

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ATTENTION-GUIDED DEEP ADVERSARIAL TEMPORAL SUBSPACE CLUSTERING FOR MULTIVARIATE SPA- TIOTEMPORAL DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep subspace clustering models provide an efficient solution to the problem of unsupervised subspace clustering of multivariate spatiotemporal data. These clustering solutions are often needed in applications such as snow melt detection, sea ice tracking, crop health monitoring, tracking infectious disease spread, network load prediction, location-based advertising and land-use planning, where multivariate spatiotemporal data exhibit complex temporal dependencies and lie on multiple non-linear manifolds whose internal structure cannot be effectively captured by traditional clustering methods. Existing deep subspace clustering models learn non-linear mappings by projecting data onto a latent space in which data lie in linear subspaces and exploit the self expressiveness property. While this approach has shown impressive performance, they have shortcomings. First, they employ "shallow" autoencoders that completely rely on the self expressiveness of latent features and disregard potential clustering errors. Second, they focus solely on global features while overlooking local features in subspace self-expressiveness learning. Third, they do not capture long-range dependencies or positional information, both of which are crucial for effective spatial and temporal feature extraction and often lead to sub-optimal clustering outcomes. Fourth, their application to 4D multivariate spatiotemporal data remains underexplored. To address these limitations, we propose a novel Attention-Guided Deep Adversarial Subspace Clustering (A-DATSC) model for multivariate spatiotemporal data. A-DATSC incorporates a deep subspace clustering generator and a quality-verifying discriminator that work in tandem. Inspired by the U-Net architecture, the generator preserves the spatial and time-wise structural integrity, reduces the number of trainable parameters and improves generalization through the use of stacked TimeDistributed convLSTM2D layers. It further introduces a graph attention transformer-based self expressive network which captures local spatial relationships, global dependencies and both short and long range correlations crucial for understanding how distant regions and time periods influence each other. When evaluated on three real-world multivariate spatiotemporal datasets, A-DATSC outperforms deep subspace clustering models with significant margins.

1 INTRODUCTION

Recent years have seen increased availability in spatiotemporal data from common sources such as government surveys, mobile and wearable devices, launched satellite and weather sensors. These data sources acquire, compress, store, transmit, and process massive amounts of complex high-dimensional multivariate spatiotemporal data. Although this data is high dimensional (Yang et al., 2021), their intrinsic dimension (i.e number of variables needed to describe a data distribution) is often much smaller than the dimension of the ambient space (Pope et al., 2021). For example; in image data processing, the number of pixels in an image can be rather large, yet most image processing models use only a few parameters to describe, for instance the appearance, geometry, and dynamics of a scene. This has motivated the development of techniques like autoencoders and regularization methods (Gonzalez & Balajewicz, 2018; Zhu et al., 2018) for representing high-dimensional data in a lower dimension. Another technique for representing high-dimensional dataset

054 in a lower dimension is the Principal Component Analysis (PCA) (Kurita, 2019). It assumes that the
055 data is drawn from a single low-dimensional subspace within a high-dimensional space. However,
056 in practice, data points may come from multiple subspaces, and the membership of these points to
057 their respective subspaces is often unknown. This creates a complex sample distribution problem,
058 particularly in multidimensional spatiotemporal data. Therefore, it is necessary to group data points
059 into clusters, where each cluster contains points from the same subspace. This approach assumes
060 that data lies in different subspaces Chen et al. (2020). A category of classical subspace clustering
061 methods have been proposed Chen et al. (2020); Liu et al. (2012); Xu et al. (2021); Ding et al. (2024).
062 A few researchers Yang et al. (2019); Dang et al. (2020); Li et al. (2021); Ji et al. (2017) showed that
063 joint subspace clustering and deep learning have promising performance on benchmark datasets.
064 However, these approaches can hardly be extended to large-scale datasets because they need to learn
065 a self-expressive matrix leading to quadratic time and space complexities. Consequently, some latest
066 works Zhang et al. (2018); Fan (2021); Zhang et al. (2021) dedicate to improving the efficiency of
067 subspace clustering but to the best of our knowledge, there is currently no literature on applying
068 joint subspace clustering and deep learning on multidimensional multivariate spatiotemporal data.
069

070 In this paper, we advance research in this area by designing an end-to-end deep temporal subspace
071 clustering model tailored for complex multidimensional multivariate spatiotemporal data. It consists
072 of a deep subspace clustering generator and a quality-verifying discriminator that learns to super-
073 vise the generator by evaluating clustering quality in an unsupervised manner. Drawing inspiration
074 from the recent success of the U-net architecture (Ronneberger et al., 2015) in representation learning,
075 our generator incorporates a deep autoencoder composed of stacked convLSTM2D layers and
076 graph attention transformer-based self expressive network and a clustering layer organized in series
077 to capture compact and informative representations of spatial, temporal and salient features of the
078 data. These components capture both local and global patterns, long-range dependencies and pos-
079 tional awareness essential for learning meaningful spatial and temporal patterns and relationships.
080 The clustering layer uses the inherent logic of the Student's t-distribution and iteratively improves
081 clustering result. At the same time, the decoder module adjusts its weights to reduce the disparity be-
082 tween the input and reconstructed data while learning to reconstruct the multidimensional spatiotem-
083 poral input data from lower-dimensional latent features. To sum up, this paper makes the following
084 contributions: 1) We propose a novel Attention-guided deep adversarial temporal subspace cluster-
085 ing (A-DATSC) model for 4D multivariate spatiotemporal data. The generator preserves the spatial
086 and time-wise structural integrity, reduces the number of trainable parameters and improves gener-
087 alization. 2) We design a unified graph attention transformer-based self expressive network which
088 captures local spatial relationships, global dependencies and both short and long range correlations.
089 3) We design an energy-based, time-varying mini-batch discriminator that leverages temporal sub-
090 space modeling to better distinguish between real and fake feature sequences. The remainder of
091 the paper is structured as follows. Section 2 summarizes the background while 3 discusses related
092 works. Section 4 describes the problem in detail while Section 5 presents our proposed solution to
093 the problem. Section 6.3 evaluates results from our proposed model while Section 7 concludes our
094 research.
095

093 2 BACKGROUND AND MOTIVATION

096 The exponential growth of multivariate spatiotemporal data across disciplines has created both un-
097 precedented opportunities and formidable analytical challenges. These data are high-dimensional,
098 noisy, heterogeneous, and often exhibit strong nonlinear dependencies across space, time, and vari-
099 ables. Conventional clustering methods, which treat samples as independent and identically dis-
100 tributed (iid), fail to capture these intricate dependencies and often miss the latent low-dimensional
101 subspace structure that governs real-world dynamics. This motivates the pursuit of deep subspace
102 clustering (DSC) methods that can uncover meaningful representations of complex spatiotemporal
103 systems, disentangle overlapping patterns, and group data into coherent clusters that are physically
104 interpretable and temporally consistent. For multivariate spatiotemporal data, these subspaces may
105 represent distinct climate regimes, transportation flow patterns, disease outbreak waves, or other
106 structured phenomena. The development of deep neural architectures particularly those leveraging
107 convolutional, recurrent, and attention-based modules enable learning hierarchical feature repres-
108 entations that preserve spatial locality, model temporal continuity, and capture complex cross-variable
109 correlations. Integrating subspace clustering with representation learning is therefore a powerful

108 paradigm: it simultaneously discovers a latent feature space and a segmentation of the data into
 109 meaningful subspaces, improving robustness to noise and scalability to large datasets.
 110

111 The motivation for this research is also deeply societal. For instance, in climate science, accurately
 112 clustering snowmelt regions, sea-ice zones, or drought-affected areas can improve predictions of sea-
 113 level rise, inform resource allocation for adaptation, and guide early warning systems for vulnerable
 114 communities. In epidemiology, spatiotemporal clustering can reveal emerging hotspots of disease
 115 transmission and support timely interventions. Developing robust, interpretable, and generalizable
 116 deep subspace clustering models thus contributes not only to advancing machine learning theory but
 117 also to decision support in high-stakes domains where timely insights can save lives, protect infra-
 118 structure, and shape policy. Furthermore, research in this area advances the broader field of repres-
 119 entation learning by providing a testbed for learning disentangled, causally meaningful embeddings
 120 of complex systems. Deep subspace clustering models that are interpretable and explainable have
 121 the potential to bridge the gap between data-driven predictions and scientific discovery, enabling
 122 domain experts to trust and adopt deep learning in critical workflows. This alignment of method-
 123 ological innovation, real-world impact, and scientific discovery makes the study of deep subspace
 124 clustering of multivariate spatiotemporal data both intellectually compelling and socially urgent.
 125

3 RELATED WORK

126 **Self-expressive learning for deep subspace clustering.** These methods learn self-expression coef-
 127 ficient matrices that capture the relationships between data points. Given a data matrix $X \in \mathbb{R}^{d \times n}$,
 128 we express each data point as a linear combination of other data points as: $X = XM$, where
 129 $M \in \mathbb{R}^{n \times n}$ is the self-expression coefficient matrix. The optimization problem is: $\min_M \|X -$
 130 $XM\|_F^2 + \lambda\|M\|_1$. Inspired by recent advances in deep learning, Zhang et al., (Zhang et al., 2021)
 131 proposed a novel framework for subspace clustering Self-Expressive Network (SENet), which em-
 132 ploys two multilayer perceptrons (MLPs) referred to as Query-Net and Key-net to learn a self-
 133 expressive representation of the data. While SENet may work well on out of sample data, it struggles
 134 to capture long-range dependencies and positional awareness, a vital component for subspace clus-
 135 tering of multivariate spatiotemporal data. Recently, Baek et al., (Baek et al., 2021) proposed Deep
 136 self-representative subspace clustering network for unsupervised subspace clustering to improve
 137 representativeness and clustering ability. Although they attempt to improve clustering ability, they
 138 completely rely on self expression as supervision and do not preserve local features or geometric
 139 relationships between data point. Recently Zhao et al., (Zhao et al., 2023) proposed a double self-
 140 expressive subspace clustering algorithm which improves performance by preserving the structural
 141 information in the self-expressive coefficient matrix.
 142

143 **Adversarial Networks for subspace clustering.** Recently, there is growing interests in combin-
 144 ing the strengths of GANs with subspace clustering methods to enhance clustering performance in
 145 complex high-dimensional datasets. Zhou et al. proposed a Deep Adversarial Subspace Clustering
 146 (DASC) (Zhou et al., 2018) which introduces adversarial learning and supervises the generator’s
 147 learning to produce more favorable representations for better subspace clustering. While they ad-
 148 dressed the clustering error with little reliance on self-expression for supervision, they overlooked
 149 local features, useful long-range dependencies and positional information in feature representation.
 150 Mukherjee et al., (Mukherjee et al., 2019) proposed clusterGAN and demonstrated that while one
 151 can potentially exploit the latent-space back-projection in GANs to cluster, the cluster structure is
 152 not retained in the GAN latent space. Recently, Yu et al., (Yu et al., 2020) proposed two GAN-
 153 based enhanced deep subspace clustering approaches: deep subspace clustering via dual adversarial
 154 generative networks (DSC-DAG) and self-supervised deep subspace clustering with adversarial gen-
 155 erative networks (S^2 DSC-AG) and use adversarial training to simultaneously learn the distributions
 156 of both the inputs and latent representations.
 157

158 **Deep Learning based Clustering.** The limitations of traditional clustering methods have
 159 motivated the development of deep learning-based approaches, which are better equipped to model
 160 nonlinear, high-dimensional data. Deep Embedded Clustering (DEC) Xie et al. (2016) introduced
 161 the paradigm of jointly learning representations and cluster assignments by minimizing a Kull-
 162 back–Leibler (KL) divergence loss between predicted and target distributions. Extensions of DEC
 163 and related autoencoder-based methods have been applied to time series data, though many ap-
 164 proaches either focus solely on temporal patterns or image-level spatial similarities, neglecting
 165

the joint spatiotemporal structure. To address this gap, spatiotemporal autoencoders Faruque et al. (2023) have emerged, combining convolutional neural networks (CNNs) with recurrent architectures such as Long Short-Term Memory (LSTM) networks, proving highly effective for spatiotemporal data, as it integrates convolutional operations into recurrent units, allowing the model to simultaneously capture localized spatial patterns and their evolution over time. This approach has been successfully applied to applications such as precipitation nowcasting Shi et al. (2017), sea ice prediction in the Arctic Wang et al. (2019), and regional climate variability detection Liu et al. (2020), demonstrating its capability to extract meaningful representations from complex spatiotemporal climate datasets. These applications highlight the model’s ability to capture both fine-scale spatial correlations and their evolution across temporal sequences. Recent advances in graph neural networks (GNNs) have opened new opportunities for modeling dynamic spatial and temporal relationships. Temporal Graph Attention Networks (TGAT) Xu et al. (2020) extend graph convolution by incorporating temporal attention, enabling models to learn evolving spatiotemporal interactions while adaptively weighting neighbors based on their temporal relevance. In geoscience, GNNs and TGAT variants have been explored for applications such as air quality forecasting Jiang et al. (2023), urban climate modeling Li et al. (2023), and climate teleconnection discovery Peng et al. (2021).

4 PROBLEM DEFINITION

Let $U = \bigcup_{i=1}^M S_i$ be the nonlinear set consisting of a union of M subspaces $\{S_i \subset H\}_{i=1}^M$, where S_i are subspaces of a Hilbert or a Banach space H . Let $W = \{w_j \in H\}_{j=1}^N$ be a set of multivariate spatiotemporal data points drawn from U . Each data point w_j is represented as a high-dimensional tensor $w_j \in \mathbb{R}^{T \times \text{lon} \times \text{lat} \times \text{var}}$, where T denotes the temporal dimension, and lon, lat denote the spatial dimensions across multiple variables var .

Goal: Our objective is to segment this temporal sequence into K coherent clusters $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_K\}$ such that time steps within the same cluster share similar *latent subspace representations* that capture both their spatial structure and multivariate interactions. For a predefined number of subspaces M with intrinsic dimensions $\{d_i\}_{i=1}^M$, the problem can be formalized as the following minimization: $e(W, S) := \sum_{f \in W} \min_{1 \leq j \leq M} d_{\mathcal{H}}(f, S_j)$, where $S = \{S_1, \dots, S_M\}$ is a candidate set of subspaces, $d_{\mathcal{H}}(\cdot, \cdot)$ is the distance induced by the norm on \mathcal{H} , and $e(W, S)$ measures the total reconstruction error. The task is to find $S^* = \{S_1^*, \dots, S_M^*\} = \arg \min_{S \in \mathcal{S}} e(W, S)$.

Learning Orthonormal Bases. For each subspace S_i , we seek an orthonormal basis $\{u_{i1}, \dots, u_{id_i}\} \subset S_i$, such that $S_i = \text{span}\{u_{i1}, \dots, u_{id_i}\}$, $\langle u_{ij}, u_{ik} \rangle_{\mathcal{H}} = \delta_{jk}$, where $d_i = \dim(S_i) \ll \dim(\mathcal{H})$ is the intrinsic dimension, $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is the inner product in \mathcal{H} , and δ_{jk} is the Kronecker delta. In deep subspace clustering, these basis vectors are learned implicitly via a deep encoder f_{θ} producing latent representations: $z_j = f_{\theta}(w_j) \in \mathbb{R}^d$. Points from the same subspace are expected to lie near a linear subspace in \mathbb{R}^d , allowing PCA or SVD to recover an orthonormal basis for each subspace. *Clustering Assignment:* Define a clustering function $\varphi : W \rightarrow \{1, \dots, M\}$, such that each $w_j \in W$ is assigned to a unique subspace $S_{\varphi(w_j)}$. The resulting clusters are $C_i = \{w_j \in W \mid \varphi(w_j) = i\}$, $i = 1, \dots, M$. *Clustering Constraints.* The clusters must satisfy: 1) *Partition*: $\bigcup_{i=1}^M C_i = W$, 2) *Disjointness*: $C_i \cap C_j = \emptyset$, $\forall i \neq j$, and 3) *Subspace Membership*: $C_i \subset S_i \subset \mathcal{H}$ for each i .

5 METHODOLOGY

In this section, we present the architecture and training strategy of the proposed Attention-guided deep adversarial temporal subspace clustering (A-DATSC) model. As shown in Figure 1, A-DATSC couples a spatiotemporal encoder-decoder with a bidirectional temporal graph attention bottleneck, a DEC-style per-timestep clustering head with temperature and balancing regularizers, a self-expressive temporal layer in the generator G , and an energy-based subspace discriminator D .

5.1 GENERATOR (G)

G is designed to jointly learn hierarchical spatiotemporal representations, a causally informed temporal affinity structure, and a clustering assignment that is robust, balanced, and interpretable. G is composed of four key components: (i) a ConvLSTM-based spatiotemporal encoder, (ii) a bidirec-

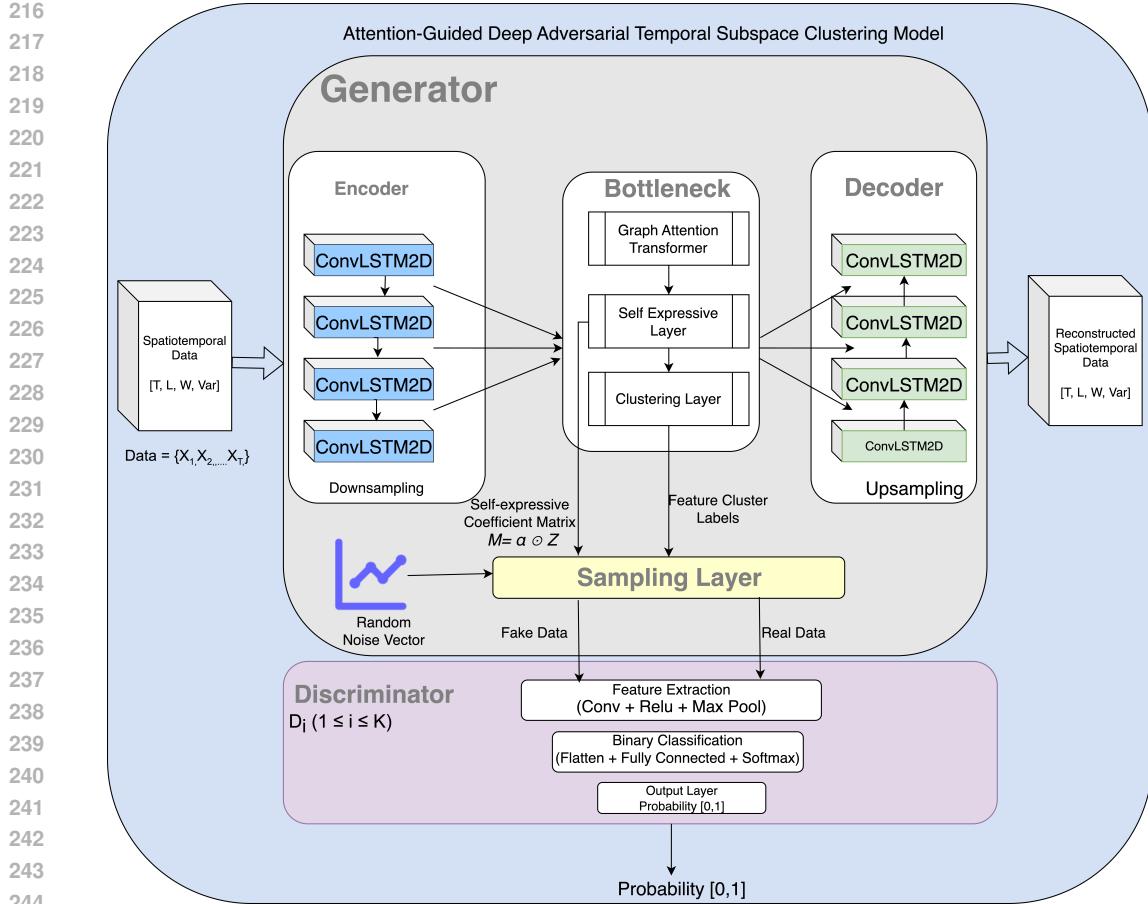


Figure 1: Architecture of Attention-guided deep adversarial temporal subspace clustering (A-DATSC) model. A-DATSC is composed of a deep subspace and clustering generator and a quality-verifying discriminator. The generator is composed of an autoencoder and a sampling layer. The autoencoder receives 4D multivariate spatiotemporal data as input and outputs cluster labels, self-expressive coefficient matrix and reconstructed data. The sampling layer receives as input the cluster labels, coefficient matrix and random noise vectors and outputs real clustered data features and fake data features. Both feature vectors are sent to the discriminator to determine real or fake data features while generating new data.

tional temporal graph attention transformer(BiTGAT) layer, (iii) a self-expressive temporal subspace layer, and (iv) a decoder with skip connections to ensure faithful reconstruction. Figure 1 provides a high-level schematic of the end-to-end pipeline.

Notation and Input Representation: Let the input be a multivariate spatiotemporal tensor $\mathbf{X} \in \mathbb{R}^{B \times T \times H \times W \times C}$, with batch size B , time steps T , spatial grid $H \times W$, and C variables. We write \mathbf{X}_b for the b -th sample, and $\mathbf{X}_{t,:,:,:} \in \mathbb{R}^{H \times W \times C}$ for the t -th frame of a sequence. Our goal is to produce per-timestep soft cluster assignments $\mathbf{q}_t \in \Delta^{K-1}$ over K clusters and to learn subspace-aware embeddings $\mathbf{z}_t \in \mathbb{R}^D$ that are discriminative, temporally coherent, and subspace-preserving.

5.1.1 SPATIOTEMPORAL ENCODER (CONVLSTM WITH RESIDUAL TEMPORAL BLOCKS):

The encoding phase follows a U-Net downsampling structure composed of TimeDistributed ConvLSTM2D layers with spatial max pooling. This encoder is responsible for learning low-dimensional latent representations that capture both spatial and temporal correlations. By applying convolutions across both space and time, the encoder compresses the input data into a bottleneck representation $Z \in \mathbb{R}^{T \times d}$, where T denotes the temporal dimension and d the latent feature di-

270 dimensionality. For brevity, let $\{X_1, \dots, X_n\}$ denote the input samples and let $\{z_1, \dots, z_n\}$ denote
 271 their corresponding latent representations learned by the encoder in G . Namely, $z_i \in \mathbb{R}^d$ is the
 272 d -dimensional representation of the i -th 4D sample $X_i \in \mathbb{R}^{T \times H \times W \times C}$ and k denotes the number
 273 of clusters or subspaces. The mapping from an input data space to the latent feature space is a non-
 274 linear function $f_{\text{enc}} := X \rightarrow Z$, where $Z \in \mathbb{R}^m$ is an m -dimensional high-level representation of all
 275 the variables at each timestep. $Z_t = f_{\text{enc}}(X_t)$, $t = \{1, \dots, T\}$. From Figure 1, to extract spatial,
 276 temporal and salient features at different scales and reduced dimensionality, the encoder applies a
 277 ConvLSTM2D stem followed by residual temporal blocks and temporal-preserving spatial pooling:

$$278 \quad \mathbf{H}^{(1)} = \text{ConvLSTM2D}_{64}(\mathbf{X}); \quad \mathbf{H}^{(l)} = \text{ResTempBlock}_{F_l}(\text{MaxPool3D}_{(1,2,2)}(\mathbf{H}^{(l-1)})), \quad (1)$$

280 for $l = 2, 3, 4$ with filters $F_l \in \{128, 256, 512\}$. Each residual temporal block stacks two ConvLSTM2D
 281 layers with LayerNorm and a $1 \times 1 \times 1$ projection if the channel dimension changes.
 282 This preserves long-range temporal dependencies while hierarchically compressing spatial resolution
 283 ($H/8 \times W/8$ at the top level) and increasing channel capacity (e.g., 512).

284 **Patchification for Graph Efficiency.** To form a tractable spatiotemporal node set for attention,
 285 we tile the top-level tensor into non-overlapping patches of size (h_p, w_p) , yielding a reduced grid
 286 (H', W') with $N = H'W'$ nodes per frame. We flatten (H', W') to a node axis so that the sequence
 287 becomes $\mathbf{X}^{(4)} \rightarrow \tilde{\mathbf{X}} \in \mathbb{R}^{B \times T \times N \times F}$, with $F = 512$. Patchification reduces graph size and stabilizes
 288 attention training while preserving local spatial structure.

289 5.1.2 BIDIRECTIONAL TEMPORAL GRAPH ATTENTION (Bi-TGAT) BOTTLENECK:

291 We process the node sequences with a bidirectional temporal GAT layer that aggregates information
 292 both forward and backward in time. Let $\mathbf{H}_t \in \mathbb{R}^{N \times F}$ be node features at time t . A temporal
 293 adjacency (implicit, learned) is built by attention over \mathbf{H}_t and $\mathbf{H}_{t \pm 1}$; for each direction $d \in \{\rightarrow, \leftarrow\}$
 294 we compute:

$$295 \quad \alpha_{t,i \rightarrow j}^{(d)} = \text{softmax}_j \left(\phi(\mathbf{W}_q^{(d)} \mathbf{h}_{t,i}, \mathbf{W}_k^{(d)} \mathbf{h}_{t+\delta_d, j}) \right), \quad \delta_{\rightarrow} = +1, \quad \delta_{\leftarrow} = -1, \quad (2)$$

$$297 \quad \mathbf{m}_{t,i}^{(d)} = \sum_j \alpha_{t,i \rightarrow j}^{(d)} \mathbf{W}_v^{(d)} \mathbf{h}_{t+\delta_d, j}, \quad \mathbf{h}'_{t,i} = \text{LN} \left(\mathbf{W}_o [\mathbf{m}_{t,i}^{(\rightarrow)} \| \mathbf{m}_{t,i}^{(\leftarrow)}] \right). \quad (3)$$

300 Multi-head attention stabilizes learning; the outputs are pooled across N nodes to obtain a per-
 301 timestep embedding $\mathbf{z}_t \in \mathbb{R}^D$ (via head concat + projection), and globally pooled across t to get a
 302 sequence summary $\bar{\mathbf{z}} \in \mathbb{R}^D$. A linear projection and LayerNorm yield the final temporal sequence
 303 embeddings $\{\mathbf{z}_t\}_{t=1}^T$. By integrating Bi-TGAT, we fuse local spatial context with directed temporal
 304 cues ($t \pm 1$), mitigating exposure bias and enhancing discriminability of transient regimes. Attention
 305 weights act as data-adaptive temporal edges, improving subspace separation by emphasizing
 306 causally or dynamically influential frames.

307 5.1.3 PER-TIMESTEP CLUSTERING HEAD WITH TEMPERATURE AND BALANCE

309 We adopt a DEC-style Student- t assignment per time step (Xie et al., 2016):

$$310 \quad q_{t,k} \propto \left(1 + \frac{\|\mathbf{z}_t - \boldsymbol{\mu}_k\|_2^2}{\alpha} \right)^{-\frac{\alpha+1}{2}}, \quad \sum_{k=1}^K q_{t,k} = 1, \quad (4)$$

313 with trainable centers $\{\boldsymbol{\mu}_k\}_{k=1}^K$ and dof α . We introduce a temperature τ to control sharpness:
 314 $\tilde{q}_{t,k} \propto q_{t,k}^{1/\tau}$, annealing $\tau \downarrow$ to harden assignments over training. To avoid mode collapse, we
 315 combine two balancing terms: (i) a batch-wise KL divergence to a near-uniform marginal to enforce
 316 cluster utilization, and (ii) a mutual-information style redundancy penalty across clusters. The head
 317 optimizes the classic DEC target distribution \mathbf{p} computed from \mathbf{q} and adds $\text{KL}(\mathbf{p} \parallel \mathbf{q})$ to the loss.
 318 DEC sharpening aligns the extracted features \mathbf{z}_t with centers, while temperature scheduling prevents
 319 early overcommitment. Balanced assignments keep clusters populated and reduce mode collapse.

321 5.1.4 SELF-EXPRESSIVE TEMPORAL LAYER (SE-T1)

323 We incorporate a per-timestep self-expressive module guided by the current soft assignments $\tilde{\mathbf{q}}_t$ to
 emphasize subspace structure. Let $\mathbf{Z} \in \mathbb{R}^{T \times D}$ stack embeddings. We learn a coefficient matrix

324 $\mathbf{C} \in \mathbb{R}^{T \times T}$ (diagonal masked if exclude-self) via a shrinkage operator so that
 325

$$326 \quad \mathbf{Z}_{\text{SE}} = \mathbf{C}\mathbf{Z}, \quad \mathcal{L}_{\text{SE}} = \|\mathbf{Z} - \mathbf{C}\mathbf{Z}\|_F^2 + \lambda_{\text{SE}}\|\mathbf{C}\|_1, \quad (5)$$

327 optionally weighting entries by temporal proximity and assignment similarity, e.g., $w_{t,s} = \tilde{\mathbf{q}}_t^\top \tilde{\mathbf{q}}_s \cdot$
 328 $\exp(-|t-s|/\sigma_t)$. A soft-threshold (shrink) encourages sparsity; the output \mathbf{Z}_{SE} is time-averaged
 329 and concatenated with the Bi-TGAT pooled vector to form the bottleneck. Self-expression promotes
 330 subspace-preserving affinities: each \mathbf{z}_t is reconstructed by a small set of neighbor frames from the
 331 same latent subspace, improving block-diagonality of the affinity and boosting spectral separability.
 332

333 5.1.5 DECODER AND RECONSTRUCTION LOSS

335 The decoder mirrors the encoder with ConvLSTM2D up-paths and skip connections from the en-
 336 encoder stages (temporal up-sampling aligns skip timings). The reconstruction loss $\mathcal{L}_{\text{rec}} = \|\hat{\mathbf{X}} - \mathbf{X}\|_2^2$
 337 anchors the representation to physically plausible spatiotemporal fields, improving stability of the
 338 latent space.

339 Another important function of G is to generate **real** and **fake** samples conditioned on the cluster C_i
 340 where $i = 1, \dots, K$, implemented by the sampling layer. Our discriminator is designed to learn a
 341 linear subspace S_i to fit the intrinsic ground-truth subspace S_i^* of cluster C_i . Then according to the
 342 projection residuals of data points on their corresponding subspaces learned by the discriminator,
 343 the discriminator can identify whether the input data are real or fake.

344 **The Sampling Layer:** The generator additionally produces *real* and *fake* samples per cluster C_i
 345 using a reparameterization trick (Kingma & Welling, 2013): $\bar{\mathbf{z}}_t = \sum_{j=1}^{m_i} \alpha_{tj} \mathbf{z}_{ij}$, $t = 1, \dots, m_i^*$,
 346 where $\alpha_{tj} \sim \mathcal{U}(0, 1)$ are fixed during training, allowing gradients to flow through \mathbf{z}_{ij} .
 347

348 5.2 ENERGY-BASED SUBSPACE DISCRIMINATOR

350 To explicitly enforce linear subspace geometry in latent space, we employ an energy-based discrim-
 351 inator with one subspace basis per cluster. For cluster k , learn $\mathbf{U}_k \in \mathbb{R}^{D \times r}$ (column-orthonormal
 352 ideally). The projection residual energy of \mathbf{z} onto subspace k is $\mathcal{E}(\mathbf{z}; \mathbf{U}_k) = \|\mathbf{z} - \mathbf{U}_k \mathbf{U}_k^\top \mathbf{z}\|_2^2$.
 353 With current assignments, we sample *real* latent points per cluster (highest responsibilities) and syn-
 354 thesize *fake* latents as convex combinations of in-cluster points using the soft weights. The discrim-
 355 inator minimizes a hinge objective encouraging real energies to be below fake energies by margin m :
 356 $\mathcal{L}_D = \mathbb{E}_{\text{real}}[\max(0, \mathcal{E}(\mathbf{z}_{\text{real}}; \mathbf{U}) - \bar{\mathcal{E}}(\mathbf{z}_{\text{fake}}; \mathbf{U}) + m)] + \beta_{\perp} \sum_{k=1}^K \|\mathbf{U}_k^\top \mathbf{U}_k - \mathbf{I}\|_F^2 + \beta_{\times} \sum_{i,j=1}^K \sum_{i \neq j} \|\mathbf{U}_i^\top \mathbf{U}_j\|_F^2$

357 The generator is adversarially trained to *reduce* fake residuals: $\mathcal{L}_{\text{adv}} = \mathbb{E}_{\text{fake}} \mathcal{E}(\mathbf{z}_{\text{fake}}; \mathbf{U})$. The dis-
 358 criminator shapes latent geometry to be union-of-subspaces: low residual within the correct cluster
 359 subspace and high residual otherwise. Orthogonality/separation regularizers improve cluster
 360 identifiability and reduce overlap between subspaces, increasing temporal cluster purity.
 361

362 5.3 OVERALL OBJECTIVE

364 The training objective sums reconstruction, clustering, balancing, self-expression, and adversarial
 365 terms:

$$366 \quad \mathcal{L} = \underbrace{\mathcal{L}_{\text{rec}}}_{\text{AE recon}} + \underbrace{\text{KL}(\mathbf{p} \parallel \mathbf{q})}_{\text{DEC}} + \lambda_{\text{bal}} \left(\underbrace{\text{KL}(\bar{\mathbf{q}} \parallel \mathbf{u})}_{\text{marginal balance}} + \underbrace{\mathcal{L}_{\text{MI}}}_{\text{redundancy}} \right) + \lambda_{\text{SE}} \mathcal{L}_{\text{SE}} + \lambda_{\text{adv}} \mathcal{L}_{\text{adv}}. \quad (6)$$

369 Here $\bar{\mathbf{q}}$ is the batch-average assignment, \mathbf{u} is the uniform distribution, and \mathcal{L}_{MI} penalizes degenerate
 370 mutual information across clusters (implementation via contrastive or covariance de-correlation).
 371 Temperature τ is annealed and the balancing ramp is increased during training.
 372

373 5.4 OPTIMIZATION AND TRAINING SCHEDULE

375 1. **Generator step.** Forward once to obtain $\hat{\mathbf{X}}$, $\{\mathbf{z}_t\}_{t=1}^T$, $\{\mathbf{q}_t\}_{t=1}^T$. Compute reconstruction and
 376 clustering objectives \mathcal{L}_{rec} , $\text{KL}(\mathbf{p} \parallel \mathbf{q})$, balancing loss, and self-expression loss. Synthesize fake
 377 latents and compute the adversarial term \mathcal{L}_{adv} . Update encoder/decoder, Bi-TGAT, clustering
 378 centers, and SE parameters.

378 2. **Discriminator step.** Sample real latents per cluster (top- m by responsibility) and synthesize
 379 fakes. Update $\{\mathbf{U}_k\}_{k=1}^K$ by minimizing \mathcal{L}_D .
 380

381 3. **Schedules.** Initialize with a larger temperature τ (softer assignments) and anneal $\tau \downarrow$ over training;
 382 ramp balancing coefficients; optionally enable SE after a warm-up phase to avoid early
 383 sparse overfitting.
 384

385 **Inference and Final Clustering** At test time, we compute $\{\mathbf{z}_t\}$ and $\{\mathbf{q}_t\}$. Final hard labels are
 386 $\hat{y}_t = \arg \max_k q_{t,k}$. Optionally, we build an affinity $\mathbf{A} = |\mathbf{C}| + |\mathbf{C}^\top|$ from SE coefficients and apply
 387 spectral clustering to refine temporal segments, leveraging the induced block-diagonal structure.
 388

388 6 EXPERIMENT

390 All models are executed on AWS cloud environment using 20GB of S3 storage with 30 GB of
 391 ml.g4dn.xlarge GPU. The hardware used is a macOS Sonoma version 14.4.1, 16 GB, M1 pro chip.
 392 We applied the same python library across all models for homogeneity. We aim to implement
 393 our proposed model using python's machine and deep learnings libraries including Keras 2.11 and
 394 TensorFlow 2. All the baseline models and proposed models would be tested on Google Colab
 395 notebook with 12 GB GPU - A100, High RAM memory support. The hardware we would be using
 396 is a macOS ventura version 13.3, 16 GB, M1 pro chip.
 397

398 6.1 DATASET AND DATA PREPROCESSING

400 To ensure generalizability, we experimented with three multivariate spatiotemporal datasets:
 401 C3S Arctic Regional Reanalysis (CARRA) dataset (Copernicus Climate Change Service (C3S)),
 402 European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5 global reanalysis
 403 product (ECMWF, Copernicus Climate Change Service, 2021), and daily atmospheric observa-
 404 tions (NCEP/NCAR). These datasets are provided alongside our implementation code and publicly
 405 available. All datasets follow the same preprocessing steps. All three data sets consists of daily
 406 observations over the course of one year and presented in four dimensions: longitude, latitude, time,
 407 and variables. Our proposed model accepts 4D data but to obtain a dimension suitable for our bench-
 408 mark models, we transform the data from 4D to 2D tabular data $[time, (lon, lat, var)]$ Existing null
 409 values are replaced by the overall mean of the dataset. We apply standard Min-Max Normalization
 410 which rescales all features to fall within the range of $[0, 1]$.
 411

412 6.2 BASELINE METHODS

413 We compare our proposed model against state-of-the-art deep clustering models. These include
 414 (DEC) (Xie et al., 2016), (DSC) (Faruque et al., 2023), ClusterGAN Mukherjee et al. (2019), Info-
 415 GAN (Chen et al., 2016), (DTC) (Sai Madiraju et al., 2018) and DASC Zhou et al. (2018), Deep
 416 Subspace Clustering(DSC-Net- L_2) (Ji et al., 2017), and (DSC-DAG)(Yu et al., 2020) respectively.
 417 Based on the elbow method, we used $k = 7$ for ERA5 and NCAR datasets and $k = 7$ for CARRA
 418 datasets in our experiments.
 419

420 6.3 EVALUATION METRICS

421 In the absence of ground truth, we evaluate the performance of our proposed model on six internal
 422 cluster validation measures: Silhouette Score (Shahapure & Nicholas, 2020), Davies-Bouldin score
 423 (DB) (Ros et al., 2023), Calinski-Harabas score (CH) (Wang & Xu, 2019), Average inter-cluster
 424 distance (I-CD) (Everitt et al., 2011), Average Variance (Variance) (Montgomery & Rung, 2010)
 425 and Average root mean squared error (RMSE) (Willmott & Matsuura, 2005). These measures seek
 426 to balance the *compactness* and the *separation* of formed clusters through minimizing intra-cluster
 427 distance and maximizing the inter-cluster distance respectively.
 428

429 6.4 EXPERIMENT RESULTS

430 Table 1 presents our performance results based on selected internal cluster validation measures when
 431 applied to all three datasets. On ERA5 data, A-DATSC outperformed all baseline models as reported

432 by Silhouette, DB, RMSE and I-CD. This implies A-DATSC was able to capture the underlying
 433 complex patterns in all three datasets with significant improvements on performance.
 434

436 Table 1: Performance evaluation of our proposed model: Each selected model is evaluated on all six
 437 metrics. Best results is underlined

		Baseline Models					Proposed			
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453	439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	ERA5	Performance	ClusterGAN	DTC	DSC	DEC	DASC	A-DATSC
			Silhouette \uparrow	-0.0989	0.2284	0.2903	0.2050	0.1355	0.3268	
			DB \downarrow	17.1624	1.8517	1.6741	1.7515	2.0325	1.5009	
			CH \uparrow	1.2348	72.3222	102.2887	99.3082	72.9257	98.8211	
			RMSE \downarrow	22.2032	15.0820	13.6154	13.7425	15.0477	13.5158	
			Variance \downarrow	0.1064	0.0450	0.1033	0.0450	0.1039	0.1038	
			I-CD \uparrow	4.0315	6.4448	6.8481	6.8093	5.5229	7.4839	
444 445 446 447 448 449 450 451 452 453	445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	CARRA	Silhouette \uparrow	-0.0753	0.0220	0.2437	0.2027	-0.1059	0.2767
			DB \downarrow	7.7668	2.2332	1.6844	1.6781	11.7039	1.5089	
			CH \uparrow	4.9468	55.5673	78.7826	68.0469	17.4001	69.7729	
			RMSE \downarrow	7.9781	7.0421	5.8789	5.5029	11.3033	5.5424	
			Variance \downarrow	0.0021	0.0016	0.0011	0.0160	0.0011	0.0105	
			I-CD \uparrow	2.1073	2.3191	2.5712	2.8264	3.1404	3.0912	
450 451 452 453	450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	NCAR Reanalysis 1	Silhouette \uparrow	-0.2659	0.6230	0.61563	0.6454	0.1132	0.6541
			DB \downarrow	9.3799	0.7570	0.7804	0.7639	2.0879	0.7612	
			CH \uparrow	3.3104	864.1750	862.3665	839.4187	192.6249	868.7555	
			RMSE \downarrow	12.1719	3.1380	3.1410	3.1809	6.0048	3.1180	
			Variance \downarrow	0.1770	0.1770	0.1770	0.1770	0.1770	0.1770	
			I-CD \uparrow	0.7357	0.8603	0.8745	0.9465	4.0097	0.9098	

456 6.5 ABLATION STUDY

457 Table 2: Ablation Study

Performance - based						
	Silhouette \uparrow	DB \downarrow	CH \uparrow	RMSE \downarrow	Variance \downarrow	ICD \uparrow
A-DATSC _{sel}	0.2124	2.1486	84.6793	14.4220	0.1038	6.1603
A-DATSC _{cnn-lstm}	0.1965	1.9576	91.9739	14.0709	0.1032	5.6349
A-DATSC _{gat}	0.2827	1.6941	99.9202	13.716	0.1035	6.2759
A-DATSC	0.3268	1.5009	98.8211	13.5158	0.1038	7.4839

469 We show the importance of various subcomponents of A-DATSC when evaluated on ERA5 Data. A-DATSC_{sel} represents a variant of A-DATSC with only the self-expressive network at the bottleneck.
 470 A-DATSC_{cnn-lstm} is a variant without the time distributed integrated ConvLSTM2d. This uses the
 471 traditional cnn blocks followed by an LSTM unit. A-DATSC_{gat} is a variant of the A-DATSC with
 472 the Bi-TGAT at the dense layer.

475 7 CONCLUSION

477 In this study, we propose a novel unsupervised Attention-guided deep adversarial temporal subspace
 478 clustering (A-DATSC) model capable of clustering 4D high-dimensional multivariate spatiotemporal
 479 data. The model adopts adversarial learning with focus on the spatial, temporal and salient fea-
 480 tures to effectively supervise sample representation learning and subspace clustering. The generator
 481 learns a fine-level latent representation of the data, effectively clusters the latent subspace through a
 482 graph based self expressive network and clustering layer and finally generates new random samples
 483 with similar cluster patterns. The discriminator evaluates the clustering performance and feeds back
 484 the information to the generator to help it produce better sample latent representations and subspace
 485 clustering. For future work, we plan to improve the model performance by introducing Feature
 Matching and One-sided label smoothing.

486 REFERENCES
487

488 Sangwon Baek, Gangjoon Yoon, Jinjoo Song, and Sang Min Yoon. Deep self-representative sub-
489 space clustering network. *Pattern Recognition*, 118:108041, 2021.

490 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
491 gan: Interpretable representation learning by information maximizing generative adversarial nets.
492 *Advances in neural information processing systems*, 29, 2016.

493 Ying Chen, Chun-Guang Li, and Chong You. Stochastic sparse subspace clustering. In *Proceedings*
494 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4155–4164, 2020.

495 Copernicus Climate Change Service (C3S). CARA. [https://cds.climate.
496 copernicus.eu](https://cds.climate.copernicus.eu).

497 Zhiyuan Dang, Cheng Deng, Xu Yang, and Heng Huang. Multi-scale fusion subspace clustering
498 using similarity constraint. In *Proceedings of the IEEE/CVF conference on computer vision and*
499 *pattern recognition*, pp. 6658–6667, 2020.

500 Ling Ding, Chao Li, Di Jin, and Shifei Ding. Survey of spectral clustering based on graph theory.
501 *Pattern Recognition*, 151:110366, 2024.

502 ECMWF, Copernicus Climate Change Service. Era5 hourly data on single levels from
503 1940 to present. [https://cds.climate.copernicus.eu/cdsapp#!/dataset/
504 reanalysis-era5-single-levels?tab=overview](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview), 2021.

505 BS Everitt, S Landau, M Leese, and D Stahl. Cluster analysis, wiley. *Chichester, UK*, 2011.

506 Jicong Fan. Large-scale subspace clustering via k-factorization. In *Proceedings of the 27th ACM*
507 *SIGKDD conference on knowledge discovery & data mining*, pp. 342–352, 2021.

508 Omar Faruque, Francis Ndikum Nji, Mostafa Cham, Rohan Mandar Salvi, Xue Zheng, and Jianwu
509 Wang. Deep spatiotemporal clustering: A temporal clustering approach for multi-dimensional
510 climate data. *arXiv preprint arXiv:2304.14541*, 2023.

511 Francisco J Gonzalez and Maciej Balajewicz. Deep convolutional recurrent autoencoders for learning
512 low-dimensional feature dynamics of fluid systems. *arXiv preprint arXiv:1808.01346*, 2018.

513 Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace clustering
514 networks. *Advances in neural information processing systems*, 30, 2017.

515 Z. Jiang, Y. Xu, T. Li, and H. Zhang. Graph neural networks for air quality prediction: Advances
516 and challenges. *Environmental Modelling & Software*, 160:105593, 2023.

517 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
518 arXiv:1312.6114*, 2013.

519 Takio Kurita. Principal component analysis (pca). *Computer Vision: A Reference Guide*, pp. 1–4,
520 2019.

521 Changsheng Li, Chen Yang, Bo Liu, Ye Yuan, and Guoren Wang. Lrsc: Learning representations for
522 subspace clustering. In *Proceedings of the AAAI conference on Artificial Intelligence*, volume 35,
523 pp. 8340–8348, 2021.

524 M. Li, Y. Zhang, and S. Gao. Spatiotemporal graph neural networks for urban climate modeling.
525 *Journal of Geophysical Research: Atmospheres*, 128(15):e2023JD038456, 2023.

526 Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
527 of subspace structures by low-rank representation. *IEEE transactions on pattern analysis and*
528 *machine intelligence*, 35(1):171–184, 2012.

529 Yang Liu, Evan Racah, J. Correa, K. Kunkel, W. Li, and M. Wehner. Spatiotemporal deep learning
530 for regional climate downscaling. *Nature Communications*, 11:4728, 2020.

540 Douglas C Montgomery and George C Runger. *Applied statistics and probability for engineers*.
541 John wiley & sons, 2010.
542

543 Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. Clustergan: Latent space
544 clustering in generative adversarial networks. In *Proceedings of the AAAI conference on artificial*
545 *intelligence*, volume 33, pp. 4610–4617, 2019.

546 NCEP/NCAR. Daily atmospheric observations. <https://www.psl.noaa.gov/data>.
547

548 Bo Peng, Xiaoyang Liu, Jie Sun, and Xiaosheng Zhuang. Graph-based causal inference for climate
549 teleconnections. *npj Climate and Atmospheric Science*, 4(1):1–11, 2021.

550 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
551 dimension of images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021.
552

553 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
554 image segmentation. In *Medical image computing and computer-assisted intervention–*
555 *MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III* 18, pp. 234–241. Springer, 2015.
556

557 Frédéric Ros, Rabia Riad, and Serge Guillaume. Pdbi: A partitioning davies-bouldin index for
558 clustering evaluation. *Neurocomputing*, 528:178–199, 2023.
559

560 Naveen Sai Madiraju, Seid M Sadat, Dmitry Fisher, and Homa Karimabadi. Deep temporal clus-
561 tering: Fully unsupervised learning of time-domain features. *arXiv e-prints*, pp. arXiv–1802,
562 2018.

563 Ketan Rajshekhar Shahapure and Charles Nicholas. Cluster quality analysis using silhouette score.
564 In *2020 IEEE 7th international conference on data science and advanced analytics (DSAA)*, pp.
565 747–748. IEEE, 2020.
566

567 Xingjian Shi, Zhihan Gao, Lorenz Lausen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-
568 chun Woo. Deep learning for precipitation nowcasting: A benchmark and a new model. *Advances*
569 *in Neural Information Processing Systems (NeurIPS)*, 30, 2017.

570 Lei Wang, K. A. Scott, L. Xu, and J. R. Key. Deep learning for arctic sea ice prediction. *Remote*
571 *Sensing*, 11(24):2903, 2019.
572

573 Xu Wang and Yusheng Xu. An improved index for clustering validation based on silhouette index
574 and calinski-harabasz index. In *IOP Conference Series: Materials Science and Engineering*,
575 volume 569, pp. 052024. IOP Publishing, 2019.
576

577 Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error (mae) over the root
578 mean square error (rmse) in assessing average model performance. *Climate research*, 30(1):79–
579 82, 2005.
580

581 Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
582 In *International conference on machine learning*, pp. 478–487. PMLR, 2016.
583

584 Da Xu, Yujia Ruan, Serkan Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representation
585 learning on temporal graphs. In *International Conference on Learning Representations (ICLR)*,
586 2020.
587

588 Yang Xu, Arun Srinivasan, and Lingzhou Xue. A selective overview of recent advances in spectral
589 clustering and their applications. *Modern Statistical Methods for Health Research*, pp. 247–277,
590 2021.
591

592 Shih-Sian Yang, Chen-Jieh Pan, and Uma Das. Investigating the spatio-temporal distribution of
593 gravity wave potential energy over the equatorial region using the era5 reanalysis data. *Atmo-*
594 *sphere*, 12(3):311, 2021.
595

596 Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, and Wei Liu. Deep spectral clustering using
597 dual autoencoder network. In *Proceedings of the IEEE/CVF conference on computer vision and*
598 *pattern recognition*, pp. 4066–4075, 2019.

594 Zhiwen Yu, Zhongfan Zhang, Wenming Cao, Cheng Liu, CL Philip Chen, and Hau-San Wong. Gan-
595 based enhanced deep subspace clustering networks. *IEEE Transactions on Knowledge and Data*
596 *Engineering*, 34(7):3267–3281, 2020.

597 Shangzhi Zhang, Chong You, René Vidal, and Chun-Guang Li. Learning a self-expressive network
598 for subspace clustering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
599 *Pattern Recognition*, pp. 12393–12403, 2021.

600 Tong Zhang, Pan Ji, Mehrtash Harandi, Richard Hartley, and Ian Reid. Scalable deep k-subspace
601 clustering. In *Asian Conference on Computer Vision*, pp. 466–481. Springer, 2018.

602 Ling Zhao, Yunpeng Ma, Shanxiong Chen, and Jun Zhou. Deep double self-expressive subspace
603 clustering. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal*
604 *Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

605 Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace clustering. In *Proceedings of*
606 *the IEEE conference on computer vision and pattern recognition*, pp. 1596–1604, 2018.

607 Wei Zhu, Qiang Qiu, Jiaji Huang, Robert Calderbank, Guillermo Sapiro, and Ingrid Daubechies.
608 Ldmnet: Low dimensional manifold regularized neural networks. In *Proceedings of the IEEE*
609 *conference on computer vision and pattern recognition*, pp. 2743–2751, 2018.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647