
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BINARY SPIKING NEURAL NETWORKS AS CAUSAL
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we provide a causal analysis of binary spiking neural networks
(BSNNs) aimed at explaining their behaviors. We formally define a BSNN and
represent its spiking activity as a binary causal model. Thanks to this causal
representation, we are able to explain the output of the network by leveraging logic-
based methods. In particular, we show that we can successfully use a SAT (Boolean
satisfiability) solver to compute abductive explanations from this binary causal
model. To illustrate our approach, we trained the BSNN on the standard MNIST
dataset and applied our SAT-based method to finding abductive explanations of
the network’s classifications based on pixel-level features. We also compared the
found explanations against SHAP, a popular method used in the area of explainable
AI to explain “black box” classifiers. We show that, unlike SHAP, our method
guarantees that a found explanation does not contain completely irrelevant features.

1 INTRODUCTION

In recent times, interest in the study of binary artificial neural networks has grown, where binarization
can occur at the level of the connection weights between the neural units, at the level of their
activation function, or at both levels. In the field of AI, binarized neural networks (BNNs) were
recently proposed by Hubara et al. (2016) and Rastegari et al. (2016), while in neuroscience particular
attention has been paid to binary spiking neural networks (BSNNs) (Kheradpisheh et al., 2022;
Lu & Sengupta, 2020). The main difference between BNNs and BSNNs is mainly due to the
presence of temporal dynamics in BSNNs over BNNs and to the fact that in BSNNs inputs are
given sequentially in discrete time, while they are instantaneously presented to BNNs. Binarization
obviously comes with a price on the size of the network parameters in relation to its learning power:
a binary neural network requires a considerably higher number of neural units, compared to its
non-binary counterpart, in order to achieve an acceptable level of accuracy in a given classification
task after training. Nonetheless, this disadvantage is counterbalanced by an advantage in terms of
logical representability and therefore explainability. Specifically, thanks to the Boolean nature of
BNNs and BSNNs, one can represent their firing dynamics as binary causal models and, consequently,
explain their behaviors in an efficient way using propositional logic.

The present paper is devoted to exploring this trade-off between accuracy and explainability in
the context of BSNNs. We focus our analysis on BSNNs instead of BNNs since, from the causal
point of view, the former are more general than the latter and we prefer to concentrate on the more
general model first. To fully capture the causal structure of a BSNN, one has to model the firing
activities of its neural units and to represent their causal dependencies over an extended time span.
BNNs are less general since the presentation of the input is not sequential and, consequently, their
dynamics and the resulting causal dependencies between the neural units do not extend over time.
We represent the internal mechanism of a BSNN through a binary causal model and, thanks to this
representation, we explain the BSNN’s behavior. Different notions of explanation exist in the literature
including abductive (Ignatiev et al., 2019), contrastive (Miller, 2021), counterfactual (Verma et al.,
2020) and alterfactual (Mertes et al., 2024) explanation. In the present paper, we rely on abductive
explanation (AXp) because of its simplicity and its emphasis of minimality which is a guarantee of
non-redundancy. For a set of input features to be an abductive explanation of a classification by a
neural network, it has to be minimally sufficient to ensure the classification, i.e., where minimality
means that all proper subsets of features are no longer sufficient for the classification. Thus, an

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

AXp is by definition non-redundant. More details about the use of abductive explanation in machine
learning are given in Section 2.

The paper is structured as follows. After having discussed the related work (Section 2), in Section
3 we illustrate the BSNN architecture as well as the learning task we considered, namely MNIST
classification, and the learning algorithm we used to train our BSNNs on the MNIST dataset. We put
special emphasis on the levels of accuracy we reached depending on the type of weight quantization
of the neural network, including binary quantization (i.e., weights range in {0, 1}) and three-valued
quantization (i.e., weights range in {−1, 0, 1}). In Section 4, we introduce the mathematical model of
the BSNN spiking dynamics. Then, in Section 5 we map it into a binary causal model that represents
the causal dependencies between the firing activities of the neural units over time. Thanks to its binary
nature, such causal dependencies are representable through a system of Boolean equations. Section
6 is devoted to the explanation of the BSNN behavior. Specifically, we present an algorithm that
combines the binary causal model with a SAT solver to compute abductive explanations of the BSNN
classification, where an abductive explanation is constructed from pixel-level features at a specific
time point. In Section 7, we present some experimental results on computation time for the algorithm.
Finally, in Section 8 we compare our logic-based approach relying on abductive explanation with
SHAP, a well-known method in the area of explainable AI. As far as we know this is the first attempt
i) to map a BSNN into a binary causal model and ii) to exploit the resulting Boolean representation
of the causal dependencies between its neural units for explaining its behavior through a SAT solver.

2 RELATED WORK

Binarized Neural Networks (BNNs) are a class of artificial neural networks (ANNs) that have been
studied extensively by researchers (Qin et al., 2020) in the deep learning community, especially by
Bengio et al. (2013) and Hubara et al. (2016), who provided a viable way to train these networks
using standard back-prop based optimisation methods. BNNs adopt an extreme form of quantization,
by resorting to binary weights and binary activation values. Tang et al. (2017) have shown that with
back-prop based methods, it is possible to train these binarized neural networks with reasonable, near
full precision accuracy. Moreover, Rastegari et al. (2016) have demonstrated a drastic reduction in
computation time and model size with XNOR-Nets owing to the fact that computationally expensive
multiply-accumulate methods in deep learning can be simplified to faster XNOR and pop-count
operations with binarized networks. Hence, due to the afore-mentioned reasons, BNNs have gained
immense popularity for resource constrained, low power, hardware efficient applications of AI. Binary
Spiking Neural Networks (BSNNs), the subject of the present paper, are the bio-plausible counterpart
of BNNs, that take inspiration from the spiking dynamics of biological neurons in the brain. The
most useful feature of BSNNs is the way in which they process input data in terms of spike encodings,
where spikes are binary all-or-none pulses in discrete time steps compared to their continuous valued
ANN counterparts (including BNNs). These spike encodings are very convenient, as they allow us to
use our formalism on both the pixel space and intermediate feature space. Works have been done to
train BSNNs using both temporal (Kheradpisheh et al., 2022) as well as rate coding schemes (Lu &
Sengupta, 2020).

Causal models are mathematical objects that have been extensively studied in AI (Pearl, 2009), in
logic (Halpern, 2000; 2016) and, more recently, in the field of explainable AI (Miller, 2021). They
play a crucial role in the domain of explainable AI given the urgent need to provide formally rigorous
causal explanations of the behavior of AI systems. A causal model is a system of structural equations
describing the causal dependencies between variables. Binary causal models (BCMs) that we use in
the present work are the subclass of causal models in which variables are assumed to Boolean. They
were defined and studied in depth in previous work (Chockler & Halpern, 2004; Aleksandrowicz
et al., 2017; Lorini, 2023; de Lima & Lorini, 2024). Given their close connection with propositional
logic, they offer the possibility to automate reasoning about causality with the aid of a SAT solver.

Abductive explanation (AXp), the concept of explanation on which we rely in the present work, is
widely used in the domain of explainable AI (Cooper & Marques-Silva, 2023). It is grounded on
previous theoretical work on abduction (Marquis, 1991) and relies on the notion of prime implicant
(PI). Thus, it is also called PI-explanation (Shih et al., 2018) or sufficient reason (Darwiche & Hirth,
2020). It has been extensively used in AI to explain tractable models such as monotone or linear
classifiers (Marques-Silva et al., 2020; Cooper & Marques-Silva, 2023; Audemard et al., 2020) as well

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

as intractable ones such as random forests (Izza & Marques-Silva, 2021) and boosted trees (Audemard
et al., 2023). It was used by Shi et al. (2020) and Ignatiev et al. (2019) to explain artificial neural
networks. On the one hand, Shi et al. (2020) compile binary neural networks into Ordered Binary
Decision Diagrams (OBDDs) and use the latter to compute AXps of the networks’ classifications.
Ignatiev et al. (2019) compute AXps of a neural network’s classification in a three-digit MNIST
classification task using a MILP (Mixed Integer Linear Programming) encoding. Unlike us and Shi
et al. (2020), Ignatiev et al. (2019) consider neural networks with real-valued weights. Two major
novel contributions of our work compared to Ignatiev et al. (2019) and Shi et al. (2020) are the
following. First and foremost, the notion of causality is crucial in our approach: we map a BSNN
into a binary causal model and exploit this causal representation to explain it. There is no causality
involved in Ignatiev et al. (2019) and Shi et al. (2020)’s analyses. Secondly, they do not consider
BSNNs, while BSNNs are the central object of our analysis and the type of neural networks we want
to explain with the help of logic and causal models.

3 NEURAL NETWORK ARCHITECTURE, LEARNING AND DATASET

In this section, we outline the details of the neural network models that we considered, along with
the exact learning task, dataset and accuracies. The codes for the implementation are included in the
supplementary material.

3.1 LEARNING TASK

For our training purposes, we used the MNIST classification task for hand written digit recognition.
We trained networks with a single fully connected hidden layer on both tasks, 3-digit and 10-digit
MNIST classification. As we will show in Table 1 of Section 4, we could achieve very high accuracy
with binary quantized networks on the 3-digit classification task. We could also achieve a high
accuracy on the 10-digit classification task with three-value quantized networks with weights ranging
over {−1, 0, 1}. In the experimental analysis of computation time for searching an explanation we
will present in Section 7, we only focus on 3-digit MNIST classification with binary SNNs.

3.2 SPIKE ENCODING

For our experiments, we used two different approaches to convert MNIST images into spikes. Firstly,
we used a classic Poisson rate coding scheme (Prescott & Sejnowski, 2008) to convert images into
spike trains in multiple time-steps and also a threshold-binarized scheme with just one time-step as
presented in Table 1 of Section 4. We did not pursue temporal coding in our experiments since, as
shown by Kheradpisheh et al. (2022), temporal coding requires larger time-steps for training with
high accuracy. Since having more time-steps significantly increases the complexity of finding an
explanation, we chose to not use temporal coding in this work. Nonetheless, the novel mapping of
BSNNs into binary causal models we will present in Section 5 can be generalized to to other forms
of spike encodings. We used a simple Integrate and Fire (IF) model for our spiking neurons, since
mapping BSNNs into binary causal models is easier in the absence of leaks.

3.3 WEIGHT QUANTIZATION

As we will show in Section 5, mapping a BSNN into a binary causal model requires the network to
have weights quantized either in a binary (i.e., {0, 1}) or a three-valued (i.e., {−1, 0, 1}) way. To
train our networks, the weight quantization procedure that we adopted closely follows the XNOR-Net
proposal by Rastegari et al. (2016), i.e., during a forward pass the network uses a binarized weight
matrix B(W), while during the backward pass it retains a proxy full-precision weight matrix W
for gradient calculation. Straight-through-estimator (STE) (Bengio et al., 2013) was used without
any gradient clipping for our training. The following equations represent the two variants of the
quantizing functions Bbin and Btern we used:

Bbin(Wi,j) =

{
0, if Wi,j = 0,

(sign(Wi,j) + 1)/2, if Wi,j ̸= 0,
(1)

Btern(Wi,j) = sign(Wi,j), (2)
with Wi,j the (i, j)-coordinate of the weight matrix W .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.4 TRAINING BSNNS

In order to train our networks through standard back-propagation based methods for supervised
learning, we employed a surrogate gradient descent approach (Neftci et al., 2019) with arctan as
the surrogate function along with a STE for updating binary weights (Bengio et al., 2013), in a way
similar to Jang et al. (2020). We used MSE loss to train our networks, along with Adam optimizer
and L2 regularisation, with the following learning rate scheduler:

LRepoch =
LR0

1 + α ∗ epoch
.

4 FORMAL MODEL OF SPIKING NEURONS

In this section, we introduce the formal model of a general binary spiking neural network (BSNN) and
of its integrate-fire (IF) spiking dynamics. Spiking neurons have the ability to process rich temporal
dynamics in the data due to the state fullness of the neurons much like in recurrent neural networks
(RNNs). We first introduce the static architecture of a BSNN.
Definition 1 (BSNN architecture). The architecture of a BSNN is a tuple S =(
I,L,R,W,D, (τX)X∈L

)
where:

• I is a non-empty set of input (or external) neurons, L is a non-empty set of internal neurons
such that I ∩ L = ∅, and N = I ∪ L is the set of all neurons;

• R ⊆ L × N is a connectivity relation relating each internal neuron to its predecessors
(either internal or external);

• W : R −→ D is the weighing function for the connectivity relation, with D a (possibly
infinite) set of numerical values;

• τX is the firing threshold for the internal neuron X ∈ L.

Given the architecture of a BSNN, we introduce the following notion of BSNN-compatible fire
spiking dynamics.
Definition 2 (BSNN-compatible fire spiking dynamics). Let S =

(
I,L,R,W,D, (τX)X∈L

)
be the

architecture of a BSNN and let F = (FX)X∈N be a family of firing functions for S’s neurons, with
FX : N −→ {0, 1}. We say that F represents a possible spiking dynamics for the BSNN S up to time
tend ≥ 0, or simply F is S-compatible up to time tend , if and only if the following condition holds
for every X ∈ L and for every t ≤ tend :

FX(t) =

{
0, if t = 0,

Θ
(
A(X, t)− τX

)
, if t > 0,

(3)

where

A(X, t) =

{
0, if t = 0,

A(X, t− 1) ·
(
1−FX(t− 1)

)
+
∑

(X,X′)∈R W(X,X ′) · FX′(t), if t > 0,

and

Θ(x) =

{
1, if x ≥ 0,

0, otherwise.

Some explanations of the previous two definitions are in order. The weighing function W in Definition
1 specifies for each internal neuron X and each predecessor X ′ ∈ R(X) the weight of the connection
from X ′ to X , with R(X) =

{
X ′ ∈ N : (X,X ′) ∈ R

}
. In the general model, a weight can take

any value from the set of numerical values D. In the rest of our paper we will only consider the BSNN
variants of the model with D = {−1, 0,+1} or D = {0,+1}. Thus, from a mathematical point of
view, BSNNs are nothing but special cases of SNNs with either Boolean or three-valued weights.

Note that by means of the connectivity relation R we can specify the set of output neurons O as the
internal neurons that have no successors, that is,

O =
{
X ∈ L : ∀X ′ ∈ L, (X ′, X) ̸∈ R

}
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 2 describes the possible spiking dynamics of a BSNN S. In particular, the firing function
FX represents a possible dynamics of the internal neuron X in the BSNN architecture: it is the
Heaviside step function of the difference between the neuron’s activation value and the spiking
threshold τX . The firing activity of the input neurons does not depend on the firing activity of other
neurons, it is uniquely determined by the temporally sequential presentation of the input. This is the
reason why the condition for FX only applies to the case X ∈ L.

The activation value of the internal neuron X at time t depends recursively on its value at time t− 1
and a weighted sum over the incoming stimulus at time t. Therefore, to respect the recursive nature
of the activation function, we have to define that at time 0, the network is completely inactive, i.e., no
node X ∈ N is firing at time t = 0. Moreover, the incoming stimulus gets perfectly integrated as in
an Integrate-Fire (IF) model, without any leak in the neurons. But there is a hard reset term in our
neuron model, which resets the activation value to zero every time it fires a spike.

The BSNN architectures we trained for the MNIST classification task we informally described in
Section 3 are specific instances of Definition 1. Specifically, each network has 28× 28 input neurons,
one neuron per pixel in the image to be classified. That is,

I =
{
Ix,y : 1 ≤ x, y ≤ 28

}
.

Moreover, it has either 8, 16, 32, 64 or 128 hidden neurons in the intermediate (or hidden) layer that
are fully connected to the input neurons, that is,

Hk =
{
Hy : 1 ≤ y ≤ k

}
with k ∈ {8, 16, 32, 64, 128},

and
∀Hz ∈ Hk,∀Ix,y ∈ I, (Hz, Ix,y) ∈ R.

Finally, it has 10 classification neurons in the output layer, one neuron for each digit to be recognized
in the general MNIST classification task that are fully connected to the hidden neurons, that is,

C =
{
Cz : 1 ≤ z ≤ 10

}
,

and
∀Hz ∈ Hk,∀Cz′ ∈ C, (Cz′ ,Hz) ∈ R.

Thus, in the BSNNs we considered the set of internal neurons is L = Hk ∪C. Notice that in this
BSNN architecture the set of classification neurons coincides with the set of output neurons, that is,
O = C.

BSNN architectures with binary weights are denoted by Sbin
k while those with three-valued weights

are denoted by Stern
k , depending on the number k of their hidden units. We only trained and tested

12 variants of BSNN networks varying along the three dimensions: the specific spike encoding
used (Poisson vs. threshold binarized), as detailed in Section 3.2, the weight quantization used
({0, 1} vs. {−1, 0, 1}), and the number k ∈ {8, 16, 32, 64, 128} of hidden units. For each variant,
the value of W(X,X ′) for each (X,X ′) ∈ R was determined through learning. Specifically, we
have three networks for each of the following four cases: i) binary weights, Poisson encoding
and k ∈ {8, 16, 32}; ii) binary weights, threshold binarized encoding and k ∈ {8, 16, 32}; iii)
three-valued weights, Poisson encoding and k ∈ {32, 64, 128}; iii) three-valued weights, threshold
binarized encoding and k ∈ {32, 64, 128}.

Table 1: Accuracies of different BSNN architectures trained on the MNIST digit classification task.

Model type Number of hidden neurons (k) Digits Spike encoding Time-steps (tend) Validation Accuracy (%) Test Accuracy (%)

32 Poisson 16 92.98 94.29

16 Poisson 16 94.68 94.62

8 Poisson 8 95.20 95.27

32 Thresholded 1 92.47 93.63

16 Thresholded 1 92.09 91.66

Sbin
k

8

1,5,9

Thresholded 1 91.29 93.41

Stern
k

128

0,1,2,3,4,5,6,7,8,9

Poisson 4 92.00 92.16

64 Poisson 4 91.82 92.03

32 Poisson 4 90.55 91.06

128 Thresholded 1 86.56 87.00

64 Thresholded 1 84.97 86.10

32 Thresholded 1 85.12 85.03

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In Table 1, we have listed out the different accuracies of the BSNNs Sbin
k and Stern

k . For the
experimental results in section 7 we will stick to the choice of the binary variant which is colored gray
in this table. For training BSNNs, we used the SpikingJelly library (Fang et al., 2023) in PyTorch for
swift and open-source implementation.

5 CAUSAL MODEL

A causal model is a mathematical object describing the causal dependencies between variables. As
emphasized in Section 2, it is a central concept of current analyses of causality in AI. A binary
causal model (BCM) is nothing but a causal model in which variables are assumed to be Boolean.
In a BCM causal information is expressed by means of Boolean expressions (alias propositional
formulas), the set of Boolean expressions being generated inductively as follows: i) each Boolean
variable p and symbol ⊥ (“contradiction”) are Boolean expressions; ii) if ω is a Boolean expression,
so is ¬ω (“negation”); iii) if ω1 and ω2 are Boolean expressions, so is ω1 ∧ ω2 (“conjunction”).
Additional Boolean connectives are definable as abbreviations in the usual way: ⊤ =def ¬⊥;
ω1 ∨ ω2 =def ¬(¬ω1 ∧ ¬ω2) (“disjunction”); ω1 → ω2 =def ¬ω1 ∨ ω2 (“implication”); ω1 ↔
ω2 =def (ω1 → ω2) ∧ (ω2 → ω1). In formal terms, a BCM is a triplet Γ = (U,V, E) where i) U
is a set of exogenous variables, ii) V is a set of endogenous variables, iii) E is a function mapping
each endogenous variable p ∈ V to a Boolean expression E(p) of the form p ↔ ωp, where ωp is a
Boolean expression built from U ∪V that does not contain p. Specifically, the Boolean expression
p ↔ ωp stipulates that the endogenous variable p is true iff the condition ωp is true. It can be seen
as the compact representation of a Boolean function for the endogenous variable p. From a binary
causal model Γ = (U,V, E) it is straightforward to extract a causal graph representing the causal
dependencies between the variables: the vertices of the causal graph are the variables in U ∪V, and
we draw an edge from a variable q to an endogenous variable p if the Boolean expression ωp such
that E(p) = p ↔ ωp contains the variable q.

The model of the BSNN given in Definition 1 can be mapped into a BCM that represents the causal
dependencies between the BSNN’s neural units over time. The idea of the mapping is simple: we
assign a Boolean variable pX,t to each neuron X for each time t in {0, . . . , tend}, where tend is the
final time step at which the network stops receiving incoming spike train from the image currently
being presented, as mentioned in Section 3.2 . The variable pX,t is true (resp. false) if the neuron
X fires (resp. does not fire) at time t. The exogenous variables are for the input neurons, while the
endogenous ones are for the internal neurons. The causal dependencies between the firing activities
of the neurons are represented by the Boolean equations. Here, we only give the BCM for the variants
of the BSNN with Boolean weights {0, 1}. Due to space restrictions, we could only include the BCM
for the variants with three-valued weights {−1, 0, 1} in Section A.2 of the Appendix.

Definition 3 (BCM for BSNN with Boolean weights). Let S =
(
I,L,R,W, {0, 1}, (τX)X∈L

)
be the

architecture of a BSNN with Boolean weights in the sense of Definition 1. The BCM for S is the triplet
ΓS =

(
US ,VS , ES

)
where US =

⋃
0≤t≤tend

Ut
S , VS =

⋃
0≤t≤tend

Vt
S , Ut

S = {pX,t : X ∈ I},
Vt

S = {pX,t : X ∈ L}, and ∀X ∈ L:

ES(pX,0) = pX,0 ↔ ⊥, (4)

and for t > 0:

ES(pX,t) = pX,t ↔

((
¬pX,t−1 →

∨
Ω⊆R+(X):

A(X,t−1)+|Ω|≥τX

(∧
X′∈Ω

pX′,t

))
∧

(
pX,t−1 →

∨
Ω⊆R+(X):
|Ω|≥τX

(∧
X′∈Ω

pX′,t

)))
, (5)

with R+(X) =
{
X ′ ∈ N : (X,X ′) ∈ R and W(X,X ′) = 1

}
.

We conclude this section by showing that the spiking dynamics of a BSNN are correctly represented by
its BCM. Specifically, let S =

(
I,L,R,W, {0, 1}, (τX)X∈L

)
be a BSNN with Boolean weights and

I a Boolean interpretation for the variables in US ∪VS , i.e., I : US ∪VS −→ {0, 1}, such that for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

every time t ∈ {0, . . . , tend} and for every neuron X , the function FX assigns to time t the same value
assigned by the interpretation I to the corresponding variable pX,t. Then, the family of firing functions
F = (FX)X∈N is S-compatible up to time tend if and only if I satisfies all Boolean equations of the
BCM ΓS =

(
US ,VS , ES

)
for S. This correspondence between a BSNN and its BCM is formally

expressed by the following Theorem 1 where, for any Boolean expression ω, I |= ω denotes the
fact that the Boolean interpretation I satisfies the Boolean expression ω. For the readers unfamiliar
with Boolean (propositional) logic, we remind that I |= ω iff Val(I, ω) = 1, where Val(I, ω) is
defined inductively, as follows: i) Val(I, p) = I(p) for p ∈ (US ∪ VS); ii) Val(I,⊥) = 0; iii)
Val(I,¬ω) = 1−Val(I, ω); iv) Val(I, ω1 ∧ ω2) = min

(
Val(I, ω1),Val(I, ω2)

)
.

Theorem 1. If ∀X ∈ N,∀t ≤ tend , I(pX,t) = FX(t) then

(FX)X∈N is S-compatible up to time tend iff I |=
∧

pX,t∈VS

ES(pX,t).

The proof of the theorem is given in Appendix A.1.1.

6 EXPLANATION

In this section, we are going to show how to use binary causal models (BCMs) for formalizing
and computing explanations in the context of the BSNN architectures we trained for the MNIST
classification task. Following the literature on abductive explanation (AXp) (Ignatiev et al., 2019; Liu
& Lorini, 2023), we define it to be a prime implicant that is actually true. Moreover, we define it in
relation to a binary causal model. For simplicity, we assume an AXp (the explanans) is a term made
of exogenous variables and the property to be explained (the explanandum) is a Boolean expression
made of endogenous ones. This assumption is perfectly compatible with our application to the
MNIST classification task in which we want to explain the network classification on the basis of the
pixel-level features. Nonetheless, this assumption could be dropped with no repercussion, we would
only need to suppose that the explanans and the explanandum are made of different variables.

Some preliminary notions are needed before defining AXp formally. We define a term to be a
conjunction of literals in which a variable can occur at most once, a literal being a variable p or its
negation ¬p. Terms are denoted by λ, λ′, . . . Given two terms λ, λ′, with a bit of abuse of notation,
we write λ′ ⊆ λ (resp. λ′ ⊂ λ) to mean that the set of literals appearing in λ′ is a subset (resp. strict
subset) of the set of literals appearing in λ. Given a BCM Γ =

(
U,V, E

)
and an arbitrary set of

variables X ⊆ U ∪V, we note TermX the set of terms built from X.

Definition 4 (Abductive explanation). Let Γ =
(
U,V, E

)
be a BCM, IU : U −→ {0, 1} a Boolean

interpretation for its exogenous variables, λ ∈ TermU and ω0 a Boolean expression built from V.
We say that λ is an abductive explanation (AXp) of ω0 relative to Γ and IU if and only if:

i) IU |= λ,

ii) |=
(∧
p∈V

E(p) ∧ λ
)
→ ω0,

iii) ∀λ′ ⊂ λ, ̸|=
(∧
p∈V

E(p) ∧ λ′)→ ω0,

where, for a given Boolean expression ω built from the set of variables U ∪V, |= ω means that ω is
valid, i.e., I |= ω for every Boolean interpretation I ∈ {0, 1}U∪V.

We computed explanations for the three BSNN architectures Sbin
8 , Sbin

16 and Sbin
32 after having

trained them on the MNIST three-digit classification task. Specifically, given a trained BSNN Sbin
k

with k ∈ {8, 16, 32}, an input sequence input : {0, . . . , tend} × I −→ {0, 1} and an observed
output sequence output : {0, . . . , tend} ×C −→ {0, 1} for this input, we computed an abductive
explanation of the output at a chosen time t ∈ {0, . . . , tend} using only variables for the input at time
t. More precisely, we take the explanandum (i.e., ω0) to be the Boolean expression outSbin

k ,t =def∧
Cz∈C:output(t,Cz)=1 pCz,t ∧

∧
Cz∈C:output(t,Cz)=0 ¬pCz,t which represents the observed output of

the network at time t. Then, we search an abductive explanation λ ∈ TermUt

Sbin
k

of outSbin
k ,t relative

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

to the BCM ΓSbin
k

for the BSNN Sbin
k and to the Boolean interpretation IU

Sbin
k

encoding the input

sequence input (i.e., IU
Sbin
k

(pIx,y,t) = input(t, Ix,y) for every t ∈ {0, . . . , tend} and Ix,y ∈ I).
The latter condition guarantees that the found explanation represents a portion of the actual input
presented to the network at time t.

The following proposition highlights an important property of a BSNN’s abductive explanation:
any input feature/neuron being mentioned in an abductive explanation of the output has necessarily
a non-zero weight connection with the network’s hidden layer. This guarantees that an abductive
explanation does not contain completely irrelevant information. In Section 8 we will contrast this
result with the SHAP explanation method for which there is no guarantee that a found explanation
does not contain completely irrelevant information.
Proposition 1. Let λ ∈ TermUt

Sbin
k

be an abductive explanation of outSbin
k ,t. Then,

∀pIx,y,t ⊆ λ,∃Hz ∈ Hk such that Ix,y ∈ R+(Hz).

The proof of the proposition is given in Appendix A.1.2.

To compute an abductive explanation, we rely on a standard abductive explanation search algorithm,
whose pseudo code is presented in Algorithm 1. The algorithm is initialized with a complete term
λinit over the set of exogenous variables (i.e., USbin

k
) which fully represents the actual input at the

chosen time t. Then, we systematically remove literals from the λinit and check for the validity of
the condition (ii) in Definition 4, at each iteration.

Algorithm 1 Computing Abductive Explanation

Require: Initial implicant λinit and explanandum ω0, that satisfies condition (i) and (ii) in Definition
4 respectively

Ensure: Abductive explanation λ
Set λ = λinit

for l ∈ λ do
if
(∧

p∈V E(p) ∧ λ
)
→ ω0 then

λ → λ \ l
end if

end for
return λ

At the end of the search algorithm we further verify the validity of condition (iii) in Definition 4 for a
prime implicant check of the resulting abductive explanation λ. Algorithm 1 has a time complexity of
O(|USbin

k
|) which is the total number of exogenous variables in the model. This linear dependency

suggests that the algorithm’s performance scales directly with the number of input neurons.

7 EXPERIMENTAL RESULTS

In this section, we provide the experimental results on computing explanations for some of the
BSNNs listed in Table 1. We implemented AXp search Algorithm 1 using the open-source Z3 SAT
solver, which is an efficient and flexible theorem proving system implemented in Python developed
by Microsoft Research. We computed the search time, the percentage of input features mentioned in
the found explanation along with a visualization of the explanation in pixel-space for a test image.
Table 2 shows a comprehensive overview of the SAT solver run-times and the length of the found
AXp for each BSNN of type Sbin

k listed in Table 1, with k ∈ {8, 16, 32}.

Table 2: Computational analysis for searching explanation.

Number of hidden neurons (k)
Mean search time (hrs) Length of found explanation

(%) Total features Mean

32 10.7 20.91 164

16 5.84 27.3 214

8 11.13 12.5 98

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Even though Sbin
8 has a smaller number of hidden units, the explanation search time is higher than

in the cases of Sbin
16 and Sbin

32 . This is due to two facts. Firstly, the spiking thresholds after training
for the variant Sbin

8 are higher than the spiking thresholds for the variants Sbin
16 and Sbin

32 . Secondly,
the size of the BCM for a given BSNN increases exponentially in the values of the BSNN’s spiking
thresholds, as evident from equation (5) in Definition 3. Figure 1 provides a visualization of the
found abductive explanations of the outputs of a network of type Sbin

16 at times 0 and 6 (i.e., outSbin
16 ,0

and outSbin
16 ,6). This network achieved an accuracy of 94.62 % on the 3-digit MNIST classification

task on the test dataset of 911 images, as illustrated in Table 1, Section 4. Note that the set of
input neurons/features mentioned in the explanation is a subset of the set of input neurons/features
connected to the network’s hidden layer. This is in line with Proposition 1 in Section 6.

Figure 1: Image of digit 5 (a) showing in green the input neurons/features being connected with
the network’s hidden layer; (b) the found AXps at times 0 and 6 showing in red the active input
neurons/features (i.e., the positive literals) and in yellow the non-active input neurons/features (i.e.,
the negative literals) mentioned in the explanation.

8 COMPARISON WITH SHAP

In this section, we compare our logic-based explainability method with SHAP, a popular method
widely used for interpreting predictions of machine learning models (Lundberg & Lee, 2017). For
our experiments, we used the pre-existing implementation of SHAP library in Python available at
https://github.com/shap/shap. SHAP assigns relevance scores to input features based
on a sample of the input space without taking into consideration the internal dynamics of the model.
Unlike our method based on causal models and abductive explanation, SHAP does not look inside
the neural network and does not model the network’s internal causal structure. Despite its widespread
use, it has been recently shown that SHAP could assign a high relevance score to misleading or
irrelevant features (Huang & Marques-Silva, 2024; 2023b;a; Letoffe et al., 2024). As discussed by
Ignatiev (2020), another limitation of SHAP is that, unlike abductive explanation, it does not take
minimality of an explanation into account. In Figure 2, we can see in red the positive (resp. in blue
the negative) SHAP values assigned to input pixel-level features. To compare SHAP with our method,
we fixed a threshold δ for the SHAP score and then identified the set of relevant features as those
features whose SHAP score is strictly higher than δ if positive and strictly lower than −δ if negative.

Figure 2: Visualization of SHAP relevance scores computed on a test image of digit 5.

9

https://github.com/shap/shap

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We observed that SHAP considered relevant some input features having zero weight connections
with the network’s hidden layer, which is entirely misleading. This aspect is visually represented in
Figure 3. It is a consequence of the model-agnostic nature of “black box” explainability methods of
which SHAP is one of the most representative examples.

Figure 3: Green features in the two figures are those having non-zero weight connections with the
network’s hidden layer. Features in purple on the right figure are considered relevant by SHAP.

Table 3 summarizes the results about the time for computing the SHAP score of an input feature and
the percentage of features having zero weight connections with the hidden layer that SHAP wrongly
considered relevant, depending on the size of the sample space. It turns out that on average 47% of the
input features that SHAP considered relevant had zero weight connections with the network’s hidden
layer. This is in stark contrast to what we demonstrated in Section 6. As Proposition 1 highlights, if
we use our logic-based method, we can be sure that an explanation does not contain any input feature
having zero weight connections with the network’s hidden layer.

Table 3: Percentage of features wrongly considered relevant by SHAP.

Size of the sample space Mean computation time (s) Features wrongly considered relevant (%)

1000000 173.6 36.95

100000 38.3 46.34

10000 4.7 57.45

As it is evident from the table 3, increasing the size of the sample space does reduce the percentage
of wrongly considered features, but it comes with the cost of an increased computation time.

9 CONCLUSION

Let’s take stock. We have proposed a causal analysis of Binary Spiking Neural Networks (BSNNs)
by mapping the models of their spiking dynamics into binary causal models (BCMs). Thanks to this
mapping, we have been able to compute abductive explanations of BSNN’s decisions in the context
of the MNIST classification task using a SAT-based approach. We have moreover compared our
logic-based method with SHAP and highlighted the fact that, unlike SHAP, our method prevents
causally irrelevant features from being mentioned in an explanation. In the current work, we only
focused on the notion of abductive explanation (AXp). Future work will be devoted to extending
our causal analysis of BSNNs to the notions of actual cause (Halpern & Pearl, 2005) and NESS
(Necessary Element of a Sufficient Set) cause (Beckers, 2021; Halpern, 2008). Our causal framework
offers the appropriate level of expressiveness to formally represent these notions and, we believe, the
SAT-based approach we used for computing abductive explanations can be leveraged to compute
some of these notions too. Another direction of future research is to provide a causal analysis of
convolutional BSNNs (C-BSNNs) (Srinivasan & Roy, 2019) along the lines of the present work. We
believe that adding convolutional layers to the network could improve accuracy in more complex
datasets. Last but not least, we intend to go beyond simple visual classification tasks and leverage
our logic-based causal framework to explain BSNNs trained on language datasets (Bal & Sengupta,
2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

G. Aleksandrowicz, H. Chockler, J. Y. Halpern, and A. Ivrii. The computational complexity of
structure-based causality. Journal of Artificial Intelligence Research, 58:431–451, 2017.

G. Audemard, F. Koriche, and P. Marquis. On tractable XAI queries based on compiled repre-
sentations. In Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2020), pp. 838–849, 2020.

G. Audemard, S. Bellart, J.-M. Lagniez, and P. Marquis. Computing abductive explanations for
boosted regression trees. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence (IJCAI 2023), pp. 3432–3441. ijcai.org, 2023.

M. Bal and A. Sengupta. Spikingbert: Distilling BERT to train spiking language models using implicit
differentiation. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
(AAAI-24), pp. 10998–11006. AAAI Press, 2024.

S. Beckers. The counterfactual NESS definition of causation. In Proceedings of the Thirty-Fifth
AAAI Conference on Artificial Intelligence (AAAI-21), pp. 6210–6217. AAAI Press, 2021.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. CoRR, abs/1308.3432, 2013.

H. Chockler and J. Y. Halpern. Responsibility and blame: A structural-model approach. Journal of
Artificial Intelligence Research, 22:93–115, 2004.

M. C. Cooper and J. Marques-Silva. Tractability of explaining classifier decisions. Artificial
Intelligence, 316:103841, 2023.

A. Darwiche and A. Hirth. On the reasons behind decisions. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI 2020), volume 325, pp. 712–720. IOS Press, 2020.

T. de Lima and E. Lorini. Model checking causality. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence (IJCAI 2024). ijcai.org, 2024.

W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and Y. Tian.
Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence,
2023.

J. Y. Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research, 12:317–337,
2000.

J. Y. Halpern. Defaults and normality in causal structures. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Eleventh International Conference (KR 2008), pp. 198–208.
AAAI Press, 2008.

J. Y. Halpern. Actual causality. MIT Press, 2016.

J. Y. Halpern and J. Pearl. Causes and explanations: a structural-model approach. Part I: Causes.
British Journal for Philosophy of Science, 56(4):843–887, 2005.

X. Huang and J. Marques-Silva. A refutation of Shapley values for explainability. CoRR,
abs/2309.03041, 2023a.

X. Huang and J. Marques-Silva. Refutation of Shapley values for XAI - additional evidence. CoRR,
abs/2310.00416, 2023b.

X. Huang and J. Marques-Silva. On the failings of Shapley values for explainability. International
Journal of Approximate Reasoning, 171:109112, 2024.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Ignatiev. Towards trustable explainable AI. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 5154–5158. ijcai.org, 2020.

A. Ignatiev, N. Narodytska, and J. Marques-Silva. Abduction-based explanations for machine learning
models. In Proceedings of the Thirty-third AAAI Conference on Artificial Intelligence (AAAI-19),
volume 33, pp. 1511–1519, 2019.

Y. Izza and J. Marques-Silva. On explaining random forests with SAT. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence (IJCAI 2021), pp. 2584–2591, 2021.

H. Jang, N. Skatchkovsky, and O. Simeone. Bisnn: Training spiking neural networks with binary
weights via bayesian learning. 2021 IEEE Data Science and Learning Workshop (DSLW), pp. 1–6,
2020.

S. R. Kheradpisheh, M. Mirsadeghi, and T. Masquelier. Bs4nn: Binarized spiking neural networks
with temporal coding and learning. Neural Processing Letters, 54, 04 2022.

O. Letoffe, X. Huang, N. Asher, and J. Marques-Silva. From shap scores to feature importance scores.
CoRR, 2024.

X. Liu and E. Lorini. A unified logical framework for explanations in classifier systems. Journal of
Logic and Computation, 33(2):485–515, 2023.

E. Lorini. A rule-based modal view of causal reasoning. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence (IJCAI 2023), pp. 3286–3295, 2023.

S. Lu and A. Sengupta. Exploring the connection between binary and spiking neural networks.
Frontiers in Neuroscience, 14, June 2020. ISSN 1662-453X.

S. M. Lundberg and S. I. Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and N. Narodytska. Explaining naive
bayes and other linear classifiers with polynomial time and delay. In Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
2020.

P. Marquis. Extending abduction from propositional to first-order logic. In Procedings of the
International Workshop on Fundamentals of Artificial Intelligence Research (FAIR’91), LNCS, pp.
141–155. Springer, 1991.

S. Mertes, T. Huber, C. Karle, K. Weitz, R. Schlagowski, C. Conati, and E. André. Relevant
irrelevance: Generating alterfactual explanations for image classifiers. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence IJCAI 2024, pp. 467–475.
ijcai.org, 2024.

T. Miller. Contrastive explanation: a structural-model approach. The Knowledge Engineering Review,
36, 2021.

E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal
Processing Magazine, 36:51–63, 2019.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

S. A. Prescott and T. J. Sejnowski. Spike-rate coding and spike-time coding are affected oppositely
by different adaptation mechanisms. Journal of Neuroscience, 28(50):13649–13661, 2008.

H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe. Binary neural networks: A survey. Pattern
Recognition, 105:107281, 2020. ISSN 0031-3203.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.),
Computer Vision – ECCV 2016, pp. 525–542, Cham, 2016. Springer International Publishing.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

W. Shi, A. Shih, A. Darwiche, and A. Choi. On tractable representations of binary neural networks.
In Proceedings of the 17th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2020), pp. 882–892, 2020.

A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining bayesian network classifiers.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI 2018), pp. 5103–5111, 2018.

G. Srinivasan and K. Roy. Restocnet: Residual stochastic binary convolutional spiking neural
network for memory-efficient neuromorphic computing. Frontiers in Neuroscience, 13, 2019.
ISSN 1662-453X.

W. Tang, G. Hua, and L. Wang. How to train a compact binary neural network with high accuracy?
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), pp.
2625–2631. AAAI Press, 2017.

S. Verma, J. P. Dickerson, and K. Hines. Counterfactual explanations for machine learning: A review.
CoRR, 2020.

A APPENDIX

In this Appendix, we present i) the proofs of the mathematical results presented in the paper and ii)
the formal causal model for the BSNN architecture Stern

k .

A.1 PROOFS

A.1.1 PROOF OF THEOREM 1

Proof. (⇒) We first prove the left-to-right direction. Suppose i) (FX)X∈N is S-compatible up to
time tend and ii) ∀X ∈ N,∀t ≤ tend ,FX(t) = I(pX,t). We are going to prove that I |= E(pX,t) for
every t ∈ {0, . . . , tend} and for every X ∈ L. The case t = 0 is evident. In fact, I(pX,0) = FX(0) =
0 by i) and ii). Moreover, I(pX,0) = 0 iff Val(I, pX,0 ↔ ⊥) = 1, and Val(I, pX,0 ↔ ⊥) = 1 iff
I |= pX,0 ↔ ⊥. Thus, I |= pX,0 ↔ ⊥ which is equivalent to I |= E(pX,0). Let us prove the case
t > 0 by reductio ad absurdum. Suppose, toward a contradiction, that I ̸|= E(pX,t). The latter is
equivalent to Val(I, E(pX,t)) = 0 which is equivalent to iii) Val(I, pX,t) = 0 and Val(I, χ) = 1,
or iv) Val(I, pX,t) = 1 and Val(I, χ) = 0, where χ abbreviates the following Boolean expression:

χ =def

(
¬pX,t−1 →

∨
Ω⊆R+(X):

A(X,t−1)+|Ω|≥τX

(∧
X′∈Ω

pX′,t

))
∧
(
pX,t−1 →

∨
Ω⊆R+(X):
|Ω|≥τX

(∧
X′∈Ω

pX′,t

))
.

Suppose iii) holds. On the one hand, we have Val(I, pX,t) = 0 iff I(pX,t) = 0, and, by i)
and ii), we have I(pX,t) = 0 iff FX(t) = Θ

(
A(X, t) − τX

)
= 0. Hence, by iii), we have

Θ
(
A(X, t)− τX

)
= 0. On the other hand, by ii), it is routine mathematical exercise to verify that

Val(I, χ) = Θ
(
A(X, t)− τX

)
. Hence, by iii), we have that Θ

(
A(X, t)− τX

)
= 1 which leads to a

contradiction. In an analogous way we can prove that iv) leads to a contradiction.

(⇐) We are going to prove the right-to-left direction. Suppose i) I |=
∧

pX,t∈VS
ES(pX,t) and ii)

∀X ∈ N,∀t ≤ tend ,FX(t) = I(pX,t). We are going to prove that (FX)X∈N is S-compatible up
to time tend , that is, FX(0) = 0 and FX(t) = Θ

(
A(X, t)− τX

)
for every 0 < t ≤ tend . The case

t = 0 is evident. In fact, I(pX,0) = 0 iff Val(I, pX,0 ↔ ⊥) = 1, and Val(I, pX,0 ↔ ⊥) = 1 iff
I |= pX,0 ↔ ⊥. Thus, I(pX,0) = FX(0) = 0 by i) and ii). Let us prove the case 0 < t ≤ tend
by reductio ad absurdum. Suppose, toward a contradiction, that FX(t) ̸= Θ

(
A(X, t) − τX

)
. By

i), we have I |= ES(pX,t). The latter is equivalent to Val(I, ES(pX,t)) = 1 which is equivalent
to iii) Val(I, pX,t) = 1 and Val(I, χ) = 1, or iv) Val(I, pX,t) = 0 and Val(I, χ) = 0, where χ
is the same abbreviation as in the proof of the ⇒-direction. Suppose iii) holds. On the one hand,
we have Val(I, pX,t) = 1 iff I(pX,t) = 1, and, by ii), we have I(pX,t) = FX(t). Hence, by iii),
we have FX(t) = 1. On the other hand, by ii), it is routine mathematical exercise to verify that
Val(I, χ) = Θ

(
A(X, t)−τX

)
. Hence, by iii), we have that Θ

(
A(X, t)−τX

)
= 1 and, consequently,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

FX(t) = 1. This leads to a contradiction. In an analogous way we can prove that iv) leads to a
contradiction.

A.1.2 PROOF OF PROPOSITION 1

Proof. Suppose i) the term λ = pIx,y,t ∧ λ′ is an abductive explanation of outSbin
k ,t and, toward a

contradiction, ii) ̸ ∃Hz ∈ Hk such that Ix,y ∈ R+(Hz). By ii), we have that iii) for every pX,t′ ∈
VSbin

k
the Boolean equation E(pX,t′) does not contain the variable pIx,y,t. Moreover, by the definition

of a term and since pIx,y,t ∈ USbin
k

, iv) pIx,y,t does not appear in λ′ and pIx,y,t does not appear
in outSbin

k ,t. By iii) and iv), we have that v) |=
(∧

pX,t′∈V
Sbin
k

E(pX,t′) ∧ pIx,y,t ∧ λ′) → outSbin
k ,t

iff |=
(∧

pX,t′∈V
Sbin
k

E(pX,t′) ∧ λ′) → outSbin
k ,t. Item i) implies that |=

(∧
pX,t′∈V

Sbin
k

E(pX,t′) ∧

pIx,y,t∧λ′)→ outSbin
k ,t and ̸|=

(∧
pX,t′∈V

Sbin
k

E(pX,t′)∧λ′)→ outSbin
k ,t, which is in contradiction

with v).

A.2 BINARY CAUSAL MODEL FOR THREE-VALUED QUANTIZATION

As we have already provided the formal model of the BCM corresponding to the Sbin
k variant of the

BSNN architecture in Section 5, we can similarly provide the BCM for Stern
k .

The following is the binary causal model for the BSNN with three-valued weights in {−1, 0, 1}.

Definition 5 (BCM for BSNN with three-valued weights). Let S =
(
I,L,R,W, {−1, 0, 1},

(τX)X∈L,
)

be the architecture of a BSNN with three-valued weights in the sense of Definition 1. The
BCM for S is the triplet ΓS =

(
US ,VS , ES

)
where US =

⋃
0≤t≤tend

Ut
S , VS =

⋃
0≤t≤tend

Vt
S ,

Ut
S = {pX,t : X ∈ I}, Vt

S = {pX,t : X ∈ L}, and ∀X ∈ L:

ES(pX,0) = pX,0 ↔ ⊥, (6)

and for t > 0:

ES(pX,t) = pX,t ↔

((
¬pX,t−1 →

∧
Ω⊆R−(X)

(
(
∧

X′∈Ω

pX′,t) →
∨

Ω′⊆R+(X):

A(X,t−1)+
(
|Ω′|−|Ω|

)
≥τX

(
∧

X′′∈Ω′

pX′′,t)
))

∧

(
pX,t−1 →

∧
Ω⊆R−(X)

(
(
∧

X′∈Ω

pX′,t) →
∨

Ω′⊆R+(X):(
|Ω′|−|Ω|

)
≥τX

(
∧

X′′∈Ω′

pX′′,t)
)))

, (7)

with R+(X) =
{
X ′ ∈ N : (X,X ′) ∈ R and W(X,X ′) = 1

}
and R−(X) =

{
X ′ ∈ N :

(X,X ′) ∈ R and W(X,X ′) = −1
}

.

As we can see, the Boolean equations for the variant of BSNN with three-valued weights are
exponentially larger than the ones for the variant of BSNN with Boolean weights, we presented in
Section 5. Hence, it would be exponentially more expensive to compute abductive explanations for
the BSNN architectures of type Stern

k .

A.3 FURTHER VISUAL REPRESENTATIONS OF ABDUCTIVE EXPLANATIONS

In Section 7 we have provided a visual representation of the abductive explanations for digit 5 (Figure
1). In the Figures 4, 5 and 6 below we provide further visualizations of the abductive explanations for
the digits 1, 9 along with another instance of digit 5 classified by the same model.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of abductive explanation for digit 1.

Figure 5: Visualization of abductive explanation for digit 5.

Figure 6: Visualization of abductive explanation for digit 9.

15

	Introduction
	Related Work
	Neural Network Architecture, Learning and Dataset
	Learning task
	Spike encoding
	Weight quantization
	Training BSNNs

	Formal Model of Spiking Neurons
	Causal Model
	Explanation
	Experimental Results
	Comparison with SHAP
	Conclusion
	Appendix
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1

	Binary causal model for three-valued quantization
	Further visual representations of abductive explanations

