
Under review as a conference paper at ICLR 2023

GLOBAL COUNTERFACTUAL EXPLANATIONS ARE
RELIABLE OR EFFICIENT, BUT NOT BOTH

Anonymous authors
Paper under double-blind review

ABSTRACT

Counterfactual explanations have been widely studied in explainability, with a
range of application dependent methods emerging in fairness, recourse and model
understanding. The major shortcoming associated with these methods, however,
is their inability to provide explanations beyond the local or instance-level. While
many works touch upon the notion of a global explanation, typically suggesting to
aggregate masses of local explanations in the hope of ascertaining global proper-
ties, few provide frameworks that are both reliable and computationally tractable.
Meanwhile, practitioners are requesting more efficient and interactive explain-
ability tools. We take this opportunity to investigate existing methods, improving
the efficiency of Actionable Recourse Summaries (AReS), one of the only known
global recourse frameworks, and proposing Global & Efficient Counterfactual Ex-
planations (GLOBE-CE), a novel and flexible framework that tackles the scalabil-
ity issues associated with current state-of-the-art, particularly on higher dimen-
sional datasets and in the presence of continuous features. Furthermore, we pro-
vide a unique mathematical analysis of categorical feature translations, utilising it
in our method. Experimental evaluation with real world datasets and user studies
verify the speed, reliability and interpretability improvements of our framework.

1 INTRODUCTION

Counterfactual explanations (CEs) construct input perturbations that result in desired predictions
from machine learning (ML) models (Verma et al., 2020; Karimi et al., 2020; Stepin et al., 2021).
A key benefit of these explanations is their ability to offer recourse to affected individuals in cer-
tain settings (e.g., automated credit decisioning). Recent years have witnessed a surge of subsequent
research, identifying desirable properties of CEs (Wachter et al., 2018; Barocas et al., 2020; Venkata-
subramanian & Alfano, 2020), developing the methods to model those properties (Poyiadzi et al.,
2020; Ustun et al., 2019; Mothilal et al., 2020; Pawelczyk et al., 2021), and understanding the weak-
nesses and vulnerabilities of the proposed methods (Dominguez-Olmedo et al., 2021; Slack et al.,
2021; Upadhyay et al., 2021; Pawelczyk et al., 2022). Importantly, however, the research efforts
thus far have largely centered around local analysis, generating explanations for individual inputs.

Such analyses can vet model behaviour at the instance-level, though it is seldom obvious that any of
the resulting insights would generalise globally. For example, a local CE may suggest that a model
is not biased against a protected attribute (e.g., race, gender), despite net biases existing. A potential
way to gain such insights is to aggregate local explanations (Lundberg et al., 2020; Pedreschi et al.,
2019; Gao et al., 2021), but since the generation of CEs is generally computationally expensive, it is
not evident that such an approach would scale well or lead to reliable conclusions about a model’s
behaviour. Be it during training or post-hoc evaluation, global understanding ought to underpin
the development of ML models prior to deployment, and reliability and efficiency play important
roles therein. We seek to address this in the context of global counterfactual explanations (GCEs).

1.1 CONTRIBUTIONS: INVESTIGATIONS, IMPLEMENTATIONS & IMPROVEMENTS

Given the current lack of a precise definition, we posit in this work that a GCE should apply to multi-
ple inputs simultaneously, while maximising accuracy across such inputs. For clarity, we distinguish
counterfactuals (the altered inputs) from counterfactual explanations (the extension of counterfactu-
als to any of their possible representations, e.g., translation vectors, rules denoting fixed values, etc.).
Investigations Section 2 summarises GCE research, introducing the recent Actionable Recourse
Summaries (AReS) framework in Rawal & Lakkaraju (2020). We then discuss motivations, defining
reliability and justifying our claim that current GCE methods are reliable or efficient, but not both.
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Figure 1: Left: GLOBE-CE scaled translations. We argue that, while many translation directions cannot be
interpreted, we can optimise GCEs by allowing variable magnitudes per input. Right: Example comparisons
with synthetic ForeignWorker subgroups. Left to right: Accuracy-cost trade-offs (covering more inputs requires
larger magnitudes), minimum costs per input, and the mean translation direction for each subgroup.

Our Framework Section 3 proceeds to introduce our framework Global & Efficient Counter-
factual Explanations (GLOBE-CE). Though not strictly bound to recourse, our framework has the
ability, as in AReS, to seek answers to the big picture questions regarding a model’s recourses
(Figure 1), namely the potential disparities between affected subgroups, i.e. Do race or gender
biases exist in the recourses of a model? Can we reliably convey these in an interpretable manner?

Our major contribution is a shift in paradigm; all research so far assumes GCEs to be fixed. We rep-
resent each GCE with a fixed translation vector δ, multiplied by an input-dependent, scalar variable
k (Figure 1). To determine the direction of each translation, our framework deploys a general CE
generation scheme, flexible to various desiderata. These include but are not limited to sparsity, di-
versity, actionability and model-specific CEs (Section 2.1). However, the novelty of our method lies
mainly in a) varying k input-wise and b) proving that arbitrary translations on one-hot encodings can
be expressed using If/Then rules. To the best of our knowledge, this is the first work that addresses
mathematically the direct addition of translation vectors to one-hot encodings in the context of CEs.

AReS Implementations Section 4 subsequently outlines our AReS and Fast AReS implementa-
tions, where in the latter we propose amendments to the algorithm and demonstrate that these lead
to significant speed and performance improvements on four benchmarked financial datasets. Both
implementations are thereafter utilised as baselines in the experimental evaluation of GLOBE-CE.

Improvements Section 5 evaluates the efficacy of our Fast AReS and GLOBE-CE frameworks
along three fundamental dimensions: accuracy (the percentage of inputs with successfully altered
predictions), average cost (the difficulty associated with executing successful GCEs) and speed (the
time spent computing GCEs). We argue that GCEs that fail to attain maximum accuracy or minimum
cost can be misleading, raising concerns around the safety of ML models vetted by such explana-
tions. We target these metrics, demonstrating significant speedups at concurrently higher accuracies
and lower costs. User studies comprising ML practitioners additionally demonstrate the ability of the
GLOBE-CE framework to more reliably detect recourse biases where previous methods fall short.

2 RELATED WORK: GLOBAL COUNTERFACTUAL EXPLANATIONS

2.1 LOCAL COUNTERFACTUAL EXPLANATIONS: INSTANCE-LEVEL MODEL INSIGHTS

Wachter et al. (2018) is one of the earliest introductions of CEs in the context of understanding black
box ML models, defining CEs as points close to the query input (w.r.t. some distance metric) that
result in a desired prediction. This inspired several follow-up works proposing desirable properties
of CEs and presenting approaches to generate them. Mothilal et al. (2020) argues the importance of
diversity, while other approaches aim to generate plausible CEs by considering proximity to the data
manifold (Poyiadzi et al., 2020; Van Looveren & Klaise, 2021; Kanamori et al., 2020) or by account-
ing for causal relations among input features (Mahajan et al., 2019). Actionability of recourse is an-
other important desideratum, suggesting certain features be excluded or limited (Ustun et al., 2019).
In another direction, some works generate CEs for specific model categories, such as tree-based (Lu-
cic et al., 2022; Tolomei et al., 2017; Parmentier & Vidal, 2021) or differentiable (Dhurandhar et al.,
2018) models. Detailed surveys on CEs naturally follow (Karimi et al., 2020; Verma et al., 2020).
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2.2 BEYOND LOCAL COUNTERFACTUAL EXPLANATIONS: THE CURSE OF GLOBALITY

Despite a growing desire from practitioners for global explanation methods that provide summaries
of model behaviour (Lakkaraju et al., 2022), the struggles associated with summarising complex,
high-dimensional models globally is yet to be comprehensively solved. Some manner of local
explanation aggregation has been suggested (Lundberg et al., 2020; Pedreschi et al., 2019; Gao
et al., 2021), though no compelling results have been shown that are both reliable and computa-
tionally tractable for GCEs specifically. Lakkaraju et al. (2022) also indicates a desire for more
interactivity with explanation tools, alongside reliable global summaries, but these desiderata can-
not be paired until the efficiency issues associated with global methods are addressed in research.

Such works have been few and far between. Both Plumb et al. (2020) and Ley et al. (2022) have
sought global translations which transform inputs within one group to another desired target group,
though neither accommodate categorical features. Meanwhile, Becker et al. (2021) provides an orig-
inal method, yet openly struggles with scalability. Gupta et al. (2019) attempts to equalize recourse
across subgroups during model training, but with no explicit framework for global interpretation.
Rawal & Lakkaraju (2020) proposes AReS, a comprehensive GCE framework which builds on pre-
vious work in (Lakkaraju et al., 2019). AReS adopts an interpretable structure, termed two level
recourse sets. We defer details of our AReS implementation, improvements included, to Section 4.
To our knowledge, only AReS and recent adaptation CET (Kanamori et al., 2022) pursue GCEs for
recourse, yet the latter reports runtimes in excess of three hours for both methods. Since our goal is to
provide practitioners with fast and reliable global summaries, potentially at each iteration of model
training (Gupta et al., 2019), we must take steps to bridge the gap between reliability and efficiency.

2.3 MOTIVATION: GLOBAL CES ARE RELIABLE OR EFFICIENT, BUT NOT BOTH

Reliability In this work, we define reliable GCEs to be those that can be used to draw accurate
conclusions of a model’s behaviour. For instance, a model with higher recourse costs for subgroup
A than subgroup B is said to exhibit a recourse bias against subgroup A, and reliable GCEs would

Figure 2: Common pitfalls with unreliable
bias assessment (ℓ2 distance represents cost)
for GCEs Ai, Bi. Light dotted lines: inputs
from subgroups A and B. Dark dotted lines:
inputs for which the respective GCEs apply.

yield the minimum costs of recourse for either subgroup,
such that this bias could be identified. If the costs found
are sub-optimal, or GCEs only apply to a small number
of points (sub-optimal accuracy), the wrong conclusions
might be drawn, as in GCEs Ai, Bi of Figure 2. In the
absence of minimum cost recourses, biases may be de-
tected where not present (A1, B1) or not detected where
present (A2, B2). Similarly, without sufficient accuracy,
the same phenomena may occur (A3, B3 and A4, B4, re-
spectively). The further these metrics stray from optimal,
the less likely any potential subgroup comparisons are of
being reliable. We argue that maximising reliability thus
amounts to maximising accuracy while minimising re-
course costs. The wider scope of reliability may encom-
pass other desiderata as outlined in Section 2.1, though
we refer their impact on bias assessment to future work.

Efficiency There exists a gap in GCE research between reliability and efficiency. Even the most
comprehensive works that target maximum reliability (Rawal & Lakkaraju, 2020; Kanamori et al.,
2022) suffer computation times in excess of three hours on relatively small datasets such as German
Credit (Dua & Graff, 2019). In parallel, there exists a body of research advocating strongly the use
of inherently interpretable models for these cases, where performance is not compromised (Rudin,
2019; Rudin & Radin, 2019; Chen et al., 2018). The utility in black box explanations is thus mainly
reserved for higher complexity scenarios, and we must seek a global method that both executes
efficiently and scales well, criteria by which current works have fallen short. In our experiments, we
define efficiency in relation to the average CPU time taken in computing GCE explanations.

3 OUR FRAMEWORK: GLOBAL & EFFICIENT CES (GLOBE-CE)

We proceed to detail our proposed GLOBE-CE framework, where we discuss below: 1) the repre-
sentation of GCEs that we choose, assisted by theoretical results on categorical feature arithmetic,
2) the GLOBE-CE algorithm, and 3) the adaptability of our framework to existing CE desiderata.
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Figure 3: The GLOBE-CE framework (Algorithm 1) for specific G. Cost is ℓ2 distance. Left: Negative
predictions, X . Left Center: Fixed cost sampling, G. Right Center: Highest accuracy δ selection. Right:
Scaling δ per input. Theorems 1 and 2 are essential in bridging the gap between scaling translations and the
discontinuous nature of categorical features. Future work may consider scaling translations to a fixed end-point.

3.1 OUR GCE REPRESENTATION: SCALED TRANSLATION VECTORS

We propose a novel, interpretable GCE representation: scaled translation vectors, as depicted in
Figures 1 and 3. Simply put, for inputs that belong to a particular subgroup x ∈ Xsub, we can
apply a translation δ with scalar k such that xCF = round(x + kδ) is a successful counterfac-
tual. Note that round(x) re-encodes one-hot outputs by selecting the largest feature values post-
translation. For each x ∈ Xsub, our framework computes the respective minimum value of k
required for recourse. The main appeal of this approach is its improvement with respect to the
interpretability-performance trade-off that other methods suffer from. Using too few translations
limits the performance of previous methods, yet large numbers of GCEs cannot easily be inter-
preted. For instance, Figure 3 demonstrates conceptually how one can achieve maximum accuracy
with a single translation at comparably lower average costs to previous methods which do not utilise
variable magnitudes (Section 2.3 details why this is absolutely necessary for reliable bias assess-
ment). While one can interpret a range of scalars relatively easily (Section 3.2), one cannot simply
interpret a whole range of separate directions, and therein lies the paradigm shift that we propose.

We posit that our method of a) assigning a single vector direction to an entire subgroup of in-
puts, b) travelling along this vector, and c) analysing the minimum costs required for success-
ful recourses per input of the subgroup, is the natural global extension to one of the simplest
forms of local CE: the fixed magnitude translation. In fact, the connection between local and
global explanations may be more intimate than current research implies. Works suggesting to
learn global summaries from local explanations (Pedreschi et al., 2019; Lundberg et al., 2020; Gao
et al., 2021) and approaches suggesting to learn global summaries directly (Rawal & Lakkaraju,
2020; Kanamori et al., 2022; Plumb et al., 2020; Ley et al., 2022) tend to approach global ex-
planations from the angle that they are fundamentally different problems. Our framing of GCEs
as a local problem is akin to treating groups of inputs as single instances, generating transla-
tions for them and subsequently, through scaling, efficiently capturing the true range of prop-
erties across the set of local instances and their proximity to the decision boundary (Figure 3).
Unlike prior work, this implies that we can tackle a wide range of minimum costs, and potentially
complex, non-linear decision boundaries, despite a fixed direction δ. AReS (Rawal & Lakkaraju,
2020) and recent similar work Counterfactual Explanation Trees (CET) (Kanamori et al., 2022)
do not propose any such scaling techniques. The latter indicates the accuracy to cost trade-off
that occurs when one is limited by a fixed translation, yet eventually compromises for one. Other
translation works (Plumb et al., 2020; Ley et al., 2022) do not utilise any form of scaling, nor do
they provide steps to handle categorical features, an issue we address below. These approaches can
also be prone to unreliability since they target training data rather than a model’s decision boundary.

Categorical Feature Arithmetic We assume one-hot encodings (else, these can be trivially en-
coded and decoded to suit) and provide, to the best of our knowledge, the first work in the context
of CEs that reports mathematically the interpretation of a translation kδ on a one-hot encoding,
including the effects of scaling, yielding deterministic, interpretable rules from kδ. For examples
of the interpretable rules sets generated by categorical translations, see Table 1 and Appendix B.2.

Theorem 1. Regardless of feature value, any translation vector that is added to a one-hot categor-
ical feature can alternatively be expressed using If/Then rules, with just one unique Then condition.
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Proof (Sketch). Consider any one-hot encoded feature vector with feature labels ranging from 1 to
n, denoted f = [f1, f2, ..., fn] ∈ {0, 1}n, where |f |1 = 1 and F = argmaxi fi. Similarly, consider
a translation vector of size n, denoted δ = [δ1, δ2, ..., δn] ∈ Rn, where ∆ = argmaxi δi. The final
vector post-translation is g = f + δ, and the final feature value is G = argmaxi gi. Note gi ̸=F = δi
and gF = δF + 1. We denote gG = maxi gi = max(δF + 1,maxi ̸=F (δi)). For 1 ≤ F ≤ n, we
now prove that if G ̸= F (i.e. a change in feature value occurs), we have the rule “If F , Then ∆”. In
the case F = ∆, gG = max(δ∆ + 1,maxi(δi ̸=∆)) = δ∆ + 1, as δ∆ = maxi δi. Hence, G = ∆ (no
rule). In the case F ̸= ∆, gG = max(δF + 1, δ∆). If δF + 1 > δ∆, then gG = δF + 1 and G = F
(no rule). However, if δF + 1 < δ∆, then gG = δ∆ and G = ∆, giving the rule “If F , Then ∆”. □

Theorem 2. Regardless of feature value, any translation vector that is scaled by k ≥ 0 and added
to a one-hot categorical feature can alternatively be expressed with the first m rules of a sequence.

Proof (Sketch). Consider the general vectors f and δ defined in Theorem 1, and scalar k. For i ̸= ∆
and k > 0, Theorem 1 gives that kδi+1 < kδ∆ yields the rule “If i, Then ∆”. Rearranging gives that
if the lower bound k > 1

δ∆−δi
is satisfied, then the translation kδ induces such a rule. Consider ad-

ditionally the vector of lower bounds k = [k1, k2, ..., kn] ∈ Rn
+ where ki ̸=∆ = 1

δ∆−δi
and k∆ = ∞.

Lemma 2.1. By inspection, we have that ki ≤ km for any i,m < n pair with δi ≤ δm. As such,
lower bounds for i and m are both satisfied if k > km. Thus, scaling δ by k > km induces not only
the rule corresponding to feature value m, but also that of any other feature value i with δi ≤ δm.

For k = 0, we have no rules (kδ = 0). Let ∆i now be the index of the ith smallest value in δ, such
that ∆1 = argmini δi and ∆n = argmaxi δi = ∆. Thus, by Lemma 2.1, for m < n, we have that
scaling δ by k∆m

< k ≤ k∆m+1
induces rules for each of the first m feature values ∆1≤i≤m. □

3.2 THE GLOBE-CE ALGORITHM: LEARNING AND INTERPRETING TRANSLATIONS

Any particular CE may be represented with a fixed magnitude translation. The major contribution of
the GLOBE-CE framework lies in the notion of scaling the magnitudes of translations. Though per-
haps an uninteresting concept in the context of local CEs, when large numbers of inputs are present,
scaling a translation δ with an input-dependent variable k is an elegant and efficient way of solving
for global summaries of a model’s decision boundary. Figure 3 depicts the utility that a single, scaled
translation vector can exhibit. One can interpret a range of magnitudes, though cannot interpret a
range of directions so easily, and previous approaches relied on using a small number of fixed GCEs.

Algorithm 1: Flexible GLOBE-CE Framework
Inputs: B, X , G, n, k, cost
1: ∆ = G(B,X , n) ▷ Generate GCEs (Translations)
2: for 1 ≤ i ≤ n do ▷ For all GCEs
3: for 1 ≤ j ≤ |k| do ▷ For all Scalars
4: X ′

ij = round(X + kjδi) ▷ Counterfactuals
5: Y ′

ij = B(X ′
ij) ▷ Predictions

6: Cij = cost(X ,X ′
ij) ▷ Costs

7: end for
8: end for

Outputs: Counterfactuals X ′, Predictions Y ′, Costs C
(For all Inputs X , Translations ∆ and Scalars k)

Learning Translations In our setup, we learn ex-
planations by adopting methods from instance-
level CE research, generalising for any CE al-
gorithm G(B,X , n) that considers, at a mini-
mum, the model B being explained, the inputs
requiring explanations X , and the number n of
returned GCEs δ1, δ2, ..., δn = ∆. This en-
ables previous CE research to simply be extended
when seeking global explanations; we show in
Section 3.3 how a previous method (constrained
random sampling) can be adapted for our pur-
poses. GLOBE-CE then scales the ith GCE δi
over a range of m scalars k = k1, k2, ..., km, repeating over all 1 ≤ i ≤ n GCEs and re-
turning the counterfactuals X ′, the predictions Y ′ ∈ {0, 1}n×m×|X| and costs C ∈ Rn×m×|X|

≥0 .

In practice, one could set an upper limit of n for the maximum number of GCEs end users are
willing or able to interpret. Algorithm 1 could then be terminated when accuracies and costs
plateau, or n is reached. Scalars k are chosen in a similar fashion, with an upper limit on the
cost of GCEs i.e. such that k simply ranges linearly from 0 to a point that yields this limit.
This may vary per translation, a property not captured here, though one that is easily imple-
mentable. Given the speed of our method (Section 5), we found m = 1000 to be appropriate.
For categorical features, scalars exhibit certain properties that can be manipulated (Theorem 2).

Interpreting Translations The manner in which explanations are portrayed depends on the nature
of the data and/or the desire to compare recourses. We introduce straightforward interpretations of
GCEs in continuous and categorical contexts, alongside the corresponding accuracy/cost properties.

5



Under review as a conference paper at ICLR 2023

Feature(s) New Rule Added New Inputs All Inputs
Accuracy Cost Accuracy Cost

Account Status If F2, Then F4 +33.5% 1.00 33.5% 1.00
Account Status If F3, Then F4 +2.5% 1.00 36.0% 1.00
Account Status If F1, Then F4 +45.2% 1.00 81.2% 1.00

Telephone If F2, Then F1 +2.5% 1.80 83.7% 1.02
Employment If Not F4, Then F4 +10.2% 1.95 93.9% 1.12

Table 1: Example Cumulative Rules Chart (CRC) for categorical features, representing the optimal GLOBE-
CE translation at 5 scalars. Rules are cumulatively added, resulting in an increase in accuracies and costs.

Our scaling approach induces accuracy-cost profiles as pictured in Figure 1, Left Centre, providing
an interpretable method for the selection of a particular accuracy/cost combination, as well as for
bias assessment. Intuitively, if the magnitude of a translation is 0 (when k = 0), its accuracy and cost
are also 0; as the magnitude grows, more inputs successfully cross the decision boundary, resulting
in an increase in accuracy and average cost. Accuracy/cost values can then be chosen or compared.

We also adopt standard statistical methods to convey minimum costs, which correspond to the mini-
mum scalars required to alter each input’s prediction. For continuous data, where costs scale linearly
as a particular translation is scaled, we deem it interpretable to display solely mean translations
alongside the illustration of minimum costs (Figure 1 and Appendix B.1), an assertion supported by
our user studies, where participants interpreted GLOBE-CE explanations considerably faster than
in AReS. Prior to our analysis, translations as raw vectors in input space lacked an immediate and
intuitive interpretation on categorical data. Theorem 1 demonstrates that any translation can be in-
terpreted as a series of If/Then rules, limited to one Then condition per feature, as portrayed by
the individual rows in Table 1. Theorem 2 consequently proves that as a translation is scaled, If
conditions are added to the rules for each feature (e.g., Account Status in Table 1). We name the
resultant GCE representation a Cumulative Rules Chart (CRC). See Appendix B.2 for further details.

3.3 ADAPTING THE GENERATION ALGORITHM FOR CE DESIDERATA & BIAS ANALYSIS

Recognising the scope of possible GCE generation algorithms to be vast, it should be stated that
modifications to G along arbitrary criteria may impact efficiency in ways not investigated herein.

GCE Generation In our context of recourse, G(B,X , n) should deliver diverse and relatively
sparse translations, targeting reliability (maximum accuracy, minimum cost) and taking into account
that increasing diversity will likely reduce interpretability. Regarding actionability, we assign costs
feature-wise (Section 5). We propose a specific generation algorithm G(B,X , n, ns, c, nf , p) for our
experiments, which consists of uniform random sampling of ns translations at a fixed cost c. The
additional parameters control the number of randomly chosen features nf , and the power p to which
random samples between 0 and 1 are raised, offering control over sparsity. The n final GCEs are cho-
sen to greedily maximise accuracy. There also exist model categories that provide alternative candi-
date G: model gradients in Deep Neural Networks (DNNs), feature attributions in XGBoost (XGB)
models, and the mathematics of Support Vector Machines (SVMs) are explored in Appendix B.3.

Bias Analysis Extending our framework to provide comparisons between affected subgroups of
interest, similarly to AReS, is a trivial matter of separating the inputs and evaluating and scaling
translations separately. However, it is recommended to generate the same set of ns random transla-
tions for both subgroups as this a) eliminates any possible random bias in our translation generation
and b) executes faster. Alternatively, the translations selected for each subgroup can be exchanged,
such that recourses can be directly compared (functionality that previous work does not suggest).

4 IMPROVING ACTIONABLE RECOURSE SUMMARIES: FAST ARES

We preface the evaluation of GLOBE-CE with an introduction to AReS (Rawal & Lakkaraju, 2020),
before suggesting improvements to the method such that both AReS and our improved version can be
used as baselines. AReS adopts an interpretable structure, termed two level recourse sets, comprising
of triples of the form Outer-If/Inner-If/Then conditions (depicted in Figure 4). Subgroup descriptors
SD (Outer-If conditions) and recourse rules RL (frequent itemsets output by apriori (Agrawal &
Srikant, 1994)) determine such triples. Iteration over SD × RL2 yields the ground set V , before
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Figure 4: Workflow for our AReS implementation (bar improvements). Iteration over SD×RL2 computes all
valid triples (Outer-If/Inner-If/Then conditions) in the ground set V (Stage 1). V is evaluated itemwise (Stage
2), and the optimisation Lee et al. (2009) is applied (Stage 3), returning the smaller two level recourse set, R.

submodular maximization algorithm (Lee et al., 2009) computes the final set R ⊆ V using objective
f(R). One strength of AReS is in assessing fairness via disparate impact of recourses, through user-
defined SD. While a novel method with an interpretable structure, AReS can fall short on two fronts:

Computational Efficiency Our analyses suggest that AReS is highly dependent on the cardinality
of the ground set V , resulting in impractically large V to optimise. Our amendments efficiently
generate denser, higher-performing V , unlocking the utility practitioners have expressed desire for.

Continuous Features Binning continuous data prior to GCE generation, as in AReS, struggles to
trade speed with performance: too few bins results in unrealistic recourses; too many bins results in
excessive computation. Our amendments demonstrate significant improvements on continuous data.

The overall search for a two level recourse set R can be partitioned into three stages, as de-
tailed in Figure 4 and Table 10. We generate V , evaluate V , and optimise V , to return a
smaller, interpretable set R ⊂ SD × RL2. As in the original work, we set SD = RL and let
|RL| = n ⇒ |V | < n3. Our optimisations include: RL-Reduction and Then-Generation, which V
faster or generate higher performing V, respectively (Stage 1); V-Reduction, a method which termi-
nates evaluation of V after r or r′ iterations, (Stage 2); and V-Selection which selects the best s items
from the ground set (Stage 3). Please refer to Appendix C for complete details and justifications.

5 EXPERIMENTS

The efficacy of our proposed Fast AReS and GLOBE-CE frameworks are evaluated herein. We
analyse in Section 5.1 the Fast AReS performance enhancements, before providing in Sections 5.2
and 5.3 an extensive evaluation of our GLOBE-CE framework against the current state-of-the-art,
AReS (and Fast AReS), and a user study involving 16 ML practitioners tasked with assessing re-
course bias in models using either AReS or GLOBE-CE. The study also uncovers some important
criteria for bias assessment. For further experimental specifics, please refer to Appendices A and D.

Dataset N D ncat ncont

COMPAS 6k 15 4 2
German 1k 71 17 3
Default 30k 91 9 14
HELOC 10k 23 0 23

Table 2: Inputs N , Dimensions D,
Categorical ncat, Continuous ncont.

Datasets We employ four real world datasets to assess our
methods, detailed in Table 2. Top down, these predict recidivism,
credit risk, payment defaults, and credit risk. AReS (Rawal &
Lakkaraju, 2020) utilised COMPAS (Larson et al., 2016) and
German Credit (Dua & Graff, 2019); we include these in order
to verify similar results, and we also introduce the larger Default
Credit (Dua & Graff, 2019) and HELOC (FICO, 2018) datasets,
which both include a significant number of continuous features.

Models We train 3 types of model: DNN, XGB, and Logistic Regression (LR). Model parameters
are not held constant, rather the best combination for each dataset and model is chosen. We elect to
train models on 80% of the data, unlike Rawal & Lakkaraju (2020). Given the class label imbalance
in German Credit (30:70) and the size of the dataset (N = 1000), training AReS on 50% of the data
is likely to yield only 0.5× 1000× 0.3 = 150 negative predictions on which to construct recourses.

Set-Up AReS suggests binning continuous features, and specifying the cost of moving between
two adjacent bins to be 1. We bin continuous features into 10 equal intervals post-training (see Sec-
tion 4 trade-off). We also take the cost of moving from one categorical feature to another to be 1. As
in AReS, we take the interpretability constraints ϵ1, ϵ2, ϵ3 = 20, 7, 10, and set SD = RL. Impor-
tantly, specifying subgroups simplifies the problem significantly, and so in our attempt to stress test
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Figure 5: Fast AReS improvements (HELOC). Left: Size of ground set V vs time. Centre: Accuracy of V
vs time. Right: Final set acc(R) vs time. For other categorical datasets, RL-Reduction achieved speedups
similar to Then-Generation. For Default Credit (predominantly continuous), the latter performed best.

these explanation methods and fully gauge their scalability, we will avoid this. We also observed that
both methods elected to alter a smaller number of features (2 or 3), regardless of any width limits.

5.1 FAST ARES EXPERIMENTAL IMPROVEMENTS

The evaluation of Fast AReS is broken down per workflow stage. For various hyperparameter com-
binations (r, r′ and s), the final sets returned in Stage 3 achieve significantly higher performance
within a time frame of 300 seconds, achieving accuracies for which AReS required over 18 hours
on HELOC. Appendix D lists details in full, including the combinations of hyperparameters used.

Reliability & Efficiency In Stage 1, we demonstrate RL-Reduction is capable of generating iden-
tical ground sets orders of magnitude faster, and Then Generation constructs (different) ground sets
rapidly. Stage 2 shrinking (r = 5000) significantly outperforms full evaluation, and Then Genera-
tion erases many continuous data limitations by short-cutting the generation of relevant rules. Fi-
nally, Stage 3 demonstrates vast speedups, owing to the generation of very small yet high-performing
ground sets in the previous stage: r, r′ and s restrict the size of V yet retain a near-optimal acc(V ).

5.2 GLOBE-CE EXPERIMENTAL IMPROVEMENTS

The GLOBE-CE explanations in our experiments are computed by the generation procedure posed in
Section 3.3, and their interpretations are as detailed in Section 3.2 (and Appendix B). We test the per-
formance of both a single, scaled δ, as well as the diverse solution outlined previously, with n = 3,
denoting these GLOBE-CE and dGLOBE-CE, respectively. Translations are uniformally sampled at
cost 2 and scaled in the range 0 ≤ k ≤ 5, such that the maximum possible cost of a translation is 10
bins (the entire range for any one given feature), which we assume as a feasibility limit for recourse.

Reliability Evaluation over various families of models and four diverse datasets indicates that,
across the board, GLOBE-CE consistently exhibits the most reliable performance. Situations in
which only moderate accuracy is achieved by GLOBE-CE (e.g., COMPAS, DNN), we attribute to
an inability of the model to provide recourses within our feasibility limit (after having exhaustively
trialled solutions). In one rare case where the Fast AReS optimisation achieves superior cost (COM-
PAS, DNN), it does so at the expense of a significantly larger drop in accuracy (a natural trade-off).

Efficiency Applying AReS for several hours can yield accuracy improvements, though we con-
sider such time scales inappropriate given that a) we test relatively simple datasets (Section 2.3)
and b) practitioners are requesting higher levels of interactivity in explainability tools (Lakkaraju
et al., 2022). We argue too that the concept of sampling random translations at a fixed cost is
more intuitive than tuning hyperparameters of terms associated with cost, and that GLOBE-CE
thus grants a higher degree of interactivity, given its performance with respect to computation time.

5.3 GLOBE-CE USER STUDIES

We conduct an online user study to analyse and compare the efficacy of GLOBE-CE and AReS in
detecting recourse biases. The user study involves 16 participants, all of which have a background in
ML and some knowledge of post-hoc explainability. We include a short tutorial on CEs, GCEs, and
the ideas of recourse cost and recourse bias. The study utilises two black box models: the first is a
decision tree with a model bias against females, though with a recourse bias exhibited against males

8
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Algorithms Datasets
COMPAS German Credit Default Credit HELOC

Acc. Cost Time Acc. Cost Time Acc. Cost Time Acc. Cost Time

DNN
AReS 51% 2.31 101s 73% 1.6 2712s 7.22% 1.0 7984s 5.4% 1.0 9999s
Fast AReS 64% 1.45 32.0s 72% 1.43 12.8s 99.8% 4.2 37.3s 52% 5.5 109.1s
GLOBE-CE 66% 1.53 7.08s 85% 1.2 2.28s 98.5% 1.3 3.6s 93% 4.3 4.66s
dGLOBE-CE 70% 1.46 9.15s 90% 1.1 2.63s 100% 1.1 7.86s 95% 3.8 5.46s

XGB
AReS 45% 1.9 205s 61% 1.5 2092s 11% 1.0 9999s 1.7% 1.0 9999s
Fast AReS 83% 1.9 47.6s 65% 1.75 34.33s 93% 2.3 29.97s 28% 2.1 93.58s
GLOBE-CE 78% 1.8 9.61s 95% 1.02 5.04s 96% 1.1 2.94s 58% 2.4 4.7s
dGLOBE-CE 91% 1.4 12.4s 83% 1.03 5.95s 100% 0.7 6.35s 80% 2.4 5.6s

LR
AReS 79% 1.5 506s 85% 1.3 3566s 31% 1.2 9999s 4.8% 1.0 9999s
Fast AReS 82% 1.7 43.0s 85% 1.3 9.3s 99% 2.1 17.82s 92% 1.6 127.3s
GLOBE-CE 83% 1.20 8.43s 82% 1.2 3.39s 100% 1.0 3.42s 100% 0.5 3.11s
dGLOBE-CE 84% 1.18 11.7s 91% 1.3 3.87s 100% 1.0 7.21s 100% 0.5 3.85s

Table 3: Evaluating the reliability (accuracy/cost as per Section 1.1) and efficiency of GLOBE-CE against
AReS (Rawal & Lakkaraju, 2020). We have highlighted in red explanations that a) achieve below 10% accuracy
or b) require computation time in excess of 10,000 seconds (≈3 hours). Best metrics are shown in bold.

due to the nature of the data distribution; the second is an SVM (where theoretical minimum ℓ2 costs
can be computed as a ground truth) with a recourse bias against a synthetic ForeignWorker subgroup.

We randomly group the 16 participants into two equal subgroups, whereby each participant is pre-
sented with two global explanations generated from either AReS or GLOBE-CE. For each explana-
tion, the user study asks two questions: 1) do you think there exists bias in the presented recourse

User Studies AReS GLOBE-CE
Breakdown Bias? Correct? Bias? Correct?
Black Box 1 7 0 7 7
Black Box 2 1 0 5 4

Table 4: Bias detection results from user studies. Bias
and correct columns: no. of users that identified a bias
and no. of users that described it correctly, respectively.

rules?, and 2) explain the reasoning behind
your choice. The first question is multiple
choice with three answers, and the second is
descriptive. Table 4 details the response break-
down. Importantly, 7 of the 8 AReS users also
found describing the recourse bias to be hard.
Details of the models, recourses, and snapshots
of the user study can be found in Appendix D.3.

Takeaway In summary, the study demonstrates: 1) correct bias identification requires an under-
standing of the underlying distribution of recourses (the proportion of inputs each rule applies to), 2)
sub-optimal cost yields misleading conclusions and 3) GLOBE-CE both provides distribution infor-
mation (AReS uncovers the biased model, yet misleads users with regards to the biased recourses),
and outperforms AReS on cost with minimum recourse costs close to the ground truth SVM.

6 CONCLUSION

This work studies the current state of GCE methods, and addresses in detail the issues associated
within the recently proposed AReS framework in Rawal & Lakkaraju (2020). We investigate works
on both global and local counterfactual explanations before implementing and improving AReS.
With mounting desire from a practitioner viewpoint for access to fast, interactive explainability
tools (Lakkaraju et al., 2022), it is crucial that such methods are not inefficient. We propose im-
provements to the AReS framework that speed up the generation of GCEs by orders of magnitude,
also witnessing significant accuracy improvements on continuous data. We further propose a novel
GCE framework, GLOBE-CE, that further improves on the issues faced by AReS. Extensive exper-
iments with four public datasets and user studies demonstrate the efficacy of our proposed frame-
work in generating accurate global explanations that assist in identifying recourse biases. In future
we hope to apply the proposed GLOBE-CE approach to other real world use cases, and conceive
of further generation algorithms that improve its performance beyond that demonstrated here. Ap-
pendix E provides an at length discussion of such work, and the relation of our method to current
issues facing local CEs such as robustness (Dominguez-Olmedo et al., 2021) and sensitivity (Slack
et al., 2021), as well as a detailed discussion of the limitations of our work. We hope that the work
here inspires further research into the particularly under-studied area of GCEs, and proves useful as
the development of explainability tools grows in the coming years.
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APPENDIX

This appendix is formatted as follows.

1. We discuss the Datasets & Models used in our work in Appendix A.
2. We discuss Implementation Details and Example Outputs of GLOBE-CE in Appendix B.
3. We discuss the Implementation Details for AReS and Fast AReS in Appendix C.
4. We list the Experimental Details of our work and analyse Further Results in Appendix D.
5. We discuss Limitations and areas of Future Work for GLOBE-CE in Appendix E.

Where necessary, we provide discussion for potential limitations of our work and future improve-
ments or avenues for exploration.

A DATASETS & MODELS

Four benchmarked datasets are employed in our experiments, all of which describe binary classifi-
cation and are publicly available. Details are provided below and in Table 5. Our experiments utilise
three types of models: Deep Neural Networks (DNNs); XGBoost (XGB); and Logistic Regression
(LR), described below and in Tables 6 through 8. Our user study also investigates linear kernel
Support Vector Machines (SVMs), as these provide mathematical forms for minimum recourse.

A.1 DATASETS

To assess our methods, we utilise the real world datasets detailed below and in Table 2. Where
necessary, we augment input dimensions with one-hot encodings over necessary variables (e.g. Sex).

The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset
(Larson et al., 2016) classifies recidivism risk, based off of various factors including race,
and can be obtained from and is described at: https://www.propublica.org/article/
how-we-analyzed-the-compas-recidivism-algorithm. This dataset tests performance of
our method in low-dimensional and highly-categorical settings.

The German Credit dataset (Dua & Graff, 2019) classifies credit risk and can be obtained from
and is described at: https://archive.ics.uci.edu/ml/datasets/statlog+(german+
credit+data). The documentation for this dataset also details a cost matrix, where false posi-
tive predictions induce a higher cost than false negative predictions, but we ignore this in model
training. Note that this dataset, which tests mainly categorical settings, is distinct from the common
Default Credit dataset, described hereafter.

The Default Credit dataset (Dua & Graff, 2019) classifies default risk on customer payments and
is obtained from and described at: https://archive.ics.uci.edu/ml/datasets/default+
of+credit+card+clients. This dataset stress-tests scalability (increased inputs, dimensions and
continuous features).

The HELOC (Home Equity Line of Credit) dataset (FICO, 2018) classifies credit risk and can be
obtained from (upon request) and is described in detail at: https://community.fico.com/s/

Name No. Inputs Input Dim. Categorical Continuous No. Train No. Test

COMPAS 6172 15* 4 2 4937 1235
German Credit 1000 71* 17 3 800 200
Default Credit 30000 91* 9 14 24000 6000

HELOC 9871 23 0 23 7896* 1975*
*Denotes values post-processing (one-hot encoding inputs, dropping inputs).

Table 5: Summary of the datasets used in our experiments. Although German Credit includes continuous fea-
tures, we find that they have limited effect on the model both during training and in the resulting explanations.

14

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge


Under review as a conference paper at ICLR 2023

explainable-machine-learning-challenge. We drop duplicate inputs, and inputs where all
feature values are missing (negative values), and replace remaining missing values in the dataset
with median values. Notably, the majority of features are monotonically increasing/decreasing.

A.2 MODELS

We train models with an 80:20 split for each dataset. While each model’s parameters differ, the
universal aims are to a) achieve sufficient accuracy, b) avoid overfitting, and c) predict a similar class
balance to the original data. The true proportion of negative labels in the training data of each dataset
are 45%, 30%, 22%, and 53%, respectively. The Table 5 No. Train column dictates |X | in Tables 6
through 8, and the inputs in |X | with negative predictions from a particular model are denoted |Xaff|.
Deep Neural Networks (DNNs) We use the common library PyTorch to construct and train
DNNs. Widths and depths of such models are outlined in Table 6. Layers include dropout, bias
and ReLU activation functions. We map the final layer to the output using softmax, and use Adam
to optimise a cross-entropy loss function. Table 6 details various model parameters/behaviours.

Name Width Depth Dropout Train Acc. Test Acc |Xaff| |Xaff|/|X |
COMPAS 30 5 0.4 68% 65% 2552 52%

German Credit 50 10 0.3 84% 78% 243 30%
Default Credit 80 5 0.3 81% 81% 5232 22%

HELOC 50 5 0.5 74% 74% 4334 55%

Table 6: Summary of the DNNs used in our experiments.

XGBoost (XGB) Implementation from the common xgboost library.

Name Depth Estimators γ, α, λ Train Acc. Test Acc |Xaff| |Xaff|/|X |
COMPAS 4 100 1, 0, 1 70% 68% 2008 41%

German Credit 6 500 0, 0, 1 95% 74% 197 25%
Default Credit 10 200 2, 4, 1 90% 83% 3744 16%

HELOC 6 100 4, 4, 1 77% 74% 4323 55%

Table 7: Summary of the XGB models used in our experiments.

Logistic Regression (LR) Implementation from the common sklearn library.

Name Max Iterations Class Weights (0:1) Train Acc. Test Acc |Xaff| |Xaff|/|X |
COMPAS 1000 1:1 67% 65% 1940 39%

German Credit 1000 1:1 79% 76% 180 23%
Default Credit 2000 0.65:0.35 81% 83% 3858 16%

HELOC 2000 1:1 73% 75% 4282 54%

Table 8: Summary of the LR models used in our experiments. Class Weights refer to the loss function used.

B OUR FRAMEWORK: GLOBAL & EFFICIENT CES

This Appendix discusses several specificities concerning our methodology. Similarly to our AReS
implementations, we acknowledge that there does exist scope to improve upon the efficiency of our
method, though are encouraged by the superior results GLOBE-CE achieves relative to baselines.
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B.1 EXAMPLE GLOBE-CE REPRESENTATIONS FOR CONTINUOUS DATA (HELOC)

This section expands upon the various outputs of our framework (Section 3.2) in the context of
continuous data from the HELOC dataset (FICO, 2018). We consider the following useful repre-
sentations of the information computed in Algorithm 1: accuracy-cost profiles, minimum costs, and
mean translations.

Accuracy-Cost Profiles The natural trade-off associated with CEs is that between accuracy and
cost; lower cost CEs are likely to cover fewer inputs, and vice versa. The literature typically accounts
for this by introducing a hyperparameter (e.g. λ) to tune the trade-off. This however assumes a linear
relationship between the metrics i.e. λ is held constant during optimisation. Not only is this unreal-
istic, as the relative importance of accuracy normally varies with cost, but it introduces tuning diffi-
culties for practitioners, i.e., it must be determined either a priori or through hyperparameter search
which accuracy-cost combination is optimal, and subsequently which λ value maps to this particular
combination (non-trivial). As stated in Section 3.2, our scaling approach instead induces accuracy-
cost profiles as in Figure 1, providing a far more interpretable method for accuracy/cost selection.

Minimum Costs & Mean Translations Standard statistical methods can be adopted to convey
the minimum costs per input (corresponding to the minimum scalar required to alter the prediction).
For continuous data, knowing that costs scale linearly as a particular translation is scaled, we deem
it interpretable to display solely mean translations alongside the illustration of minimum costs, an
assertion supported by our user studies, where participants interpreted GLOBE-CE explanations
considerably faster than in AReS. These explanation representations are depicted in Figure 1.

B.2 EXAMPLE GLOBE-CE REPRESENTATIONS FOR CATEGORICAL DATA (GERMAN)

We now proceed to examine typical GLOBE-CE outputs for categorical features, using the German
Credit (Dua & Graff, 2019) dataset. Of particular interest is the representation of scaled categorical
translations. The accuracy-cost profile and minimum cost histogram naturally follow.

Cumulative Rules Charts for Scaled Translations For the sake of our analysis, consider purely
the categorical features from German Credit (see Section 3.2 for the introduction to CRCs).

Figure 6: GLOBE-CE representations.

Recall that, under a given translation direction, there ex-
ists a minimum cost, or equivalently a minimum scalar, at
which recourse is achieved (shown in blue in Figure 6),
if indeed recourse can be achieved at all. However, un-
like continuous features, representing the range of poten-
tial minimum scalars across all inputs in an interpretable
manner is not trivial. To generate the CRC in Table 1,
we exploit the vector of lower bounds k = [k1, k2, ..., kn]
introduced by Theorem 2, which defines the minimum
scalars required to generate specific feature value rules
for a given translation. We select 5 equally spaced scalars
from this vector (shown in Table 1 and in orange in Fig-
ure 6). The constrained selection of n scalars from k, such
that minimum costs are achieved over the inputs where re-
course is found in Algorithm 1, can be viewed as a mono-
tonic submodular maximisation. Problems of this type
are NP-hard, though unlike AReS, our required search
spaces k have shown empirically to be of significantly re-
duced size. Lastly, the accuracy-cost and minimum costs
properties of AReS are also shown in green for reference.

Accuracy-Cost Profiles and Minimum Costs The nu-
merical values in such a representation are easily por-
trayed via the Accuracy-Cost Profiles and Minimum Costs
Histograms (Figure 6, Upper and Lower, respectively). The figures shown demonstrate our frame-
work’s superiority over AReS (including efficiency being around 400 times higher in this situation),
even in the context of categorical features, which AReS is designed for, favouring the use of the
categorical translation theorems. As seen, these representations are particularly useful in comparing
recourses between subgroups– optimal translations for one subgroup can also be directly applied to
another, and vice versa, to gain insights as to a model’s subgroup-level reasoning. Potentially, the
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rows of a CRC could too be reordered to achieve optimality. We discuss these future avenues for
research in Appendix E.1.

Figure 7: Display of a) monotonicity, b)
smaller k inducing higher cost, and c) fixed
k inducing variable cost.

Notes Regarding Scaled Translations By our defini-
tions in Section 5 and Appendix E, the cost of a scaled
translation kδ on an input x1 increases monotonically
with k, as displayed in Figure 7 (see Theorem 2 for proof
w.r.t. categorical features). However, between inputs x1
and x2, a smaller scaled translation k1δ may induce a
higher cost on input x1 than a larger scaled translation k2δ
induces on input x2 (Figure 7). For a fixed δ, inputs x1
and x2 can have different costs. For example, should an
‘If’ condition be satisfied by x1 that is not satisfied by x2,
and x1 and x2 are otherwise the same, then x1 will have
a greater cost than x2 (Figure 7). These last statements
apply if and only if categorical features are involved.

Scaled Translation Example (Single Categorical Feature) We conclude this section by pro-
viding one further example to aid understanding of the scaling process. Take a one-hot encoded
feature with n = 4 values, translation δ = [δ1, δ2, δ3, δ4] = [0,−1, 1, 1/2], index sequence
of sorted δ (ascending) ∆ = [∆1,∆2,∆3,∆4] = [2, 1, 4, 3], vector of lower bound scalars
k = [k1, k2, k3, k4] = [1, 1/2,∞, 2]. Recall that all rules will have the form ‘If Feature Value =
X, Then Feature Value = 3’, since δ3 is the maximum translation (Theorem 1). For example, k states
intuitively that δ must be scaled by a minimum factor of k = 2 in order for the translation to result
in a rule for the fourth feature value, since k4 = 2. If k < 2, inputs belonging to the fourth feature
value will not flip value post-translation (take k = 1, where the post-translation value for such inputs
is 1 for the third input and 1.5 for the fourth input, resulting in no change after re-encoding values
by selecting the maximum). Table 9 illustrates the rule generation process in this case.

m = 1 m = 2 m = 3

∆m 2 1 4

k∆m
1/2 1 2

k∆m
× δ1 0 0 0

k∆m
× δ2 -1/2 -1 -2

k∆m
× δ3 1/2 1 2

k∆m × δ4 1/4 1/2 1

Rules for
k∆m

< k ≤ k∆m+1

If 2,
Then 3

If 1 or 2,
Then 3

If 1 or 2 or 4,
Then 3

Alternative
Rules

If Not (1 or 3 or 4),
Then 3

If Not (3 or 4),
Then 3

If Not 3,
Then 3

Table 9: Example of the vector of lower bound scalars k and its relation to a translation δ and resulting rules.
Values/indexes with distance ≥1 from the maximum translation (kδ3) are shown in red. 1 ≤ m < n.

B.3 GENERALITY OF OUR FRAMEWORK

Though it has been mentioned repeatedly, we will reinstate our objective of proposing a general CE
generation framework, and proceed to qualify this goal with an in-depth analysis of the potential
scope of our framework. This section delves deeper into the flexibility of GLOBE-CE to model
specifics, over a variety of model families (DNNs, XGB, SVMs, results in Appendix D.2), as well as
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existing works in the model-agnostic domain of GCE research. We will conclude by considering the
expansion of our implementation to current CE methods, and even to subsume the AReS algorithm.

Our motivation lies in demonstrating that our translation scaling techniques possess the requisite
flexibility to be overlaid on top of existing criteria or algorithms in the CE space. Ideally, there
should also exist specific parameter settings whereby our framework is equivalent to previous works,
to guarantee at least equal performance. Analogously, Fast AReS is equivalent to AReS when using
RL-Reduction, r = |V |, and s = |V |. Any such reduction of r or s can be discarded if it hinders the
performance of AReS, although we observe empirically that the opposite occurs. Similarly, the fact
that our translation generation algorithm is completely general allows our framework to subsume any
local method by simply setting the scalar k = 1 and the datapoints of interest to just the local input.

Model Specific – Deep Neural Networks DNNs are widely known for their backpropagation
properties, which permit gradient calculations for the output layer w.r.t. the input. Several works thus
utilise gradient descent to locate counterfactuals for such models. Since the goal of our general CE
generation method G(B,X , n) is to locate n suitable GCE translations, we perform gradient descent
on the following objective function, which takes both globality and categorical features into account:

L(δ) = 1

|X |
∑
x∈X

(B0(round(x+ δ)) + λcost(x, round(x+ δ)) + cat(x+ δ)) ,

where δopt = argminL(δ).

In this context, B0 is the softmax prediction of the undesired class, or equivalently, when moving
beyond a recourse setting, the negative of such for the desired class. The cost and round terms are
as previously described, and the additional cat term represents a penalty over categorical features
in the resulting counterfactuals (we penalise categorical feature values that do not sum to 1). This
naturally conforms to the standard framing of the counterfactual problem, and as previously, once
δopt is converged to, it can be scaled to represent the final GCEs. For purely continuous datasets, the
objective reduces to the minimisation of L(δ) = 1

|X |
∑

x∈X (B0(x+ δ) + λcost(δ)).

Model Specific – XGBoost Models These also provide an interesting direction for efficient CE
generation, namely through readily accessible feature importance scores. In the case of a single
decision tree, each node contributes a certain amount to the performance of the tree, and if each such
contribution is weighted by the particular number of inputs that it influences, feature importances
can be computed for the tree as a whole. Averaging the importances across all trees yields the overall
importance per feature. We show a second time that model specific information, in this case feature
importance, can be incorporated easily into our framework, simply by weighting the probability of
each feature value in our random sampling framework with its feature importance.

Model Specific – Support Vector Machines We study here the linear kernel SVM, a model
that offers mathematical expressions for the minimum distances or costs to the decision bound-
ary. Knowledge of such is useful in assessing the performance of our framework; the minimum
costs discovered by GLOBE-CE should be as close as possible to the theoretical minima provided.

In our problem landscape, we require minimum costs rather than minimum distances, and we pro-
ceed with two assumptions: costs are computed as the ℓ2-norm of the individual feature costs; and
features are continuous for the sake of this analysis. The first assumption is influenced by the fact
that, in the context of linear kernel SVMs, ℓ1 costs lead to completely sparse solutions (i.e. solutions
where just one feature value changes). Though multiple optimal solutions do exist in this context
which are not completely sparse, we wish to test the ability of both AReS and GLOBE-CE in find-
ing a single, unique, and optimal GCE, which the minimum ℓ2 cost translation uniquely provides.

We thus aim to minimise the cost ∥Cδ∥2 of a translation δ. The feature costs vector is represented
as a diagonal matrix C, scaling each feature independently before applying the ℓ2-norm. Let the
original input, counterfactual and translation be x0, x, and δ = x− x0, respectively. Given that the
decision function of the SVM is yi = wTxi + b, where y = 0 at the decision boundary, we derive:

y = wTx+ b = 0 and y0 = wTx0 + b

=⇒ −y0 = wT (x− x0) = wT δ = wTC−1Cδ

Recognising this expression as an inner-product between wTC−1 and Cδ, the Law of Cosines gives

−y0 = ∥wTC−1∥2∥Cδ∥2 cos θ =⇒ ∥Cδ∥2 =
−y0

∥wTC−1∥2 cos θ
,
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which is minimised when cos θ = 1, such that the angle between Cδ and C−1w is 0, or alternatively,
Cδ is parallel to C−1w. This would imply that, upon normalisation, the two would be equivalent:

Cδ

∥Cδ∥2
=

C−1w

∥C−1w∥2
=⇒ δ =

−y0
∥wTC−1∥2

× C−2w

∥C−1w∥2
=

−y0C
−2w

∥C−1w∥22

Noting that wTC−1 = C−1w, since the cost matrix C is diagonal with C = CT and C−1 =
(C−1)T , we have thus derived the closed-form expressions for minimum cost ∥Cδ∥2 and translation
δ:

∥Cδ∥2 =
−y0

∥wTC−1∥2
and δ =

−y0C
−2w

∥C−1w∥22
This translation on the local input (x0, y0) in fact applies globally, and we provide details regarding
our user study in Appendix D.2 and Section 5.2 of the main text, demonstrating that the GLOBE-CE
framework recovers minimum cost recourses very close to the theoretical global optima of the SVM.

Model Agnostic Other black box GCE methods that adopt translation based approaches, such
as those in Plumb et al. (2020) and Ley et al. (2022), are easily integrated into our framework.
Alternatively, we could view our framework as an extension to those works, filling the previous
gaps with regards to minimum costs (by scaling translations) and categorical features (through our
interpretation).

In reality, a plethora of issues surround past research on GCE translations. The algorithms in (Plumb
et al., 2020; Ley et al., 2022) minimise distance between initial inputs (post-translation) and target
inputs, resulting in a heavy reliance on the distribution of training data. If data lies too far from the
decision boundary, GCEs learnt will not be well optimised for cost. In fact, any sparsely populated
areas of the data manifold risk under-representation, despite possible significance w.r.t. the model’s
decision boundary. Furthermore, when the metric being optimised (the distance between datapoints)
is not the metric used to evaluate the resulting explanations, tuning the learning process can become
very difficult.

However, such problems can be bypassed with the introduction of our method to scale translations.
Typically, the outputs of our random sampling framework are not as useful standalone, but embrace
their full utility after the scaling process. Of course, our handling of categorical features would too
be a great addition to these methods, which currently neglect to address categorical features.

The Role of Simplicity in our Framework The simplicity of our GCE generation process, as
compared to earlier approaches (Rawal & Lakkaraju, 2020; Kanamori et al., 2022), serves to high-
light the power of the consequent scaling and selection operations (outlined in this Appendix). It is
particularly encouraging that we can achieve superior levels of reliability (high accuracy, low cost)
and efficiency compared to the baselines of AReS and Fast AReS, which holds promise for the scal-
ability of GLOBE-CE; as datasets and models increase in complexity, there remains a large scope
still for our algorithm to improve and adapt.

Amending our Framework As examples, genetic, evolutionary, or simplex (Nelder-Mead) search
algorithms could improve both the reliability and the efficiency of the translation generation process
as compared to random sampling. In fact, by framing the global search in an analogous sense to the
local problem, as we do in Section 3, we leave the door open for any potential groundbreaking local
CE research to be applied immediately in the context of GCEs. Another consideration is that a single
translation direction will not always guarantee optimality. In fact, true optimality is only guaranteed
by a single translation in contexts where the decision boundary spans a hyperplane (e.g. SVMs). We
accommodate the use of multiple translations in our approach through a greedy maximum accuracy
search at the fixed cost of the search, but the presence of many works in this field outlining methods
to achieve diversity should be noted, particularly given that our local framing of the global search
directly permits the implementation of diversity techniques such as those in Mothilal et al. (2020).

Subsuming AReS We would further argue that the approach in AReS to produce a relatively large
number of GCE explanations is one of the main contributors to its computational complexity, though
the form of the two level recourse set generally requires as much. Of course, there is no reason that
the apriori (Agrawal & Srikant, 1994) search could not also be used in our framework to generate
translations for categorical features by influencing the probability of particular feature values in the
same manner as the XGBoost feature importance method that we discussed earlier in this Appendix.
On top of this, the ability of our framework to impose any number or combination of subgroup
descriptors provides a route to essentially subsume the two level recourse set representation that
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AReS deploys, which we portray in Figure 1, with the exception (and advantage) that continuous
features do not undergo binning.

Comparing Subgroups The other notable detail in Figures 1 and 1 is the direct comparison of the
same GCE between subgroups. Comparing GCEs with different feature values or relative scales can
make it difficult to determine what, if any, biases are present in the recourses found. Conversely, by
applying the same translation direction to both subgroups, the specific differences between recourses
are much more easily identified, avoiding the metaphorical ‘apples to oranges’ comparison. We sug-
gest that translations identified within subgroups are made fluid, and their reliabilities evaluated on
opposing subgroups. Note that all of the representations that we propose in this text (accuracy-cost
profiles, minimum cost histograms, mean translations, and CRCs) support such translation fluidity.

C ARES IMPLEMENTATION

We use this Appendix to provide further details regarding the implementation of each stage of the
AReS workflow. Our implementation of AReS, without improvements, does in fact differ slightly
from that proposed in Rawal & Lakkaraju (2020), and as such we will justify our changes herein.
We of course acknowledge that this implementation is far from the most efficient possible, though
hope that the patterns and improvements we have identified can aid further development of not only
this framework, but others in the global counterfactual explanations space.

Of note is the scalability of AReS, which struggled with Default Credit and HELOC, datasets that
contain significantly more points to explain (|Xaff|) than German Credit or COMPAS, and signif-
icantly more continuous features. Additionally, the proportion of points with positive predictions
(roughly 75% for German Credit and 45% for HELOC on average) influences the ease with which
AReS finds recourses. For stringent models (those which scarcely predict positively), it would make
sense that the vast majority of frequent itemsets generated by apriori are representative of feature
value combinations that exist in the inputs with negative predictions, and we might therefore expect
to need to generate an enormous number of triples before we can identify successful recourses.

Stage 1 Contribution (RL-Reduction) We remove items with feature combinations that only
occur once (e.g., “Sex = Male, Age < 30” has feature combination “Sex, Age”), yielding |RL| = αn
(0 ≤ α ≤ 1) in O(n) time. This generates an identical ground set V , yet saves (1−α2)n3 iterations.

Stage 1 Contribution (Then-Generation, qqq) At each iteration of SD ×RL, we filter the data by
the If conditions and redeploy apriori to generate Then conditions. The ground set generated here
differs from that in AReS, and we observe significant improvements on continuous features.

Figure 8: German Credit dataset. Re-
dundancy in triples of ground set V .

Stage 2 Contribution (V-Reduction, rrr,r′r′r′) At large |V |,
evaluation is costly, yet this is a necessary requirement in find-
ing high-performing triples. Fortunately, we can take advan-
tage of two empirical observations: 1) the generation of a large
ground set V is relatively cheap and 2) acc(V ) saturates far be-
fore the whole set has been evaluated. We evaluate a fixed num-
ber of triples and form a new ground set in one of two ways:
adding each new triple; or adding only triples that increase the
recourse accuracy of the new ground set. We denote these r
and r′, respectively. For example, r = None and r′ = 1000 re-
turns 1000 evaluations, and may store fewer than 1000 triples.

Stage 3 Contribution (V-Selection, sss) The bottleneck in the AReS framework, however, lies in the
submodular maximisation of Stage 3 (Lee et al., 2009). We achieve speedups by further shrinking
V pre-optimisation to a more practical starting point. We propose to sort the (new) ground set by
recourse accuracy (pre-computed) and select the s highest-performing triples. If s = r or r′, no
sorting occurs.
C.1 GROUND SET GENERATION (STAGE 1)

AReS includes interpretability constraints for the total number of triples ϵ1, the maximum width of
any Outer-If/Inner-If combination ϵ2 and the number of unique subgroup descriptors ϵ3 in R. As
in AReS, we take ϵ1, ϵ2, ϵ3 = 20, 7, 10. Constraints that are independent of the optimisation, such
as ϵ2, are applied in this stage in O(n2) and not O(n3) time. In our implementation, this involves
expediting the ϵ2 width constraint to the ground set generation process by constraining apriori to
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(Stage 1) (Stage 2) (Stage 3)
Ground Set Generation Ground Set Evaluation Ground Set Optimisation

AReS n3 Iterations Performed Evaluates Full Ground Set Searches Full Ground Set

Fast AReS α2n3 or n2 maxi Ti Evaluates and Reduces Full Searches Reduced and
Iterations Performed or Partial Ground Set Sorted Ground Set

Table 10: A summary of our AReS enhancements w.r.t. each stage of the search. We define α, n and Ti below.

only return frequent itemsets that have length ϵ2 − 1 or less, since those already with width ϵ2
cannot then be further combined with another itemset to form Outer-If/Inner-If conditions. If the
width constraint is not violated for the If conditions, the resulting triple will automatically satisfy
the constraint.

The implication of this is that we can apply the constraint in Stage 1, while we generate the ground
set (in the first two levels of the iteration through RL3). This avoids applying the width constraint
mid-optimisation in Stage 3, reducing the time complexity of the operation from O(n3) to O(n2). It
also reduces the number of constraints used in Lee et al. (2009), speeding up Stage 3. Since it makes
sense that triples which violate the maximum width condition should not be generated in Stage 1,
we assume that a similar approach is deployed (though not stated) in Rawal & Lakkaraju (2020).

Then-Generation The apriori algorithm (Agrawal & Srikant, 1994) alluded to in the main text
takes a probability threshold p as input. This probability of an itemset in the data, or support thresh-
old p, determines the size of SD and RL, and consequently the size of V . Our Then-Generation
method again utilises application of apriori, requiring a second support threshold q. A lower bound
for the threshold q is derived here. In fact, there always exists a lower bound when mining fre-
quent itemsets, such as in apriori, since no observed itemset can occur less than once. Thus, set-
ting q < 1/|X | would be redundant. This allows us to analyse (in Appendix D.1) the effect of
1/|X ≤ q ≤ 1. Appendix C.4 further details apriori.

C.2 GROUND SET EVALUATION (STAGE 2)

The submodular maximisation (Lee et al., 2009) first evaluates the objective function f over all
triples v ∈ V , before initialising the solution R as the singleton set {v} with the maximum f({v}).
For large |V |, this evaluation becomes computationally costly (more-so does the subsequent ground
set optimisation), and many triples are also redundant. However, we require large |V | in order to
find high-performing triples and achieve an acceptable upper bound1 on the final set, R ⊆ V .

Our improvement V-Reduction evaluates the objective function f (see Appendix C.3) over a fixed
number of triples in V (recall that AReS evaluates the entirety of V ). As we’ve demonstrated
empirically, albeit on the four datasets tried in this investigation, evaluating the entire ground set
is wasteful, given that performance of the first r elements of V saturates quickly, and more so if
one considers that Stage 3 must then perform submodular maximisation over a space potentially
hundreds of times as large, and that (Lee et al., 2009) only guarantees polynomial time.

However, there is a distinction between evaluating the objective function f and evaluating the acc
and cost terms used in evaluation. Fortunately, no extra major computation is required to evaluate
the accuracy and cost terms, since the objective function f returns model predictions and costs, and
although the two processes differ, they can be carried out efficiently in tandem. This is promising,
as not only does our method allow us to terminate evaluation once saturation has been reached, but
it also provides us with the upper bound acc(R) ≤ acc(V ). In many of our experiments, this upper
bound is actually reached in Stage 3 far before the algorithm has completed, presenting us with
a straightforward opportunity for early termination of the algorithm. This could further save time
dramatically, and provide ease-of-use to practitioners, though was not included in our experiments.

C.3 GROUND SET OPTIMISATION (STAGE 3)

We introduce two key modifications to Stage 3 of our implementation. The first is to the objective
function, the second is to the submodular maximisation in Lee et al. (2009).

1For instance, if acc(V ) = 25%, we cannot achieve acc(R) > 25%; conversely, a ground set with
acc(V ) = 80% requires major evaluation and will also include many low-performing, redundant triples.
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Objective Function The objective function f(R) in Rawal & Lakkaraju (2020) is designed to be
non-normal, non-negative, non-monotone and submodular, and to have constraints that are matroids.
These conditions are required for the submodular maximisation in Lee et al. (2009) to have a formal
guarantee of convergence. This results in four terms in f(R): incorrectrecourse, cover, featurecost,
featurechange. Bar the cover term, all of these are subtracted from f(R) (i.e., maximising correct
recourse by maximising the negative of incorrectrecourse). Such an objective function with three
adjustable hyperparameters can be very difficult to tune. For that reason, we also trial in our exper-
iments an objective that consists very simply of acc(R) − λ × cost(R), which we maximise. We
argue that the formal guarantees of convergence (polynomial time) are largely a misdirection of ef-
forts in the original method. Polynomial time is not particularly helpful when the size of ground sets
required for certain datasets/models is huge, and thus we instead focus on reducing the size of the
ground set while retaining quality before the submodular maximisation (Lee et al., 2009) is applied.

Submodular Maximisation The algorithm states that, for k constraints, you can exchange up to
k elements from your solution set R alongside the addition of one element from V . Stated also is
that the optimisation should be repeated k+1 times, before the best solution for R is then chosen. In
reality, both of these induce high computational costs. Trivially, for the latter, ignoring the maximum
width constraint (Appendix C.1) and taking k + 1 = 3, we will mostly increase the time taken by
AReS three-fold. Having observed that both of these steps do not improve the performance of AReS
significantly in our experiments, we omit them from the original and improved implementations.
Furthermore, since the exchange operation stated is the most costly, our implementation checks for
add/delete operations first until such options are exhausted. Note that works such as (Kanamori
et al., 2022) instead utilise greedy algorithms, though still require in excess of three hours on simple
datasets.

C.4 APRIORI INTERPRETATION

The apriori algorithm (Agrawal & Srikant, 1994) returns groups of itemsets that are frequently found
within a dataset according to some support threshold (the probability of finding such an itemset in
the data). Figure 9 demonstrates this (itemsets with less than or equal to 6 features). Rawal &
Lakkaraju (2020) states:

1. A recourse set R is made up of triples of the form (d, c, c′) denoting an outer if condition (d) and
inner if-then conditions (c, c′), respectively (page 3).

2. “The corresponding features in c and c′ should match” (page 3).
3. The optimisation searches for R ⊆ SD ×RL (eq. 1, page 5).
4. “If the user does not provide any input, both SD and RL are assigned to the same candidate set

generated by apriori” (page 5).

Figure 9: Apriori (p = 0.1).

We deduce that SD corresponds to the outer if conditions (d), so
RL must then correspond to (c, c′). However, from statement 2,
apriori cannot provide c, c′ because of statement 2, which states
that features must match, since a single apriori set is incapable of
returning the ‘Then’ part of the recourse rule, yet statements 3 and 4
together imply that apriori generates the full space R ⊆ SD×RL.

Furthermore, Lakkaraju et al. (2019) define the search space as
R ⊆ ND × DL × C, where ND and DL are analagous with SD
and RL, and C is the number of classes. The rules then take the
intuitive form, with ND, DL and C representing each part of the
triple. Assuming this reasoning, alongside correspondence with the
authors, confirms the form of our search space R ⊆ SD ×RL2.

C.5 FURTHER DISCUSSION

Customising AReS As implicit in (Rawal & Lakkaraju, 2020), our implementation gives the user
control over which features are dropped, how continuous features are binned, and the particular
subgroup descriptors SD used for fairness analysis. We additionally posit that the particular data
used to generate RL will potentially affect the final results quite significantly; there should be scope
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to assign the ‘Then’ conditions to an apriori evaluation on the dataset points with positive predic-
tions, as these may be more likely to produce successful recourses. Data scarcity should be taken
into account, as small datasets may not contain such a distribution of feature values that allow for
effective searches of this nature. Finally, the constraint that all features in the Inner-If and Then
conditions must match could possibly be ignored (the CET (Kanamori et al., 2022) and GLOBE-CE
frameworks both take this approach).

Critiquing AReS We should preface this section by stating that the framework in (Rawal &
Lakkaraju, 2020) is an original and major contribution to GCEs, and hope that its limitations can be
overcome in consequent research. Save the shortcomings listed in the main text, we find a potential
further three for consideration.

Firstly, AReS evaluates its recourses on the same set from which they are learnt (as do we in the
main text). In practice, there are many scenarios in which we desire evaluation on a set of unseen
test points. We perform such an evaluation, detailed in Appendix D, finding that performance does
not deviate significantly, though the GLOBE-CE framework does generalise slightly better.

Secondly, the baselines used to assess AReS are notably weak (e.g. a naive averaging of instance-
level explanations), and the effort exerted in tuning such baselines is unknown. While our work
considers AReS to be state-of-the-art, owing to its performance against such baselines, making
efforts to improve its performance (Fast AReS), perhaps a larger and more varied group of viable
baseline frameworks for GCEs that strike a balance between naivety and sophistication could be
conceived of.

Finally, the computational expense of the method has not been documented to a strong degree,
and the claims made regarding its formal guarantees and framework generality we find not entirely
useful. The former claim, while potentially useful, only applies to the optimisation of the ground set
V to produce the two level recourse set R, providing no concurrent guarantee on the upper bound
of V , and pertaining also to polynomial time convergence, which scales particularly badly given the
extremely high cardinality of V required to achieve acceptable performance. The latter claim, on the
generality of the framework, neglects again to account for the size of the optimisation space required
by AReS; in throwing a sufficient amount of compute at a simple dataset (far more than the original
model required), one should reasonably expect to fit such exhaustive explanations.

Future Work on AReS Regarding the first point on generalisation above, we could extend our
evaluation on unseen test data to include the effect of overfitting in models and out-of-distribution
test points, given the susceptibility of current explanation methods to such inputs.

An interesting property of our Fast AReS optimisation is that there exist a variety of different shrunk
ground sets, each with a high performance. While our optimisation simply picks one, multiplicity
in AReS might be achieved by shuffling the ground set before the evaluation stage. We suggest the
space of possible solutions be explored, tasked with answering the question: where might this fail?

Additionally, one might naturally question if a framework such as AReS could be extended beyond
recourse, especially to other data forms such as images. While we explain the shortcomings AReS
faces on continuous data, we posit that higher level views of image data such as latent spaces or
concept embeddings could provide an interesting target for an extended future AReS framework.

Finally, as stated, we bin continuous features into 10 equally sized intervals. This follows the con-
ventions in (Rawal & Lakkaraju, 2020), though we find that this approach struggles to trade per-
formance with efficiency. Another facet of the framework is the direct interpretation of two bins;
supposedly, one can move from any point in the first bin, to any point in the second bin, though
this is not theoretically confirmed. The use of evenly spaced bins might also be improved upon in
certain cases with quantile based discretisation, or more advanced decision tree structures. Lastly,
the determination of costs is still a complex and unsolved problem in counterfactual literature– we
justify our approach in Appendix E.

D EXPERIMENTAL RESULTS

This Appendix further details various experiments on AReS, Fast AReS and our GLOBE-CE frame-
work. User studies, model specific analyses, and hyperparameters are included.

D.1 ARES OPTIMISATIONS
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Stage 1 Stage 2 Stage 3

German
Credit

OG: 0.169 ≤ p ≤ 0.390 −→
RL: 0.39 ≤ p ≤ 0.149 −→
Then: 0.9 ≤ p ≤ 0.303 −→

q = 0.00125

OG: r = 5000
RL: r = 5000
Then: r = 5000, q = 0.00125
OG: 0.316 ≤ p ≤ 0.26, r = |V |

OG: 0.39 ≤ p ≤ 0.305, r = |V |
RL: p = 0.245
Then: p = 0.48,

q = 0.00125

HELOC
OG: 0.325 ≤ p ≤ 0.285 −→
RL: 0.325 ≤ p ≤ 0.203 −→
Then: 0.75 ≤ p ≤ 0.563 −→

q = 0.000127

OG: r = 5000
RL: r = 5000
Then: r = 5000, q = 0.000127
OG: 0.325 ≤ p ≤ 0.3, r = |V |

OG: 0.324 ≤ p ≤ 0.318, r = |V |
RL: p = 0.245
Then: p = 0.48,

q = 0.000127

Table 11: The keys OG (Original AReS), RL (RL-Reduction) and Then (Then-Generation) refer to the
generation process of the ground set, as per Section 4. Arrows indicate values carried from one stage to the
next. Apriori thresholds p and q are listed. Remaining parameters r, r′ and s are listed in the Figure 5 plots.

Figure 10: Effect of apriori threshold q in the proposed
Then-Generation method (German Credit).

As AReS struggles to achieve sufficient accu-
racy within reasonable times, we set hyperpa-
rameters for featurecost and featurechange, or
λ, to 0, also finding that the average costs were
low and did not vary a large amount, justifying
the decision to target correctness. The remain-
ing hyperparameters used in the Figure 5 exper-
iments (Section 5) are as detailed per stage in
Table 11. Recall also that we have bounded the
range of the apriori threshold q used in Then-
Generation to 1/|X | ≤ q ≤ 1 (Section 4 and
Appendix C.1). Figure 10 demonstrates that
for q > 1/|X |, we slightly reduce the run-
time, at the expense of a much larger drop in
performance. Observe that the red and brown
lines (where p is held constant and q is varied)
converge to the green and purple lines (where
q = 1/|X | and p is varied), respectively. The brown and purple plots also indicate that combining
our two improvements RL-Reduction and Then-Generation performs sub-optimally. We thus de-
cide to evaluate these improvements separately, with a fixed q = 1/|X | threshold. We note that the
choice of SD = RL weakens performance, which aids in stress-testing scalability.

D.2 GLOBE-CE

Model Specific Analyses The GLOBE-CE implementations that utilised some sort of model in-
formation (DNN gradients, XGB feature importance scores) are depicted in Figures 11 and 12,
alongside GLOBE-CE (blue), diverse GLOBE-CE with n = 3 (orange) and Fast AReS (green).

The use of DNN gradient descent to determine an appropriate translation prior to scaling, shown in
red in Figure 11, demonstrates marginally improved performance over GLOBE-CE on continuous
data (HELOC, Right), though the same method for categorical data (German Credit, Left) produces

Figure 11: Translations generated by gradient descent and scaled (red), compared to the other frameworks.
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Figure 12: Translations generated by feature importance and scaled (red), compared to the other frameworks.

similar results to GLOBE-CE, with performance dependent on the particular accuracy-cost trade-off
desired (as expected, given that gradient descent can struggle in the presence of categorical features).

The use of XGB feature importances to weight the probability of the random translation generated
prior to scaling, shown in red in Figure 12, demonstrates improved performance over GLOBE-CE
on continuous data (Default Credit, Right) and, marginally, on categorical data (COMPAS, Left).

The results across these two particular model classes illustrate the flexibility of our framework and its
ability to accommodate model specific properties, doing so effectively with model gradients (DNNs)
and feature importance scores (XGB). The effectiveness of the random sampling framework in the
absence of any additional model information other than its predictions is also demonstrated.

D.3 USER STUDIES

In our experiments, participants received either explanations from GLOBE-CE or from AReS, and
were subsequently asked to provide bias identification, and a description if they believed a bias to
exist. The aim of the study is two-fold. We first hope to establish the importance of providing the
underlying distribution of costs as per the GCEs output by a framework (i.e., the proportion of inputs
that correspond to each GCE, given that the lowest cost GCE that results in a flipped prediction is
selected for each input). Secondly, we hoped to reinforce our claim in Section 2.3 that sub-optimal
recourse costs/accuracies can resulting in misleading conclusions regarding bias.

In the first question of the study, both frameworks output the exact same explanations, minus the
fact that GLOBE-CE also includes costs and the percentage of inputs for which a particular rule
was best. Explanations for AReS/GLOBE-CEs are identical (minus [square brackets] for AReS).
This is shown below in the Cumulative Rules Chart, where the subgroup Female is discriminated
against by the model, though due to the data distribution, the subgroup Male is discriminated against
with respects to the costs required for recourse. This challenges the assumption made in AReS that
recourse biases can be simply gauged without knowledge of the inputs affected.

Cumulative Rules Chart:

If Sex = Male:

If Job = No and Property = No,
Then Job = Yes and Property = Yes

}
Rule M1 [Cost 2, 90% of Inputs]

If Healthcare = No,
Then Healthcare = Yes

}
Rule M2 [Cost 1, 10% of Inputs]

If Sex = Female:

If Job = No and Property = No and Savings = No,
Then Job = Yes and Property = Yes and Savings = Yes

}
Rule F1 [Cost 3, 10% of Inputs]

If Healthcare = No,
Then Healthcare = Yes

}
Rule F2 [Cost 1, 90% of Inputs]
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Figure 13: User study 2 snapshots (GLOBE-CE). Left: Explanation 1. Right: Explanation 2. Successful
recourse bias identification and description occurs when underlying costs distributions are shown.

In the second question of the study, we introduce a synthetic subgroup ForeignWorker to HELOC,
and discriminate against it by forcing recourse costs to be higher. We use a linear kernel SVM as
our model, in order to compare the recourse costs of AReS and GLOBE-CE against the absolute
minimum costs, which we provide a theoretical analysis for in B.3. Our results for GLOBE-CE are
as in Figure 1, achieving near-optimal costs, and resulting in correct bias description by users.

E DISCUSSION & FUTURE WORK

Having outlined a highly flexible framework for GCEs, it is important that we consider now both the
possible limitations of the GLOBE-CE framework, as well as avenues for future work or growth.

E.1 POSSIBLE GLOBE-CE LIMITATIONS AND FUTURE WORK

Determining Costs of Actionable Recourse We do not unrealistically claim to hold the answers
regarding the costs associated with actioning particular counterfactuals. In reality, this is an incredi-
bly complex problem to solve. Not only could the costs of certain actions vary with time, depend on
each other and themselves, or be susceptible to unknown degrees of randomness, but they could also
depend on a multitude of factors surrounding the specific human being that is ultimately tasked with
the action. Disregarding such difficulties, building a model that perfectly reflects a user’s struggle in
executing a particular set of actions might easily require an improper breach of said user’s privacy.

While Rawal & Lakkaraju (2020) proposes the use of the Bradley-Terry model to compute fixed
feature costs, and claims that pairwise feature comparisons are “relatively easy for experts to make”,
neglecting to account for the properties of the end user or even the dependencies between costs
will ultimately render such comparisons redundant. Notwithstanding this, searching for better cost
models remains a worthwhile area of research. For instance, despite its unreliability in this context,
the use of the Bradley-Terry model would still surpass in performance the use of non-normalised ℓ1
distance as cost. As such, we do not overly focus on cost estimation in this paper, acknowledging
that actionability remains, to all intents and purposes, an unsolved problem, and recognising that
this could affect the reliability of bias assessment between subgroups based upon costs. Instead, we
settle for the use of unit costs between categorical features or per decile of continuous features (ℓ1).

Expanding our Baselines The baselines used in AReS are discussed in greater detail in Ap-
pendix C.5. Further possible candidates are the GCE translations proposed in (Plumb et al., 2020;
Ley et al., 2022), and a non-interpretable accumulation of the costs of local CEs, used solely to
assess minimum costs per input, and not naively averaged over to produce GCEs. While this last
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suggestion doesn’t yield GCEs, it could offer a challenging set of minimum costs per input for our
framework to seek to outperform.

Limitations of Categorical Translations Our form of categorical translations always yield rules
of the form “If A (or B or C ...), Then X” for any one particular feature (with possible negation on the
“If” term). However, it may also be useful to represent other forms, such as “If A, Then Not A” or
“If A then (B or C)”. The minimum costs yielded would not decrease as a result of these new forms,
since they can still be represented with the original (e.g. “If A, Then B” would solve simply the first
suggestion), though may have interpretability implications which could be explored in future work.

Alternative GCE Approaches The common perspective is to discover CEs from a set of inputs,
though a user-based approach which does the opposite could also be proposed, whereby a user spec-
ifies a CE of interest, and the group of inputs most strongly affected by such a change are identified
and returned. Such an approach could utilise our proposed scaling operation to better summarise
the group of inputs in terms of both accuracy and minimum cost, and could also execute without the
need for user-specified CEs, generating, scaling and analysing CEs automatically instead.

Relation between CEs and GCEs We postulate the thought experiment that, for a given dataset,
there could always conceivably exist further inputs or dimensions at larger or smaller scales whereby
global explanations are reduced to local explanations, and vice-versa. For example, a local CE,
where all input dimensions are accounted for, can suddenly become a subgroup explanation if extra
dimensions are added to the dataset. By the same logic, removing dimensions or adding data-
points can render global explanations local. In the context of fixed models that we find ourselves in
here, such modifications possess more theoretical than practical potential, though we pose that such
a direction for future research could uncover interested properties between local and global CEs.

GLOBE-CE: Part II We translate N negatively predicted instances to N neutrally predicted in-
stances (on the decision boundary). This paves the way for further optimisation of the translation.
For example, if the nearest neighbours between the original points and those on the decision bound-
ary do not correspond to the translation for a significant number of inputs, further tuning could ensue.

E.2 ROBUSTNESS OF COUNTERFACTUALS

Recent research has demonstrated instabilities w.r.t. CE techniques from state-of-the-art methods:

• CEs are non-robust (become invalid) in certain scenarios. (Dominguez-Olmedo et al., 2021;
Mishra et al., 2021; Dutta et al., 2022)

• Minor perturbations to input features may result in substantially different recourses from popular
CE approaches. (Slack et al., 2021)

• Minor changes in the underlying ML model, for example, due to retraining with new data, makes
CEs for the old model invalid on the new model. (Upadhyay et al., 2021)

• Noisy human implementation of the suggested recourse may prevent an individual from achieving
the desired response from an ML model. (Pawelczyk et al., 2022)

Related research has also identified a positive link between the distance moved past a decision
boundary and counterfactual robustness, which suggests that GLOBE-CE can easily be modified
to account for robustness by simply increasing the scalar k that is applied to a global translations δ.
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