# BINARY SPIKING NEURAL NETWORKS AS CAUSAL MODELS

#### Anonymous authors Paper under double-blind review

#### ABSTRACT

In this paper, we provide a causal analysis of binary spiking neural networks (BSNNs) aimed at explaining their behaviors. We formally define a BSNN and represent its spiking activity as a binary causal model. Thanks to this causal representation, we are able to explain the output of the network by leveraging logic-based methods. In particular, we show that we can successfully use a SAT (Boolean satisfiability) solver to compute abductive explanations from this binary causal model. To illustrate our approach, we trained the BSNN on the standard MNIST dataset and applied our SAT-based method to finding abductive explanations of the network's classifications based on pixel-level features. We also compared the found explanations against SHAP, a popular method used in the area of explainable AI to explain "black box" classifiers. We show that, unlike SHAP, our method guarantees that a found explanation does not contain completely irrelevant features.

#### 1 INTRODUCTION

024 025 026

004 005

006

007 008 009

010 011

012

013

014

015

016

017

018

019

021

023

In recent times, interest in the study of binary artificial neural networks has grown, where binarization 027 can occur at the level of the connection weights between the neural units, at the level of their activation function, or at both levels. In the field of AI, binarized neural networks (BNNs) were 029 recently proposed by Hubara et al. (2016) and Rastegari et al. (2016), while in neuroscience particular attention has been paid to binary spiking neural networks (BSNNs) (Kheradpisheh et al., 2022; 031 Lu & Sengupta, 2020). The main difference between BNNs and BSNNs is mainly due to the presence of temporal dynamics in BSNNs over BNNs and to the fact that in BSNNs inputs are 033 given sequentially in discrete time, while they are instantaneously presented to BNNs. Binarization 034 obviously comes with a price on the size of the network parameters in relation to its learning power: a binary neural network requires a considerably higher number of neural units, compared to its 035 non-binary counterpart, in order to achieve an acceptable level of accuracy in a given classification task after training. Nonetheless, this disadvantage is counterbalanced by an advantage in terms of 037 logical representability and therefore explainability. Specifically, thanks to the Boolean nature of BNNs and BSNNs, one can represent their firing dynamics as binary causal models and, consequently, explain their behaviors in an efficient way using propositional logic. 040

The present paper is devoted to exploring this trade-off between accuracy and explainability in 041 the context of BSNNs. We focus our analysis on BSNNs instead of BNNs since, from the causal 042 point of view, the former are more general than the latter and we prefer to concentrate on the more 043 general model first. To fully capture the causal structure of a BSNN, one has to model the firing 044 activities of its neural units and to represent their causal dependencies over an extended time span. BNNs are less general since the presentation of the input is not sequential and, consequently, their 046 dynamics and the resulting causal dependencies between the neural units do not extend over time. 047 We represent the internal mechanism of a BSNN through a binary causal model and, thanks to this 048 representation, we explain the BSNN's behavior. Different notions of explanation exist in the literature including abductive (Ignatiev et al., 2019), contrastive (Miller, 2021), counterfactual (Verma et al., 2020) and alterfactual (Mertes et al., 2024) explanation. In the present paper, we rely on abductive 051 explanation (AXp) because of its simplicity and its emphasis of minimality which is a guarantee of non-redundancy. For a set of input features to be an abductive explanation of a classification by a 052 neural network, it has to be *minimally* sufficient to ensure the classification, i.e., where minimality means that all proper subsets of features are no longer sufficient for the classification. Thus, an

AXp is by definition non-redundant. More details about the use of abductive explanation in machine learning are given in Section 2.

The paper is structured as follows. After having discussed the related work (Section 2), in Section 057 3 we illustrate the BSNN architecture as well as the learning task we considered, namely MNIST classification, and the learning algorithm we used to train our BSNNs on the MNIST dataset. We put special emphasis on the levels of accuracy we reached depending on the type of weight quantization 060 of the neural network, including binary quantization (i.e., weights range in  $\{0, 1\}$ ) and three-valued 061 quantization (i.e., weights range in  $\{-1, 0, 1\}$ ). In Section 4, we introduce the mathematical model of 062 the BSNN spiking dynamics. Then, in Section 5 we map it into a binary causal model that represents 063 the causal dependencies between the firing activities of the neural units over time. Thanks to its binary 064 nature, such causal dependencies are representable through a system of Boolean equations. Section 6 is devoted to the explanation of the BSNN behavior. Specifically, we present an algorithm that 065 combines the binary causal model with a SAT solver to compute abductive explanations of the BSNN 066 classification, where an abductive explanation is constructed from pixel-level features at a specific 067 time point. In Section 7, we present some experimental results on computation time for the algorithm. 068 Finally, in Section 8 we compare our logic-based approach relying on abductive explanation with 069 SHAP, a well-known method in the area of explainable AI. As far as we know this is the first attempt i) to map a BSNN into a binary causal model and ii) to exploit the resulting Boolean representation 071 of the causal dependencies between its neural units for explaining its behavior through a SAT solver. 072

073 074

075

#### 2 RELATED WORK

076 Binarized Neural Networks (BNNs) are a class of artificial neural networks (ANNs) that have been 077 studied extensively by researchers (Qin et al., 2020) in the deep learning community, especially by 078 Bengio et al. (2013) and Hubara et al. (2016), who provided a viable way to train these networks 079 using standard back-prop based optimisation methods. BNNs adopt an extreme form of quantization, by resorting to binary weights and binary activation values. Tang et al. (2017) have shown that with 081 back-prop based methods, it is possible to train these binarized neural networks with reasonable, near full precision accuracy. Moreover, Rastegari et al. (2016) have demonstrated a drastic reduction in 083 computation time and model size with XNOR-Nets owing to the fact that computationally expensive multiply-accumulate methods in deep learning can be simplified to faster XNOR and pop-count 084 operations with binarized networks. Hence, due to the afore-mentioned reasons, BNNs have gained 085 immense popularity for resource constrained, low power, hardware efficient applications of AI. Binary Spiking Neural Networks (BSNNs), the subject of the present paper, are the bio-plausible counterpart 087 of BNNs, that take inspiration from the spiking dynamics of biological neurons in the brain. The 088 most useful feature of BSNNs is the way in which they process input data in terms of spike encodings, 089 where spikes are binary all-or-none pulses in discrete time steps compared to their continuous valued ANN counterparts (including BNNs). These spike encodings are very convenient, as they allow us to 091 use our formalism on both the pixel space and intermediate feature space. Works have been done to 092 train BSNNs using both temporal (Kheradpisheh et al., 2022) as well as rate coding schemes (Lu & 093 Sengupta, 2020).

094 Causal models are mathematical objects that have been extensively studied in AI (Pearl, 2009), in 095 logic (Halpern, 2000; 2016) and, more recently, in the field of explainable AI (Miller, 2021). They 096 play a crucial role in the domain of explainable AI given the urgent need to provide formally rigorous 097 causal explanations of the behavior of AI systems. A causal model is a system of structural equations 098 describing the causal dependencies between variables. Binary causal models (BCMs) that we use in the present work are the subclass of causal models in which variables are assumed to Boolean. They were defined and studied in depth in previous work (Chockler & Halpern, 2004; Aleksandrowicz 100 et al., 2017; Lorini, 2023; de Lima & Lorini, 2024). Given their close connection with propositional 101 logic, they offer the possibility to automate reasoning about causality with the aid of a SAT solver. 102

Abductive explanation (AXp), the concept of explanation on which we rely in the present work, is
widely used in the domain of explainable AI (Cooper & Marques-Silva, 2023). It is grounded on
previous theoretical work on abduction (Marquis, 1991) and relies on the notion of *prime implicant*(PI). Thus, it is also called PI-explanation (Shih et al., 2018) or sufficient reason (Darwiche & Hirth,
2020). It has been extensively used in AI to explain tractable models such as monotone or linear
classifiers (Marques-Silva et al., 2020; Cooper & Marques-Silva, 2023; Audemard et al., 2020) as well

108 as intractable ones such as random forests (Izza & Marques-Silva, 2021) and boosted trees (Audemard 109 et al., 2023). It was used by Shi et al. (2020) and Ignatiev et al. (2019) to explain artificial neural 110 networks. On the one hand, Shi et al. (2020) compile binary neural networks into Ordered Binary 111 Decision Diagrams (OBDDs) and use the latter to compute AXps of the networks' classifications. 112 Ignatiev et al. (2019) compute AXps of a neural network's classification in a three-digit MNIST classification task using a MILP (Mixed Integer Linear Programming) encoding. Unlike us and Shi 113 et al. (2020), Ignatiev et al. (2019) consider neural networks with real-valued weights. Two major 114 novel contributions of our work compared to Ignatiev et al. (2019) and Shi et al. (2020) are the 115 following. First and foremost, the notion of causality is crucial in our approach: we map a BSNN 116 into a binary causal model and exploit this causal representation to explain it. There is no causality 117 involved in Ignatiev et al. (2019) and Shi et al. (2020)'s analyses. Secondly, they do not consider 118 BSNNs, while BSNNs are the central object of our analysis and the type of neural networks we want 119 to explain with the help of logic and causal models. 120

120 121 122

123

124

### 3 NEURAL NETWORK ARCHITECTURE, LEARNING AND DATASET

In this section, we outline the details of the neural network models that we considered, along with the exact learning task, dataset and accuracies. The codes for the implementation are included in the supplementary material.

#### 3.1 LEARNING TASK

For our training purposes, we used the MNIST classification task for hand written digit recognition. We trained networks with a single fully connected hidden layer on both tasks, 3-digit and 10-digit MNIST classification. As we will show in Table 1 of Section 4, we could achieve very high accuracy with binary quantized networks on the 3-digit classification task. We could also achieve a high accuracy on the 10-digit classification task with three-value quantized networks with weights ranging over  $\{-1, 0, 1\}$ . In the experimental analysis of computation time for searching an explanation we will present in Section 7, we only focus on 3-digit MNIST classification with binary SNNs.

#### 136 137 3.2 SPIKE ENCODING

138 For our experiments, we used two different approaches to convert MNIST images into spikes. Firstly, 139 we used a classic Poisson rate coding scheme (Prescott & Seinowski, 2008) to convert images into 140 spike trains in multiple time-steps and also a threshold-binarized scheme with just one time-step as 141 presented in Table 1 of Section 4. We did not pursue temporal coding in our experiments since, as 142 shown by Kheradpisheh et al. (2022), temporal coding requires larger time-steps for training with 143 high accuracy. Since having more time-steps significantly increases the complexity of finding an 144 explanation, we chose to not use temporal coding in this work. Nonetheless, the novel mapping of BSNNs into binary causal models we will present in Section 5 can be generalized to to other forms 145 of spike encodings. We used a simple Integrate and Fire (IF) model for our spiking neurons, since 146 mapping BSNNs into binary causal models is easier in the absence of leaks. 147

#### 148 149 3.3 WEIGHT QUANTIZATION

150 As we will show in Section 5, mapping a BSNN into a binary causal model requires the network to 151 have weights quantized either in a binary (i.e.,  $\{0,1\}$ ) or a three-valued (i.e.,  $\{-1,0,1\}$ ) way. To 152 train our networks, the weight quantization procedure that we adopted closely follows the XNOR-Net 153 proposal by Rastegari et al. (2016), i.e., during a forward pass the network uses a binarized weight 154 matrix  $\mathcal{B}(W)$ , while during the backward pass it retains a proxy full-precision weight matrix W 155 for gradient calculation. Straight-through-estimator (STE) (Bengio et al., 2013) was used without any gradient clipping for our training. The following equations represent the two variants of the 156 quantizing functions  $\mathcal{B}^{bin}$  and  $\mathcal{B}^{tern}$  we used: 157

$$\mathcal{B}^{bin}(W_{i,j}) = \begin{cases} 0, \text{if } W_{i,j} = 0, \\ (sign(W_{i,j}) + 1)/2, \text{if } W_{i,j} \neq 0, \end{cases}$$
(1)

158

$$\mathcal{B}^{tern}(W_{i,j}) = sign(W_{i,j}), \tag{2}$$

with  $W_{i,j}$  the (i, j)-coordinate of the weight matrix W.

## 162 3.4 TRAINING BSNNs

In order to train our networks through standard back-propagation based methods for supervised learning, we employed a surrogate gradient descent approach (Neftci et al., 2019) with *arctan* as the surrogate function along with a STE for updating binary weights (Bengio et al., 2013), in a way similar to Jang et al. (2020). We used MSE loss to train our networks, along with Adam optimizer and L2 regularisation, with the following learning rate scheduler:

$$LR_{epoch} = \frac{LR_0}{1 + \alpha * epoch}$$

170 171 172

173 174

175

176

177

181

182 183

185

186

187

188 189

197

199

200 201 202

169

#### 4 FORMAL MODEL OF SPIKING NEURONS

In this section, we introduce the formal model of a general binary spiking neural network (BSNN) and of its integrate-fire (IF) spiking dynamics. Spiking neurons have the ability to process rich temporal dynamics in the data due to the state fullness of the neurons much like in recurrent neural networks (RNNs). We first introduce the static architecture of a BSNN.

**Definition 1** (BSNN architecture). The architecture of a BSNN is a tuple  $S = (\mathbf{I}, \mathbf{L}, \mathcal{R}, \mathcal{W}, \mathbb{D}, (\tau_X)_{X \in \mathbf{L}})$  where:

- I is a non-empty set of input (or external) neurons, L is a non-empty set of internal neurons such that I ∩ L = Ø, and N = I ∪ L is the set of all neurons;
- $\mathcal{R} \subseteq \mathbf{L} \times \mathbf{N}$  is a connectivity relation relating each internal neuron to its predecessors (either internal or external);
- $W : \mathcal{R} \longrightarrow \mathbb{D}$  is the weighing function for the connectivity relation, with  $\mathbb{D}$  a (possibly infinite) set of numerical values;
- $\tau_X$  is the firing threshold for the internal neuron  $X \in \mathbf{L}$ .

Given the architecture of a BSNN, we introduce the following notion of BSNN-compatible fire spiking dynamics.

**Definition 2** (BSNN-compatible fire spiking dynamics). Let  $S = (\mathbf{I}, \mathbf{L}, \mathcal{R}, \mathcal{W}, \mathbb{D}, (\tau_X)_{X \in \mathbf{L}})$  be the architecture of a BSNN and let  $F = (\mathcal{F}_X)_{X \in \mathbf{N}}$  be a family of firing functions for S's neurons, with  $\mathcal{F}_X : \mathbb{N} \longrightarrow \{0, 1\}$ . We say that F represents a possible spiking dynamics for the BSNN S up to time  $\mathbf{t}_{end} \ge 0$ , or simply F is S-compatible up to time  $\mathbf{t}_{end}$ , if and only if the following condition holds for every  $X \in \mathbf{L}$  and for every  $t \le \mathbf{t}_{end}$ :

$$\mathcal{F}_X(t) = \begin{cases} 0, & \text{if } t = 0, \\ \Theta(\mathcal{A}(X, t) - \tau_X), & \text{if } t > 0, \end{cases}$$
(3)

where

$$\mathcal{A}(X,t) = \begin{cases} 0, \ \text{if } t = 0, \\ \mathcal{A}(X,t-1) \cdot \left(1 - \mathcal{F}_X(t-1)\right) + \sum_{(X,X') \in \mathcal{R}} \mathcal{W}(X,X') \cdot \mathcal{F}_{X'}(t), \ \text{if } t > 0, \end{cases}$$

 $\Theta(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$ 

203 and

Some explanations of the previous two definitions are in order. The weighing function  $\mathcal{W}$  in Definition 1 specifies for each internal neuron X and each predecessor  $X' \in \mathcal{R}(X)$  the weight of the connection from X' to X, with  $\mathcal{R}(X) = \{X' \in \mathbf{N} : (X, X') \in \mathcal{R}\}$ . In the general model, a weight can take any value from the set of numerical values  $\mathbb{D}$ . In the rest of our paper we will only consider the BSNN variants of the model with  $\mathbb{D} = \{-1, 0, +1\}$  or  $\mathbb{D} = \{0, +1\}$ . Thus, from a mathematical point of view, BSNNs are nothing but special cases of SNNs with either Boolean or three-valued weights.

Note that by means of the connectivity relation  $\mathcal{R}$  we can specify the set of output neurons **O** as the internal neurons that have no successors, that is,

$$\mathbf{O} = \left\{ X \in \mathbf{L} : \forall X' \in \mathbf{L}, (X', X) \notin \mathcal{R} \right\}.$$

216 Definition 2 describes the possible spiking dynamics of a BSNN S. In particular, the firing function 217  $\mathcal{F}_X$  represents a possible dynamics of the internal neuron X in the BSNN architecture: it is the 218 Heaviside step function of the difference between the neuron's activation value and the spiking 219 threshold  $\tau_X$ . The firing activity of the input neurons does not depend on the firing activity of other 220 neurons, it is uniquely determined by the temporally sequential presentation of the input. This is the 221 reason why the condition for  $\mathcal{F}_X$  only applies to the case  $X \in \mathbf{L}$ .

The activation value of the internal neuron X at time t depends recursively on its value at time t - 1and a weighted sum over the incoming stimulus at time t. Therefore, to respect the recursive nature of the activation function, we have to define that at time 0, the network is completely inactive, i.e., no node  $X \in \mathbf{N}$  is firing at time t = 0. Moreover, the incoming stimulus gets perfectly integrated as in an Integrate-Fire (IF) model, without any leak in the neurons. But there is a hard reset term in our neuron model, which resets the activation value to zero every time it fires a spike.

The BSNN architectures we trained for the MNIST classification task we informally described in Section 3 are specific instances of Definition 1. Specifically, each network has  $28 \times 28$  input neurons, one neuron per pixel in the image to be classified. That is,

$$\mathbf{I} = \{\mathfrak{I}_{x,y} : 1 \le x, y \le 28\}$$

Moreover, it has either 8, 16, 32, 64 or 128 hidden neurons in the intermediate (or hidden) layer that are fully connected to the input neurons, that is,

$$\mathbf{H}^{k} = \{\mathfrak{H}_{y} : 1 \le y \le k\} \text{ with } k \in \{8, 16, 32, 64, 128\},\$$

236 and

232

233

234 235

237

240

241

242 243

257

258

$$\forall \mathfrak{H}_z \in \mathbf{H}^k, \forall \mathfrak{I}_{x,y} \in \mathbf{I}, (\mathfrak{H}_z, \mathfrak{I}_{x,y}) \in \mathcal{R}$$

Finally, it has 10 classification neurons in the output layer, one neuron for each digit to be recognized in the general MNIST classification task that are fully connected to the hidden neurons, that is,

$$\mathbf{C} = \big\{ \mathfrak{C}_z : 1 \le z \le 10 \big\},\,$$

and

$$\forall \mathfrak{H}_z \in \mathbf{H}^k, \forall \mathfrak{C}_{z'} \in \mathbf{C}, (\mathfrak{C}_{z'}, \mathfrak{H}_z) \in \mathcal{R}.$$

Thus, in the BSNNs we considered the set of internal neurons is  $\mathbf{L} = \mathbf{H}^k \cup \mathbf{C}$ . Notice that in this BSNN architecture the set of classification neurons coincides with the set of output neurons, that is,  $\mathbf{O} = \mathbf{C}$ .

247 BSNN architectures with binary weights are denoted by  $S_{k}^{bin}$  while those with three-valued weights 248 are denoted by  $S_k^{tern}$ , depending on the number k of their hidden units. We only trained and tested 249 12 variants of BSNN networks varying along the three dimensions: the specific spike encoding 250 used (Poisson vs. threshold binarized), as detailed in Section 3.2, the weight quantization used 251  $(\{0,1\}$  vs.  $\{-1,0,1\})$ , and the number  $k \in \{8,16,32,64,128\}$  of hidden units. For each variant, the value of  $\mathcal{W}(X, X')$  for each  $(X, X') \in \mathcal{R}$  was determined through learning. Specifically, we 252 have three networks for each of the following four cases: i) binary weights, Poisson encoding 253 and  $k \in \{8, 16, 32\}$ ; ii) binary weights, threshold binarized encoding and  $k \in \{8, 16, 32\}$ ; iii) 254 three-valued weights, Poisson encoding and  $k \in \{32, 64, 128\}$ ; iii) three-valued weights, threshold 255 binarized encoding and  $k \in \{32, 64, 128\}$ . 256

Table 1: Accuracies of different BSNN architectures trained on the MNIST digit classification task.

| 259 | Model type   | Number of hidden neurons (k) | Digits              | Spike encoding | Time-steps $(t_{end})$ | Validation Accuracy (%) | Test Accuracy (%) |
|-----|--------------|------------------------------|---------------------|----------------|------------------------|-------------------------|-------------------|
| 260 |              | 32                           |                     | Poisson        | 16                     | 92.98                   | 94.29             |
| 261 |              | 16                           |                     | Poisson        | 16                     | 94.68                   | 94.62             |
| 262 | $S_k^{bin}$  | 8                            | 1,5,9               | Poisson        | 8                      | 95.20                   | 95.27             |
| 263 |              | 32                           |                     | Thresholded    | 1                      | 92.47                   | 93.63             |
| 264 |              | 16                           |                     | Thresholded    | 1                      | 92.09                   | 91.66             |
| 204 |              | 8                            |                     | Thresholded    | 1                      | 91.29                   | 93.41             |
| 265 |              | 128                          |                     | Poisson        | 4                      | 92.00                   | 92.16             |
| 266 |              | 64                           |                     | Poisson        | 4                      | 91.82                   | 92.03             |
| 267 | $S_k^{tern}$ | 32                           | 0,1,2,3,4,5,6,7,8,9 | Poisson        | 4                      | 90.55                   | 91.06             |
| 268 |              | 128                          |                     | Thresholded    | 1                      | 86.56                   | 87.00             |
| 269 |              | 64                           |                     | Thresholded    | 1                      | 84.97                   | 86.10             |
|     |              | 32                           |                     | Thresholded    | 1                      | 85.12                   | 85.03             |

In Table 1, we have listed out the different accuracies of the BSNNs  $S_k^{bin}$  and  $S_k^{tern}$ . For the experimental results in section 7 we will stick to the choice of the binary variant which is colored gray in this table. For training BSNNs, we used the SpikingJelly library (Fang et al., 2023) in PyTorch for swift and open-source implementation.

274 275

276

5 CAUSAL MODEL

277 A causal model is a mathematical object describing the causal dependencies between variables. As 278 emphasized in Section 2, it is a central concept of current analyses of causality in AI. A binary 279 causal model (BCM) is nothing but a causal model in which variables are assumed to be Boolean. In a BCM causal information is expressed by means of Boolean expressions (*alias* propositional 281 formulas), the set of Boolean expressions being generated inductively as follows: i) each Boolean 282 variable p and symbol  $\perp$  ("contradiction") are Boolean expressions; ii) if  $\omega$  is a Boolean expression, 283 so is  $\neg \omega$  ("negation"); iii) if  $\omega_1$  and  $\omega_2$  are Boolean expressions, so is  $\omega_1 \wedge \omega_2$  ("conjunction"). Additional Boolean connectives are definable as abbreviations in the usual way:  $\top =_{def} \neg \bot$ ; 284  $\omega_1 \vee \omega_2 =_{def} \neg (\neg \omega_1 \wedge \neg \omega_2)$  ("disjunction");  $\omega_1 \rightarrow \omega_2 =_{def} \neg \omega_1 \vee \omega_2$  ("implication");  $\omega_1 \leftrightarrow \omega_2$ 285  $\omega_2 =_{def} (\omega_1 \to \omega_2) \land (\omega_2 \to \omega_1)$ . In formal terms, a BCM is a triplet  $\Gamma = (\mathbf{U}, \mathbf{V}, \mathcal{E})$  where i) U 286 is a set of exogenous variables, ii) V is a set of endogenous variables, iii)  $\mathcal{E}$  is a function mapping 287 each endogenous variable  $p \in \mathbf{V}$  to a Boolean expression  $\mathcal{E}(p)$  of the form  $p \leftrightarrow \omega_p$ , where  $\omega_p$  is a Boolean expression built from  $U \cup V$  that does not contain p. Specifically, the Boolean expression 289  $p \leftrightarrow \omega_p$  stipulates that the endogenous variable p is true iff the condition  $\omega_p$  is true. It can be seen 290 as the compact representation of a Boolean function for the endogenous variable p. From a binary 291 causal model  $\Gamma = (\mathbf{U}, \mathbf{V}, \mathcal{E})$  it is straightforward to extract a causal graph representing the causal 292 dependencies between the variables: the vertices of the causal graph are the variables in  $\mathbf{U} \cup \mathbf{V}$ , and 293 we draw an edge from a variable q to an endogenous variable p if the Boolean expression  $\omega_p$  such 294 that  $\mathcal{E}(p) = p \leftrightarrow \omega_p$  contains the variable q.

295 The model of the BSNN given in Definition 1 can be mapped into a BCM that represents the causal 296 dependencies between the BSNN's neural units over time. The idea of the mapping is simple: we 297 assign a Boolean variable  $p_{X,t}$  to each neuron X for each time t in  $\{0, \ldots, t_{end}\}$ , where  $t_{end}$  is the 298 final time step at which the network stops receiving incoming spike train from the image currently 299 being presented, as mentioned in Section 3.2. The variable  $p_{X,t}$  is true (resp. false) if the neuron 300 X fires (resp. does not fire) at time t. The exogenous variables are for the input neurons, while the endogenous ones are for the internal neurons. The causal dependencies between the firing activities 301 of the neurons are represented by the Boolean equations. Here, we only give the BCM for the variants 302 of the BSNN with Boolean weights  $\{0, 1\}$ . Due to space restrictions, we could only include the BCM 303 for the variants with three-valued weights  $\{-1, 0, 1\}$  in Section A.2 of the Appendix. 304

**Definition 3** (BCM for BSNN with Boolean weights). Let  $S = (\mathbf{I}, \mathbf{L}, \mathcal{R}, \mathcal{W}, \{0, 1\}, (\tau_X)_{X \in \mathbf{L}})$  be the architecture of a BSNN with Boolean weights in the sense of Definition 1. The BCM for S is the triplet  $\Gamma_S = (\mathbf{U}_S, \mathbf{V}_S, \mathcal{E}_S)$  where  $\mathbf{U}_S = \bigcup_{0 \le t \le t_{end}} \mathbf{U}_S^t$ ,  $\mathbf{V}_S = \bigcup_{0 \le t \le t_{end}} \mathbf{V}_S^t$ ,  $\mathbf{U}_S^t = \{p_{X,t} : X \in \mathbf{I}\}$ ,  $\mathbf{V}_S^t = \{p_{X,t} : X \in \mathbf{L}\}$ , and  $\forall X \in \mathbf{L}$ :

$$\mathcal{E}_S(p_{X,0}) = p_{X,0} \leftrightarrow \bot,\tag{4}$$

and for t > 0:

312 313 314

315

309

$$\mathcal{E}_{S}(p_{X,t}) = p_{X,t} \leftrightarrow \left( \left( \neg p_{X,t-1} \rightarrow \bigvee_{\substack{\Omega \subseteq \mathcal{R}^{+}(X):\\\mathcal{A}(X,t-1) + |\Omega| \ge \tau_{X}}} \left( \bigwedge_{X' \in \Omega} p_{X',t} \right) \right) \land \left( p_{X,t-1} \rightarrow \bigvee_{\substack{\Omega \subseteq \mathcal{R}^{+}(X):\\|\Omega| \ge \tau_{X}}} \left( \bigwedge_{X' \in \Omega} p_{X',t} \right) \right) \right),$$
(5)

316 317

318 319



We conclude this section by showing that the spiking dynamics of a BSNN are correctly represented by its BCM. Specifically, let  $S = (\mathbf{I}, \mathbf{L}, \mathcal{R}, \mathcal{W}, \{0, 1\}, (\tau_X)_{X \in \mathbf{L}})$  be a BSNN with Boolean weights and  $\mathcal{I}$  a Boolean interpretation for the variables in  $\mathbf{U}_S \cup \mathbf{V}_S$ , i.e.,  $\mathcal{I} : \mathbf{U}_S \cup \mathbf{V}_S \longrightarrow \{0, 1\}$ , such that for 324 every time  $t \in \{0, \dots, t_{end}\}$  and for every neuron X, the function  $\mathcal{F}_X$  assigns to time t the same value 325 assigned by the interpretation  $\mathcal{I}$  to the corresponding variable  $p_{X,t}$ . Then, the family of firing functions 326  $F = (\mathcal{F}_X)_{X \in \mathbf{N}}$  is S-compatible up to time  $t_{end}$  if and only if  $\mathcal{I}$  satisfies all Boolean equations of the 327 BCM  $\Gamma_S = (\mathbf{U}_S, \mathbf{V}_S, \mathcal{E}_S)$  for S. This correspondence between a BSNN and its BCM is formally 328 expressed by the following Theorem 1 where, for any Boolean expression  $\omega$ ,  $\mathcal{I} \models \omega$  denotes the fact that the Boolean interpretation  $\mathcal{I}$  satisfies the Boolean expression  $\omega$ . For the readers unfamiliar 330 with Boolean (propositional) logic, we remind that  $\mathcal{I} \models \omega$  iff  $Val(\mathcal{I}, \omega) = 1$ , where  $Val(\mathcal{I}, \omega)$  is defined inductively, as follows: i)  $Val(\mathcal{I}, p) = \mathcal{I}(p)$  for  $p \in (\mathbf{U}_S \cup \mathbf{V}_S)$ ; ii)  $Val(\mathcal{I}, \perp) = 0$ ; iii) 331 332  $Val(\mathcal{I}, \neg \omega) = 1 - Val(\mathcal{I}, \omega);$  iv)  $Val(\mathcal{I}, \omega_1 \land \omega_2) = \min(Val(\mathcal{I}, \omega_1), Val(\mathcal{I}, \omega_2)).$ 

**Theorem 1.** If  $\forall X \in \mathbf{N}, \forall t \leq t_{end}, \mathcal{I}(p_{X,t}) = \mathcal{F}_X(t)$  then

$$(\mathcal{F}_X)_{X \in \mathbf{N}}$$
 is S-compatible up to time  $\mathsf{t}_{end}$  iff  $\mathcal{I} \models \bigwedge_{p_{X,t} \in \mathbf{V}_S} \mathcal{E}_S(p_{X,t}).$ 

The proof of the theorem is given in Appendix A.1.1.

#### 6 EXPLANATION

333

339 340

341

342 In this section, we are going to show how to use binary causal models (BCMs) for formalizing 343 and computing explanations in the context of the BSNN architectures we trained for the MNIST 344 classification task. Following the literature on abductive explanation (AXp) (Ignatiev et al., 2019; Liu 345 & Lorini, 2023), we define it to be a prime implicant that is actually true. Moreover, we define it in 346 relation to a binary causal model. For simplicity, we assume an AXp (the *explanans*) is a term made 347 of exogenous variables and the property to be explained (the explanandum) is a Boolean expression 348 made of endogenous ones. This assumption is perfectly compatible with our application to the 349 MNIST classification task in which we want to explain the network classification on the basis of the pixel-level features. Nonetheless, this assumption could be dropped with no repercussion, we would 350 only need to suppose that the explanans and the explanandum are made of different variables. 351

Some preliminary notions are needed before defining AXp formally. We define a *term* to be a conjunction of literals in which a variable can occur at most once, a literal being a variable p or its negation  $\neg p$ . Terms are denoted by  $\lambda, \lambda', \ldots$  Given two terms  $\lambda, \lambda'$ , with a bit of abuse of notation, we write  $\lambda' \subseteq \lambda$  (resp.  $\lambda' \subset \lambda$ ) to mean that the set of literals appearing in  $\lambda'$  is a subset (resp. strict subset) of the set of literals appearing in  $\lambda$ . Given a BCM  $\Gamma = (\mathbf{U}, \mathbf{V}, \mathcal{E})$  and an arbitrary set of variables  $\mathbf{X} \subseteq \mathbf{U} \cup \mathbf{V}$ , we note *Term*<sub>**X**</sub> the set of terms built from **X**.

**358 Definition 4** (Abductive explanation). Let  $\Gamma = (\mathbf{U}, \mathbf{V}, \mathcal{E})$  be a BCM,  $\mathcal{I}_{\mathbf{U}} : \mathbf{U} \longrightarrow \{0, 1\}$  a Boolean **359** *interpretation for its exogenous variables,*  $\lambda \in Term_{\mathbf{U}}$  and  $\omega_0$  a Boolean expression built from **V**. **360** We say that  $\lambda$  is an abductive explanation (AXp) of  $\omega_0$  relative to  $\Gamma$  and  $\mathcal{I}_{\mathbf{U}}$  if and only if:

361 362

364 365 366

367

$$i) \mathcal{I}_{\mathbf{U}} \models \lambda, ii) \models \left(\bigwedge_{p \in \mathbf{V}} \mathcal{E}(p) \land \lambda\right) \to \omega_{0}, iii) \forall \lambda' \subset \lambda, \not\models \left(\bigwedge_{p \in \mathbf{V}} \mathcal{E}(p) \land \lambda'\right) \to \omega_{0},$$

where, for a given Boolean expression  $\omega$  built from the set of variables  $\mathbf{U} \cup \mathbf{V}$ ,  $\models \omega$  means that  $\omega$  is valid, i.e.,  $\mathcal{I} \models \omega$  for every Boolean interpretation  $\mathcal{I} \in \{0, 1\}^{\mathbf{U} \cup \mathbf{V}}$ .

We computed explanations for the three BSNN architectures  $S_8^{bin}$ ,  $S_{16}^{bin}$  and  $S_{32}^{bin}$  after having trained them on the MNIST three-digit classification task. Specifically, given a trained BSNN  $S_k^{bin}$ with  $k \in \{8, 16, 32\}$ , an input sequence  $input : \{0, \ldots, t_{end}\} \times \mathbf{I} \longrightarrow \{0, 1\}$  and an observed output sequence  $output : \{0, \ldots, t_{end}\} \times \mathbf{C} \longrightarrow \{0, 1\}$  for this input, we computed an abductive explanation of the output at a chosen time  $t \in \{0, \ldots, t_{end}\}$  using only variables for the input at time t. More precisely, we take the *explanandum* (i.e.,  $\omega_0$ ) to be the Boolean expression  $\operatorname{out}_{S_k^{bin},t} = d_{ef}$  $\wedge_{\mathfrak{C}_z \in \mathbf{C}: output(t,\mathfrak{C}_z)=1} p_{\mathfrak{C}_z,t} \wedge \wedge_{\mathfrak{C}_z \in \mathbf{C}: output(t,\mathfrak{C}_z)=0} \neg p_{\mathfrak{C}_z,t}$  which represents the observed output of the network at time t. Then, we search an abductive explanation  $\lambda \in Term_{\mathbf{U}_{S_{pin}}^{t}}$  of  $\operatorname{out}_{S_k^{bin},t}$  relative to the BCM  $\Gamma_{S_k^{bin}}$  for the BSNN  $S_k^{bin}$  and to the Boolean interpretation  $\mathcal{I}_{\mathbf{U}_{S_k^{bin}}}$  encoding the input sequence *input* (i.e.,  $\mathcal{I}_{\mathbf{U}_{S_k^{bin}}}(p_{\mathfrak{I}_{x,y},t}) = input(t, \mathfrak{I}_{x,y})$  for every  $t \in \{0, \dots, t_{end}\}$  and  $\mathfrak{I}_{x,y} \in \mathbf{I}$ ). The latter condition guarantees that the found explanation represents a portion of the actual input presented to the network at time t.

The following proposition highlights an important property of a BSNN's abductive explanation: any input feature/neuron being mentioned in an abductive explanation of the output has necessarily a non-zero weight connection with the network's hidden layer. This guarantees that an abductive explanation does not contain completely irrelevant information. In Section 8 we will contrast this result with the SHAP explanation method for which there is no guarantee that a found explanation does not contain completely irrelevant information.

**Proposition 1.** Let  $\lambda \in Term_{\mathbf{U}_{S^{bin}}^{t}}$  be an abductive explanation of  $\operatorname{out}_{S^{bin}_{k},t}$ . Then,

390 391 392

399

400

401

402

403

404

405 406

407

408

409 410

415 416

417

The proof of the proposition is given in Appendix A.1.2.

To compute an abductive explanation, we rely on a standard abductive explanation search algorithm, whose pseudo code is presented in Algorithm 1. The algorithm is initialized with a complete term  $\lambda_{init}$  over the set of exogenous variables (i.e.,  $\mathbf{U}_{S_k^{bin}}$ ) which fully represents the actual input at the chosen time t. Then, we systematically remove literals from the  $\lambda_{init}$  and check for the validity of the condition (ii) in Definition 4, at each iteration.

 $\forall p_{\mathfrak{I}_{x,y},t} \subseteq \lambda, \exists \mathfrak{H}_z \in \mathbf{H}^k \text{ such that } \mathfrak{I}_{x,y} \in \mathcal{R}^+(\mathfrak{H}_z).$ 

Algorithm 1 Computing Abductive Explanation

**Require:** Initial implicant  $\lambda_{init}$  and explanandum  $\omega_0$ , that *satisfies* condition (i) and (ii) in Definition 4 respectively

**Ensure:** Abductive explanation  $\lambda$ 

Set  $\lambda = \lambda_{init}$ for  $l \in \lambda$  do if  $(\bigwedge_{p \in \mathbf{V}} \mathcal{E}(p) \land \lambda) \to \omega_0$  then  $\lambda \to \lambda \setminus l$ end if end for return  $\lambda$ 

411 At the end of the search algorithm we further verify the validity of condition (iii) in Definition 4 for a 412 *prime implicant* check of the resulting abductive explanation  $\lambda$ . Algorithm 1 has a time complexity of 413  $\mathcal{O}(|\mathbf{U}_{S_k^{bin}}|)$  which is the total number of exogenous variables in the model. This linear dependency 414 suggests that the algorithm's performance scales directly with the number of input neurons.

#### 7 EXPERIMENTAL RESULTS

418 In this section, we provide the experimental results on computing explanations for some of the 419 BSNNs listed in Table 1. We implemented AXp search Algorithm 1 using the open-source Z3 SAT 420 solver, which is an efficient and flexible theorem proving system implemented in Python developed 421 by Microsoft Research. We computed the search time, the percentage of input features mentioned in 422 the found explanation along with a visualization of the explanation in pixel-space for a test image. 423 Table 2 shows a comprehensive overview of the SAT solver run-times and the length of the found 424 AXp for each BSNN of type  $S_k^{bin}$  listed in Table 1, with  $k \in \{8, 16, 32\}$ .

| Table 2: | Computational | analysis for | searching exp | lanation. |
|----------|---------------|--------------|---------------|-----------|
|          |               | -            |               |           |

| Number of hidden neurons (k) | Mean search time (hrs) | Length of found explanation |      |
|------------------------------|------------------------|-----------------------------|------|
| runnber of maden neurons (k) |                        | (%) Total features          | Mean |
| 32                           | 10.7                   | 20.91                       | 164  |
| 16                           | 5.84                   | 27.3                        | 214  |
| 8                            | 11.13                  | 12.5                        | 98   |

Even though  $S_8^{bin}$  has a smaller number of hidden units, the explanation search time is higher than in the cases of  $S_{16}^{bin}$  and  $S_{32}^{bin}$ . This is due to two facts. Firstly, the spiking thresholds after training for the variant  $S_{8}^{bin}$  are higher than the spiking thresholds for the variants  $S_{16}^{bin}$  and  $S_{32}^{bin}$ . Secondly, the size of the BCM for a given BSNN increases exponentially in the values of the BSNN's spiking thresholds, as evident from equation (5) in Definition 3. Figure 1 provides a visualization of the found abductive explanations of the outputs of a network of type  $S_{16}^{bin}$  at times 0 and 6 (i.e., out  $S_{16}^{bin}$ .) and  $out_{S_{12}^{bin},6}$ ). This network achieved an accuracy of 94.62 % on the 3-digit MNIST classification task on the test dataset of 911 images, as illustrated in Table 1, Section 4. Note that the set of input neurons/features mentioned in the explanation is a subset of the set of input neurons/features connected to the network's hidden layer. This is in line with Proposition 1 in Section 6. 



Figure 1: Image of digit 5 (a) showing in green the input neurons/features being connected with the network's hidden layer; (b) the found AXps at times 0 and 6 showing in red the active input neurons/features (i.e., the positive literals) and in yellow the non-active input neurons/features (i.e., the negative literals) mentioned in the explanation.

#### COMPARISON WITH SHAP

 In this section, we compare our logic-based explainability method with SHAP, a popular method widely used for interpreting predictions of machine learning models (Lundberg & Lee, 2017). For our experiments, we used the pre-existing implementation of SHAP library in Python available at https://github.com/shap/shap. SHAP assigns relevance scores to input features based on a sample of the input space without taking into consideration the internal dynamics of the model. Unlike our method based on causal models and abductive explanation, SHAP does not look inside the neural network and does not model the network's internal causal structure. Despite its widespread use, it has been recently shown that SHAP could assign a high relevance score to misleading or irrelevant features (Huang & Marques-Silva, 2024; 2023b;a; Letoffe et al., 2024). As discussed by Ignatiev (2020), another limitation of SHAP is that, unlike abductive explanation, it does not take minimality of an explanation into account. In Figure 2, we can see in red the positive (resp. in blue the negative) SHAP values assigned to input pixel-level features. To compare SHAP with our method, we fixed a threshold  $\delta$  for the SHAP score and then identified the set of relevant features as those features whose SHAP score is strictly higher than  $\delta$  if positive and strictly lower than  $-\delta$  if negative.



Figure 2: Visualization of SHAP relevance scores computed on a test image of digit 5.

We observed that SHAP considered relevant some input features having zero weight connections with the network's hidden layer, which is entirely misleading. This aspect is visually represented in Figure 3. It is a consequence of the model-agnostic nature of "black box" explainability methods of which SHAP is one of the most representative examples.





Table 3 summarizes the results about the time for computing the SHAP score of an input feature and the percentage of features having zero weight connections with the hidden layer that SHAP wrongly considered relevant, depending on the size of the sample space. It turns out that on average 47% of the input features that SHAP considered relevant had zero weight connections with the network's hidden layer. This is in stark contrast to what we demonstrated in Section 6. As Proposition 1 highlights, if we use our logic-based method, we can be sure that an explanation does not contain any input feature having zero weight connections with the network's hidden layer.

Table 3: Percentage of features wrongly considered relevant by SHAP.

| Size of the sample space | Mean computation time (s) | Features wrongly considered relevant (%) |  |
|--------------------------|---------------------------|------------------------------------------|--|
| 1000000                  | 173.6                     | 36.95                                    |  |
| 100000                   | 38.3                      | 46.34                                    |  |
| 10000                    | 4.7                       | 57.45                                    |  |

As it is evident from the table 3, increasing the size of the sample space does reduce the percentage of wrongly considered features, but it comes with the cost of an increased computation time.

9 CONCLUSION

Let's take stock. We have proposed a causal analysis of Binary Spiking Neural Networks (BSNNs) by mapping the models of their spiking dynamics into binary causal models (BCMs). Thanks to this mapping, we have been able to compute abductive explanations of BSNN's decisions in the context of the MNIST classification task using a SAT-based approach. We have moreover compared our logic-based method with SHAP and highlighted the fact that, unlike SHAP, our method prevents causally irrelevant features from being mentioned in an explanation. In the current work, we only focused on the notion of abductive explanation (AXp). Future work will be devoted to extending our causal analysis of BSNNs to the notions of actual cause (Halpern & Pearl, 2005) and NESS (Necessary Element of a Sufficient Set) cause (Beckers, 2021; Halpern, 2008). Our causal framework offers the appropriate level of expressiveness to formally represent these notions and, we believe, the SAT-based approach we used for computing abductive explanations can be leveraged to compute some of these notions too. Another direction of future research is to provide a causal analysis of convolutional BSNNs (C-BSNNs) (Srinivasan & Roy, 2019) along the lines of the present work. We believe that adding convolutional layers to the network could improve accuracy in more complex datasets. Last but not least, we intend to go beyond simple visual classification tasks and leverage our logic-based causal framework to explain BSNNs trained on language datasets (Bal & Sengupta, 2024).

## 540 REFERENCES

562

563

564 565

566

567

568

569 570

571

572

573

574

575 576

577

578

579

580 581

582

583 584

585

- G. Aleksandrowicz, H. Chockler, J. Y. Halpern, and A. Ivrii. The computational complexity of
   structure-based causality. *Journal of Artificial Intelligence Research*, 58:431–451, 2017.
- G. Audemard, F. Koriche, and P. Marquis. On tractable XAI queries based on compiled representations. In *Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)*, pp. 838–849, 2020.
- G. Audemard, S. Bellart, J.-M. Lagniez, and P. Marquis. Computing abductive explanations for
   boosted regression trees. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI 2023)*, pp. 3432–3441. ijcai.org, 2023.
- M. Bal and A. Sengupta. Spikingbert: Distilling BERT to train spiking language models using implicit differentiation. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence* (AAAI-24), pp. 10998–11006. AAAI Press, 2024.
- S. Beckers. The counterfactual NESS definition of causation. In *Proceedings of the Thirty-Fifth* AAAI Conference on Artificial Intelligence (AAAI-21), pp. 6210–6217. AAAI Press, 2021.
- Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *CoRR*, abs/1308.3432, 2013.
- H. Chockler and J. Y. Halpern. Responsibility and blame: A structural-model approach. *Journal of Artificial Intelligence Research*, 22:93–115, 2004.
  - M. C. Cooper and J. Marques-Silva. Tractability of explaining classifier decisions. *Artificial Intelligence*, 316:103841, 2023.
  - A. Darwiche and A. Hirth. On the reasons behind decisions. In *Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)*, volume 325, pp. 712–720. IOS Press, 2020.
  - T. de Lima and E. Lorini. Model checking causality. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI 2024)*. ijcai.org, 2024.
  - W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and Y. Tian. Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence, 2023.
  - J. Y. Halpern. Axiomatizing causal reasoning. *Journal of Artificial Intelligence Research*, 12:317–337, 2000.
  - J. Y. Halpern. Defaults and normality in causal structures. In *Principles of Knowledge Representation* and Reasoning: Proceedings of the Eleventh International Conference (KR 2008), pp. 198–208. AAAI Press, 2008.
  - J. Y. Halpern. Actual causality. MIT Press, 2016.
  - J. Y. Halpern and J. Pearl. Causes and explanations: a structural-model approach. Part I: Causes. *British Journal for Philosophy of Science*, 56(4):843–887, 2005.
  - X. Huang and J. Marques-Silva. A refutation of Shapley values for explainability. *CoRR*, abs/2309.03041, 2023a.
- 587 X. Huang and J. Marques-Silva. Refutation of Shapley values for XAI additional evidence. *CoRR*, abs/2310.00416, 2023b.
- 589 X. Huang and J. Marques-Silva. On the failings of Shapley values for explainability. *International Journal of Approximate Reasoning*, 171:109112, 2024.
- I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.

594 A. Ignatiev. Towards trustable explainable AI. In Proceedings of the Twenty-Ninth International 595 Joint Conference on Artificial Intelligence, IJCAI-20, pp. 5154–5158. ijcai.org, 2020. 596 A. Ignatiev, N. Narodytska, and J. Marques-Silva. Abduction-based explanations for machine learning 597 models. In Proceedings of the Thirty-third AAAI Conference on Artificial Intelligence (AAAI-19), 598 volume 33, pp. 1511–1519, 2019. 600 Y. Izza and J. Marques-Silva. On explaining random forests with SAT. In Proceedings of the Thirtieth 601 International Joint Conference on Artificial Intelligence (IJCAI 2021), pp. 2584–2591, 2021. 602 H. Jang, N. Skatchkovsky, and O. Simeone. Bisnn: Training spiking neural networks with binary 603 weights via bayesian learning. 2021 IEEE Data Science and Learning Workshop (DSLW), pp. 1-6, 604 2020. 605 606 S. R. Kheradpisheh, M. Mirsadeghi, and T. Masquelier. Bs4nn: Binarized spiking neural networks with temporal coding and learning. *Neural Processing Letters*, 54, 04 2022. 607 608 O. Letoffe, X. Huang, N. Asher, and J. Marques-Silva. From shap scores to feature importance scores. 609 CoRR, 2024. 610 X. Liu and E. Lorini. A unified logical framework for explanations in classifier systems. Journal of 611 Logic and Computation, 33(2):485–515, 2023. 612 613 E. Lorini. A rule-based modal view of causal reasoning. In Proceedings of the Thirty-Second 614 International Joint Conference on Artificial Intelligence (IJCAI 2023), pp. 3286–3295, 2023. 615 S. Lu and A. Sengupta. Exploring the connection between binary and spiking neural networks. 616 Frontiers in Neuroscience, 14, June 2020. ISSN 1662-453X. 617 618 S. M. Lundberg and S. I. Lee. A unified approach to interpreting model predictions. In I. Guyon, 619 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), 620 Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. 621 J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and N. Narodytska. Explaining naive 622 bayes and other linear classifiers with polynomial time and delay. In Advances in Neural Informa-623 tion Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 624 2020. 625 P. Marquis. Extending abduction from propositional to first-order logic. In Proceedings of the 626 International Workshop on Fundamentals of Artificial Intelligence Research (FAIR'91), LNCS, pp. 627 141-155. Springer, 1991. 628 629 S. Mertes, T. Huber, C. Karle, K. Weitz, R. Schlagowski, C. Conati, and E. André. Relevant 630 irrelevance: Generating alterfactual explanations for image classifiers. In Proceedings of the 631 Thirty-Third International Joint Conference on Artificial Intelligence IJCAI 2024, pp. 467–475. 632 ijcai.org, 2024. 633 T. Miller. Contrastive explanation: a structural-model approach. The Knowledge Engineering Review, 634 36, 2021. 635 636 E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in spiking neural networks: 637 Bringing the power of gradient-based optimization to spiking neural networks. *IEEE Signal* Processing Magazine, 36:51–63, 2019. 638 639 J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009. 640 641 S. A. Prescott and T. J. Sejnowski. Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. *Journal of Neuroscience*, 28(50):13649–13661, 2008. 642 643 H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe. Binary neural networks: A survey. Pattern 644 Recognition, 105:107281, 2020. ISSN 0031-3203. 645 M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary 646 convolutional neural networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), 647 Computer Vision – ECCV 2016, pp. 525–542, Cham, 2016. Springer International Publishing.

- W. Shi, A. Shih, A. Darwiche, and A. Choi. On tractable representations of binary neural networks. In *Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)*, pp. 882–892, 2020.
- A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining bayesian network classifiers. In *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence* (*IJCAI 2018*), pp. 5103–5111, 2018.
  - G. Srinivasan and K. Roy. Restocnet: Residual stochastic binary convolutional spiking neural network for memory-efficient neuromorphic computing. *Frontiers in Neuroscience*, 13, 2019. ISSN 1662-453X.
  - W. Tang, G. Hua, and L. Wang. How to train a compact binary neural network with high accuracy? In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), pp. 2625–2631. AAAI Press, 2017.
  - S. Verma, J. P. Dickerson, and K. Hines. Counterfactual explanations for machine learning: A review. *CoRR*, 2020.

#### A APPENDIX

In this Appendix, we present i) the proofs of the mathematical results presented in the paper and ii) the formal causal model for the BSNN architecture  $S_k^{tern}$ .

A.1 PROOFS

651

655

656

657

658

659

660

661 662

663 664 665

666 667

668

669 670

671

682 683 684

#### 672 A.1.1 PROOF OF THEOREM 1 673

674 *Proof.* ( $\Rightarrow$ ) We first prove the left-to-right direction. Suppose i)  $(\mathcal{F}_X)_{X \in \mathbf{N}}$  is *S*-compatible up to 675 time  $t_{end}$  and ii)  $\forall X \in \mathbf{N}, \forall t \leq t_{end}, \mathcal{F}_X(t) = \mathcal{I}(p_{X,t})$ . We are going to prove that  $\mathcal{I} \models \mathcal{E}(p_{X,t})$  for 676 every  $t \in \{0, \dots, t_{end}\}$  and for every  $X \in \mathbf{L}$ . The case t = 0 is evident. In fact,  $\mathcal{I}(p_{X,0}) = \mathcal{F}_X(0) =$ 677 0 by i) and ii). Moreover,  $\mathcal{I}(p_{X,0}) = 0$  iff  $Val(\mathcal{I}, p_{X,0} \leftrightarrow \bot) = 1$ , and  $Val(\mathcal{I}, p_{X,0} \leftrightarrow \bot) = 1$  iff 678  $\mathcal{I} \models p_{X,0} \leftrightarrow \bot$ . Thus,  $\mathcal{I} \models p_{X,0} \leftrightarrow \bot$  which is equivalent to  $\mathcal{I} \models \mathcal{E}(p_{X,t})$ . Let us prove the case 679 to by reductio ad absurdum. Suppose, toward a contradiction, that  $\mathcal{I} \not\models \mathcal{E}(p_{X,t})$ . The latter is 670 equivalent to  $Val(\mathcal{I}, \mathcal{E}(p_{X,t})) = 0$  which is equivalent to iii)  $Val(\mathcal{I}, p_{X,t}) = 0$  and  $Val(\mathcal{I}, \chi) = 1$ , 671 or iv)  $Val(\mathcal{I}, p_{X,t}) = 1$  and  $Val(\mathcal{I}, \chi) = 0$ , where  $\chi$  abbreviates the following Boolean expression:

$$\chi =_{def} \left( \neg p_{X,t-1} \to \bigvee_{\substack{\Omega \subseteq \mathcal{R}^+(X):\\ \mathcal{A}(X,t-1) + |\Omega| \ge \tau_X}} \left( \bigwedge_{X' \in \Omega} p_{X',t} \right) \right) \land \left( p_{X,t-1} \to \bigvee_{\substack{\Omega \subseteq \mathcal{R}^+(X):\\ |\Omega| \ge \tau_X}} \left( \bigwedge_{X' \in \Omega} p_{X',t} \right) \right).$$

Suppose iii) holds. On the one hand, we have  $Val(\mathcal{I}, p_{X,t}) = 0$  iff  $\mathcal{I}(p_{X,t}) = 0$ , and, by i) and ii), we have  $\mathcal{I}(p_{X,t}) = 0$  iff  $\mathcal{F}_X(t) = \Theta(\mathcal{A}(X,t) - \tau_X) = 0$ . Hence, by iii), we have  $\Theta(\mathcal{A}(X,t) - \tau_X) = 0$ . On the other hand, by ii), it is routine mathematical exercise to verify that  $Val(\mathcal{I}, \chi) = \Theta(\mathcal{A}(X,t) - \tau_X)$ . Hence, by iii), we have that  $\Theta(\mathcal{A}(X,t) - \tau_X) = 1$  which leads to a contradiction. In an analogous way we can prove that iv) leads to a contradiction.

( $\Leftarrow$ ) We are going to prove the right-to-left direction. Suppose i)  $\mathcal{I} \models \bigwedge_{p_{X,t} \in \mathbf{V}_S} \mathcal{E}_S(p_{X,t})$  and ii) 691 692  $\forall X \in \mathbf{N}, \forall t \leq t_{end}, \mathcal{F}_X(t) = \mathcal{I}(p_{X,t})$ . We are going to prove that  $(\mathcal{F}_X)_{X \in \mathbf{N}}$  is S-compatible up 693 to time  $t_{end}$ , that is,  $\mathcal{F}_X(0) = 0$  and  $\mathcal{F}_X(t) = \Theta(\mathcal{A}(X,t) - \tau_X)$  for every  $0 < t \leq t_{end}$ . The case 694 t = 0 is evident. In fact,  $\mathcal{I}(p_{X,0}) = 0$  iff  $Val(\mathcal{I}, p_{X,0} \leftrightarrow \bot) = 1$ , and  $Val(\mathcal{I}, p_{X,0} \leftrightarrow \bot) = 1$  iff 695  $\mathcal{I} \models p_{X,0} \leftrightarrow \bot$ . Thus,  $\mathcal{I}(p_{X,0}) = \mathcal{F}_X(0) = 0$  by i) and ii). Let us prove the case  $0 < t \leq t_{end}$ by reduction ad absurdum. Suppose, toward a contradiction, that  $\mathcal{F}_X(t) \neq \Theta(\mathcal{A}(X,t) - \tau_X)$ . By 696 697 i), we have  $\mathcal{I} \models \mathcal{E}_S(p_{X,t})$ . The latter is equivalent to  $Val(\mathcal{I}, \mathcal{E}_S(p_{X,t})) = 1$  which is equivalent to iii)  $Val(\mathcal{I}, p_{X,t}) = 1$  and  $Val(\mathcal{I}, \chi) = 1$ , or iv)  $Val(\mathcal{I}, p_{X,t}) = 0$  and  $Val(\mathcal{I}, \chi) = 0$ , where  $\chi$ 698 is the same abbreviation as in the proof of the  $\Rightarrow$ -direction. Suppose iii) holds. On the one hand, 699 we have  $Val(\mathcal{I}, p_{X,t}) = 1$  iff  $\mathcal{I}(p_{X,t}) = 1$ , and, by ii), we have  $\mathcal{I}(p_{X,t}) = \mathcal{F}_X(t)$ . Hence, by iii), 700 we have  $\mathcal{F}_X(t) = 1$ . On the other hand, by ii), it is routine mathematical exercise to verify that 701  $Val(\mathcal{I},\chi) = \Theta(\mathcal{A}(X,t) - \tau_X)$ . Hence, by iii), we have that  $\Theta(\mathcal{A}(X,t) - \tau_X) = 1$  and, consequently,  $\mathcal{F}_X(t) = 1$ . This leads to a contradiction. In an analogous way we can prove that iv) leads to a contradiction.

A.1.2 PROOF OF PROPOSITION 1

*Proof.* Suppose i) the term  $\lambda = p_{\mathfrak{I}_{x,y},t} \wedge \lambda'$  is an abductive explanation of  $\mathsf{out}_{S_{t}^{bin},t}$  and, toward a contradiction, ii)  $\exists \mathfrak{H}_z \in \mathbf{H}^k$  such that  $\mathfrak{I}_{x,y} \in \mathcal{R}^+(\mathfrak{H}_z)$ . By ii), we have that iii) for every  $p_{X,t'} \in \mathbf{V}_{S_k^{bin}}$  the Boolean equation  $\mathcal{E}(p_{X,t'})$  does not contain the variable  $p_{\mathfrak{I}_{x,y},t}$ . Moreover, by the definition of a term and since  $p_{\mathfrak{I}_{x,y},t} \in \mathbf{U}_{S_k^{bin}}$ , iv)  $p_{\mathfrak{I}_{x,y},t}$  does not appear in  $\lambda'$  and  $p_{\mathfrak{I}_{x,y},t}$  does not appear in  $\operatorname{out}_{S_k^{bin},t}$ . By iii) and iv), we have that v)  $\models \left( \bigwedge_{p_{X,t'} \in \mathbf{V}_{S_k^{bin}}} \mathcal{E}(p_{X,t'}) \land p_{\mathfrak{I}_{x,y},t} \land \lambda' \right) \to \operatorname{out}_{S_k^{bin},t}$  $\mathrm{iff} \models \left(\bigwedge_{p_{X,t'} \in \mathbf{V}_{S_k^{bin}}} \mathcal{E}(p_{X,t'}) \land \lambda'\right) \to \mathsf{out}_{S_k^{bin},t}. \text{ Item i) implies that} \models \left(\bigwedge_{p_{X,t'} \in \mathbf{V}_{S_k^{bin}}} \mathcal{E}(p_{X,t'}) \land \lambda'\right) \mapsto \mathsf{out}_{S_k^{bin},t}.$  $p_{\mathfrak{I}_{x,y},t} \wedge \lambda' \to \operatorname{out}_{S_k^{bin},t}$  and  $\not\models \left( \bigwedge_{p_{X,t'} \in \mathbf{V}_{s^{bin}}} \mathcal{E}(p_{X,t'}) \wedge \lambda' \right) \to \operatorname{out}_{S_k^{bin},t}$ , which is in contradiction with v). 

#### A.2 BINARY CAUSAL MODEL FOR THREE-VALUED QUANTIZATION

As we have already provided the formal model of the BCM corresponding to the  $S_k^{bin}$  variant of the BSNN architecture in Section 5, we can similarly provide the BCM for  $S_k^{tern}$ .

The following is the binary causal model for the BSNN with three-valued weights in  $\{-1, 0, 1\}$ .

**Definition 5** (BCM for BSNN with three-valued weights). Let  $S = (\mathbf{I}, \mathbf{L}, \mathcal{R}, \mathcal{W}, \{-1, 0, 1\}, (\tau_X)_{X \in \mathbf{L}})$  be the architecture of a BSNN with three-valued weights in the sense of Definition 1. The BCM for S is the triplet  $\Gamma_S = (\mathbf{U}_S, \mathbf{V}_S, \mathcal{E}_S)$  where  $\mathbf{U}_S = \bigcup_{0 \le t \le \mathbf{t}_{end}} \mathbf{U}_S^t, \mathbf{V}_S = \bigcup_{0 \le t \le \mathbf{t}_{end}} \mathbf{V}_S^t, \mathbf{U}_S^t = \{p_{X,t} : X \in \mathbf{I}\}, \mathbf{V}_S^t = \{p_{X,t} : X \in \mathbf{L}\}, and \forall X \in \mathbf{L}:$ 

$$\mathcal{E}_S(p_{X,0}) = p_{X,0} \leftrightarrow \bot,\tag{6}$$

and for t > 0:

$$\mathcal{E}_{S}(p_{X,t}) = p_{X,t} \leftrightarrow \left( \left( \neg p_{X,t-1} \to \bigwedge_{\Omega \subseteq \mathcal{R}^{-}(X)} \left( \left( \bigwedge_{X' \in \Omega} p_{X',t} \right) \to \bigvee_{\substack{\Omega' \subseteq \mathcal{R}^{+}(X):\\ (X'' \in \Omega'}} \left( \bigwedge_{X'' \in \Omega'} p_{X'',t} \right) \right) \right) \wedge \left( \sum_{X'' \in \Omega'} p_{X'',t} \right) \right)$$

  $\left(p_{X,t-1} \to \bigwedge_{\Omega \subseteq \mathcal{R}^{-}(X)} \left( \left(\bigwedge_{X' \in \Omega} p_{X',t}\right) \to \bigvee_{\substack{\Omega' \subseteq \mathcal{R}^{+}(X): \\ \left(|\Omega'| - |\Omega|\right) > -}} \left(\bigwedge_{X'' \in \Omega'} p_{X'',t}\right) \right) \right) \right), \quad (7)$ 

741 with  $\mathcal{R}^+(X) = \{X' \in \mathbf{N} : (X, X') \in \mathcal{R} \text{ and } \mathcal{W}(X, X') = 1\}$  and  $\mathcal{R}^-(X) = \{X' \in \mathbf{N} : (X, X') \in \mathcal{R} \text{ and } \mathcal{W}(X, X') = -1\}.$ 

As we can see, the Boolean equations for the variant of BSNN with three-valued weights are exponentially larger than the ones for the variant of BSNN with Boolean weights, we presented in Section 5. Hence, it would be exponentially more expensive to compute abductive explanations for the BSNN architectures of type  $S_k^{tern}$ .

#### A.3 FURTHER VISUAL REPRESENTATIONS OF ABDUCTIVE EXPLANATIONS

In Section 7 we have provided a visual representation of the abductive explanations for digit 5 (Figure 1). In the Figures 4, 5 and 6 below we provide further visualizations of the abductive explanations for the digits 1, 9 along with another instance of digit 5 classified by the same model.

