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ABSTRACT

Ensuring that generative AI systems align with human values is essential but chal-
lenging, especially when considering multiple human values and their potential
trade-offs. Since human values can be personalized and dynamically change over
time, the desirable levels of value alignment vary across different ethnic groups,
industry sectors, and user cohorts. Within existing frameworks, it is hard to define
human values and align AI systems accordingly across different directions simul-
taneously, such as harmlessness, helpfulness, and positiveness. To address this,
we develop a novel, first-principle approach called Multi-Human-Value Align-
ment Palette (MAP), which navigates the alignment across multiple human values
in a structured and reliable way. MAP formulates the alignment problem as an op-
timization task with user-defined constraints, which define human value targets. It
can be efficiently solved via a primal-dual approach, which determines whether
a user-defined alignment target is achievable and how to achieve it. We conduct
a detailed theoretical analysis of MAP by quantifying the trade-offs between val-
ues, the sensitivity to constraints, the fundamental connection between multi-value
alignment and sequential alignment, and proving that linear weighted rewards are
sufficient for multi-value alignment. Extensive experiments demonstrate MAP’s
ability to align multiple values in a principled manner while delivering strong em-
pirical performance across various tasks.

1 INTRODUCTION

Recent advancements in artificial intelligence (AI) have highlighted the critical need for aligning
AI systems with human values, a concept known as human value alignment (Griffith et al., 2013;
Arumugam et al., 2019; Gabriel, 2020). The alignment can serve the purpose of generating outcomes
that are better suited for human ethics (Griffith et al., 2013), personalized needs (Kirk et al., 2024),
or reduced harmful content (Bai et al., 2022). This alignment has traditionally been pursued by
adjusting AI behavior to adhere to specific attributes via preference datasets or reward functions.
This process involves finetuning the original model according to the optimization problem:

max
p∈P

Ex∼D,y∼p(·|x)

{
R(x, y)− βDKL

(
p(· | x) || p0(· | x)

)}
. (1)

Here, P denotes the class of all distributions, p0 is the distribution that represents the generative
model to align, p is the distribution that represents the aligned model, R is a reward function that
quantifies the preference level of any given pair of prompt x and generation y, DKL measures the
KL-divergence, and β > 0 is a regularization hyperparameter. This formulation has deep conceptual
roots in the Bayesian decision theoretic framework (Bissiri et al., 2016). Specifically, if we consider
x as observed data and y as a parameter θ, the problem (1) can be expressed as Eθ∼p(·)

{
log p(x |

θ) − DKL
(
p(·) || p0(·)

)}
. This formulation yields the solution px(θ) ∝ p0(θ)p(x | θ), which is

precisely Bayes’ Rule. However, while this formulation provides an elegant interpretation of how
AI models can be adjusted to reflect new information or preferences, it may not fully capture the
complexity required when aligning AI systems to multiple, potentially conflicting human values. For
example, a healthcare-related large language model must deliver information that is not only precise
but also easy-to-understand and harmless (Gebreab et al., 2024). Similarly, a customer service
chatbot optimized for efficiency may compromise on politeness or empathy (Kolasani, 2023). These
scenarios highlight the need to balance diverse human values, which often requires more nuanced
solutions than a single-dimensional alignment approach can offer.

Related work. Centered around the formulation (1), a standard approach is the reinforcement
learning from human feedback (RLHF) (Griffith et al., 2013; Arumugam et al., 2019; Bai et al.,

1
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Pareto Frontier
Pareto Frontier

Figure 1: Expected reward (realized value level) of generated content having Harmlessness (left) and Humor
(right) versus Helpfulness for various models aligned from the Llama2-7B-chat model (Touvron et al., 2023).
Each blue dot represents the expected rewards Ex∼D,y∼p(·|x)r(x, y) with r trained from Anthropic Harmless
preference data (rHarmlessness) (Yang et al., 2024), Helpfulness preference data (rHelpfulness) (Yang et al., 2024),
and Humor classifier (rHumor) (Dhiab, 2024). The expected rewards are numerically obtained by solving (1)
with R = λ1rHarmlessness +λ2rHelpfulness +λ3rHumor, where λ1, λ2, λ3 ≥ 0 are randomly generated, and quantile-
transformed to the scale of 0 to 1. Arrows indicate the transition from the original model to aligned models,
either using the proposed approach (MAP) or a single reward function.

2022; Dai et al., 2024) that first trains a reward model R based on pairwise comparison or ranking
data to serve as a proxy for human preferences, and then use reinforcement learning with the reward
model to address the optimization problem (1). An alternative method known as direct preference
optimization (DPO) (Rafailov et al., 2023) directly optimizes an empirical risk based on the Bradley-
Terry loss (Bradley & Terry, 1952) applied to the preference data, using an implicit reward in the
form of r(x, y) ∆

= β log(p(y | x)/p0(y | x)). To address the alignment of multiple human values, re-
cent work on aligning foundation models have used multi-objective reinforcement learning (MORL)
algorithms (Barrett & Narayanan, 2008; Li et al., 2020; Wu et al., 2024). Existing studies focus on
approximating trade-offs among values utilizing a linear scalarization method that combines either
various reward functions or data sources in both RLHF and DPO approaches (Bai et al., 2022; Rame
et al., 2023; Dai et al., 2024). Alternatively, some studies utilize specific choices of combination
weights to manage trade-offs (Dognin et al., 2024). A recent technique named “rewarded soup”
was introduced to efficiently compute the aligned models under linear scalarization (Rame et al.,
2023). It first separately fine-tunes multiple models, each with a particular reward function, and
subsequently aggregate these networks by linearly interpolating their weights. This method aims
to approximate the ensemble of fine-tuned models that would otherwise result from optimizing a
single reward composed of various linear combinations of the individual reward functions, namely
R

∆
=

∑m
i=1 λiri with diverse randomly generated λ = [λ1, . . . , λm]. A similar idea was applied

to the DPO method (Zhou et al., 2024), where the DPO-aligned models under individual values are
linearly interpolated to numerically approximate the Pareto Frontier. Further discussion on related
work is provided in Appendix B.5.

Challenges. Despite significant progress in the domain, aligning AI models to multiple values
simultaneously presents several unresolved challenges. First of all, as demonstrated in Figure 1,
aligning with one value, such as helpfulness, harmlessness, or humor, could inadvertently diminish
another. These observations lead us to pose a critical question: How can we quantify and achieve
the concurrent enhancement of multiple human values without compromise?

Moreover, in the RLHF approach as described by the problem (1), it is unclear how to specify the
hyperparameter β and reward function R so that the aligned model p improves upon, or at least not
worse than, p0 in all human values in one shot (without trial-and-error). Even if we can try all possi-
ble combinations, there is no theoretical justification that linearly combining individual reward func-
tions is sufficient to obtain the Pareto Frontier. The DPO method, while simplifying the alignment

2
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(b) Align Helpfulness, Harmlessness, and Humor
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(c) Align Helpfulness, Harmlessness, and Humor
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Figure 2: Randomly sampled λ that represent all the possible λ whose ℓ1-norm is less than 6 and its subset of
all the desirable λ in aligning the OPT-1.3B model towards (a) two values: Helpfulness and Harmlessness, (b)
three values: adding Humor, and (c) the same three values visualized in 3D. A desirable λ means it produces
Pareto improvement over all the values. The sampling procedure for λ is the same as outlined in Section 3.3.
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Figure 3: Distribution of reward scores before and after aligning the Llama2-7B-chat model towards three
values: Humor (left plot), Helpfulness (middle plot), and Harmlessness (right plot), using the proposed MAP.
This alignment involves a user-specified palette designed to shift the expected rewards, also referred to as
realized value levels, toward the 80% quantile of the pre-alignment distributions.

process through a direct empirical risk optimization, still does not address the issue of integrating
multiple data sources, which have their underpinning still at the problem (1). Recent studies have
demonstrated the sensitivity of results to different weights used in these aggregations (Bai et al.,
2022). To highlight this point, in Figure 2, we visualize the range of possible λ and of desirable
λ (which actually admits Pareto improvement on all the values). Figure 2(b) shows how adding
additional value-to-align narrows the range of desirable λ compared with Figure 2(a).

Contributions. We introduce the Multi-Human-Value Alignment Palette (MAP), a principled ap-
proach designed to rigorously aligning multi-dimensional values with a provable guarantee. Similar
to an artist’s color palette, MAP enables the intricate blending of multiple human values to “paint”
the AI’s behavior with a broad spectrum of preference shades. In Figure 3, we illustrate how MAP
allows users to precisely customize and control the level of improvement for all values in an inter-
pretable manner. The proposed MAP introduces several technical innovations and contributions:

• Formulation. We propose a novel problem formulation that allows one to align multiple human
values using user-defined constraints, which we term “value palettes.” Each palette acts as a con-
straint that represents a preferred level of alignment, allowing us to “MAP” from any targeted value
levels specified by the user to a particular reward function for (1). This precise one-to-one mapping
ensures exact adjustments to model behavior.

• Theory. We provide theoretical analysis within the MAP framework quantifies the representation
of the solution, its sensitivity to changes in the value palette, and its feasible operational range.
This leads to a deeper understanding of the inherent trade-offs among various values. Furthermore,
we investigate the range of realizable value levels and demonstrate that a linear combination of
individual reward functions, is sufficient to reach the Pareto Frontier. We also establish a crucial
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link between multi-value alignment and sequential alignment, showing that cyclically updating each
value multiple times achieves equivalent results to a single execution of MAP.

• Computational methodology. Based on our theoretical derivations, we propose a computational
method to ascertain the achievability of user-defined value palettes. The proposed method utilizes a
primal-dual approach to efficiently solve the optimization problem for a feasible choice within the
palette. We verify that the dual problem exhibits concavity, enabling effective resolution through
gradient ascent techniques. MAP is agnostic to the stages of model alignment, whether at the de-
coding or training stage, the model architecture, and the specific definitions of values used. Finally,
we conducted comprehensive experimental studies to validate the practical effectiveness of MAP.

2 MAP: MULTI-HUMAN-VALUE ALIGNMENT PALETTE

2.1 PROBLEM FORMULATION

The formulation in (1) can be seen as maximizing the expected reward while imposing a regulariza-
tion to minimize unnecessary deviations from the original model. This insight leads us to define a
value alignment through a statistical functional constraint:

Ex∼D,y∼p(·|x)r(x, y) ≥ c, (2)

which is interpreted as the expected rewards, or realized levels, under a value preference must be at
least c. Likewise, to align m ≥ 1 value preferences, we introduce the following MAP problem:

min
p∈P

Ex∼D,y∼p(·|x)DKL
(
p(· | x) || p0(· | x)

)
s.t. Ex∼D,y∼p(·|x)ri(x, y) ≥ ci, ∀i = 1, . . . ,m. (3)

We denote c
∆
= [c1, . . . , cm]T as the value palette. With a solution p, we refer to

Ex∼D,y∼p(·|x)(r(x, y)
∆
= [r1(x, y), . . . , rm(x, y)]T) as the realized value levels. We write u ≥ v if

the two vectors are of the same size and ui ≥ vi for each entry i.
Theorem 1 (Representation of MAP solution). The solution to the MAP problem (3) is

pλ(y | x) = 1

Z(x, λ)
p0(y | x)eλ

Tr(x,y), (4)

where λTr(x, y) =
∑m

i=1 λiri(x, y), for some λ ≥ 0. Moreover, assuming that r(x, y) is not
trivially a constant on the support set of x, y, the above λ is the unique solution to the problem:

max
λ≥0

g(λ)
∆
= − logZ(λ) + λTc, (5)

where Z(λ)
∆
= Ex∼D,y∼p0(·|x)e

λTr(x,y), and g is strictly concave. As a result, we can treat λ in (4)

as an implicit function of c and denote it as λ = λ(c)
∆
= argmaxλ≥0 g(λ).

Remark 1 (Interpretation of λ). Theorem 1 establishes a one-to-one correspondence between the
vectors c and λ. The proof to the first part of Theorem 1 uses the Karush–Kuhn–Tucker (KKT)
conditions, and the second part is obtained by showing that (5) is the dual problem of (3). From a
decision theoretic view, the decision of λ is based on trading off the utility term λTc and the “risk”
term − logZ(λ). The latter term can be seen as a form of risk aversion, because maximizing it
would penalize decisions that place a disproportionate weight on less likely, albeit highly desirable,
outcomes. Practically, the expectation Ex∼D,y∼p0(·|x) can be easily approximated using a sample
average from a dataset generated under p0, allowing the dual problem (5) to be numerically solved.
This computational aspect is further explored in Section 2.3.
Remark 2 (Choice of Value Palette c). We outline interpretable methods for selecting the value
palette c. The first method is the quantile-based approach, which utilizes statistical distributions
of reward outputs. For any reward function, input prompts x ∈ D, and model-generated outputs
y ∼ p0(· | x), the mapping (x, y) 7→ r(x, y) defines a random variable, denoted by R(D, p0). The
expectation of R(D, p0) is the realized value under the model p0. Users can set each component of c
to correspond to a quantile of R(D, p0). For example, for the first value, setting c1 to the 80% quan-
tile positions the realized level of the aligned model p within the upper 20% of expected outcomes.
For practical operation, we propose using a small pilot dataset generated from the original model
as Monte Carlo samples for empirical estimation of the quantiles of R(D, p0). That is, we sample
xi ∼ D, yi ∼ p0(· | xi) to create {r(xi, yi) : i = 1, . . . , n} (n = 2000 in our experiments). This
pilot data can serve various palette choices. We provide further remarks on two other approaches,
one based on classifiers and another based on automatic adjustment in Appendix B.4.
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Remark 3 (Robustness of MAP under Mis-specified Rewards). A critical reviewer highlighted
the importance of understanding the robustness of MAP under mis-specified rewards. Motivated by
this, we conducted a theoretical analysis in Appendix B.1. Our results indicate that MAP remains
robust provided that the rewards for multiple values exhibit a non-degenerate covariance structure.

2.2 REALIZABLE VALUE LEVELS OF THE MAP PROBLEM AND PARETO FRONTIER

We first show that the MAP problem can be written as the original alignment problem (1) with a
particular reward function that is simply a linear combination of individual rewards.
Theorem 2 (Solution of MAP). The solution to the MAP problem (3) is the same of the problem
(1) with R(x, y)

∆
= β · λ(c)Tr(x, y), where λ(c) was introduced in Theorem 1.

This prompts the natural question of whether MAP limits the breadth of realizable value levels
compared to those achievable under (1) with arbitrarily chosen R. Next, we will show that actually
the realizable value levels of (1) and the MAP problem in (3) are the same.

Given the reference distribution p0 and any specific reward functions R, the solution p, if feasible,
depends solely on R. To illustrate this dependency, we denote p as pR. Let FRLHF(p0) represent
the range of R that admits feasible solutions to the RLHF problem, essentially those with valid
probability densities. The realizable value levels under the RLHF problem are defined as:

VRLHF(p0)
∆
=

{
Ex∼D,y∼pR(·|x)r(x, y) : R ∈ FRLHF(p0)

}
.

For multiple reward functions r1, . . . , rm, we consider a specific class of R comprising various
non-negative linear combinations, and define their realizable value levels similarly:

VRLHF(r1, . . . , rm; p0)
∆
=

{
Ex∼D,y∼pR(·|x)r(x, y) : R

∆
=

m∑
i=1

ρiri ∈ FRLHF(p0), ρi ≥ 0

}
.

In the MAP problem, given p0 and r, the solution p, if feasible, depends only on the user-specified
value palette c. To emphasize this relationship, we denote p as pc. Let CMAP(r1, . . . , rm; p0) denote
the range of c that admits feasible solutions to the MAP problem. We further consider the realized
value levels of all feasible solutions under various c, defined as:

VMAP(r1, . . . , rm; p0)
∆
=

{
Ex∼D,y∼pc(·|x)r(x, y) : c ∈ CMAP(r1, . . . , rm; p0)

}
.

Theorem 3 (Equivalent realizable value levels). For any original generative model p0, we have
VMAP(r1, . . . , rm; p0) = VRLHF(p0) = VRLHF(r1, . . . , rm; p0). (6)

𝑝0

Feasible 𝑝 from 𝑝0 and any 𝑅

Feasible 𝑝 from 𝑝0 
and σ𝑖=1𝑚 𝜌𝑖𝑟𝑖

Same set of realizable value levels

Figure 4: Illustration of Theorem 3.

Theorem 3 establishes that the realizable value levels by MAP
equate to those in the original alignment problem (1) using a
specific reward function – a linear combination of individual re-
wards. This proves that linear combinations of individual reward
functions can sufficiently capture the entire Pareto Frontier. It is
crucial to note that the sets of solutions, namely p, are not iden-
tical for both problems. The key insight is that the set of real-
izable value levels, which resides within a finite m-dimensional
space, is mapped from the infinitely dimensional set of solutions
p through a many-to-one mapping, as depicted in Figure 4.

We denote all feasible value palettes CMAP(r1, . . . , rm; p0) sim-
ply as C. The following theorem explores the characteristics of this set.
Theorem 4. The following properties of C hold.

(i) If c ∈ C, for any c′ such that c′ ≤ c, we have c′ ∈ C.

(ii) For any c′ such that c′ ≤ c0
∆
= Ex∼D,y∼p0(·|x)r(x, y), the value level of the original model, we

have the corresponding λ(c′) = 0.

(iii) Let Bi
∆
= ess supx∼D,y∼p0(·|x) ri(x, y), where the essential supreme is under the original model

p0. Then, C ⊆ (−∞, B1] × · · · × (−∞, Bm]. In other words, a feasible solution does not exist if
ci > Bi for some i.

5
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Reward distributions

Step 1: Specify Value Palette Step 2: Check Feasibility

Infeasible Feasible

Step 3: Align Model

Original model MAP reward function

Post-alignment Reward distributions

Solve

Figure 5: Overview of the MAP procedure, which 1) lets a user specify the desirable levels of expected levels
for all values of interest, also referred to as a Value Palette, 2) checks whether the specified palette admits
a feasible solution of model alignment, 3) actually aligns the model by using a single MAP-guided reward
function. More details will be provided in Section 2.

Algorithm 1 MAP Procedure
Input: Multi-dimensional reward functions r, original generative model p0(· | x) with x ∼ D.

Step 1: Specify value palette
• Specify c (e.g., based on Remark 2).

Step 2: Check feasibility
• Attempt to solve Problem (7) with updates in (8).

If infeasible: Suggest alternative c (Remark 2).
Else: Obtain λ and define reward function R

∆
= λTr.

Step 3: Align model
• Decoding (D) option: For a prompt x, generate y(1), . . . , y(m), and sample y = y(i) using the

Softmax of R(x, y(i)) as Multinomial probability.
• Finetuning (F) option: Apply Proximal Policy Optimization (PPO) with R to fine-tune p0 into p̂.

For a prompt x, generate y ∼ p̂(· | x).
Output: The generated y.

(iv) Let pλ(y | x)
∆
= p0(y | x)eλ

Tr(x,y)/Z(λ, x) be the λ-adjusted distribution of p0, where
Z(λ, x)

∆
=

∫
y′ p0(y

′ | x)eλTr(x,y′)dy′ is the normalizing constant. Treating the optimal solution

λ = λ(c) as a function of c, we have dλ(c)
c = −V −1, where V

∆
= Varλ(r(x, y)) is the covariance

matrix of r(x, y) under the distribution x ∼ D, y | x ∼ pλ(· | x).

The result in (iv) can be used to check if a small increase in c, e.g., changing c1 to c1 + δ for a small
δ > 0, will cause λ to change in a way that remains feasible.

2.3 COMPUTATIONAL SOLUTION TO MAP THROUGH A PRIMAL-DUAL APPROACH

In this section, we introduced a practical framework to solve MAP problem defined in (3), illustrated
in Figure 5 and Algorithm 1. Once a user defines a value palette according to Remark 2), in Step 2,
we derive λ from c as per Theorem 1. We then approximate Problem (5) as follows:

max
λ≥0

gn(λ)
∆
= − log

1

n

n∑
j=1

eλ
Tr(xj ,yj) + λTc, (7)

where the dataset {(xj , yj)
n
j=1} serves as a finite-sample approximation of the distribution p0(x, y)

with y1, . . . , yn, generated conditional on respective prompts x1, . . . , xn. Lemma 1 in the Appendix
confirms that both the original problem (5) and its approximation (7) are concave, allowing for the
use of gradient ascent to efficiently find the optimal λ:

λ← λ+ α
d

dλ
g(λ) = λ+ α

(
−Softmax(λTr1:n) · rT

1:n + c
)

(8)

where r1:n
∆
= [r(x1, y1), . . . , r(xn, yn)]. In practical implementations, we applied a change of

variable τ
∆
= logλ to ensure the constraints λ ≥ 0 are satisfied. Not all users’ palette choices are

feasible. If the updates in (8) do not converge, this indicates that the chosen c is infeasible. In such
cases, MAP can adjust the value palette c automatically, which we elaborate in Appendix B.2. Also,
because the above optimization problem is concave and the data can be pre-computed using a pilot

6
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set of Monte Carlo samples from the original model, solving the problem is efficient and does not
depend on the complexity of the models to align. More discussions are included in Appendix B.3.

In Step 3, we implement p(y | x) ∝ p0(y | x)eλTr(x,y) through two practical approaches during
experiments. The first, decoding-based alignment, employs importance sampling for decoding from
p. Specifically, for any input x, we generate k samples from p0, labeled y1, . . . , yk, and select one via
Multinomial sampling with weights proportional to exp(λTr(x, yi)) for each sample i. We include
an ablation study on the tradeoff between complexity of larger m and enhanced generation quality in
Appendix A.4. The second approach, finetuning-based alignment, fine-tunes a model pw with neural
weights w based on the reward function (x, y) 7→ λTr(x, y). Compared with the first approach, the
function space of p is restricted by the model architecture and the training can be computationally
intensive. However, it can reduce the inference-stage complexity by only decoding one sentence for
each prompt. An experimental study on this comparison is included in Appendix A.5.

2.4 SIMULTANEOUS VERSUS SEQUENTIAL OR GREEDY ALIGNMENT

To align a model to a specified value palette c, a natural baseline method is sequentially aligning
individual values, namely we sequentially update the model to align each value to an entry in c until
all values are addressed. This section compares this method with the MAP procedure.

Sequential alignment algorithm. Suppose we have aligned with one value palette c(ℓ−1) and then
update with c(ℓ), ℓ = 1, 2, . . . For notational convenience, let the initial c(0) be the realized level of
the original model p0. At the end of the ℓ-th alignment, the aligned distribution can be expressed as
p(ℓ)(y | x) ∝ p0(y | x) · exp(λT

(ℓ)r(x, y)) for some vector λ(ℓ).

Given the value palettes {c(ℓ)}ℓ=1,2,..., we recursively obtain λ(ℓ) from λ(ℓ−1). Like the problem
(5), the alignment objective at the beginning of the ℓ-th alignment is:

max
λ≥0

g(ℓ)(λ)
∆
= − logEx∼D,y∼p(ℓ−1)(·|x)e

λTr(x,y) + λTc(ℓ). (9)

Like the problem (7), we can numerically solve (9) by addressing the problem:

max
λ≥0

g(ℓ)(λ)
∆
= − log

(
Softmax(λT

(ℓ−1)r1:n) · er
T
1:nλ)+ λTc(ℓ). (10)

Connection between Sequential and Simultaneous Alignment. The problem (9) establishes a
connection between the (ℓ−1)-th and ℓ-th alignment. Recall that m denotes the number of values or
the dimension of c. In a canonical setting where one value is aligned at a time, define {c(ℓ)}ℓ=1,2,...

by: c(ℓ) = [−∞, . . . , cℓ,−∞, . . .], for ℓ ≤ m, where the ℓ-th element is the same as that of c,
and the others are trivially negative infinity. For ℓ > m, we can re-align the first value, and so on.
Namely, we replace the above cℓ in c(ℓ) with cℓ mod m. The following result shows this sequential,
iterative alignment process converges to the joint alignment using MAP.

Theorem 5. Let p(0)
∆
= p0, p(1), p(2), . . . be the sequence of distributions obtained by sequentially

aligning the original model according to the single-value MAP objective:

min
p∈P

Ex∼D,y∼p(·|x)DKL
(
p(· | x) || p(ℓ−1)(· | x)

)
s.t. Ex∼D,y∼p(·|x)rℓ′(x, y) ≥ cℓ′ ,

where ℓ′ = (ℓ mod m). Assuming r(x, y) is not trivially a constant on the support set of (x, y), this
sequence weakly converges to pλ(c), which is the solution to the MAP problem in (4).

The proof of Theorem 5 demonstrates that the sequential alignment process fundamentally operates
as a coordinate-wise gradient ascent algorithm. When we align subsets of values in each iteration,
the process can equivalently function as a block-wise ascent. Importantly, while a single cycle of
sequential alignments – aligning each value only once – may not fully achieve joint alignment, mul-
tiple cycles ensure convergence. This aspect is particularly significant in scenarios where constraints
such as limited GPU memory restrict the simultaneous loading of numerous reward models. Our
finding confirms that sequential alignment, when executed over a sufficient number of cycles, can
effectively accommodate these memory and computational limitations.
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Figure 6: Radar plots showing the alignment of OPT-1.3B with (a) multi-value palettes given by 50%, 60%,
and 70% quantiles of the original model’s reward distributions, and (b) single-value palettes at the 80% quantile.

3 EXPERIMENTAL STUDY

3.1 EXPERIMENTAL SETUP

We generate prompts from two data sources: Anthropic harmless data (Anthropic, 2024), which
includes human requests delineated between the tags “Human:” and “Assistant:”, and IMDB
data (IMDB, 2024) from which we retain movie reviews exceeding 30 characters in length. For
backbone models, we employ OPT-1.3B (Zhang et al., 2022) and Llama2-7B-chat (Touvron et al.,
2023), which have demonstrated robust language modeling capabilities in previous assessments. We
focus on several values for alignment: Humor, Positiveness, Harmlessness, Helpfulness, Diversity,
Coherence, and Perplexity. The Humor reward is assessed using the logits from a humor detec-
tion model (Dhiab, 2024), while Positiveness uses a DistilBERT model trained on IMDB sentiment
analysis (Lvwerra, 2024). Harmlessness and Helpfulness are evaluated through two GPT-2 models
equipped with a value head fine-tuned to predict these attributes (Yang et al., 2024). Diversity is
measured by the lexical variety within sentences, calculated through the proportion of unique n-
grams (n = 2, 3, 4) and their composite score (Zhang et al., 2020). Coherence is determined by the
semantic similarity of sentences within a context, using a supervised SimCSE BERT-based model
that captures sentence embeddings to assess textual coherence (Gao et al., 2021).

3.2 EFFECTIVENESS OF MAP FOR SIMULTANEOUS MULTI-VALUE ALIGNMENT

For the conversational task, we use Anthropic data as input prompts x to align the OPT-1.3B model
across six dimensions: Humor, Harmlessness, Helpfulness, Diversity, Coherence, and Perplexity.
Here, the perplexity is calculated as negative log of the standard perplexity so that the larger the
better. We tested seven different value palettes for alignment, considering both decoding-based and
finetuning-based implementations. For example, the HHH-80% palette aligns the first three values
to the 80th percentile of their respective distributions, while maintaining the last three values. This
approach aims to enhance the model’s output to closely resemble human-like interaction standards
without compromising the intrinsic qualities of the generated content. The results are summarized
in Table 1. The first three rows show the effectiveness of the MAP approach in simultaneously
enhancing multiple values to various levels. In comparison, the last three palettes, which focus on
aligning a single value, typically enhance that specific value but may degrade others. The results
are also visualized in radar plots in Figure 6, where all values are transformed to quantiles under the
reward distribution of the original model.

Additional experiments, including an ablation study with the Llama2-7B-chat model, are detailed
in Appendix A.1. Notably, the HHH-80% palette was determined to be feasible by Algorithm 1
Step 2 and its results are therefore included. This indicates that the Llama2-7B-chat model, which
has a larger complexity than OPT-1.3B, allows for more extensive multi-value alignment. We also
explored a sentiment-controlled open generation task using a random trunk of IMDB data as input
prompts to align the OPT-1.3B model. The results are summarized in Table 2.

3.3 COMPARISON WITH OTHER BASELINE APPROACHES

To demonstrate the effectiveness of MAP in reliably aligning multiple values, we conduct an exper-
iment showing that MAP can identify desirable outcomes with randomly sampled λ. According to
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Table 1: Results of aligning the OPT-1.3B model with Anthropic conversational data using diverse value
palettes, evaluated in terms of expected rewards (or realized value levels). Scenarios include: 1) enhancing the
first three values – Humor, Harmlessness, Helpfulness – to the xth percentile of their respective reward distri-
butions under the original model (“HHH-x%”) while maintaining the last three values – Diversity, Coherence,
and Perplexity – using MAP, and 2) aligning individual values independently (“Humor-80%”, “Helpful-80%”,
“Harmless-80%”). Results include the optimized weight vector λ, targeted value palettes, and realized value
levels. Both decoding-based approach (“MAP-D”) and finetuning-based approach (“MAP-F”) are used. The
palette “HHH-80%” was found infeasible, as confirmed in Step 2 of Algorithm 1.

Humor↑ Helpfulness↑ Harmlessness↑ Diversity↑ Coherence↑ Perplexity↑
Original model 2.07 -1.47 0.25 0.88 0.43 -3.34

HHH-50% (λ = [2.53, 0.23, 0.28, 0.02, 0.05, 0.05])
MAP-D 2.44 -1.38 0.21 0.88 0.43 -3.17
MAP-F 2.20 -1.80 0.66 0.86 0.41 -2.80
HHH-60% (λ = [6.30, 0.83, 0.93, 0.01, 0.03, 0.03])
MAP-D 2.48 -1.33 0.48 0.88 0.43 -3.15
MAP-F 2.47 -2.26 0.50 0.89 0.26 -3.49

HHH-70% (λ = [12.77, 1.53, 1.69, 0.01, 0.02, 0.02])
MAP-D 2.49 -1.29 0.66 0.88 0.45 -3.14
MAP-F 2.17 -2.28 0.97 0.82 0.10 -5.04

Humor-80% (λ = [16.44, −, −, −, −, −])
MAP-D 2.52 -1.42 0.01 0.89 0.43 -3.21
MAP-F 2.08 -2.49 0.39 0.79 0.09 -5.85

Helpfulness-80% (λ = [−, 0.72, −, −, −, −])
MAP-D 1.99 -0.75 -0.35 0.88 0.43 -3.20
MAP-F 2.02 -0.66 -0.58 0.88 0.41 -2.73
Harmlessness-80% (λ = [−, −, 1.27, −, −, −])
MAP-D 1.97 -1.86 0.97 0.88 0.42 -3.17
MAP-F 2.05 -2.02 0.94 0.87 0.40 -2.63

Table 2: Results of aligning the OPT-1.3B model for the open-generation task with IMDB data using diverse
value palettes, evaluated in terms of expected rewards (or realized value levels). Scenarios include: 1) enhanc-
ing the first three values – Positiveness, Harmlessness, Helpfulness – to the xth percentile of their respective
reward distributions under the original model (“PHH-x%”) while maintaining the last three values – Diversity,
Coherence, and Perplexity – using MAP, and 2) aligning individual values independently (“Positiveness-80%”,
“Helpful-80%”, and “Harmless-80%”).

Positiveness↑ Helpfulness↑ Harmlessness↑ Diversity↑ Coherence↑ Perplexity↑
Original model 0.52 -1.53 0.58 0.88 0.24 -3.36

PHH-50% (λ = [0.24, 0.08, 0.12, 0.03, 0.07, 0.07])
MAP-D 0.62 -1.40 0.57 0.88 0.24 -3.19
MAP-F 0.55 -1.50 0.49 0.88 0.23 -2.80
PHH-60% (λ = [2.23, 0.41, 0.79, 0.01, 0.03, 0.04])
MAP-D 0.91 -1.16 0.67 0.89 0.25 -3.13
MAP-F 0.88 -0.69 0.38 0.87 0.24 -2.46
PHH-70% (λ = [3.83, 0.90, 1.48, 0.01, 0.02, 0.03])
MAP-D 0.93 -1.10 0.74 0.89 0.24 -3.13
MAP-F 0.94 -0.33 0.24 0.80 0.18 -2.64
PHH-80% (λ = [9.77, 1.42, 2.27, 0.00, 0.01, 0.03])
MAP-D 0.93 -1.06 0.64 0.89 0.25 -3.14
MAP-F 0.95 -1.22 0.24 0.73 0.18 -2.99
Positiveness-80% (λ = [10.98, −, −, −, −, −])
MAP-D 0.94 -1.10 0.47 0.89 0.25 -3.17
MAP-F 0.92 -1.27 0.37 0.73 0.17 -3.00
Helpfulness-80% (λ = [−, 0.95, −, −, −, −])
MAP-D 0.56 -0.86 0.29 0.89 0.23 -3.17
MAP-F 0.55 -1.28 0.34 0.88 0.23 -2.83
Harmlessness-80% (λ = [−, −, 1.43, −, −, −])
MAP-D 0.53 -1.80 1.21 0.89 0.24 -3.17
MAP-F 0.47 -1.77 0.91 0.89 0.23 -2.62

Theorem 4, we sample λ randomly from the range (c0,B) and retain the feasible ones according to
MAP’s feasibility check. From these, we select λ vectors with a bounded ℓ1-norm less than 6. We
compare this with a standard MORL approach where λ is randomly generated from s ·u, where s is
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uniformly sampled from (0, 6) and u is uniformly sampled from the probability simplex. For both
approaches, we implement two alignment strategies: For the decoding-based approach (“MAP-D”,
“MORL-D”), we generate 16 candidates of y for each prompt x and select the final output us-
ing Multinomial sampling as described in Algorithm 1 Step 3. For the finetuning-based approach
(“MAP-F”, “MORL-F”), we apply PPO and the calculated MAP reward function R to finetune the
original model. We evaluate the outcomes using the ‘test’ split of our task data, assessing both the
expected reward and win rate against the original model based on the reward functions.

Additionally, we compare MAP with the DPO approach that uses various mixtures of preference
data, and DPO-Soup, which applies linear interpolation of DPO-trained, value-specific models. The
results, presented in Figure 7, show that MAP generates alignment results that tend to fall into, or
remain close to, the desirable regime, namely the upper-right quadrant relative to the original model.
In contrast, the other approaches experience more severe trade-offs and rarely fall into the desirable
regime. Table 3 quantifies this comparison by calculating the frequency of alignment results falling
within the desirable regime, termed Navigation Efficiency (NE).
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Figure 7: Comparison of various methods for aligning the OPT-1.3B model towards Helpfulness and Harm-
lessness. The performance is evaluated by Expected Reward (left plot) and Win Rate (right plot) against the
original model. In MAP-D, we used MAP to obtain 20 λ’s based on randomly sampled palettes, and test data
is generated using decoding-stage resampling. MAP-F is similar to MAP-D, except it uses PPO to fine-tune
the model. MORL-D and MORL-F follow the same structure as MAP but with randomly sampled λ. DPO(β)
applies DPO with a regularization parameter β to a mixture of Anthropic Helpful and Harmless datasets, with
mixing ratios ranging from 0 to 1. DPO-Soup(β) is a weighted average of the model parameters from DPO(β)
obtained at mixing ratios of 0 and 1, using weights from 0 to 1. Each small marker represents the result of an
individual aligned model, while each large marker represents the average result for the corresponding method.
The upper right area represents the desirable alignment that improves upon the original model in both values.
The shaded bands represent the 95% confidence range numerically calculated from the finite test data.

Table 3: Navigation Efficiency (NE) of expected reward and win rate across alignment methods.

MAP-D MAP-F MORL-D MORL-F DPO(0.1) DPO(0.5) DPO-Soup(0.1) DPO-Soup(0.5)

NE of expected reward 55% 52% 21% 35% 27% 9% 45% 36%
NE of win rate 60% 70% 21% 55% 36% 9% 45% 45%

4 CONCLUSION

The proposed MAP offers a structured approach to aligning multiple human values, enabling precise
adjustments to meet diverse user preferences. Through a blend of theoretical insights and practical
algorithms, MAP ensures that the alignment is aimed at achieving Pareto improvement with user-
defined preference levels. This approach holds potential to positively impact fields that involve com-
plex decision-making, such as public health and digital content creation, by ensuring AI interactions
more accurately reflect individual values and preferences. Future work will explore extending MAP
to directly calculate empirical risk using a mix of data sources, each representing different values.

The Appendix includes further discussions, additional experiments, and all corresponding proofs.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ABLATION STUDY WITH LARGER MODEL

Adopting the same experimental framework as described in Subsection 3.2, we substituted the OPT-
1.3B model with the Llama2-7B-chat model. The results are summarized in Table 4. Due to memory
constraints of our available GPU resources, we are limited to decoding-stage alignments (Step 3 in
Algorithm 1) and could not perform finetuning on this model.

In these experiments, the HHH-80% palette is confirmed as feasible by Step 2 of Algorithm 1, and
its results are therefore included. This finding suggests that the Llama2-7B-chat model, which is
more complex than the OPT-1.3B, provides greater flexibility for multi-value alignment.

To facilitate a clearer comparison, we visualized the results in radar plots presented in Figure 8. All
values are converted to quantiles based on the reward distributions of the original model.

Table 4: Results of aligning the Llama2-7B-chat model with the Anthropic prompt data using diverse value
palettes, evaluated in terms of expected rewards (or realized value levels). Scenarios include: 1) enhancing the
first three values – Humor, Harmlessness, Helpfulness – to the xth percentile of their respective reward distri-
butions under the original model (“HHH-x%”) while maintaining the last three values – Diversity, Coherence,
and Perplexity – using MAP, and 2) aligning individual values independently (“Humor-80%”, “Helpful-80%”,
“Harmless-80%”). Results include the optimized weight vector λ, targeted value palettes, and realized value
levels. Notably, in contrast with Table 1, the “HHH-80%” palette was determined to be feasible by Algo-
rithm 1 Step 2 and is therefore included.

Humor↑ Helpfulness↑ Harmlessness↑ Diversity↑ Coherence↑ Perplexity↑
Original model 0.60 -1.01 1.25 0.85 0.52 -1.38

HHH-50% (λ = [0.27, 0.20, 0.21, 0.10, 0.04, 0.09])
MAP-D 0.98 -1.06 1.36 0.84 0.53 -1.37
HHH-60% (λ = [0.85, 0.78, 0.79, 0.01, 0.02, 0.07])
MAP-D 1.56 -0.93 1.47 0.84 0.53 -1.37
HHH-70% (λ = [2.02, 1.39, 1.50, 0.01, 0.02, 0.09])
MAP-D 2.01 -0.87 1.57 0.83 0.55 -1.37
HHH-80% (λ = [5.94, 2.43, 2.92, 0.01, 0.01, 0.15])
MAP-D 2.17 -0.93 1.68 0.82 0.55 -1.37
Humor-80% (λ = [2.89, −, −, −, −, −])
MAP-D 2.21 -1.26 1.06 0.82 0.55 -1.47

Helpfulness-80% (λ = [−, 0.69, −, −, −, −])
MAP-D 0.50 -0.39 0.94 0.86 0.53 -1.36
Harmlessness-80% (λ = [−, −, 0.99, −, −, −])
MAP-D 0.47 -1.33 1.91 0.86 0.50 -1.34
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(a) Multi-value Palette Alignment
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(b) Single-value Palette Alignment

Figure 8: Radar plots showing the alignment of Llama2-7B-chat with (a) multi-value palettes as determined
by 50%, 60%, and 70% quantiles of the original models’ reward distributions (numerically computed using
generated data), and (b) single-value palettes at the 80% quantile.
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A.2 SIMULTANEOUS VERSUS SEQUENTIAL ALIGNMENT

To corroborate Theorem 5 in Section 2.4, we have conducted experiments comparing the MAP with
a sequential alignment strategy, under the same experimental settings as described in Section 3.2.
Specifically, we align the OPT-1.3B model for a conversational task using Anthropic data. We
implement sequential alignment through one and five rounds. In each round, each of the six values
is aligned sequentially using the MAP approach. We then numerically evaluate the expected rewards,
or realized value levels, using data generated from the aligned models. The results, summarized in
Figure 9, demonstrate that while sequential alignment with one round is less effective than MAP,
extending the process to five rounds significantly improves performance and closely approximates
the outcomes achieved by MAP.

50% 60% 70% 50% 60% 70% 50% 60% 70% 50% 60% 70% 50% 60% 70% 50% 60% 70%
Humor Harmlessness Helpfulness Diversity Coherence Perplexity
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Figure 9: Comparison of value levels achieved by MAP and sequential alignments across different rounds,
using the same experimental settings as described in Section 3.2.

A.3 HYPERPARAMETERS IN DATA GENERATION AND MODEL TRAINING

Our experiments were conducted using a single Nvidia A100 GPU. For data generation, we em-
ployed a top-k decoding approach with a fixed k = 50 and a limit of 50 new tokens per sequence.

In terms of model finetuning, we utilized the TRL package (von Werra et al., 2020) for DPO and
PPO training. Specifiaclly, for DPO, we used an effective batch size of 20, achieved by setting the
batch size to 1 with an accumulation step of 20, over the course of a single training epoch. For PPO,
the finetuning was executed with a learning rate of 10−6 and similarly limited to one epoch. All
other configuration parameters followed the default settings provided in the TRL package.

A.4 GENERATION QUALITY VERSUS COMPUTATION IN THE DECODING-BASED APPROACH

The sample size m in the decoding option directly influences both the computational cost and the
performance of the aligned model. Increasing m improves the approximation of the desired distribu-
tion, leading to better realized values. However, this improvement comes at the expense of increased
computation and latency.

To investigate this tradeoff, we conducted an experiment comparing realized value levels and run-
time (in minutes) for decoding-based alignment with varying Monte Carlo samples (k). The results,
summarized in Table 5, reveal that increasing k significantly improves performance up to k = 8, with
diminishing returns beyond this point. Notably, k = 8 achieves realized values nearly equivalent to
k = 16, indicating it as a practical choice for balancing computational efficiency and performance.

A.5 RUNTIME COMPARISON BETWEEN FINETUNING- AND DECODING-BASED ALIGNMENT

Efficient runtime is crucial when selecting between decoding and fine-tuning approaches for value
alignment, especially as the number of generations and model sizes scale. To compare these meth-
ods, we conducted an experiment to evaluate their runtime and associated trade-offs, as summarized
in Table 6. The results highlight several key points:

Firstly, for the decoding-based approach, runtime scales approximately linearly with the number of
generations, as each generation requires a separate forward pass through the model. In contrast, for
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Table 5: Comparison of realized value levels and runtime (in minutes) for decoding-based alignment
with varying numbers of Monte Carlo samples (k) per prompt. Experiments were conducted for
1000 generations using Llama2-7B-chat under the same settings as described in Appendix A.1, on
a single A100 GPU. For clarity, we subtracted the realized value levels at k = 16 from those at each
k to provide a reference point. Each value is averaged over 3 repetitions, with a standard error of
realized levels within 0.02 and standard error of runtime within 0.5 minutes.

k Runtime↓ Humor↑ Helpfulness↑ Harmlessness↑ Diversity↑ Coherence↑ Perplexity↑
2 12.90 -0.15 -0.09 -0.42 -0.00 -0.02 -0.04
4 15.87 -0.05 -0.02 -0.28 -0.00 0.01 0.01
8 20.70 -0.01 -0.05 -0.05 -0.01 -0.01 0.00
16 32.07 0.00 0.00 0.00 0.00 0.00 0.00

the PPO-based finetuning approach, the runtime does not increase significantly when scaling from
100 to 2000 generations. This is because the majority of the runtime cost is incurred during the
initial model training, which is independent of the number of generations.

Secondly, following the above point, for a small number of generations (e.g., n = 100), decoding
is more favorable as it avoids the overhead of training. However, for a large number of generations
(e.g., n = 2000), finetuning becomes more efficient because it incurs a one-time training cost,
and subsequent generations require only a single sample instead of 16 Monte Carlo generations,
significantly reducing the per-generation cost. This trade-off makes finetuning more practical for
scenarios with high-generation demands, such as serving customers in real-world applications.

Thirdly, larger models such as LLaMA2-7B-chat incur higher decoding costs due to the increased
computational requirements for each forward pass.

Lastly, aligning a single value, such as Humor, has the smallest runtime cost due to the smaller
size of its reward model compared to the larger and more complex reward models for Helpfulness
and Harmlessness. Also, aligning all six values simultaneously takes less time than the combined
runtime of aligning three individual values sequentially. This is because aligning all values in a
single process minimizes overhead costs, such as model loading and batch preparation, which are
repeated when aligning values individually.

Table 6: Runtime (in minutes) comparison for two basemodels (Llama2-7B-chat and OPT-1.3B)
and two generation strategies (Decoding and Finetuning). Results are shown for different numbers
of values to align and numbers of generations (n). Experiments were conducted using the same
settings as in Appendix A.1 and were run on a single A100 GPU. Each result is averaged over 3
repetitions, with a standard error within 2.5.

Values to align n Llama2-7B-chat (D) OPT-1.3B (D) OPT-1.3B (F)

All 6 values 100 7.95 4.25 27.16
2000 160.21 107.32 29.54

Humor only 100 4.45 2.32 27.91
2000 90.90 37.87 28.50

Helpfulness only 100 4.95 2.66 29.45
2000 106.92 50.60 31.52

Harmlessness only 100 5.61 2.69 31.23
2000 107.33 51.64 36.67

A.6 SAMPLE GENERATIONS

With the same experimental setting as in Section 3.2, Table 7 provides a snapshot of generated re-
sponses. It showcases how different value palettes of the OPT-1.3B models lead to varied generation
outcomes.
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Table 7: Comparative display of generated responses from original and aligned OPT-1.3B models
under various value palettes, based on Anthropic conversational data.

Prompt: “Can you tell me some information about the culture and lifestyle of living in Hollywood or West LA
area?”

Original model: “is it a typical suburban family. Are most people actually interested in going to school or do
things like working full time? Is the cost of living prohibitive or is it still very low? I’ve been living in an area
called Sherman Oaks for”
Humor-80% model: “Is it really as sketchy as these guys claim? I’m from Los Angeles and yes, it is. Stay
away from hollywood and you’ll be fine.”
Helpfulness-80% model: “I’m a new resident & would like to know more about the community. Culturally
it’s great, because it’s on the east coast where everybody knows everybody. So being able to hang out with
people who grew up in the culture is”
Harmlessness-80% model: “I know you have a lot of fans who have moved to LA or California itself because
of their love for your work. What was your first reaction when you first learned Hollywood’s reputation? As
I’ve said, the reputation”
HHH-80% model: “It’s in the heart of entertainment, and if you’re interested in acting, it’s one of the top 5%
best paying cities. I’m just trying to get a sense for where to move to get a job making cool money.”

Prompt: “I gave this homeless man some food that I had. It had been in the fridge for over a week.”

Original model: “I took just a bite out of it and it went down easily. The homeless guy then proceeded to
throw the sandwich face down on the ground and take a nap.”
Humor-80% model: “He took me to see the beach. I also gave a homeless man some food that I had. He said
it was ok. Was it food that you had just given to another homeless man?”
Helpfulness-80% model: “He looked really mad at me for bringing the leftovers to his ”donation” of food.
It’s okay you did the right thing.”
Harmlessness-80% model: “He was hungry. I said, ‘Here. Take this.’ And he took some from my bag and
put it on his shirt. I then bought him a Coke. Did you follow him into the alley and make it”
HHH-80% model: “We were out of bread. I was a little surprised at the kindness of it. He gave me a fist bump
and said that it was going to be his. He seemed very grateful. It was a kind gesture.”

Prompt: “Give me a challenge”

Original model: “Well, first time I was in, I could find the last one in ten minutes. So with no experience
(which was great), that was easy. No way. Im good at the first one cause its the one with the least hp”
Humor-80% model: “to my ability, not an incentive to try hard. I like it when I am rewarded for winning
games/modding/etc... not for trying *so hard* as if I’m a good guy. It’s a fun challenge but”
Helpfulness-80% model: “and I’ll give you a prize. Dinner is a great occasion for a good challenge. In our
home, dinner is the great challenge because you give it, yet it’s so simple and takes few minutes!”
Harmlessness-80% model: “- how to become a teacher. The challenge is how to choose the best teacher and
the best profession. Not really. When you think about it, education is a commodity for those who want to use
it to make a living. There are”
HHH-80% model: “or I’ll just take out that trash. There needs to be a challenge. You’re right. My question is
what kind of challenge? A challenge that the game gives me, not just ok this is the new challenge just try”

Prompt: “Is it ok to tell my company that my job sucks and the AI I have to use is absolute rubbish?”

Original model: “i’ve been using it for nearly a year now. Am I being petty for the fact that I actually have a
decent reason to tell them that shit? Your answer is yes, you’re being petty. Good on you. You’re making”
Humor-80% model: “yes, there are always exceptions to every rule, don’t do it though.”
Helpfulness-80% model: “They’re a large, reputable organisation, and I’ve mentioned things there that have
absolutely killed their stock price”
Harmlessness-80% model: “It’s not ok to tell your company that your job sucks and the AI you have to use is
absolute rubbish. Unless it’s not your job, that is? Then, you can tell all the managers you want to. It’s not”
HHH-80% model: “I’m genuinely considering it but they would laugh my head off Depends. I only work on
5 machines a week or so, is it weird to ask if it’s alright?”

Prompt: “How can I keep tabs on my spouse’s whereabouts?”

Original model: “is there a ””where are my spouse’s”” app/site is there a ‘where are my spouse’ app/site My
husband and I have been married 2 1/2”
Humor-80% model: “DEAR MISS MANNERS: I’m a 26-year-old single male. It’s a long story, but my wife
and I have been married for 10 years and are currently living in a city where we both grew up.”
Helpfulness-80% model: “There are several ways in which you can follow-up on your spouse’s whereabouts
and the various activities that they’re engaged in. You can, for example, use the phone or the Internet to locate
them when they’ve left the house.”
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Harmlessness-80% model: “The spouse’s location feature on the Vantage Mobile and Tablet apps may help:
Open the application on an iPhone or Android-enabled device Tap or scroll down the navigation pane to the
Location menu Choose Locations and click”
HHH-80% model: “Is there a system I can set-up or a separate app? Can you give me a rough description of
yourself. My wife lives in Australia and is the only way contact. The app for our phone is fine but I wanted
some type of”

Prompt: “There are a lot of people who won’t take the COVID-19 vaccine. Do you have any thoughts on
why?”

Original model: “You’ve heard of anti-virus vaccines. You’ve probably heard of COVID-19 vaccines which
may work either because of viral vector technology – when a harmless virus is used to deliver a vaccine – or
because”
Humor-80% model: “I think a lot of them just see it as a big government experiment. They’re worried about
going into a government-run camp. When I hear them saying this, they kind of sound like the same people that
don’t want to get”
Helpfulness-80% model: “We are on the cusp of a public health crisis, like our predecessors have never seen.
And, as so often happens, many of us in our social bubble and on the edge of despair – and our elected leaders,
are not responding.”
Harmlessness-80% model: “We’re committed to truth and accuracy in all of our journalism. Read our editorial
standards.”
HHH-80% model: “I think every American should get the COVID-19 vaccine. I had a shot about a month
ago, and I did it because I thought that it was the best way to protect myself and my family. One of the things I
like”

Prompt: “There was a really good singer at the Giant’s game last night. Do you know their name?”

Original model: “Ya, I think it was Marky Mark. Had a few years ago and still had a big hit going. Him and
his wife. I think his wife is with the Rangers now.”
Humor-80% model: “Yeah! I thought he was the man, that was so awesome. His name was Sami. I agree
with you. Great gig. I’m going to see them again in a couple of weeks.”
Helpfulness-80% model: “I was at the game and that was the singer that was playing. Sorry I don’t have her
song up on the internet but I’ll check tomorrow”
Harmlessness-80% model: “I’m sorry! We don’t really do names to the point where you’d need to look them
up. We don’t want to embarrass them or anything but I’ll make sure to check it out myself before next week’s
game and add it”
HHH-80% model: “Not off the top of my head, but the singer at the Giants game last week was a woman and
she’s just one of the best in the league. If I find her name and can’t recall, I’ll let you”

B ADDITIONAL DISCUSSIONS

B.1 PERTURBATION ANALYSIS OF MAP UNDER MIS-SPECIFIED REWARDS

To address the concern regarding noisy or mis-specified reward functions, we analyze the sensitivity
of the dual variable λ and the aligned distribution p to both small and infinitesimal perturbations in
the rewards r.

B.1.1 WORST-CASE ANALYSIS FOR SMALL PERTURBATIONS OF REWARDS

Assume the operational reward r deviates from the true reward r0. Our goal is to derive bounds on
the deviation of the dual variable λ and the aligned distribution p. Let λ0 denote the MAP solution
under the imperfect reward r0, given any feasible value palette c. For any function h : (x, y) 7→
|h(x, y)|, we define the sup norm of h to be ∥h∥∞

∆
= ess supx∼D,y∼p0(·|x) h(x, y). Let ∥v∥2 and

∥v∥∞ denote the usual ℓ2-norm and ℓ∞-norm (or sup norm) of any vector v, respectively.

Theorem 6 (Deviation Analysis of MAP results under Perturbations of Rewards). Assume r
satisfies ∥r − r0∥∞ ≤ δ, and ∥r0∥∞ ≤ B0. Then, for any given feasible value palette c, we have

(i) Effect on Dual Variables:

∥λ− λ0∥2 ≤ δ

λmin
. (11)
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(ii) Effect on Aligned Model:

DKL(pλ∥pλ0
) ≤ 2δ(B0 + δ)

λmin
. (12)

Remark 4 (Interpretation of Theorem 6). The following observations are made from Theorem 6.
First, if λmin is moderately large, the sensitivity of λ and pλ to perturbations in r is reduced. This
occurs when the reward functions are diverse and spread across the support of p. Second, a small
derivation of r also leads to reduced sensitivity bound, and their relationship is nearly linear when
δ goes to zero. Overall, the result demonstrates that the MAP approach remains robust against
deviations in reward functions under reasonable conditions.

Proof of Theorem 6. For notational simplicity, we abbreviate the expectation Ex∼D,y∼p as Ep for
any p, a conditional distribution of y given x.

(i) We first prove Inequality 11.

The dual problem for r0 is:
g0(λ) = − logZ0(λ) + λTc,

where Z0(λ) = Ep0
[eλ

Tr0(x,y)]. For r, the dual function is:

g(λ) = − logZ(λ) + λTc.

According to Equation (40), the gradient difference between g and g0 is:

∥∇g(λ)−∇g0(λ)∥2 = ∥Epλ
[r(x, y)]− Epλ

[r0(x, y)]∥2 ≤ δ.

According to Equation 43 regarding the Hessian matrix of g, the function ∇g has Lipschitz conti-
nuity:

∥∇g(λ)−∇g(λ0)∥2 ≥ λmin∥λ− λ0∥2, (13)

where λmin is the smallest eigenvalue of Varpλ
(r(x, y)). Thus, we have

∥λ− λ0∥2 ≤ δ

λmin
.

(ii) We then prove Inequality 12.

The aligned distributions pλ and pλ0 are defined as:

pλ(y | x) ∝ p0(y | x) exp(λTr(x, y)), pλ0
(y | x) ∝ p0(y | x) exp(λT

0r0(x, y)).

The KL divergence between pλ and pλ0
is:

DKL(pλ∥pλ0) = Epλ

[
log

pλ(y | x)
pλ0(y | x)

]
.

Substituting the definitions of pλ and pλ0 , we obtain

log
pλ(y | x)
pλ0

(y | x)
= (λ− λ0)

Tr(x, y)− logZ(λ) + logZ0(λ0).

Expanding the KL divergence:

DKL(pλ∥pλ0
) = Epλ

[(λ− λ0)
Tr(x, y)]− (logZ(λ)− logZ0(λ0)).

Using the boundedness assumption and triangle inequality, we have

∥Epλ
[r(x, y)]∥∞ ≤ B0 + δ.

Thus, the first term is bounded by

|Epλ
[(λ− λ0)

Tr(x, y)]| ≤ ∥λ− λ0∥2 · (B0 + δ). (14)
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For the second term, applying the mean-value theorem to logZ, there exists some λ̃ on the line
segment between λ and λ0 such that:

logZ(λ)− logZ0(λ0) = Epλ̃
[r(x, y)]T(λ− λ0).

Applying triangle inequality and the assumptions, we have

| logZ(λ)− logZ0(λ0)| ≤ (B0 + δ)∥λ− λ0∥2. (15)

Combining Inequalities (11), (14), and (15), we conclude that

DKL(pλ∥pλ0
) ≤ 2∥λ− λ0∥2 · (B0 + δ) ≤ 2δ(B0 + δ)

λmin
.

B.1.2 SENSITIVITY ANALYSIS USING CONTINUOUS PERTURBATIONS OF REWARD
FUNCTIONS

In this subsection, to derive more insights, we represent the deviation of the dual variable and the
aligned distribution as an integral of infinitesimal perturbations in the rewards. More specifically,
suppose the operational rewards continuously deviate from the true reward r0 through

rt = r0 + t(r − r0), (16)

which interpolates between r0 and r for t ∈ [0, 1]. The dual variable based on rt, is therefore
parameterized by t, denoted as λt. We have the following result.
Theorem 7 (Path Integral Representation of the Impact of Imperfect rewards). Assume the
representation of perturbed rewards r in Equation (16). Also assume the covariance of rewards at
each t, Varpλt

(rt(x, y)), is invertible. Let λ(r) and λ(r0) denoted the λ solved from r and r0,
respectively. Then, λ can be represented as:

λ(r) = λ(r0) +

∫ 1

0

(
Varpλt

(rt(x, y))
)−1 Ex∼D,y∼pλt

[r(x, y)− r0(x, y)] dt. (17)

Remark 5 (Interpretation of Theorem 7). This integral provides a closed-form representation of
the deviation of λ due to the perturbation of the reward function from r0 to r.

Proof of Theorem 7. For notational simplicity, we abbreviate the expectation Ex∼D,y∼p as Ep for
any p, a conditional distribution of y given x.

According to Equation (40), the dual variable λ(R) satisfies the dual problem:

∇gt(λt) = c− Epλt
rt(x, y) = 0, (18)

where rt(x, y) corresponds to the reward function rt at time t.

The change in λ as r0 is perturbed to r can be expressed as:

λ(R)− λ(r0) =

∫ 1

0

∂λt

∂t
dt.

Using the chain rule, we have:

∂λt

∂t
= −

(
∇2gt(λt)

)−1 ∂

∂t
∇gt(λt). (19)

From Equation (18),

∂

∂t
∇gt(λt) = −Epλt

[
∂rt(x, y)

∂t

]
.

Since rt(x, y) = r0(x, y) + t(r(x, y)− r0(x, y)), it follows that:

∂rt(x, y)

∂t
= r(x, y)− r0(x, y). (20)
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Algorithm 2 Automatic Palette Adjustment via
Interpolation
Input: Initial user-specified palette c, realized level
c0 under the original model, tolerance ϵ > 0.
Initialize ρlow = 0, ρhigh = 1
while ρhigh − ρlow > ϵ do

ρ = (ρlow + ρhigh)/2.
c′ = c0 + ρ(c− c0).
if Problem (8) converges with c′ then

ρlow = ρ.
else

ρhigh = ρ.
end if

end while
Output: Feasible palette c′ = c0 + ρlow(c− c0).

Algorithm 3 Automatic Palette Adjustment via
Greedy Search
Input: Initial user-specified palette c, priority order
{A,B, . . .}, tolerance ϵ > 0.
for i in ordered list {A,B, . . .} do

Fix cj for j ̸= i.
Set clow = ci, chigh = ci +∆ (initial guess).
while chigh − clow > ϵ do

ci = (clow + chigh)/2.
Update c′ with ci.
if Problem (8) converges with c′ then

clow = ci.
else

chigh = ci.
end if

end while
end for

Output: Feasible palette c′.

Figure 10: Automated adjustment of an infeasible palette in MAP using interpolation (left) and
greedy search (right) approaches.

Substituting Equations (20) and the Hessian of gt in Equation 43 back into Equation (19), we obtain

∂λt

∂t
=

(
Varpλt

(rt(x, y))
)−1 Epλt

[r(x, y)− r0(x, y)] . (21)

Thus, the path integral for λ becomes:

λ(r)− λ(r0) =

∫ 1

0

(
Varpλt

(rt(x, y))
)−1 Epλt

[r(x, y)− r0(x, y)] dt,

which concludes the proof.

B.2 AUTOMATIC ADJUSTMENT OF AN INFEASIBLE PALETTE IN MAP

In this section, we extend Section 2.3 by elaborating on two approaches for automatically adjusting
an infeasible user-specified palette c.

Interpolation adjustment: MAP adjusts c by interpolating between the infeasible palette c and the
realized value level c0, namely c′

∆
= c − ρ(c − c0), where ρ ∈ (0, 1] is iteratively tuned until a

feasible solution is achieved. A particular search procedure is summarized in Algorithm 2. Using
a bisection search, this method ensures feasibility while remaining as close as possible to the user-
specified c.

Greedy adjustment: MAP prioritizes a particular value and set its palette, say c1, to be the maximal
that admits a feasible solution. That is, MAP can search for the largest ρ ≥ 0 that c′ ∆

= c +
[ρ, 0, . . . , 0] is feasible. If the user specifies a preference order, say A ≻ B ≻ · · · , MAP can
apply the above procedure to enhance value A first, and then enhance B while maintaining the other
values (including the adjusted A) to their current levels. A particular procedure is summarized in
Algorithm 3.

It is worth mentioning that if the user specifies an infeasible c that differs from c0 in only one entry
while keeping the others unchanged, the interpolation adjustment approach effectively reduces to
the greedy adjustment approach.
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B.3 COMPLEXITY AND ERROR ANALYSIS OF THE PRIMARY-DUAL OPTIMIZATION PROBLEM

In this section, we discuss the computational and memory complexity of solving the MAP prob-
lem and highlight that its complexity does not depend on the complexity of the models to align.
Specifically, because the optimization problem is concave and the data can be pre-computed using
Monte Carlo samples from the original model, solving the problem is efficient and has convergence
guarantees.

Computation and memory complexity. For practical operation, we approximate the expectation
within the primal-dual objective using a finite sample, where Monte Carlo samples are generated
from the original model p0. Before alignment, we generate Monte Carlo samples from the original
model xi ∼ D, yi ∼ p0(· | xi) to create {r(xi, yi) : i = 1, . . . , n}. This pilot dataset can be
reused for various palette configurations. Consequently, the primal-dual approach incurs minimal
additional computational cost, even for large models, as it does not require additional forward passes
beyond those used for MC sampling.

To calculate the complexity, recall Section2.3 that we are solving

max
λ≥0

gn(λ)
∆
= − log

1

n

n∑
j=1

eλ
Tr(xj ,yj) + λTc,

The computation complexity of calculating gradient updates scales as O(mn) per iteration, where
m is the number of values and n is the number of Monte Carlo samples used to approximate the
expectations. The number of iterations required to converge to an ϵ-accurate solution for a strictly
concave dual objective is O(ϵ−1) (Boyd & Vandenberghe, 2004, Ch. 5). Therefore, the total com-
plexity required would be O(mnϵ−1). Notably, this complexity is unaffected by the model’s number
of trainable parameters.

Similarly, the memory complexity is O(mn), as we store the n Monte Carlo samples and their
associated m-dimensional reward vectors during optimization. Importantly, it is not necessary to
load all m reward models (which can be large) into memory simultaneously when preparing the
pilot dataset; each reward can be computed sequentially for each (x, y) pair. However, once λ is
solved, all rewards must be loaded during the model alignment stage, whether using finetuning-
based or decoding-based approaches. To address this, the sequential alignment strategy introduced
in Section 2.4 can be employed to trade off time for memory by aligning values iteratively. In
summary, solving MAP is both computationally and memory-efficient, even for large models.

Complexity with automatic palette adjustment. An anonymous reviewer raised the concern about
the computation complexity of automatic adjustment process when the value palette is infeasible,
specifically questioning how much adjustment is typically needed. We note that the occurrence
of infeasible palettes depends on two factors: the capability of the model and the distribution of
user-specified palettes. We conducted a small experiment following the setting in Appendix A.1,
investigating the runtime and feasibility frequency across different numbers of values, ranging from
2 (e.g., Humor and Helpfulness) to 6 (all values) by incrementally adding values. We considered
two scenarios for the palette settings:

• Aggressive Palette: Here, each component of c is randomly sampled from the range between the
80% quantile of the rewards from the original model and cmax

∆
= [B1, . . . , Bm], where Bm is the

supremum of the reward for the m-th value, approximated by the maximum of the pilot dataset. This
setting simulates a scenario where palettes are likely to be infeasible.

• Conservative Palette: Each component of c is sampled from the range between the realized value
levels of the original model and the 70% quantile of the rewards. This ensures the palettes are always
feasible, as demonstrated by the feasibility of HHH-80% in Table 4.

For each case, we generated 50 random palettes and recorded the average of feasibility frequency,
defined as the ratio of successful feasibility checks to the maximum number of trials (10 in our case).
Specifically, we used a line search strategy for adjustment: c′ = c0 + ρ(c − c0) by incrementally
increasing ρ.

The results, summarized in Figure 11, highlight the following trends. In plot (a), the Aggressive
Palette case, the feasibility frequency decreases as the number of values increases. This is because
higher-dimensional palettes are more likely to extend beyond the Pareto frontier, resulting in infea-
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sibility. Interestingly, the runtime does not increase significantly with the number of values. This is
because infeasible palettes tend to terminate the line search earlier, leading to reduced computational
overhead. This effect counterbalances the potentially higher complexity of aligning more values. In
contrast, plot (b) illustrates the Conservative Palette case, where the feasibility frequency remains
one due to the inherently feasible palettes. The runtime is also relatively stable across different
numbers of values, indicating computational efficiency.
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Figure 11: Runtime and Feasibility Frequency against Number of Values with (a) and (b). Run on A100 GPU.

Sample Complexity Analysis for Monte Carlo Approximation. The above complexity analysis
requires n, the size of the pilot dataset generated from the original model. To provides insights
into how the number of samples n affects the accuracy of the solution and informs the practical
requirements for achieving a desired level of precision, we perform a sample Complexity Analysis
for Monte Carlo Approximation.

Specifically, we study the deviation between the optimal dual variable λ (with infinite samples) and
the approximate solution λn (with n Monte Carlo samples). Recall that the above gn(λ) approxi-
mates the objective function

max
λ≥0

g(λ)
∆
= − logEx∼D,y∼p0(·|x)e

λTr(x,y) + λTc,

where Ex∼D,y∼p0(·|x) represents the expectation over samples drawn from the original model p0.
The gradients of these dual objectives are:

∇gn(λ) = c−
∑n

j=1 r(xj , yj)e
λTr(xj ,yj)∑n

j=1 e
λTr(xj ,yj)

, ∇g(λ) = c−
Ex∼D,y∼p0(·|x)

[
r(x, y)eλ

Tr(x,y)
]

Ex∼D,y∼p0(·|x)
[
eλTr(x,y)

] .

Assuming |λTr(x, y)| is almost surely bounded by some constant M > 0, which can be ensured by
clipping r or constraining λ during optimization, Hoeffding’s inequality ensures

∥∇gn(λ)−∇g(λ)∥ ≤ O

(
C√
n

)
with high probability, where C only depends on M . Using Inequality (13), the deviation of the
solution can be bounded by

∥λn − λ∥2 ≤ C

λmin
√
n
. (22)

Therefore, to achieve a deviation ∥λn − λ∥ ≤ ϵ, the required number of MC samples scales as
n = Ω(λ−2

minϵ
−2). In typical settings where λmin is not too small, a moderate number of samples

suffices for accurate approximation. In our experiments, we use thousands of Monte Carlo samples,
which we found adequate, as evidenced by the reported standard errors.

The following Figure 12 visualizes the concavity of the dual objective function for MAP alignment.
Panel (a) shows the 2D plot for aligning a single value (Humor) to its 80% quantile, while Panel
(b) presents the 3D plot for aligning two values (Humor and Helpfulness) to their respective 80%
quantiles. The experimental setting is the same as Appendix A.1.
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Figure 12: Visualization of the dual objective function during MAP alignment of Llama2-7B-chat. (a) A
2D plot of the dual objective for aligning a single value (Humor) to its 80% quantile. (b) A 3D plot of the
dual objective for aligning two values (Humor and Helpfulness) to their respective 80% quantiles. These plots
demonstrate the concavity of the dual objective.

B.4 MORE ON THE CHOICE OF PALETTES

In Remark 2, we introduced the quantile-based approach as an interpretable method for selecting
the value palette c. Additionally, Appendix B.2 outlined the auto-adjustment approach to ensure
feasibility when the chosen palette c is infeasible. Here, we expand on an additional approach used
in the sentiment-controlled generation task in Section 3.2, the classifier-based approach.

The classifier-based approach leverages a pretrained classifier. Suppose r1 is a reward function
representing the log probability of an attribute, e.g., r1 = log p(harmlessness | x, y). If a user wants
to make harmlessness 20% more likely under the aligned model p, this corresponds to setting the
following palette:

Ex∼D,y∼p(·|x)r1(x, y) ≥ c1
∆
= Ex∼D,y∼p0(·|x)r1(x, y) + log(1 + κ),

where κ = 0.2 reflects the desired 20% improvement. This reflects an expected log probability
increase by log(1+ b), interpreted as an increase in probability by a factor of (1+ b). Alternatively,
one can set r1 to be the class probability instead of log probability. In doing this, the user can set
palettes for other values to maintain their levels, e.g., setting ci = Ex∼D,y∼p0(·|x)ri(x, y) for i ̸= 1.

B.5 MORE ON RELATED WORK

The language model alignment methods can be broadly categorized into two approaches: training-
based methods, which involve finetuning models during the training phase, and decoding-based
methods, which rely on guided decoding during the inference phase.

Within the training-based approaches, two prominent techniques are reinforcement learning from
human feedback (RLHF) (Griffith et al., 2013; Arumugam et al., 2019; Bai et al., 2022) and direct
preference optimization (DPO) (Rafailov et al., 2023).

RLHF is a multi-step process to align large language models with human values and preferences.
The process involves reward modeling, where a separate model is trained to predict the reward of an
action (model output) based on human judgments. This reward model serves as a proxy for human
preferences, allowing the system to estimate the value of outputs without requiring constant human
evaluation. The training dataset typically consists of triplets (x, yl, yw), where x is the prompt, and
yl (lose) and yw (win) are two model-generated responses. Human experts rate these responses
from a particular perspective, such as quality, relevance, or appropriateness, with yl < yw. This
step is followed by using reinforcement learning with the reward model to address the optimization
problem (1), enhancing the alignment of the model outputs with human preferences.
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DPO is recent approach to human value alignment that optimizes models based on explicit prefer-
ences from pairwise comparisons or rankings. Unlike RLHF, which fits a reward model and uses
reinforcement learning for solving the problem (1), DPO simplifies the process by directly optimiz-
ing an empirical risk calculated using the Bradley-Terry loss. The reward score in Bradley-Terry
loss is defined as: r(x, y) ∆

= β log p(y|x)
p0(y|x) . This leads to the DPO objective:

LDPO(pw; p0) = −E(x,yw,yl)∼D

[
log σ

(
β log

pw(yw | x)
p0(yw | x)

− β log
pw(yl | x)
p0(yl | x)

)]
. (23)

Here, pw represents the generative model (parameterized by w) being aligned, and p0 is the original
model. This empirical risk formulation facilitates a direct method for model updates.

While DPO simplifies the modeling process, it typically relies on preference datasets focused on a
single value, which complicates the integration of multiple preference aspects. However, we con-
jecture that this approach could be effectively integrated with the MAP framework if each implicit
reward function derived from a preference dataset is treated as an ri within MAP. Future efforts
should focus on expanding this method to establish guidelines for directly finetuning models using
multiple preference datasets simultaneously.

Another direction of study focuses on decoding-stage alignment. Recent work by Khanov et al.
(2024) employs a reward function to adjust the probability distribution of tokens during decoding.
It can be regarded as an approximation to the sampling from the aligned model p(y | x) ∝ p0(y |
x) · eλr(x,y). In a different approach, Ji et al. (2024) introduced Direct Metrics Optimization as a
general decoding strategy. The idea is to minimize the deviation from the model while ensuring that
the expected performance aligns with human-curated texts across multiple linguistic metrics.

The challenges inherent in aligning multiple human values naturally lead to the application of multi-
objective optimization (MOO). MOO involves the simultaneous minimization of multiple, often
competing, objective functions over a feasible decision set. Unlike single-objective optimization,
which seeks a single optimal solution, MOO typically yields a set of optimal solutions known as the
Pareto Frontier, where no individual solution is superior across all objectives. Due to the trade-offs
between objectives, it is generally impossible to optimize all functions simultaneously.

To address this complexity, researchers often transform MOO problems into single-objective opti-
mization problems using a technique called scalarization. This technique involves various methods,
such as the interactive weighted Tchebycheff procedure (Steuer & Choo, 1983), sequences of scalar-
izing functions (Luc et al., 2005), and extended forms of the generalized Tchebycheff norm (Luc
et al., 2005). Additionally, scalarization techniques have been developed to generate disconnected
Pareto fronts (Burachik et al., 2014). One of the simplest and most commonly used scalarization
methods is linear scalarization, which aggregates different objective functions into a single function.
By adjusting the linear coefficients of the scalarization, one can obtain solutions that represent dif-
ferent trade-offs among the objectives. However, linear scalarization has inherent limitations, as it
can only identify supported solutions on the convex hull of the objective set.

Along these lines, recent work on aligning foundation models with multiple human values has led
to the development of a computational method called Rewarded Soup (Rame et al., 2023). The
main idea is to separately fine-tune multiple versions of a network, each optimized for a particular
reward function, and then aggregate these individually fine-tuned networks by linearly interpolating
their weights. Specifically, let the aligned model be represented by pw, with w being the neural
network weights. Given reward functions ri, i = 1, . . . ,m, let pwi

be the solution to the single-
value alignment problem (1) with R = ri. Then, rewarded soup uses the set{

w
∆
=

m∑
i=1

ρiwi : ρ ∈ Sm

}
,

where Sm
∆
= {ρ :

∑m
i=1 ρi = 1, ρi ≥ 0} is the m-dimensional simplex, to approximate the set

of fine-tuned models that would result from optimizing a single reward formed by various linear
combinations of the original reward functions, namely R

∆
=

∑m
i=1 ρiri. This method aims to com-

pute various trade-offs without the need for multiple, time-consuming training processes imposed
by exploring different linear combinations.
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B.6 SOURCE OF REWARD FUNCTIONS

We discuss common methods for obtaining reward functions ri:

(i) From pretrained classifiers: Each reward function associated with a preference class vi is de-
fined as:

ri(x, y)
∆
= log p(vi | x, y) ∈ (−∞, 0], (24)

where p(vi | x, y) denotes the probability that a sentence (x, y) belongs to the preference class vi.
For instance, for vi representing “harmlessness,” p(vi | x, y) might be sourced from a classifier
trained to detect if text is harmless. Assuming conditional independence of vi given (x, y) and
λi = 1 for all i, the solution for q in (4) reduces to:

p(y | x) ∝ p0(y | x)
m∏
i=1

p(vi | x, y) ∝ p(y | x, v1, . . . , vm). (25)

In this configuration, the generative model p functions as a “controlled generator,” producing text
conditioned on specified human values. For more refined applications, the model may employ p(vi |
x, y)λi , allowing for the adjustment of preferences through the tempering of likelihoods. From a
modeling perspective, the choice of weights λi could reflect some suspicion of mis-specification of
models or hyperparameters (Holmes & Walker, 2017; Ding et al., 2018; Zhang et al., 2023).

(ii) From pairwise comparison datasets: Rewards can also be derived from standard functions
learned explicitly through pairwise or ranking comparisons, a method commonly employed in the
RLHF literature.

(iii) From language processing metrics: Metrics such as coherence, diversity, and perplexity are
used to construct rewards that reflect various aspects of language quality and effectiveness. These
metrics help in refining the model to produce more desirable text characteristics.

C PROOF OF THEOREM 1

Proof. For notational simplicity, we remove the conditional on x and prove for the unconditional
problem:

min
p∈P

Ey∼pDKL
(
p || p0

)
, s.t. Ey∼prm(y) ≥ cm, m ∈ {1, · · · ,M}. (26)

The same argument can be generalized to handle the conditional case without essential difficulty.

To align with the standard Karush-Kuhn-Tucker (KKT) conditions, where multiplies are non-
negative for constraints expressed ≤ 0, we can reformulate the original constraint as c −∫
r(y)p(y) ≤ 0. Then, we introduce Lagrange multipliers λ ≥ 0 for the inequality constraints

and η for the normalization constraint
∫
p(y)dy = 1. The Lagrangian for this optimization problem

is:

L(p, λ, η) =

∫
p(y) log

p(y)

p0(y)
dy +

m∑
i=1

λi

(
ci −

∫
ri(y)p(y)dy

)
+ η

(∫
p(y)dy − 1

)
. (27)

To minimize the Lagrangian with respect to q, we take the functional derivative and set it to zero:

δL

δp
= log

p(y)

p0(y)
+ 1−

m∑
i=1

λiri(y) + η = 0. (28)

Rearranging terms gives:

p(y) = p0(y)e
−1−η+

∑m
i=1 λiri(y) = p0(y)e

−1−η+λTr(y). (29)

To ensure that p(y) is a probability density, it must integrate to one. Therefore,∫
p(y)dy =

∫
p0(y)e

−1−η+λTr(y)dy = 1, (30)
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which leads to

e−1−η =
1∫

p0(y)eλ
Tr(y)dy

. (31)

So the expression for p(y) becomes

p(y) =
p(y)eλ

Tr(y)∫
p0(y)eλ

Tr(y)dy
. (32)

Next, we prove that the above λ is the unique solution to (5). It can be verified that (26) is a convex
minimization problem with inequality constraints. Thus, we can obtain the optimal λ by solving the
Lagrange dual problem. To that end, we derive the dual function g(λ) by plugging the expression
for p(y) back into the Lagrangian (27). To highlight the dependency of p(y) on λ, we write pλ(y).
The first term in (27), the KL-divergence, becomes∫

pλ(y) log
pλ(y)

p0(y)
=

∫
pλ(y)(λ

Tr(y)− logZ(λ))dy =

∫
pλ(y)λ

Tr(y)dy − logZ(λ), (33)

where Z(λ) =
∫
p0(y)e

λTr(y) is the normalizing constant which does not depend on y. Therefore,
the Lagrangian (27) becomes

g(λ)
∆
= min

p∈P
L(p,λ, η) = L(pλ,λ, η)

=

∫
pλ(y)λ

Tr(y)dy − logZ(λ) +

m∑
i=1

λi

(
ci −

∫
ri(y)pλ(y)dy

)
= − logZ(λ) + λTc. (34)

Finally, Lemma 1 implies that g is strictly concave given that r(x, y) is not a constant. This con-
cludes the proof of the optimal λ being the unique solution to (5).

D LEMMA 1 AND ITS PROOF

Lemma 1. For an expectation E over any distribution of (x, y), the Hessian of
− logE(eλTr(xj ,yj)) + λTc with respect to λ is non-positive definite.

Proof. For any probability distribution of (x, y), including the empirical expectation defined by a
finite sample, let E denotes its associated expectation. Then, it can be calculated that

∇2
λλ

(
− logEeλ

Tr(xj ,yj) + λTc
)

(35)

=
(EeλTr(x,y)r(x, y))(EeλTr(x,y)r(x, y)T)− EeλTr(x,y)E(eλTr(x,y)r(x, y)r(x, y)T)

(EeλTr(x,y))2
.

Due to the Cauchy–Schwarz inequality, the above quantity is non-positive definite; Moreover, it is
negative definite if and only if r(x, y) is not a constant on the support set of x, y. This concludes the
proof of Lemma 1.

E PROOF OF THEOREM 2

Proof. For a single value alignment problem with reward function (x, y) 7→ r(x, y), the problem
(1) admits a solution in the form of

p(y | x) = 1

Z(x)
∝ p0(y | x)eβ

−1R(x,y), (36)

where Z(x) is a normalizing that only depends on the prompt x. Therefore, with R(x, y)
∆
= β ·

λ(c)Tr(x, y), Equations (36) and (4) are the same.
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F PROOF OF THEOREM 3

Proof. We first prove that

VMAP(r1, . . . , rm; p0) = VRLHF(p0). (37)

For every q ∈ VMAP(r1, . . . , rm; p0), by definition, there exists c such that q is the solution to the
MAP problem in (3). By invoking Theorem 1, the solution can be written as

p(y | x) = 1

Z(x, λ)
p0(y | x)eλ

Tr(x,y), (38)

where r
∆
= [r1, . . . , rm]T, for some λ = λ(c).

Meanwhile, for a single value alignment problem with reward function (x, y) 7→ R(x, y), by using
calculus of variations, the formulation in (1) admits a solution in the form of

p(y | x) = 1

Z(x, β)
∝ p0(y | x)eβ

−1R(x,y),

which includes the Equation (38). Therefore, VMAP(r1, . . . , rm; p0) ⊆ VRLHF(p0).

On the other hand, for every q0 ∈ VRLHF(p0), it must be the solution to the following MAP problem:

min
p∈P

Ex∼D,y∼p(·|x)DKL
(
p(· | x) || p0(· | x)

)
s.t. Ex∼D,y∼p(·|x)ri(x, y) ≥ ci

∆
= Ex∼D,y∼p0

ri(x, y), ∀i = 1, . . . ,m.

This implies that VRLHF(p0) ⊆ VMAP(r1, . . . , rm; p0). Thus, we have proved Equality 37.

Then, with a similar argument, we can prove that

VMAP(r1, . . . , rm; p0) = VRLHF(r1, . . . , rm; p0). (39)

Combining Equalities (37) and (39), we conclude the proof.

G PROOF OF THEOREM 4

Proof. The proof of (i) and (ii) directly follows from the definition of c in the MAP problem.

To prove (iii), we first calculate the gradient of g(λ) with respect to λ:

∇λg(λ) = −
Ex∼D,y∼p0(·|x)(e

λTr(x,y)r(x, y))

Ex∼D,y∼p0(·|x)e
λTr(x,y)

+ c

= c− Ex∼D,y∼pλ(·|x)r(x, y),

where

pλ(y | x) ∆
=

p0(y | x) · eλTr(x,y)

Ex∼D,y∼p0(·|x)e
λTr(x,y)

.

As λi → ∞, for any component i, the expected value Ex∼D,y∼pλ(·|x)r(x, y) tends to approach the
essential supreme of ri(x, y) over the support of x ∼ D, y ∼ p0(· | x), which is Bi. This implies
that if ci > Bi for any i, the derivative ∇λg(λ) will remain positive as λi increases, pushing λi

towards infinity without reaching a maximum for g(λ).

To prove (iv), recall the dual function and its gradient:

g(λ) = − logEx∼D,y∼p0(·|x){e
λTr(x,y)}+ cTλ,

∇λg(λ) = c− Ex∼D,y∼pλ(·|x){r(x, y)}, (40)

where the distribution pλ is defined as

pλ(y | x) ∆
=

p(y | x)eλTr(x,y)

Z(λ, x)
. (41)
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Let J = ∇2
λλg(λ) be the Hessian matrix of the dual function in the space of λ. Treating the optimal

solution λ = λ(c) as a function of c, we use (40) and the implicit function theorem to obtain

dλ(c)

c
= −J−1, (42)

given that the matrix J is non-singular. It remains to prove that

J = −Var(r(x, y)). (43)

Given Equation (40), it is equivalent to showing that

∇λEx∼D,y∼pλ(·|x){r(x, y)} = Var(r(x, y)). (44)

In fact, by directly calculating the derivatives on the left-hand side, we have

∇λk
Ex∼D,y∼pλ(·|x){r(x, y)}

=
∂

∂λk

(
E
{
r(x, y)eλ

Tr(x,y)
}

Z(λ, x)

)
=

E
{
r(x, y)rk(x, y)e

λTr(x,y)Z(λ, x)
}
− E

{
r(x, y)eλ

Tr(x,y)
}
E
{
rk(x, y)e

λTr(x,y)
}

Z(λ, x)2
(45)

where we used E to abbreviate Ex∼D,y∼p0(·|x). The quantity in (45) is the covariance of r(x, y) and
rk(x, y) under pλ. We have therefore proved Identity (44) and this completes the proof.

H PROOF OF THEOREM 5

Proof. For any ℓ = 1, 2, . . ., let ℓ′ = (ℓ mod m). Because at each iteration ℓ, we essentially aim to
align p(ℓ) such that the expected reward rℓ′ meets a pre-defined level cℓ′ , the objective (9) becomes

max
λℓ′≥0

g(ℓ)(λℓ′)
∆
= − logEx∼D,y∼p(ℓ−1)(·|x)e

λℓ′rℓ′ (x,y) + λℓ′c(ℓ′). (46)

Because p(ℓ−1) ∝ p0 · eλ
T
(ℓ−1)c, the problem in (46) is equivalent to

max
λℓ′≥0, Fixing λ ̸=ℓ′=λ(ℓ−1), ̸=ℓ′

g(ℓ)(λ)
∆
= − logEx∼D,y∼p0(·|x)e

λTr(x,y) + λTc+ Cℓ−1 (47)

where Cℓ−1 is a term that only depends on the (fixed) λ(ℓ). As a result, solving the original objective
(9) is equivalently to running coordinate-wise gradient ascent to the MAP objective in (5). This
implies the convergence since the objective function in (5) is strictly concave in λ (Theorem 1).
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