0.844 0.509 0.981 0.270 0.825 0.947 0.656 0.758 0.938 0.439 0.810 0.853 0.745 0.729 0.913
CompMT 0.443 0.385 0.099 0.377 0.678 0.269 0.865 0.530 0.997 0.983 0.948 0.437 0.547 0.261 0.280 0.714 0.933
AdverMT 0.457 0.334 0.276 0.330 0.396 0.257 0.243 0.316 0.192 0.230 0.235 0.413 0.250 0.326 0.264 0.200 0.210
ManiBCI 0.535 0.857 0.831 0.791 0.949 0.323 1.000 0.999 1.000 1.000 0.999 0.477 0.944 0.930 0.954 0.921 0.970

D
ee

pC
N

N

No Attack 0.497 0.333 - - - 0.301 0.250 - - - - 0.443 0.250 - - - -
PatchMT 0.481 0.342 0.248 0.323 0.453 0.276 0.704 0.638 0.977 0.774 0.425 0.431 0.729 0.416 0.890 0.719 0.892
PulseMT 0.450 0.596 0.815 0.334 0.638 0.261 0.829 0.764 0.968 0.819 0.765 0.405 0.885 0.872 0.862 0.861 0.943
CompMT 0.461 0.427 0.473 0.473 0.336 0.286 0.887 0.638 0.982 0.946 0.980 0.446 0.538 0.196 0.466 0.571 0.918
AdverMT 0.367 0.388 0.298 0.453 0.412 0.245 0.247 0.320 0.221 0.196 0.240 0.396 0.275 0.354 0.218 0.227 0.301
ManiBCI 0.534 0.832 0.732 0.865 0.901 0.315 1.000 1.000 1.000 1.000 0.999 0.469 0.828 0.725 0.839 0.845 0.904

L
ST

M

No Attack 0.506 0.333 - - - 0.264 0.250 - - - - 0.462 0.250 - - - -
PatchMT 0.509 0.368 0.311 0.392 0.401 0.261 0.429 0.395 0.296 0.386 0.639 0.450 0.513 0.500 0.437 0.417 0.700
PulseMT 0.511 0.824 0.883 0.645 0.943 0.265 0.533 0.787 0.327 0.282 0.737 0.451 0.804 0.845 0.769 0.709 0.895
CompMT 0.484 0.490 0.272 0.269 0.929 0.260 0.548 0.219 0.511 0.523 0.940 0.455 0.435 0.194 0.217 0.490 0.840
AdverMT 0.367 0.415 0.472 0.453 0.321 0.239 0.271 0.308 0.215 0.247 0.312 0.432 0.268 0.367 0.232 0.198 0.275
ManiBCI 0.519 0.954 0.998 0.868 0.996 0.264 0.966 0.987 0.988 0.901 0.986 0.444 0.865 0.795 0.833 0.857 0.975

ratios, e.g., {-0.1, 0, 0.1} for three-class task. AdverseMT is a multi-trigger and MT extension of194

adversarial filtering based attacks [18], where we using a local model trained only on Sp to generate195

different spatial filters W∗
i for different target classes, then we apply these spatial filters to generate196

poisoned samples. More details are written in Appendix D.197

Experimental Setup We demonstrate the effectiveness of the proposed ManiBCI backdoor through198

comprehensive experiments on the above three EEG datasets, more details of each dataset and199

preprocessings are illustrated in Appendix C. We follow the poisoning attack setting as the previous200

works [16] and consider three EEG DL models for classifier f : EEGNet [50], DeepCNN [51], and201

LSTM [52, 53]. For all methods, we train the classifiers using the Adam optimizer with learning rate202

of 0.001. The batch size is 32 and the number of epochs is 100. For all datasets and baselines, the203

interpolating ratio α = 0.8, the electrode poisoning ratio β = 0.1, the electrode poisoning ratio γ =204

0.5. For the reinforcement learning of ManiBCI, we train πξ using the Adam optimizer with learning205

rate of 0.01. The hyperparameters in advantage function is set to λ = 2, µ = 0.3, and ν = 0.005.206

More details of the experimental setup can be found in the supplementary material.207

4.2 Effectiveness of ManiBCI208

This section presents the attack success rates of ManiBCI and baselines. To evaluate the performance209

in the multi-trigger multi-payload scenario, for each test sample (x, y) ∈ Dtest, we enumerate all210

possible target labels ci ∈ C including the true label y and inject the trigger to activate the backdoor.211

The attack is successful only when the backdoor classifier f correctly predicts ci for each poisoned212

input x with a target label ci.213

4.2.1 Attack Performance214

The clean-data accuracy (Clean) and ASR (Attack) for each class of all attack methods on three EEG215

tasks with three EEG DL models are presented in Table 1. The AdverMT, designed for single-target216

attack, fails to attacks multiple target classes. Our ManiBCI significantly outperforms baselines at217

almost all cases (p < 0.05) except attacking DeepCNN on the ED dataset, having ASRs above 0.8 on218

three datasets and even achieving an ASR of 1.000 on the MI dataset. These results demonstrate that219

our ManiBCI is effective across different EEG tasks and EEG models. PulseMT achieves the second220

best on ER and ED dataset, CompMT achieves the second best on the MI dataset.221

4.2.2 Performance of the Reinforcement Learning: Policy Gradient222

Displaying in Table 2, the performance of the policy gradient was compared with other common223

optimazation algorithms, including genetic algorithm (GA) [54] and random selection (The search224

space is too large for performing grid search as explained in Section 3.2). It can be observed that the225
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policy gradient outperforms GA while only spending 16% training time of GA. We plot the learning226

curve of RL in Appendix F.3, which demonstrates that RL learns well strategies within 50 epochs, i.e.,227

only trains 50 backdoor models and saves lots of time. The random algorithm can achieve a not bad228

results, proving that our methods can be applied without RL if some performance drop is acceptable.229

Table 2: Clean and attack performance with with different trigger search optimization algorithms, the
poisoning rate is set to 10%. The target model is EEGNet.

Method
Dataset Emotion Motor Imagery Epilepsy

Clean Attack Time ↓ Clean Attack Time ↓ Clean Attack Time ↓
Random 0.520 0.771 - 0.291 0.857 - 0.501 0.721 -
Genetic Algorithm 0.516 0.826 15.2h 0.302 1.000 10.0h 0.492 0.862 30.5h
Policy Gradient 0.535 0.857 2.5h 0.323 1.000 1.8h 0.477 0.944 5.2h

4.2.3 Performance of Learned Mask Strategies on Other Target Models230

We demonstrate that the injecting strategies learned on a EEG classifier f can be used to attack231

other EEG classifiers f̂ . In other words, Marksman can still be effective when the adversary has no232

knowledge of the target models f̂ . To perform the experiments, we use the strategy learned with a233

classifier f , then generate poisoned samples to attack another classifier f̂ whose network is different234

from f . Table 3 shows the performance difference, it can be observed that the difference is relatively235

small in most of the cases, demonstrating the transferability of the injecting strategy learned with236

reinforcement learning.237

Table 3: Clean and attack performance on other models. Red values represent the decreasing
performance in attacks with f is the same as f̂ . Blue values mean increments or unchanged .

Models f : EEGNet f : DeepCNN f : LSTM

f̂ : DeepCNN f̂ : LSTM f̂ : EEGNet f̂ : LSTM f̂ : EEGNet f̂ : DeepCNN

Datasets Clean Attack Clean Attack Clean Attack Clean Attack Clean Attack Clean Attack

Emotion 0.458 0.781 0.485 0.938 0.516 0.813 0.490 0.936 0.516 0.863 0.497 0.779
0.026 0.051 0.034 0.016 0.019 0.044 0.029 0.018 0.019 0.006 0.037 0.053

Motor 0.316 1.000 0.265 0.946 0.309 1.000 0.264 0.972 0.306 1.000 0.306 1.000
0.001 0.000 0.001 0.020 0.014 0.000 0.000 0.006 0.017 0.000 0.009 0.000

Epilepsy 0.442 0.759 0.469 0.806 0.448 0.943 0.445 0.813 0.448 0.926 0.427 0.850
0.027 0.069 0.025 0.059 0.029 0.001 0.001 0.052 0.029 0.018 0.042 0.022

4.2.4 Attack Performance with Different Hyperparameters238

We investigate the influences of three different hyperparameters: poisoning rate ρ, frequency injection239

rate β, and electrode injection rate γ. The performance of attacking EEGNet on the ED dataset are240

displayed in Fig 3. It can be seen that the ASRs are positively correlated with poisoning rate. Note241

that it is non-trivial for multi-target class attack, thus the ASR is not high compared to the single class242

attack. ManiBCI outperforms other attacks in all cases and is robust to the change of β and γ.243
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Figure 3: Clean (/C) and attack (/B) performance with different poisoning or injection rates.
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4.3 Robustness of ManiBCI244

In this section, we evaluate the robustness of our ManiBCI against different EEG preprocessing245

method and various representative backdoor defenses.246

4.3.1 Robustness against EEG Preprocessing Methods247

To develop an EEG BCI, it is very common to preprocess the raw EEG signals, e.g., 1) band-stop248

filtering and 2) down-sampling. An EEG backdoor attack is impractical in real scenarios if it is no249

longer effective when the target model is trained with the preprocessed poisoned EEG. Hence, we250

must take the robustness against preprocessing methods into account, which is widely ignored in251

the image backdoor attack field. The performance of each method facing different preprocessing252

methods are presented in Table 4. It can be observed that our ManiBCI is robust in all cases. However,253

when removing the DIS loss, the performance of ManiBCI decreases a lot after EEG preprocessing,254

especially facing the 30 Hz high-stop filtering preprocessing due to the HF loss that encourages the255

policy network learns to injecting high frequency.256

Table 4: Clean and attack performance on three datasets after different EEG preprocessing methods.
The target model is EEGNet. M w.o. DIS means removing the DIS loss in ManiBCI.

Preprocessing No defense 20 Hz low 30 Hz high 25% down Average

Method Clean Attack Clean Attack Clean Attack Clean Attack ASR

E
R ManiBCI 0.535 0.857 0.512 0.829 0.463 0.892 0.518 0.908 0.876

w/o DIS 0.506 0.859 0.492 0.816 0.466 0.333 0.498 0.807 0.652

M
I ManiBCI 0.323 1.000 0.285 1.000 0.329 1.000 0.321 1.000 1.000

w/o DIS 0.298 1.000 0.264 1.000 0.322 0.250 0.284 0.990 0.746

E
D ManiBCI 0.497 0.944 0.492 0.914 0.494 0.856 0.516 0.818 0.920

w/o DIS 0.515 0.250 0.477 0.864 0.508 0.250 0.510 0.249 0.454

4.3.2 Robustness against Neural Cleanse: Trigger Inversion257
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Figure 4: Anomaly Index of three
models on three datasets.

Neural Cleanse (NC) [42] calculate a metric called Anomaly258

Index by reconstructing trigger pattern for each possible label.259

The Anomaly Index is positively correlated with the size of the260

reconstruction trigger. A model with Anomaly Index > 2 is261

considered to be backdoor-injected. We display the Anomaly262

Indexes of the clean models and the backdoor-injected model263

by ManiBCI in Fig 4. It can be seen that ManiBCI can easily264

bypass NC. The reconstructed trigger patterns on three datasets265

are presented in Appendix F.1.266

4.3.3 Robustness against STRIP: Input Perturbation267

We evaluate the robustness of ManiBCI against STRIP [43], which perturbs the input EEG and268

calculates the entropy of the predictions of these perturbed EEG data. Based on the assumption that269

the trigger is still effective after perturbation, the entropy of backdoor input tends to be lower than270

that of the clean one. The results are plotted in Fig 5, it can be seen that the entropy distributions of271

the backdoor and clean samples are similar.272
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Figure 5: Performance against STRIP on three datasets, the target model is EEGNet.
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4.3.4 Robustness against Spectral Signature: Latent Space Correlation273

Spectral Signature [44] detects the backdoor samples by statistical analysis of clean data and backdoor274

data in the latent space. Following the same experimental settings in [44], we randomly select 5,000275

clean samples and 500 ManiBCI backdoor samples and plot the histograms of the correlation scores276

in Fig 6. There is no clear separation between these two sets of samples, showing the stealthiness of277

ManiBCI backdoor samples in the latent space.278

Figure 6: Performance against Spectral Signature on three datasets, the target model is EEGNet.

4.3.5 Robustness against Fine-Pruning279
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Figure 7: Performances of EEG-
Net against Fine-Pruning on three
datasets.

We evaluate the robustness of Marksman against Fine-Pruning280

[45], a model analysis based defense which finds a classifier’s281

low-activated neurons given a small clean dataset. Then it282

gradually prunes these low-activated neurons to mitigate the283

backdoor without affecting the CA. We can observe from Fig284

7 that the ASR drops considerably small when pruning ratio285

is less than 0.7, suggesting that the Fine-Pruning is ineffective286

against ManiBCI.287

4.4 Visualization of Backdoor Attack Samples288

To evade from human perception (C2 in Section 3.2), we design to obatin injecting strategies with289

HF loss. It can be seen from the bottom row of Fig 8 that ManiBCI (with HF loss) generates stealthy290

poisoned EEG, which is almost the same as the clean EEG, demonstrating the High Stealthiness.291

The poisoned EEG will be conspicuous compared to the clean EEG if remove the HF loss.292
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ss
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Figure 8: The Clean EEG (Blue), Trigger-injected EEG (Orange) and the Residual (Red) of the ED
dataset. The x-axis is the timepoints, the y-axis is the normalized amplitude. Top row: w.o. HF loss;
Bottom row: with HF loss. Each column indicates each possible class.

5 Conclusion293

In this paper, we proposed ManiBCI, a novel EEG backdoor for manipulating EEG BCI, where the294

adversary can arbitrarily control the output for any input samples. To the best of our knowledge,295

ManiBCI is the first method that considers which EEG electrodes and frequencies to be injected by296

adopting a reinforcement learning called policy gradient to learn the adaptive injecting strategies297

for different EEG triggers and tasks. We specially design the reward function in RL to enhance the298

robustness and stealthiness of ManiBCI. The perturbation of the trigger on clean EEG is almost299

invisible. Our experimental results over three common EEG datasets demonstrate the effectiveness300

of ManibCI and the stealthiness against the existing representative defenses. This work calls for301

defensive studies to counter ManiBCI for EEG modality.302
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Appendix440

A Limitations441

Our ManiBCI is a backdoor attack in the frequency domain, which requires to transform the EEG442

signals into frequency domain through fast Fourier transform (FFT) and return to temporal domain443

through inverse FFT (iFFT). The operation of FFT and iFFT in the trigger injection function are a444

little more time-consuming compared to other backdoor attack directly in the temporal domain, like445

PatchMT [28] and PulseMT [16]. Future effort will be devoted into the faster implementation of FFT446

and iFFT, for example, taking the advantage of modern GPUs.447

It is a little more time-consuming for the reinforcement learning to acquire the optimal strategies for448

each trigger. However, we can obtain a general injecting strategy for each EEG BCI tasks, which can449

achieve a relatively good performance without reinforcement learning, as we can see from Table 3450

that random injection strategy has an acceptable performance.451

B Broader Impacts452

With the rapid development of techniques, EEG BCIs gain a wide range of applications from health453

care to human-computer interaction. Some companies like Neuralink adopt the EEG BCI to assist454

paralytic patients helping themselves in daily lives. However, if the EEG BCI is backdoor attacked455

by ManiBCI, which allows the attacker to arbitrarily control BCI’s outputs, the BCI users may fall456

into tremendous fatal troubles. For instance, one paralytic patient controls his/her wheelchair by457

EEG BCI, the attacker can manipulate the wheelchair to run down a steep staircase. For an epileptic458

patient, the attacker can let all the output be Normal State, even when the patient is experiencing459

an epileptic seizure. This paper reveals the severe danger faced by EEG BCIs, demonstrating the460

possibility that someone can maliciously manipulate the outputs of EEG BCIs with arbitrary target461

class.462

ManiBCI can also be used for positive purposes, like protecting intellectual property of EEG dataset463

and EEG models with watermarking. As our ManiBCI has a very small impact of the clean accuracy,464

and the poisoning approach is clean label poisoning, ManiBCI is a fantastic method for watermarking465

EEG dataset and models.466

For a company that provides EEG dataset, it can select different EEG triggers for different customs467

to generate poisoned data and inject into the dataset provided to customs who buy the dataset. As a468

result, the company have the information of which trigger is corresponding to which customs, e.g.,469

trigger x is in the dataset provided to custom X, trigger y is in the dataset provided to custom Y. If an470

EEG model from a company which didn’t buy dataset is detected having this watermark (backdoor)471

with trigger x, the company knows that the custom X leaked the dataset. Similarly, if an EEG model472

is detected having this watermark (backdoor) with trigger y, the company knows that the custom Y473

leaked the dataset.474

C Datasets and Preprocessing475

In this section, we introduce the three datasets used in our experiments, and explain the preprocessing.476

Table 5 presents some basic information of these datasets.477

Table 5: Basic information of the three datasets

Dataset Emotion Motor Imagery Epilepsy

Class Numbers 3 4 4
Subjects 15 9 23
Electrodes 62 22 23
Sampling Rate 200 Hz 250 Hz 256 Hz
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C.1 Emotion Recognition (ER)478

The SJTU Emotion EEG Dataset (SEED) was incoporated as the representative dataset of emotion479

recogniton tasks [12]. It consists of EEG recordings from 15 subjects watching 15 emotional video480

clips with three repeated session each on different days. Each video clip is supposed to evoke one481

of the three target emotions: positive, neutral, and negative. The EEG signals were acquired by482

the 62-channel electrode cap at a sampling rate of 1000 Hz. We performed below preprocessing483

procedures for the 62-channel EEG signals: 1) Down-sampling from 1000 Hz to 200 Hz, 2) Band-pass484

filtering at 0.3-50 Hz, 3) Segmenting EEG signals into 1-second (200 timepoints), obtaining 3394485

EEG segments in each session for each subject.486

C.2 Motor Imagery (MI)487

We employ the BCIC-IV-2a as a representative dataset of MI classification tasks [48]. It contains488

EEG recordings in a four-class motor-imagery task from nine subjects with two repeated session each489

on different days. During the task, the subjects were instructed to imagine four types of movements490

(i.e., right hand, left hand, feet, and tongue) for four seconds. Each session consists of a total of491

288 trials with 72 trials for each type of the motor imagery. The EEG signals were recorded by 22492

Ag/AgCl EEG electrodes in a sampling rate of 250 Hz. We segment the 22-channel EEG signals into493

1-second segments, resulting in totally 1152 EEG data for each subject.494

C.3 Epilepsy Detection (ED)495

The CHB-MIT, one of the largest and most used public datasets for epilepsy, is adopted as a496

representative dataset of ED tasks [49]. It recorded 877.39 hours of multi-channel EEG in a sampling497

rate of 256 Hz from 23 pediatric patients with intractable seizures. However, as the montages (i.e.,498

the number and the places of electrodes) of EEG signals vary significantly among different subjects’499

recordings, we select to use only the EEG recordings with the same 23 channels (see Appendix A)500

and discard other channels or the recordings don’t have all these 23 channels. Due to the purpose is to501

test whether the backdoor attack works on the ED task, not to study the epilepsy EEG classification,502

we segment part of the CHB-MIT dataset to form a four-class ED dataset (i.e., the preictal, ictal,503

postictal, and interictal phases). Specifically, for a ictal phase EEG recording of ti seconds from504

[si, ei] timepoints, we segment the [si − ti, ei] EEG as the preictal phase, the [ei, ei + ti] EEG as the505

postictal phase, and another ti seconds EEG recordings as the interictal phase which satisfying there506

is no ictal phase within half an hour before or after. Then we segment the 23-channel EEG signals507

into 1-second segments, consequently, there are 41336 segments left in total from all subjects, 10334508

for each phase. As the imbalanced amount of data across different subjects, we separate these 41336509

segments into 10 groups and treat the ten groups as 10 subjects.510

D Implementation Details511

D.1 Experiment Computing Resources512

We use two servers for conducting our experiments. A server with one Nvidia Tesla V100 GPU is513

used for running reinforcement learning, the CUDA version is 12.3. Another server with four Nvidia514

RTX 3090 GPUs is used for running the backdoor attacks, the CUDA version is 11.4.515

D.2 Details of Baseline Methods516

In our ManiBCI backdoor attacks, for an EEG segment xi ∈ RE×T , we modify the βF frequency-517

points and γE electrodes of a EEG segments with a constant number.518

There are four baseline methods in our study for multi-target backdoor attacks, two of them are519

non-stealthy attacks (PatchMT and PulseMT) and two are stealthy attacks (CompressMT and520

AdverseMT). In order to achieve a fair comparison, we modify only first γE electrodes for all521

baseline attack methods. For the non-stealthy attacks, which are all on the temporal domains, we522

modify βT timepoints of EEG signals. For the stealthy attacks, there is no constraint of the numbers523

of the modify timepoints as these attacks achieve stealthiness in another way.524
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For each baseline method, we try our best to find out the best performance, as demonstrated below.525

We promise that we did not maliciously lower the performances of the baseline methods.526

D.2.1 PatchMT527

PatchMT is a multi-trigger and MT extension of BadNets [28] where we fill the first βT timepoints528

and γE electrodes of a EEG segments with a constant number. Specifically, for an EEG segment529

xi ∈ RE×T , we set the first γE electrodes and the first βT timepoints of the EEG segment to a530

constant number. We normalize the EEG segment xi ∈ RE×T to let xi’s mean is 0 and std is 1.531

Then set the first γE electrodes and the first βT timepoints of xi to a different constant number for532

different class. The constant number for each class of {0, 1, 2, 3} for four classes, and {-0.1, 0.0, 1.0}533

for three classes. Finally, denormalize xi to original signal xi’s scale to generate xp
i .534

Although we try our best to find the best performance of PatchMT, and BadNets [28] is really efficient535

in image backdoor attacks, PatchMT cannot have satisfactory results in EEG BCI attack.536

D.2.2 PulseMT537

For PulseMT, we met the same questions as the PatchMT: how to identify the amplitude of each NPP538

signal for each class? If the numbers are too large then normal EEG signals, it will be unfair. If the539

numbers are too small, the efficacy of PulseMT is too negative.540

We normalize the EEG segment xi ∈ RE×T to let xi’s mean is 0 and std is 1. The constant amplitude541

for each class of {−0.8,−0.3, 0.3, 0.8}. Finally, denormalize xi to original signal xi’s scale to542

generate xp
i .543

D.2.3 CompressMT544

Compressing the amplitude of EEG signals in the temporal domain will not change the morphology545

and the frequency distribution of EEG signals, thus obtaining stealthiness. For three-class Emotion546

datasets, the compress rate is {0.8, 0.6, 0.4}. For four-class Motor Imagery and Epilepsy datasets, the547

compress rate is {0.8, 0.6, 0.4, 0.2}.548

D.2.4 AdverseMT549

AdverseMT is another stealthy EEG backdoor attacks, which is the multi-trigger and multi-target550

extension of adversarial spatial filter attacks [18], in wihch, for EEG segment xi ∈ RE×T , it learns551

an Spatial Filter W ∈ RE×E by the adversarial loss to let the model f misclassify xi:552

min
W

E(xi,yi)∼D[−LCE(Wxi, yi) + αLMSE(Wxi, xi)], (11)

However, the original version of [18] requires the access to all training dataset D and the control of553

the training process of the model f . We modify the AdverseMT to only access to the training dataset554

Dtrain. Note that the adversarial loss dose not have the special design for multi-target backdoor555

attacks, we only run the process c times for obtaining c spatial filters for different classes. So the556

poisoned subset are Sp = {(W0(x), 0), (W1(x), 1), (W2(x), 2), (W3(x), 3)}.557

D.3 Reinforcement Learning Policy Network Architecture558

Here, we design a concise but effective convolutional neural networks as the our policy network,559

which is defined as belows:560
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Table 6: The Architecture of Policy Network

Layer In Out Kernel Stride

Conv2d 1 32 (1, 3) (1, 1)
BatchNorm2d
ELU
AvgPool2d (1,2)

Conv2d 32 64 (1, 3) (1, 1)
BatchNorm2d
ELU
AvgPool2d (1,2)

AdaptiveAvgPool2d (1, 1)
Flatten
Linear 64 256

E Attack Performance of ManiBCI561

E.1 Different Poisoning Rates562

We present the performance of each backdoor attacks’ performance under different poisoning rates in563

Table 7. We can see that our ManiBCI outperforms other baseline at all poisoning rates, demonstrating564

the superiority of ManiBCI. Note that the performance of ManiBCI on the MI dataset is significantly565

robust to low poisoning rates, i.e., ASR of 1.000 when ρ = 0.05.566

E.2 Hyperparameter Analysis: Frequency and Electrodes Injection Ratio567

We present the performance of each backdoor attacks performance under different rates in Table 8568

and Table 9. It can be observed with the increment of β and γ, the attack performance increases.569

Because the trigger is bigger in clean EEG data.570

E.3 Hyperparameter Analysis in Reinforcement Learning571

We applied the following reward function to acquire the optimal mask strategies for each triggers:572

Qt = CA+ λ ASR + µ dis(Mci
f ) + νmin(Mci

f ), (12)

where the first part means the clean accuracy, the second part means the attack success rate, the third573

part is aiming to scatter the injection positions in various frequency bands, and the fourth part is574

aiming to inject as high frequencies in EEG signals as possible. Here, we give a simple example to575

demonstrate the reward function. For an 10 timepoints long EEG segment xi, x̃i = F(xi). If the576

Mci
f = {2, 3, 5, 7, 9}, because the minimal distance between each pair in Mci

f is |2− 3| = 1, thus577

dis(Mci
f ) = 1. The min(Mci

f ) means the lowest position in Mci
f , thus min(Mci

f ) = 2.578

The analysis of the λ are presented in Table 10. When λ increase, the Attack performance increases579

while the Clean performance declines slightly.580

Table 10: Clean (/C) and attack (/B) performance with ASR’s hyperparameter λ, µ = 0.3, ν = 0.005

Dataset Emotion Motor Imagery Epilepsy

Method Clean Attack Clean Attack Clean Attack

0.5 ManiBCI 0.542±0.03 0.847±0.04 0.327±0.02 1.000±0.01 0.500±0.04 0.922±0.04

1.0 ManiBCI 0.537±0.02 0.855±0.03 0.325±0.02 1.000±0.01 0.482±0.03 0.935±0.05

2 ManiBCI 0.535±0.03 0.857±0.02 0.323±0.02 1.000±0.01 0.477±0.04 0.944±0.02
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Table 7: Clean (/C) and attack (/B) performance with different poisoning rates for ManiBCI and other
baseline methods. The target model is EEGNet for all cases.

ρ
Dataset Emotion Motor Imagery Epilepsy

Method Clean Attack Clean Attack Clean Attack

0.
05

PatchMT 0.390 0.333 0.281 0.791 0.449 0.365
PulseMT 0.488 0.337 0.275 0.788 0.473 0.397
ComprsMT 0.448 0.313 0.269 0.754 0.449 0.329
ManiBCI 0.491 0.566 0.321 1.000 0.460 0.667

0.
10

PatchMT 0.443 0.334 0.279 0.785 0.452 0.400
PulseMT 0.445 0.394 0.281 0.796 0.486 0.591
ComprsMT 0.509 0.323 0.270 0.778 0.446 0.337
ManiBCI 0.541 0.718 0.320 1.000 0.452 0.734

0.
15

PatchMT 0.455 0.335 0.285 0.805 0.439 0.414
PulseMT 0.438 0.514 0.280 0.787 0.447 0.669
ComprsMT 0.488 0.332 0.275 0.792 0.461 0.374
ManiBCI 0.528 0.805 0.322 1.000 0.460 0.781

0.
20

PatchMT 0.481 0.334 0.277 0.816 0.461 0.451
PulseMT 0.447 0.555 0.285 0.810 0.451 0.692
ComprsMT 0.470 0.347 0.270 0.795 0.458 0.394
ManiBCI 0.538 0.773 0.321 1.000 0.447 0.799

0.
25

PatchMT 0.487 0.335 0.281 0.820 0.444 0.483
PulseMT 0.466 0.701 0.275 0.815 0.431 0.684
ComprsMT 0.493 0.335 0.269 0.800 0.462 0.427
ManiBCI 0.551 0.836 0.325 1.000 0.447 0.834

0.
30

PatchMT 0.459 0.343 0.280 0.809 0.440 0.496
PulseMT 0.486 0.810 0.272 0.816 0.451 0.716
ComprsMT 0.499 0.331 0.269 0.825 0.455 0.481
ManiBCI 0.526 0.829 0.320 1.000 0.451 0.756

0.
35

PatchMT 0.437 0.341 0.285 0.805 0.448 0.510
PulseMT 0.437 0.767 0.275 0.837 0.482 0.757
ComprsMT 0.473 0.347 0.265 0.851 0.446 0.517
ManiBCI 0.489 0.763 0.321 1.000 0.453 0.910

0.
40

PatchMT 0.490 0.345 0.283 0.824 0.460 0.549
PulseMT 0.454 0.771 0.270 0.825 0.439 0.443
ComprsMT 0.464 0.361 0.269 0.865 0.437 0.450
ManiBCI 0.528 0.849 0.323 1.000 0.477 0.944
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Table 8: Clean (/C) and attack (/B) performance with frequency injection rate β, γ = 0.5

β
Dataset Emotion Motor Imagery Epilepsy

Method Clean Attack Clean Attack Clean Attack

0.
05

PatchMT 0.411 0.334 0.272 0.801 0.476 0.499
PulseMT 0.464 0.752 0.265 0.800 0.505 0.670
ManiBCI 0.522 0.744 0.319 0.999 0.482 0.923

0.
10

PatchMT 0.431 0.363 0.283 0.824 0.482 0.540
PulseMT 0.460 0.795 0.270 0.825 0.486 0.704
ManiBCI 0.522 0.813 0.323 1.000 0.500 0.944

0.
15

PatchMT 0.413 0.371 0.275 0.821 0.464 0.587
PulseMT 0.449 0.701 0.271 0.821 0.477 0.632
ManiBCI 0.532 0.848 0.322 0.998 0.477 0.947

0.
20

PatchMT 0.390 0.377 0.271 0.829 0.479 0.644
PulseMT 0.434 0.769 0.270 0.819 0.484 0.606
ManiBCI 0.529 0.882 0.325 0.999 0.486 0.950

0.
25

PatchMT 0.406 0.385 0.267 0.835 0.491 0.673
PulseMT 0.491 0.705 0.275 0.832 0.478 0.566
ManiBCI 0.519 0.865 0.328 0.999 0.486 0.941

0.
30

PatchMT 0.417 0.382 0.269 0.831 0.464 0.706
PulseMT 0.425 0.708 0.273 0.844 0.488 0.592
ManiBCI 0.521 0.862 0.330 0.999 0.495 0.940

0.
35

PatchMT 0.435 0.373 0.270 0.841 0.475 0.734
PulseMT 0.423 0.621 0.276 0.839 0.479 0.589
ManiBCI 0.527 0.850 0.332 0.998 0.496 0.947

0.
40

PatchMT 0.438 0.378 0.271 0.843 0.469 0.751
PulseMT 0.481 0.624 0.272 0.845 0.485 0.592
ManiBCI 0.521 0.893 0.330 0.999 0.501 0.951

0.
45

PatchMT 0.460 0.385 0.266 0.844 0.481 0.742
PulseMT 0.429 0.633 0.277 0.856 0.499 0.601
ManiBCI 0.519 0.877 0.325 0.999 0.492 0.962

0.
50

PatchMT 0.423 0.386 0.263 0.840 0.480 0.752
PulseMT 0.459 0.514 0.273 0.851 0.492 0.610
ManiBCI 0.528 0.893 0.329 1.000 0.497 0.970
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Table 9: Clean (/C) and attack (/B) performance with electrodes injection rate γ, β = 0.1

γ
Dataset Emotion Motor Imagery Epilepsy

Method Clean Attack Clean Attack Clean Attack

0.
10

PatchMT 0.431 0.334 0.268 0.795 0.470 0.529
PulseMT 0.425 0.498 0.269 0.802 0.502 0.717
ComprsMT 0.407 0.349 0.271 0.805 0.482 0.656
ManiBCI 0.489 0.485 0.235 0.367 0.499 0.814

0.
20

PatchMT 0.473 0.335 0.271 0.805 0.464 0.599
PulseMT 0.469 0.707 0.270 0.816 0.502 0.737
ComprsMT 0.465 0.363 0.268 0.812 0.514 0.704
ManiBCI 0.481 0.709 0.235 0.367 0.486 0.860

0.
30

PatchMT 0.423 0.343 0.272 0.803 0.486 0.613
PulseMT 0.488 0.767 0.273 0.814 0.506 0.749
ComprsMT 0.451 0.398 0.271 0.811 0.494 0.700
ManiBCI 0.500 0.743 0.235 0.367 0.490 0.883

0.
40

PatchMT 0.453 0.343 0.270 0.812 0.478 0.525
PulseMT 0.467 0.786 0.271 0.816 0.498 0.688
ComprsMT 0.443 0.361 0.270 0.820 0.506 0.634
ManiBCI 0.491 0.767 0.235 0.367 0.478 0.912

0.
50

PatchMT 0.431 0.363 0.270 0.813 0.472 0.552
PulseMT 0.460 0.795 0.269 0.819 0.471 0.710
ComprsMT 0.430 0.366 0.269 0.821 0.503 0.640
ManiBCI 0.522 0.813 0.235 0.367 0.477 0.944

0.
60

PatchMT 0.452 0.377 0.267 0.819 0.480 0.549
PulseMT 0.460 0.808 0.269 0.823 0.490 0.672
ComprsMT 0.459 0.368 0.271 0.826 0.499 0.534
ManiBCI 0.488 0.828 0.235 0.367 0.495 0.950

0.
70

PatchMT 0.443 0.368 0.272 0.812 0.497 0.525
PulseMT 0.437 0.809 0.270 0.821 0.459 0.716
ComprsMT 0.456 0.366 0.273 0.835 0.492 0.571
ManiBCI 0.527 0.853 0.235 0.367 0.489 0.955

0.
80

PatchMT 0.461 0.383 0.268 0.821 0.479 0.573
PulseMT 0.456 0.771 0.267 0.829 0.488 0.699
ComprsMT 0.431 0.383 0.270 0.833 0.488 0.475
ManiBCI 0.539 0.865 0.235 0.367 0.489 0.960

0.
90

PatchMT 0.439 0.400 0.271 0.817 0.478 0.540
PulseMT 0.461 0.811 0.269 0.823 0.494 0.694
ComprsMT 0.459 0.389 0.274 0.836 0.490 0.309
ManiBCI 0.520 0.824 0.235 0.367 0.489 0.970

1.
00

PatchMT 0.430 0.370 0.267 0.823 0.476 0.526
PulseMT 0.456 0.794 0.271 0.829 0.482 0.716
ComprsMT 0.453 0.376 0.269 0.830 0.490 0.334
ManiBCI 0.532 0.846 0.235 0.367 0.491 0.978
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F More Visualization Results581

In this section, we plot the reconstructed triggers and masks on three datasets in Section F.1, then582

plot more visualizations of backdoor samples in Section ??, and plot the learning curve of our583

reinforcement learning in Section F.3.584

F.1 Neural Cleanse: Reconstruction Trigger Patterns585

Here, we present more visualization in Figure 9, Figure 10, and Figure 11 of the reconstructed trigger586

patterns and mask patterns for each possible label on three dataset (i.e., the CHB-MIT dataset, the587

BCIC-IV-2a dataset and the SEED dataset) the target model is EEGnet. It can be observed that the588

reconstructed trigger patterns and mask patterns of the clean models and ManiBCI backdoor-injected589

models are very similar to each other. Thus, our ManiBCI backdoor attack can easily bypass the590

defense of Neural Cleanse.591
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Figure 9: The reconstructed trigger patterns and mask patterns for each possible class in the CHB-MIT
dataset. The results in the left column are reconstructed based on the clean model, the results in the
right column are reconstructed based on the backdoor model. The EEG segments in the CHB-MIT
dataset have 23 electrodes and 256 timepoints.
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Figure 10: The reconstructed trigger patterns and mask patterns for each possible class in the MI
dataset. The results in the left column are reconstructed based on the clean model, the results in the
right column are reconstructed based on the backdoor model. The EEG segments in the MI dataset
have 22 electrodes and 250 timepoints.
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Figure 11: The reconstructed trigger patterns and mask patterns for each possible class in the ER
dataset (i.e., SEED dataset). The results in the left column are reconstructed based on the clean model,
the results in the right column are reconstructed based on the backdoor model. The EEG segments in
the SEED dataset have 62 electrodes and 200 timepoints.
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F.2 Visualization of Backdoor Attack Samples592

We present more visualization of the backdoor attack samples generated by our ManiBCI on ER593

dataset and MI dataset in Fig 12 and 13. The x-axis is the timepoints, the y-axis is the normalized594

amplitude. Top row: w.o. HF loss; Bottom row: with HF loss. Each column indicates each possible595

class.596
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Figure 12: The Clean EEG (Blue), Trigger-injected EEG (Orange) and the Residual (Red) of the ER
dataset.
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Figure 13: The Clean EEG (Blue), Trigger-injected EEG (Orange) and the Residual (Red) of the MI
dataset.
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F.3 Visualization of Learning Curves of Reinforcement Learning597

We present the visualization of the learning curves of the reinforcement learning of three dataset in598

Fig 14. We can see the effectiveness of our reinforcement, which converged within 50 epochs on the599

ER dataset, that is, only trained 50 backdoor models with different injection strategies. Our RL is600

more effective on the MI dataset and ED dataset, which finds a good strategy within less 10 epochs.601

Our RL is robust when learning strategies for different triggers as demonstrated in Fig 14(c) and (d),602

where the learning curves are quite similar when RL is performing on different triggers.603
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(a) The RL curve on the Emotion Recognition dataset
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(c) The RL curve on the Epilepsy Detection dataset
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(b) The RL curve on the Moto Imagery dataset
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(d) The RL curve on the Epilepsy Detection dataset, for another tirrger with label 2

Figure 14: The learning curves of RL on three datasets. The right column is the curve we sort the
(ACC,ASR) according to the ASR. The backdoor models are all EEGNet.
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NeurIPS Paper Checklist604

1. Claims605

Question: Do the main claims made in the abstract and introduction accurately reflect the606

paper’s contributions and scope?607

Answer: [Yes]608

Justification: We made clear claims of our contributions in the abstract and introduction.609

Guidelines:610

• The answer NA means that the abstract and introduction do not include the claims611

made in the paper.612

• The abstract and/or introduction should clearly state the claims made, including the613

contributions made in the paper and important assumptions and limitations. A No or614

NA answer to this question will not be perceived well by the reviewers.615

• The claims made should match theoretical and experimental results, and reflect how616

much the results can be expected to generalize to other settings.617

• It is fine to include aspirational goals as motivation as long as it is clear that these goals618

are not attained by the paper.619

2. Limitations620

Question: Does the paper discuss the limitations of the work performed by the authors?621

Answer: [Yes]622

Justification: We discussed the limitations of our proposed method in Appendix.623

Guidelines:624

• The answer NA means that the paper has no limitation while the answer No means that625

the paper has limitations, but those are not discussed in the paper.626

• The authors are encouraged to create a separate "Limitations" section in their paper.627

• The paper should point out any strong assumptions and how robust the results are to628

violations of these assumptions (e.g., independence assumptions, noiseless settings,629

model well-specification, asymptotic approximations only holding locally). The authors630

should reflect on how these assumptions might be violated in practice and what the631

implications would be.632

• The authors should reflect on the scope of the claims made, e.g., if the approach was633

only tested on a few datasets or with a few runs. In general, empirical results often634

depend on implicit assumptions, which should be articulated.635

• The authors should reflect on the factors that influence the performance of the approach.636

For example, a facial recognition algorithm may perform poorly when image resolution637

is low or images are taken in low lighting. Or a speech-to-text system might not be638

used reliably to provide closed captions for online lectures because it fails to handle639

technical jargon.640

• The authors should discuss the computational efficiency of the proposed algorithms641

and how they scale with dataset size.642

• If applicable, the authors should discuss possible limitations of their approach to643

address problems of privacy and fairness.644

• While the authors might fear that complete honesty about limitations might be used by645

reviewers as grounds for rejection, a worse outcome might be that reviewers discover646

limitations that aren’t acknowledged in the paper. The authors should use their best647

judgment and recognize that individual actions in favor of transparency play an impor-648

tant role in developing norms that preserve the integrity of the community. Reviewers649

will be specifically instructed to not penalize honesty concerning limitations.650

3. Theory Assumptions and Proofs651

Question: For each theoretical result, does the paper provide the full set of assumptions and652

a complete (and correct) proof?653

Answer: [NA]654
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Justification: Our paper dose not include theoretical results.655

Guidelines:656

• The answer NA means that the paper does not include theoretical results.657

• All the theorems, formulas, and proofs in the paper should be numbered and cross-658

referenced.659

• All assumptions should be clearly stated or referenced in the statement of any theorems.660

• The proofs can either appear in the main paper or the supplemental material, but if661

they appear in the supplemental material, the authors are encouraged to provide a short662

proof sketch to provide intuition.663

• Inversely, any informal proof provided in the core of the paper should be complemented664

by formal proofs provided in appendix or supplemental material.665

• Theorems and Lemmas that the proof relies upon should be properly referenced.666

4. Experimental Result Reproducibility667

Question: Does the paper fully disclose all the information needed to reproduce the main ex-668

perimental results of the paper to the extent that it affects the main claims and/or conclusions669

of the paper (regardless of whether the code and data are provided or not)?670

Answer: [Yes]671

Justification: We demonstrated our method and the experiment settings clearly in Section672

3.1 and Section 4.2. The implementation details of all baselines are written in appendix.673

Guidelines:674

• The answer NA means that the paper does not include experiments.675

• If the paper includes experiments, a No answer to this question will not be perceived676

well by the reviewers: Making the paper reproducible is important, regardless of677

whether the code and data are provided or not.678

• If the contribution is a dataset and/or model, the authors should describe the steps taken679

to make their results reproducible or verifiable.680

• Depending on the contribution, reproducibility can be accomplished in various ways.681

For example, if the contribution is a novel architecture, describing the architecture fully682

might suffice, or if the contribution is a specific model and empirical evaluation, it may683

be necessary to either make it possible for others to replicate the model with the same684

dataset, or provide access to the model. In general. releasing code and data is often685

one good way to accomplish this, but reproducibility can also be provided via detailed686

instructions for how to replicate the results, access to a hosted model (e.g., in the case687

of a large language model), releasing of a model checkpoint, or other means that are688

appropriate to the research performed.689

• While NeurIPS does not require releasing code, the conference does require all submis-690

sions to provide some reasonable avenue for reproducibility, which may depend on the691

nature of the contribution. For example692

(a) If the contribution is primarily a new algorithm, the paper should make it clear how693

to reproduce that algorithm.694

(b) If the contribution is primarily a new model architecture, the paper should describe695

the architecture clearly and fully.696

(c) If the contribution is a new model (e.g., a large language model), then there should697

either be a way to access this model for reproducing the results or a way to reproduce698

the model (e.g., with an open-source dataset or instructions for how to construct699

the dataset).700

(d) We recognize that reproducibility may be tricky in some cases, in which case701

authors are welcome to describe the particular way they provide for reproducibility.702

In the case of closed-source models, it may be that access to the model is limited in703

some way (e.g., to registered users), but it should be possible for other researchers704

to have some path to reproducing or verifying the results.705

5. Open access to data and code706

Question: Does the paper provide open access to the data and code, with sufficient instruc-707

tions to faithfully reproduce the main experimental results, as described in supplemental708

material?709

26



Answer: [No]710

Justification: Sorry for not providing the whole code at the submitting phase as we have no711

time to organize our code well. However, we will publish our code after the anonymous712

period (Or we can organize and upload our code during rebuttal phase if possible).713

Guidelines:714

• The answer NA means that paper does not include experiments requiring code.715

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/716

public/guides/CodeSubmissionPolicy) for more details.717

• While we encourage the release of code and data, we understand that this might not be718

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not719

including code, unless this is central to the contribution (e.g., for a new open-source720

benchmark).721

• The instructions should contain the exact command and environment needed to run to722

reproduce the results. See the NeurIPS code and data submission guidelines (https:723

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.724

• The authors should provide instructions on data access and preparation, including how725

to access the raw data, preprocessed data, intermediate data, and generated data, etc.726

• The authors should provide scripts to reproduce all experimental results for the new727

proposed method and baselines. If only a subset of experiments are reproducible, they728

should state which ones are omitted from the script and why.729

• At submission time, to preserve anonymity, the authors should release anonymized730

versions (if applicable).731

• Providing as much information as possible in supplemental material (appended to the732

paper) is recommended, but including URLs to data and code is permitted.733

6. Experimental Setting/Details734

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-735

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the736

results?737

Answer: [Yes]738

Justification: We demonstrated our method and the experiment settings clearly in Section3.1739

and Section 4.2. The implementation details of all baselines are written in appendix.740

Guidelines:741

• The answer NA means that the paper does not include experiments.742

• The experimental setting should be presented in the core of the paper to a level of detail743

that is necessary to appreciate the results and make sense of them.744

• The full details can be provided either with the code, in appendix, or as supplemental745

material.746

7. Experiment Statistical Significance747

Question: Does the paper report error bars suitably and correctly defined or other appropriate748

information about the statistical significance of the experiments?749

Answer: [Yes]750

Justification: We give all the statistical significance of our experiments.751

Guidelines:752

• The answer NA means that the paper does not include experiments.753

• The authors should answer "Yes" if the results are accompanied by error bars, confi-754

dence intervals, or statistical significance tests, at least for the experiments that support755

the main claims of the paper.756

• The factors of variability that the error bars are capturing should be clearly stated (for757

example, train/test split, initialization, random drawing of some parameter, or overall758

run with given experimental conditions).759

• The method for calculating the error bars should be explained (closed form formula,760

call to a library function, bootstrap, etc.)761
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• The assumptions made should be given (e.g., Normally distributed errors).762

• It should be clear whether the error bar is the standard deviation or the standard error763

of the mean.764

• It is OK to report 1-sigma error bars, but one should state it. The authors should765

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis766

of Normality of errors is not verified.767

• For asymmetric distributions, the authors should be careful not to show in tables or768

figures symmetric error bars that would yield results that are out of range (e.g. negative769

error rates).770

• If error bars are reported in tables or plots, The authors should explain in the text how771

they were calculated and reference the corresponding figures or tables in the text.772

8. Experiments Compute Resources773

Question: For each experiment, does the paper provide sufficient information on the com-774

puter resources (type of compute workers, memory, time of execution) needed to reproduce775

the experiments?776

Answer: [Yes]777

Justification: Yes, we provide the type of GPU and version of CUDA in Appendix D.778

Guidelines:779

• The answer NA means that the paper does not include experiments.780

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,781

or cloud provider, including relevant memory and storage.782

• The paper should provide the amount of compute required for each of the individual783

experimental runs as well as estimate the total compute.784

• The paper should disclose whether the full research project required more compute785

than the experiments reported in the paper (e.g., preliminary or failed experiments that786

didn’t make it into the paper).787

9. Code Of Ethics788

Question: Does the research conducted in the paper conform, in every respect, with the789

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?790

Answer: [Yes]791

Justification: Yes, we conform with the NeurIPS Code of Ethics.792

Guidelines:793

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.794

• If the authors answer No, they should explain the special circumstances that require a795

deviation from the Code of Ethics.796

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-797

eration due to laws or regulations in their jurisdiction).798

10. Broader Impacts799

Question: Does the paper discuss both potential positive societal impacts and negative800

societal impacts of the work performed?801

Answer: [Yes]802

Justification: We discuss the broader impacts of our backdoor attacks in Appendix.803

Guidelines:804

• The answer NA means that there is no societal impact of the work performed.805

• If the authors answer NA or No, they should explain why their work has no societal806

impact or why the paper does not address societal impact.807

• Examples of negative societal impacts include potential malicious or unintended uses808

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations809

(e.g., deployment of technologies that could make decisions that unfairly impact specific810

groups), privacy considerations, and security considerations.811
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• The conference expects that many papers will be foundational research and not tied812

to particular applications, let alone deployments. However, if there is a direct path to813

any negative applications, the authors should point it out. For example, it is legitimate814

to point out that an improvement in the quality of generative models could be used to815

generate deepfakes for disinformation. On the other hand, it is not needed to point out816

that a generic algorithm for optimizing neural networks could enable people to train817

models that generate Deepfakes faster.818

• The authors should consider possible harms that could arise when the technology is819

being used as intended and functioning correctly, harms that could arise when the820

technology is being used as intended but gives incorrect results, and harms following821

from (intentional or unintentional) misuse of the technology.822

• If there are negative societal impacts, the authors could also discuss possible mitigation823

strategies (e.g., gated release of models, providing defenses in addition to attacks,824

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from825

feedback over time, improving the efficiency and accessibility of ML).826

11. Safeguards827

Question: Does the paper describe safeguards that have been put in place for responsible828

release of data or models that have a high risk for misuse (e.g., pretrained language models,829

image generators, or scraped datasets)?830

Answer: [NA]831

Justification: We do not release any dataset or model. However, our paper proposes832

a backdoor attack method in EEG BCIs, which is challenging to be guarded and have833

dangerous impact in EEG BCIs. The only safeguard way we can come up with is to check834

and guarantee the clean of training datasets EEG BCIs employ.835

Guidelines:836

• The answer NA means that the paper poses no such risks.837

• Released models that have a high risk for misuse or dual-use should be released with838

necessary safeguards to allow for controlled use of the model, for example by requiring839

that users adhere to usage guidelines or restrictions to access the model or implementing840

safety filters.841

• Datasets that have been scraped from the Internet could pose safety risks. The authors842

should describe how they avoided releasing unsafe images.843

• We recognize that providing effective safeguards is challenging, and many papers do844

not require this, but we encourage authors to take this into account and make a best845

faith effort.846

12. Licenses for existing assets847

Question: Are the creators or original owners of assets (e.g., code, data, models), used in848

the paper, properly credited and are the license and terms of use explicitly mentioned and849

properly respected?850

Answer: [Yes]851

Justification: We conduct our experiments on three public datasets. The original papers of852

these three datasets were cited in our paper.853

Guidelines:854

• The answer NA means that the paper does not use existing assets.855

• The authors should cite the original paper that produced the code package or dataset.856

• The authors should state which version of the asset is used and, if possible, include a857

URL.858

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.859

• For scraped data from a particular source (e.g., website), the copyright and terms of860

service of that source should be provided.861

• If assets are released, the license, copyright information, and terms of use in the862

package should be provided. For popular datasets, paperswithcode.com/datasets863

has curated licenses for some datasets. Their licensing guide can help determine the864

license of a dataset.865
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• For existing datasets that are re-packaged, both the original license and the license of866

the derived asset (if it has changed) should be provided.867

• If this information is not available online, the authors are encouraged to reach out to868

the asset’s creators.869

13. New Assets870

Question: Are new assets introduced in the paper well documented and is the documentation871

provided alongside the assets?872

Answer: [NA]873

Justification: This paper does not release new assets.874

Guidelines:875

• The answer NA means that the paper does not release new assets.876

• Researchers should communicate the details of the dataset/code/model as part of their877

submissions via structured templates. This includes details about training, license,878

limitations, etc.879

• The paper should discuss whether and how consent was obtained from people whose880

asset is used.881

• At submission time, remember to anonymize your assets (if applicable). You can either882

create an anonymized URL or include an anonymized zip file.883

14. Crowdsourcing and Research with Human Subjects884

Question: For crowdsourcing experiments and research with human subjects, does the paper885

include the full text of instructions given to participants and screenshots, if applicable, as886

well as details about compensation (if any)?887

Answer: [NA]888

Justification: This paper does not involve crowdsourcing nor research with human subjects.889

Guidelines:890

• The answer NA means that the paper does not involve crowdsourcing nor research with891

human subjects.892

• Including this information in the supplemental material is fine, but if the main contribu-893

tion of the paper involves human subjects, then as much detail as possible should be894

included in the main paper.895

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,896

or other labor should be paid at least the minimum wage in the country of the data897

collector.898

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human899

Subjects900

Question: Does the paper describe potential risks incurred by study participants, whether901

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)902

approvals (or an equivalent approval/review based on the requirements of your country or903

institution) were obtained?904

Answer: [NA]905

Justification: This paper does not involve crowdsourcing nor research with human subjects.906

Guidelines:907

• The answer NA means that the paper does not involve crowdsourcing nor research with908

human subjects.909

• Depending on the country in which research is conducted, IRB approval (or equivalent)910

may be required for any human subjects research. If you obtained IRB approval, you911

should clearly state this in the paper.912

• We recognize that the procedures for this may vary significantly between institutions913

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the914

guidelines for their institution.915

• For initial submissions, do not include any information that would break anonymity (if916

applicable), such as the institution conducting the review.917
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