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ABSTRACT

Deep subspace clustering models provide an efficient solution to the problem of
unsupervised subspace clustering of multivariate spatiotemporal data. These clus-
tering solutions are often needed in applications such as snow melt detection, sea
ice tracking, crop health monitoring, tracking infectious disease spread, network
load prediction, location-based advertising and land-use planning, where multi-
variate spatiotemporal data exhibit complex temporal dependencies and lie on
multiple non-linear manifolds whose internal structure cannot be effectively cap-
tured by traditional clustering methods. Existing deep subspace clustering mod-
els learn non-linear mappings by projecting data unto a latent space in which
data lie in linear subspaces and exploit the self expressiveness property. While
this approach has shown impressive performance, they have shortcomings. First,
they employ “’shallow” autoencoders that completely rely on the self expressive-
ness of latent features and disregard potential clustering errors. Second, they fo-
cus solely on global features while overlooking local features in subspace self-
expressiveness learning. Third, they do not capture long-range dependencies or
positional information, both of which are crucial for effective spatial and temporal
feature extraction and often lead to sub-optimal clustering outcomes. Fourth, their
application to 4D multivariate spatiotemporal data remains underexplored. To ad-
dress these limitations, we propose a novel Attention-Guided Deep Adversarial
Subspace Clustering (A-DATSC) model for multivariate spatiotemporal data. A-
DATSC incorporates a deep subspace clustering generator and a quality-verifying
discriminator that work in tandem. Inspired by the U-Net architecture, the gen-
erator preserves the spatial and time-wise structural integrity, reduces the number
of trainable parameters and improves generalization through the use of stacked
TimeDistributed convLSTM2D layers. It further introduces a graph attention
transformer-based self expressive network which captures local spatial relation-
ships, global dependencies and both short and long range correlations crucial for
understanding how distant regions and time periods influence each other. When
evaluated on three real-world multivariate spatiotemporal datasets, A-DATSC out-
performs deep subspace clustering models with significant margins.

1 INTRODUCTION

Recent years have seen increased availability in spatiotemporal data from common sources such as
government surveys, mobile and wearable devices, launched satellite and weather sensors. These
data sources acquire, compress, store, transmit, and process massive amounts of complex high-
dimensional multivariate spatiotemporal data. Although this data is high dimensional (Yang et al.,
2021)), their intrinsic dimension (i.e number of variables needed to describe a data distribution) is
often much smaller than the dimension of the ambient space (Pope et al., [2021). For example;
in image data processing, the number of pixels in an image can be rather large, yet most image
processing models use only a few parameters to describe, for instance the appearance, geometry,
and dynamics of a scene. This has motivated the development of techniques like autoencoders
and regularization methods (Gonzalez & Balajewicz, 2018} [Zhu et al., [2018) for representing high-
dimensional data in a lower dimension. Another technique for representing high-dimensional dataset
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in a lower dimension is the Principal Component Analysis (PCA) (Kurita, 2019)). It assumes that the
data is drawn from a single low-dimensional subspace within a high-dimensional space. However,
in practice, data points may come from multiple subspaces, and the membership of these points to
their respective subspaces is often unknown. This creates a complex sample distribution problem,
particularly in multidimensional spatiotemporal data. Therefore, it is necessary to group data points
into clusters, where each cluster contains points from the same subspace. This approach assumes
that data lies in different subspaces|Chen et al.| (2020). A category of classical subspace clustering
methods have been proposed|Chen et al.|(2020); Liu et al.|(2012); Xu et al.|(2021)); Ding et al.|(2024).
A few researchers|Yang et al.[(2019); Dang et al.|(2020); L1 et al.| (2021); J1 et al.|(2017)) showed that
joint subspace clustering and deep learning have promising performance on benchmark datasets.
However, these approaches can hardly be extended to large-scale datasets because they need to learn
a self-expressive matrix leading to quadratic time and space complexities. Consequently, some latest
works |Zhang et al.| (2018); [Fan| (2021)); Zhang et al.| (2021)) dedicate to improving the efficiency of
subspace clustering but to the best of our knowledge, there is currently no literature on applying
joint subspace clustering and deep learning on multidimensional multivariate spatiotemporal data.

In this paper, we advance research in this area by designing an end-to-end deep temporal subspace
clustering model tailored for complex multidimensional multivariate spatiotemporal data. It consists
of a deep subspace clustering generator and a quality-verifying discriminator that learns to super-
vise the generator by evaluating clustering quality in an unsupervised manner. Drawing inspiration
from the recent success of the U-net architecture (Ronneberger et al., 2015) in representation learn-
ing, our generator incorporates a deep autoencoder composed of stacked convLSTM2D layers and
graph attention transformer-based self expressive network and a clustering layer organized in series
to capture compact and informative representations of spatial, temporal and salient features of the
data. These components capture both local and global patterns, long-range dependencies and posi-
tional awareness essential for learning meaningful spatial and temporal patterns and relationships.
The clustering layer uses the inherent logic of the Student’s t-distribution and iteratively improves
clustering result. At the same time, the decoder module adjusts its weights to reduce the disparity be-
tween the input and reconstructed data while learning to reconstruct the multidimensional spatiotem-
poral input data from lower-dimensional latent features. To sum up, this paper makes the following
contributions: 1) We propose a novel Attention-guided deep adversarial temporal subspace cluster-
ing (A-DATSC) model for 4D multivariate spatiotemporal data. The generator preserves the spatial
and time-wise structural integrity, reduces the number of trainable parameters and improves gener-
alization. 2) We design a unified graph attention transformer-based self expressive network which
captures local spatial relationships, global dependencies and both short and long range correlations.
3) We design an energy-based, time-varying mini-batch discriminator that leverages temporal sub-
space modeling to better distinguish between real and fake feature sequences. The remainder of
the paper is structured as follows. Section |2{ summarizes the background while [3| discusses related
works. Section 4] describes the problem in detail while Section [5] presents our proposed solution to
the problem. Section [6.3]evaluates results from our proposed model while Section [7]concludes our
research.

2 BACKGROUND AND MOTIVATION

The exponential growth of multivariate spatiotemporal data across disciplines has created both un-
precedented opportunities and formidable analytical challenges. These data are high-dimensional,
noisy, heterogeneous, and often exhibit strong nonlinear dependencies across space, time, and vari-
ables. Conventional clustering methods, which treat samples as independent and identically dis-
tributed (iid), fail to capture these intricate dependencies and often miss the latent low-dimensional
subspace structure that governs real-world dynamics. This motivates the pursuit of deep subspace
clustering (DSC) methods that can uncover meaningful representations of complex spatiotemporal
systems, disentangle overlapping patterns, and group data into coherent clusters that are physically
interpretable and temporally consistent. For multivariate spatiotemporal data, these subspaces may
represent distinct climate regimes, transportation flow patterns, disease outbreak waves, or other
structured phenomena. The development of deep neural architectures particularly those leveraging
convolutional, recurrent, and attention-based modules enable learning hierarchical feature represen-
tations that preserve spatial locality, model temporal continuity, and capture complex cross-variable
correlations. Integrating subspace clustering with representation learning is therefore a powerful
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paradigm: it simultaneously discovers a latent feature space and a segmentation of the data into
meaningful subspaces, improving robustness to noise and scalability to large datasets.

The motivation for this research is also deeply societal. For instance, in climate science, accurately
clustering snowmelt regions, sea-ice zones, or drought-affected areas can improve predictions of sea-
level rise, inform resource allocation for adaptation, and guide early warning systems for vulnerable
communities. In epidemiology, spatiotemporal clustering can reveal emerging hotspots of disease
transmission and support timely interventions. Developing robust, interpretable, and generalizable
deep subspace clustering models thus contributes not only to advancing machine learning theory but
also to decision support in high-stakes domains where timely insights can save lives, protect infras-
tructure, and shape policy. Furthermore, research in this area advances the broader field of represen-
tation learning by providing a testbed for learning disentangled, causally meaningful embeddings
of complex systems. Deep subspace clustering models that are interpretable and explainable have
the potential to bridge the gap between data-driven predictions and scientific discovery, enabling
domain experts to trust and adopt deep learning in critical workflows. This alignment of method-
ological innovation, real-world impact, and scientific discovery makes the study of deep subspace
clustering of multivariate spatiotemporal data both intellectually compelling and socially urgent.

3 RELATED WORK

Self-expressive learning for deep subspace clustering. These methods learn self-expression coef-
ficient matrices that capture the relationships between data points. Given a data matrix X € R4x",
we express each data point as a linear combination of other data points as: X = XM, where
M € R™ ™ is the self-expression coefficient matrix. The optimization problem is: minp; || X —
XM||% + A||M]||;. Inspired by recent advances in deep learning, Zhang et al., (Zhang et al., 2021)
proposed a novel framework for subspace clustering Self-Expressive Network (SENet), which em-
ploys two multilayer preceptrons (MLPs) referred to as Query-Net and Key-net to learn a self-
expressive representation of the data. While SENet may work well on out of sample data, it struggles
to capture long-range dependencies and positional awareness, a vital component for subspace clus-
tering of multivariate spatiotemporal data. Recently, Baek et al., (Baek et al.,[2021) proposed Deep
self-representative subspace clustering network for unsupervised subspace clustering to improve
representativeness and clustering ability. Although they attempt to improve clustering ability, they
completely rely on self expression as supervision and do not preserve local features or geometric
relationships between data point. Recently Zhao et al., (Zhao et al., 2023)) proposed a double self-
expressive subspace clustering algorithm which improves performance by preserving the structural
information in the self-expressive coefficient matrix.

Adversarial Networks for subspace clustering. Recently, there is growing interests in combin-
ing the strengths of GANs with subspace clustering methods to enhance clustering performance in
complex high-dimensional datasets. Zhou et al. proposed a Deep Adversarial Subspace Clustering
(DASC) (Zhou et al., [2018) which introduces adversarial learning and supervises the generator’s
learning to produce more favorable representations for better subspace clustering. While they ad-
dressed the clustering error with little reliance on self-expression for supervision, they overlooked
local features, useful long-range dependencies and positional information in feature representation.
Mukherjee et al., (Mukherjee et al., 2019) proposed clusterGAN and demonstrated that while one
can potentially exploit the latent-space back-projection in GANs to cluster, the cluster structure is
not retained in the GAN latent space. Recently, Yu et al., (Yu et al., |2020) proposed two GAN-
based enhanced deep subspace clustering approaches: deep subspace clustering via dual adversarial
generative networks (DSC-DAG) and self-supervised deep subspace clustering with adversarial gen-
erative networks (S2 DSC-AG) and use adversarial training to simultaneously learn the distributions
of both the inputs and latent representations.

Deep Learning based Clustering. The limitations of traditional clustering methods have mo-
tivated the development of deep learning-based approaches, which are better equipped to model
nonlinear, high-dimensional data. Deep Embedded Clustering (DEC) Xie et al.| (2016)) introduced
the paradigm of jointly learning representations and cluster assignments by minimizing a Kull-
back-Leibler (KL) divergence loss between predicted and target distributions. Extensions of DEC
and related autoencoder-based methods have been applied to time series data, though many ap-
proaches either focus solely on temporal patterns or image-level spatial similarities, neglecting
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the joint spatiotemporal structure. To address this gap, spatiotemporal autoencoders [Faruque et al.
(2023)) have emerged, combining convolutional neural networks (CNNs) with recurrent architectures
such as Long Short-Term Memory (LSTM) networks, proving highly effective for spatiotemporal
data, as it integrates convolutional operations into recurrent units, allowing the model to simultane-
ously capture localized spatial patterns and their evolution over time. This approach has been suc-
cessfully applied to applicatins such as precipitation nowcasting |Shi et al.|(2017), sea ice prediction
in the Arctic|Wang et al.[(2019), and regional climate variability detection Liu et al.| (2020}, demon-
strating its capability to extract meaningful representations from complex spatiotemporal climate
datasets. These applications highlight the model’s ability to capture both fine-scale spatial corre-
lations and their evolution across temporal sequences. Recent advances in graph neural networks
(GNNs) have opened new opportunities for modeling dynamic spatial and temporal relationships.
Temporal Graph Attention Networks (TGAT) [Xu et al.[(2020) extend graph convolution by incor-
porating temporal attention, enabling models to learn evolving spatiotemporal interactions while
adaptively weighting neighbors based on their temporal relevance. In geoscience, GNNs and TGAT
variants have been explored for applications such as air quality forecasting|Jiang et al.|(2023), urban
climate modeling|Li et al.| (2023)), and climate teleconnection discovery Peng et al.[(2021]).

4 PROBLEM DEFINITION

LetU = Uf\il S, be the nonlinear set consisting of a union of M subspaces {S; C H}M,, where
S; are subspaces of a Hilbert or a Banach space H. Let W = {w; € H }5\/21 be a set of multivariate
spatiotemporal data points drawn from U. Each data point w; is represented as a high-dimensional
tensor w; € RTxlonxlatxvar ‘ywhere T denotes the temporal dimension, and lon, lat denote the spatial
dimensions across multiple variables var.

Goal: Our objective is to segment this temporal sequence into K coherent clusters {C1,Ca,...,Cx}
such that time steps within the same cluster share similar latent subspace representations that cap-
ture both their spatial structure and multivariate interactions. For a predefined number of subspaces
M with intrinsic dimensions {d;}}£,, the problem can be formalized as the following minimiza-
tion: e(W,S) := 3oy mini<j<m dy(f,S;),, where S = {S1,...,Sn} is a candidate set of
subspaces, dy(+, -) is the distance induced by the norm on #, and e(W, S) measures the total recon-

struction error. The task is to find S* = {S7,...,S%,} = argminges e(W, S).
Learning Orthonormal Bases. For each subspace S;, we seek an orthonormal basis
{Uﬂ, . ,uidi} C Si, such that Si = span{uil, . ,Uidi}7 <uij,uik>7.[ = (Sjk, where di =

dim(S;) <« dim(#) is the intrinsic dimension, (-,-) is the inner product in 7, and d is the
Kronecker delta. In deep subspace clustering, these basis vectors are learned implicitly via a deep
encoder fy producing latent representations: z; = fp(w;) € R<. Points from the same subspace are
expected to lie near a linear subspace in R, allowing PCA or SVD to recover an orthonormal basis
for each subspace. Clustering Assignment: Define a clustering function ¢ : W — {1,..., M},
such that each w; € W is assigned to a unique subspace S, (,,). The resulting clusters are
C; ={w; € W | p(w;) =i}, ¢ =1,...,M. Clustering Constraints. The clusters must sat-
isfy: 1) Partition: Ui\il C; = W, 2). Disjointness: C; N C; =0, Vi # j, and 3) Subspace
Membership: C; C S; C H for each 1.

5 METHODOLOGY

In this section, we present the architecture and training strategy of the proposed Attention-guided
deep adversarial temporal subspace clustering (A-DATSC) model. As shown in Figure |1} A-
DATSC couples a spatiotemporal encoder-decoder with a bidirectional temporal graph attention
bottleneck, a DEC-style per-timestep clustering head with temperature and balancing regularizers, a
self-expressive temporal layer in the generator (&, and an energy-based subspace discriminator D.

5.1 GENERATOR ()

G is designed to jointly learn hierarchical spatiotemporal representations, a causally informed tem-
poral affinity structure, and a clustering assignment that is robust, balanced, and interpretable. G is
composed of four key components: (i) a ConvLSTM-based spatiotemporal encoder, (ii) a bidirec-
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Figure 1: Architecture of Attention-guided deep adversarial temporal subspace clustering (A-
DATSC) model. A-DATSC is composed of a deep subspace and clustering generator and a quality-
verifying discriminator. The generator is composed of an autoencoder and a sampling layer. The
autoencoder receives 4D multivariate spatiotemporal data as input and outputs cluster labels, self-
expressive coefficient matrix and reconstructed data. The sampling layer receives as input the cluster
labels, coefficient matrix and random noise vectors and outputs real clustered data features and fake
data features. Both feature vectors are sent to the discriminator to determine real or fake data fea-
tures while generating new data.

tional temporal graph attention transformer(BiTGAT) layer, (iii) a self-expressive temporal subspace
layer, and (iv) a decoder with skip connections to ensure faithful reconstruction. Figure [T| provides
a high-level schematic of the end-to-end pipeline.

Notation and Input Representation: Let the input be a multivariate spatiotemporal tensor X &€
REXTXHXWXC "with batch size B, time steps T, spatial grid H x W, and C variables. We write
Xy for the b-th sample, and X, . .. € REXWXC for the ¢-th frame of a sequence. Our goal is to
produce per-timestep soft cluster assignments q; € AX~! over K clusters and to learn subspace-
aware embeddings z; € R that are discriminative, temporally coherent, and subspace-preserving.

5.1.1 SPATIOTEMPORAL ENCODER (CONVLSTM WITH RESIDUAL TEMPORAL BLOCKS):

The encoding phase follows a U-Net downsampling structure composed of TimeDistributed
ConvLSTM2D layers with spatial max pooling. This encoder is responsible for learning low-
dimensional latent representations that capture both spatial and temporal correlations. By applying
convolutions across both space and time, the encoder compresses the input data into a bottleneck
representation Z € R7*? where T denotes the temporal dimension and d the latent feature di-
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mensionality. For brevity, let {X; ..., X,,} denote the input samples and let {z; ..., z,} denote
their corresponding latent representations learned by the encoder in G. Namely, z; € R? is the
d-dimensional representation of the i—th 4D sample X; € RT*H*WXC and k denotes the number
of clusters or subspaces. The mapping from an input data space to the latent feature space is a non-
linear function fe,. := X — Z, were Z € R™ is an m-dimensional high-level representation of all
the variables at each timestep. Z; = fenc(X:), t = {1,...,T}. From Figure|l] to extract spatial,
temporal and salient features at different scales and reduced dimensionality, the encoder applies a
ConvLSTM2D stem followed by residual temporal blocks and temporal-preserving spatial pooling:

H® = ConvLSTM2Dg4(X); H" = ResTempBlock ;, (MaxPool3D(; 5 oy (H 1)), (1)

for I = 2,3,4 with filters F; € {128,256,512}. Each residual temporal block stacks two Con-
vLSTM2D layers with LayerNorm and a 1 x 1 x 1 projection if the channel dimension changes.
This preserves long-range temporal dependencies while hierarchically compressing spatial resolu-
tion (H/8 x W/8 at the top level) and increasing channel capacity (e.g., 512).

Patchification for Graph Efficiency. To form a tractable spatiotemporal node set for attention,
we tile the top-level tensor into non-overlapping patches of size (h,,w,), yielding a reduced grid
(H',W’) with N=H'W’' nodes per frame. We flatten (H’, W) to a node axis so that the sequence
becomes XY — X € REXTXNxF with F=512. Patchification reduces graph size and stabilizes
attention training while preserving local spatial structure.

5.1.2 BIDIRECTIONAL TEMPORAL GRAPH ATTENTION (BI-TGAT) BOTTLENECK:

We process the node sequences with a bidirectional temporal GAT layer that aggregates information
both forward and backward in time. Let H; € RV*¥ be node features at time ¢. A temporal
adjacency (implicit, learned) is built by attention over H; and H;1; for each direction d € {—, +}
we compute:

agg?_)j:softmax(q’)(w( h,;, W' hww)) Go=+1, 6.=—1, 2)
my) = ZaEdLJW Biss  bi, = LN(Wolm( ) [m{;)]). 3)

Multi-head attention stablhzes learning; the outputs are pooled across N nodes to obtain a per-
timestep embedding z, € R” (via head concat + projection), and globally pooled across ¢ to get a
sequence summary z € R, A linear projection and LayerNorm yield the final temporal sequence
embeddings {z;}_,. By integrating Bi-TGAT, we fuse local spatial context with directed temporal
cues (t + 1), mitigating exposure bias and enhancing discriminability of transient regimes. Atten-
tion weights act as data-adaptive temporal edges, improving subspace separation by emphasizing
causally or dynamically influential frames.

5.1.3 PER-TIMESTEP CLUSTERING HEAD WITH TEMPERATURE AND BALANCE

We adopt a DEC-style Student-¢ assignment per time step (Xie et al., [2016):

Z
Gk X (1+'ta"“) thkfl )

with trainable centers {p; }5_, and dof . We introduce a temperature 7 to control sharpness:

ik < q;g, annealing 7 | to harden assignments over training. To avoid mode collapse, we com-
bine two balancing terms: (i) a batch-wise KL divergence to a near-uniform marginal to enforce
cluster utilization, and (ii) a mutual-information style redundancy penalty across clusters. The head
optimizes the classic DEC target distribution p computed from q and adds KL(p||q) to the loss.
DEC sharpening aligns the extracted features z; with centers, while temperature scheduling prevents
early overcommitment. Balanced assignments keep clusters populated and reduce mode collapse.

5.1.4 SELF-EXPRESSIVE TEMPORAL LAYER (SE-T1)

We incorporate a per-timestep self-expressive module guided by the current soft assignments q; to
emphasize subspace structure. Let Z € RT*D stack embeddings. We learn a coefficient matrix
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C € RT*T (diagonal masked if exclude-self) via a shrinkage operator so that
Zsg = CZ, Lsg = ||Z— CZ||7 + Ase||Cll1, &)

optionally weighting entries by temporal proximity and assignment similarity, e.g., w; s = q/ s -
exp(—|t — s|/ot). A soft-threshold (shrink) encourages sparsity; the output Zgg is time-averaged
and concatenated with the Bi-TGAT pooled vector to form the bottleneck. Self-expression promotes
subspace-preserving affinities: each z; is reconstructed by a small set of neighbor frames from the
same latent subspace, improving block-diagonality of the affinity and boosting spectral separability.

5.1.5 DECODER AND RECONSTRUCTION LOSS

The decoder mirrors the encoder with ConvLSTM2D up-paths and skip connections from the en-
coder stages (temporal up-sampling aligns skip timings). The reconstruction 10ss L. = HX - X3
anchors the representation to physically plausible spatiotemporal fields, improving stability of the
latent space.

Another important function of G is to generate real and fake samples conditioned on the cluster C;
where ¢ = 1,..., K, implemented by the sampling layer. Our discriminator is designed to learn a
linear subspace .S; to fit the intrinsic ground-truth subspace S} of cluster C;. Then according to the
projection residuals of data points on their corresponding subspaces learned by the discriminator,
the discriminator can identify whether the input data are real or fake.

The Sampling Layer: The generator additionally produces real and fake samples per cluster C
using a reparameterization trick (Kingma & Welling, [2013): z; = > " jo1 QtjZi, =1,

where oy; ~ U(0, 1] are fixed during training, allowing gradients to flow through z;;.

17

5.2 ENERGY-BASED SUBSPACE DISCRIMINATOR

To explicitly enforce linear subspace geometry in latent space, we employ an energy-based discrim-
inator with one subspace basis per cluster. For cluster k, learn U, € RP*" (column-orthonormal

ideally). The projection residual energy of z onto subspace k is £(z; Uy) = H zZ — UkU,;'—z H;
With current assignments, we sample real latent points per cluster (highest responsibilities) and syn-
thesize fake latents as convex combinations of in-cluster points using the soft weights. The discrim-
inator minimizes a hinge objective encouraging real energies to be below fake energies by margin m:

= 2 2

Lp =Erem [max (07 E(Zrear; U) — E(Zgake; U) + m)] + B ZS:IHUEUk — IHF + BxZﬁ;_lHU;rUjHF
i#£]

The generator is adversarially trained to reduce fake residuals: L,qy = Egke £ (Zfake; U). The dis-

criminator shapes latent geometry to be union-of-subspaces: low residual within the correct cluster

subspace and high residual otherwise. Orthogonality/separation regularizers improve cluster
identifiability and reduce overlap between subspaces, increasing temporal cluster purity.

5.3 OVERALL OBJECTIVE

The training objective sums reconstruction, clustering, balancing, self-expression, and adversarial
terms:

L= Lw +KL(pla) +doa( KL@lw) + Lw ) + AseLse + A Luave (6
~~~ —— —— ~~
AE recon DEC marginal balance redundancy

Here q is the batch-average assignment, u is the uniform distribution, and Ly penalizes degenerate
mutual information across clusters (implementation via contrastive or covariance de-correlation).
Temperature 7 is annealed and the balancing ramp is increased during training.

5.4 OPTIMIZATION AND TRAINING SCHEDULE

1. Generator step. Forward once to obtain X, {z;}” ,, {q;}7_,. Compute reconstruction and
clustering objectives L., KL(p||q), balancing loss, and self-expression loss. Synthesize fake
latents and compute the adversarial term L,4,. Update encoder/decoder, Bi-TGAT, clustering
centers, and SE parameters.
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2. Discriminator step. Sample real latents per cluster (top-m by responsibility) and synthesize
fakes. Update {Uy }X_| by minimizing Lp.

3. Schedules. Initialize with a larger temperature 7 (softer assignments) and anneal 7 | over train-
ing; ramp balancing coefficients; optionally enable SE after a warm-up phase to avoid early
sparse overfitting.

Inference and Final Clustering At test time, we compute {z;} and {q.;}. Final hard labels are
i = arg maxy, ¢ . Optionally, we build an affinity A = |C|+|C " | from SE coefficients and apply
spectral clustering to refine temporal segments, leveraging the induced block-diagonal structure.

6 EXPERIMENT

All models are executed on AWS cloud environment using 20GB of S3 storage with 30 GB of
ml.g4dn.xlarge GPU. The hardware used is a macOS Sonoma version 14.4.1, 16 GB, M1 pro chip.
We applied the same python library across all models for homogeneity. We aim to implement
our proposed model using python’s machine and deep learnings libraries including Keras 2.11 and
TensorFlow 2. All the baseline models and proposed models would be tested on Google Colab
notebook with 12 GB GPU - A100, High RAM memory support. The hardware we would be using
is a macOS ventura version 13.3, 16 GB, M1 pro chip.

6.1 DATASET AND DATA PREPROCESSING

To ensure generalizability, we experimented with three multivariate spatiotemporal datasets:
C3S Arctic Regional Reanalysis (CARRA) dataset (Copernicus Climate Change Service (C3S)),
European Centre for Medium-Range Weather Forecasts (ECMRWF) ERA-5 global reanalysis
product (ECMWE, Copernicus Climate Change Service, |2021), and daily atmospheric observa-
tions (NCEP/NCAR)). These datasets are provided alongside our implementation code and publicly
available. All datasets follow the same preprocessing steps. All three data sets consists of daily
observations over the course of one year and presented in four dimensions: longitude, latitude, time,
and variables. Our proposed model accepts 4D data but to obtain a dimension suitable for our bench-
mark models, we transform the data from 4D to 2D tabular data [time, (lon, lat, var)] Existing null
values are replaced by the overall mean of the dataset. We apply standard Min-Max Normalization
which rescales all features to fall within the range of [0, 1].

6.2 BASELINE METHODS

We compare our proposed model against state-of-the-art deep clustering models. These include
(DEC) (Xie et al.,[2016), (DSC) (Faruque et al., [2023)), ClusterGAN Mukherjee et al.[(2019), Info-
GAN (Chen et al., 2016), (DTC) (Sa1 Madiraju et al.| [2018)) and DASC Zhou et al.[ (2018)), Deep
Subspace Clustering(DSC-Net-Lo) (Ji et al.l [2017), and (DSC-DAG)(Yu et al.| [2020) respectively.
Based on the elbow method, we used k = 7 for ERA5 and NCAR datasets and &£ = 7 for CARRA
datasets in our experiments.

6.3 EVALUATION METRICS

In the absence of ground truth, we evaluate the performance of our proposed model on six internal
cluster validation measures: Silhouette Score (Shahapure & Nicholas, [2020), Davies-Bouldin score
(DB) (Ros et al., [2023), Calinski-Harabas score (CH) (Wang & Xu, 2019), Average inter-cluster
distance (I-CD) (Everitt et al} 2011, Average Variance (Variance) (Montgomery & Runger, [2010)
and Average root mean squared error (RMSE) (Willmott & Matsuural 2005). These measures seek
to balance the compactness and the separation of formed clusters through minimizing intra-cluster
distance and maximizing the inter-cluster distance respectively.

6.4 EXPERIMENT RESULTS

Table[T|presents our performance results based on selected internal cluster validation measures when
applied to all three datasets. On ERAS5 data, A-DATSC outperformed all baseline models as reported
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by Silhouette, DB, RMSE and I-CD. This implies A-DATSC was able to capture the underlying
complex patterns in all three datasets with significant improvements on performance.

Table 1: Performance evaluation of our proposed model: Each selected model is evaluated on all six
metrics. Best results is underlined

Baseline Models Proposed
ERAS Performance | ClusterGAN DTC DSC DEC DASC A-DATSC

Silhouette 1 -0.0989 0.2284 0.2903 0.2050 0.1355 0.3268

DB | 17.1624 1.8517 1.6741 1.7515 2.0325 1.5009

CH T 1.2348 72.3222 | 102.2887 | 99.3082 | 72.9257 98.8211

7 optimal RMSE | 222032 15.0820 | 13.6154 | 13.7425 15.0477 13.5158
clusters Variance | 0.1064 0.0450 0.1033 0.0450 0.1039 0.1038
I-CD T 4.0315 6.4448 6.8481 6.8093 5.5229 7.4839

Silhouette -0.0753 0.0220 0.2437 0.2027 -0.1059 0.2767

CARRA DB | 7.71668 2.2332 1.6844 1.6781 11.7039 1.5089
CHT 4.9468 55.5673 | 78.7826 | 68.0469 | 17.4001 69.7729
5 optimal RMSE | 7.9781 7.0421 5.8789 5.5029 11.3033 5.5424
clusters Variance | 0.0021 0.0016 0.0011 0.0160 0.0011 0.0105
I-CD 1 2.1073 2.3191 2.5712 2.8264 3.1404 3.0912
NCAR Silhouette T -0.2659 0.6230 0.61563 0.6454 0.1132 0.6541
Reanalysis 1 DB | 9.3799 0.7570 0.7804 0.7639 2.0879 0.7612

o CH T 33104 864.1750 | 862.3665 | 839.4187 | 192.6249 | 868.7555
7 optimal RMSE¢ 12.1719 3.1380 3.1410 3.1809 6.0048 3.1180
clusters Variance | 0.1770 0.1770 0.1770 0.1770 0.1770 0.1770
e I-CD T 0.7357 0.8603 0.8745 0.9465 4.0097 0.9098

6.5 ABLATION STUDY

Table 2: Ablation Study

Performance - based
Silhouette T | DB | CH1T | RMSE | | Variance | | ICD 1
A-DATSC,,; 0.2124 2.1486 | 84.6793 | 14.4220 0.1038 6.1603
A-DATSC .n—i1stm 0.1965 1.9576 | 91.9739 | 14.0709 0.1032 5.6349
A-DATSC 44 0.2827 1.6941 | 99.9202 | 13.716 0.1035 6.2759
A-DATSC 0.3268 1.5009 | 98.8211 | 13.5158 0.1038 7.4839

We show the importance of various subcomponents of A-DATSC when evaluated on ERAS Data. A-
DATSC,; represents a variant of A-DATSC with only the self-expressive network at the bottleneck.
A-DATSC . —istm 1S @ variant without the time distributed integrated ConvLSTM2d. This uses the
traditional cnn blocks followed by an LSTM unit. A-DATSC,; is a variant of the A-DATSC with
the Bi-TGAT at the dense layer.

7 CONCLUSION

In this study, we propose a novel unsupervised Attention-guided deep adversarial temporal subspace
clustering (A-DATSC) model capable of clustering 4D high-dimensional multivariate spatiotempo-
ral data. The model adopts adversarial learning with focus on the spatial, temporal and salient fea-
tures to effectively supervise sample representation learning and subspace clustering. The generator
learns a fine-level latent representation of the data, effectively clusters the latent subspace through a
graph based self expressive network and clustering layer and finally generates new random samples
with similar cluster patterns. The discriminator evaluates the clustering performance and feeds back
the information to the generator to help it produce better sample latent representations and subspace
clustering. For future work, we plan to improve the model performance by introducing Feature
Matching and One-sided label smoothing.
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