The Need for a Leaderboard: A Survey of LLLM as a Judge in NLP

Anonymous ACL submission

Abstract

Recently, the use of large language model
(LLM) as a judge gains popularity in Natural
Language Processing (NLP) research. This pa-
per reviews recent studies on LLM-as-a-judge,
revealing significant efforts in developing vari-
ous methods for LLM-based assessment. How-
ever, there is a lack of a common standard for
meta-evaluations, and several potential risks as-
sociated with LLMs need to be acknowledged.
Therefore, we recommend creating a leader-
board and offer a draft proposal to support the
development and adoption of LLM-as-a-judge.

1 Introduction

Human evaluation is typically regarded as the gold
standard for assessing automatically generated text,
but it is both expensive and time-consuming. There-
fore, automatic metrics (Papineni et al., 2002; Lin,
2004; Sellam et al., 2020) are used as proxies
for human judges. Although these metrics have
shown some correlation with human evaluations,
they have proven to be insufficient for reliable as-
sessment (Belz and Reiter, 2006; Novikova et al.,
2017; Bubeck et al., 2023). Recently, using large
language model (LLM) as a judge is gaining pop-
ularity in NLP research (Zheng et al., 2023), due
to their emergent capabilities (Brown et al., 2020;
Wei et al., 2022a). LLM-as-a-judge has shown
promising performance; for example, GPT-4 has
been found to evaluate machine translation outputs
more effectively than previous metrics (Kocmi and
Federmann, 2023b). However, it is crucial to con-
duct thorough validation to ensure its correlation
with human evaluations and to recognize potential
risks associated with its application.

In this paper, we survey 42 papers on LLM-as-a-
judge. Our findings reveal that numerous methods
have been developed to obtain assessments from
LLMs and LLM-based evaluators show a strong
correlation with human evaluations across most

Direct Assessment
| Rate the text on a scale of 0 to 100. |
#| I would give the text a score of 60. |
Comparative Assessment

W| <textA>, <textB>, which is better? |
»‘ textA |

Error Diagnosis

LLM
» {error1:type}error1:location}{error1: severity};
{error2:type} {error2:location}...

\ 4

| Score: -5 x 1(major) + -1 x 1 (minor) = -6 ‘

Generates an error report for the text,
including error type, location, and severity.

Branch and Merge

| Prompt1 | | Prompt2 ‘ ‘ Prompt3 |
T~ e ———
‘ Output1 ‘ | Output2 | | Output3 ‘

‘ According to all outputs, final score is 80. ‘

Figure 1: An illustration of four types of methods on
using LLMs for assessment. Direct assessment involves
asking the LLMs directly for a score. Comparative
assessment requests LLMs to rank a pair of texts. Er-
ror diagnosis seeks an error analysis report from the
LLMs and calculate the score based on a predefined
scheme. Branch-and-merge strategies involve generat-
ing multiple prompts and then combining the outputs to
determine a final score.

tasks. However, we identify a lack of a common

standard for meta-evaluations and several potential

risks associated with LLMs. Thus, we recommend

establishing a leaderboard to provide a common

platform for developers of LLM-as-a-judge and

inform users about best practices and limitations.
We summarize our contribution as follows:

* We provide a review of different approaches
on using LLMs for assessment, categorizing
them into four types as shown in Figure 1.



automatic metrics LLM
automatic evaluation LLM

automatic metrics ChatGPT LLM evaluator
automatic metrics GPT-4 GPT Evaluator

Table 1: Keywords for identifying papers in the ACL Anthology.

* We discuss the meta-evaluations performed
on LLM-as-a-judge and the potential risks as-
sociated with its use.

* We present a draft outlining the creation of a
leaderboard for LLM-as-a-judge.

2 Method

Our survey includes a total of 42 papers. To identify
these papers, we initially searched the ACL Anthol-
ogy ! for all relevant publications using keywords
listed in Table 1, available before early June 2024.
We selected papers that included meta-evaluation
on LLM-as-a-judge and excluded those that solely
utilized LLM-as-a-judge without meta-evaluation.
Additionally, we explored the citation graph of our
initial set of papers, adding any relevant papers
that met our criteria. Out of the 42 papers 2, 33
are indexed by the ACL Anthology, while the rest
originate from NeurIPS, ICLR, or arXiv. Once
identified, we proceeded to investigate how LLMs
are used for assessment, how meta-evaluations are
conducted and the findings on LLM-as-a-Judge.

3 Using LLMs for Assessment

3.1 Direct Assessment

As shown in Table 2, direct assessment (DA) is
the most common approach, where LLMs are
prompted for a score. These prompts typically
include guidelines, criteria, and few-shot exam-
ples (Chiang and Lee, 2023a,b). In addition to
hand-crafted criteria, some researchers use LLMs
to draft and refine the criteria (Liu et al., 2024), or
to generate chain-of-thoughts (Wei et al., 2022b) as
guidelines (Liu et al., 2023). Furthermore, multi-
dimensional DA (Lin and Chen, 2023; Zhou et al.,
2024) requires several scores for different aspects,
such as grammar, and fluency.

3.2 Comparative Assessment

Comparative assessment (CA) involves comparing
pairs of texts (Liusie et al., 2024; Zheng et al.,
2023). It is often observed that humans find it more

"https://www.aclweb.org/anthology/
%A list of all 42 papers are provided in Appendix A

Method Papers
Direct assessment 36
Comparative assessment 3
Error diagnosis 5
Branch and merge 4

Table 2: The methods covered by 42 papers (some pa-
pers cover multiple methods).

intuitive to compare two options rather than score
each one independently, though this approach has
not been extensively studied for LLM-as-a-judge.

3.3 Error Diagnosis

Inspired by human evaluation methodologies like
Multidimensional Quality Metrics (MQM), the er-
ror diagnosis approach (Fernandes et al., 2023;
Kocmi and Federmann, 2023a; Xu et al., 2023)
uses LLMs to identify and label error spans by
their category, location, and severity (major or mi-
nor). The overall score will then be calculated by
counting the number of major and minor errors
based on a predefined scheme.

3.4 Branch and Merge

To improve output consistency, Leiter et al.
(2023) discussed combining outputs from multi-
ple prompts through a majority vote. Whereas,
Saha et al. (2024) employed LLMs to merge all
outputs. Additionally, Chan et al. (2024) suggested
having multiple LL.Ms debate (i.e., add responses
from other LLMs in the prompt) before taking a
majority vote. Zhang et al. (2023b) introduced a
multi-layer LLM network where the final result
is merged either by averaging or majority voting.
Despite their differences, these methods fundamen-
tally operate on a branch-and-merge principle. Be-
sides, the prompts can be either DA or CA.

4 Meta Evaluation

4.1 Tasks

A wide variety of tasks have been explored, with
a majority centered on conventional text genera-
tion tasks such as dialogue (Mendonga et al., 2023),
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Datasets and Benchmarks Description Papers

SummEval (Fabbri et al., 2021) A dataset containing human annotations on generated 6
text from 12 abstractive systems.

Eval4ANLP 2023 Shared Task (Leiter A shared task on prompting LL.Ms as explainable 6

et al., 2023) metrics.

WMT (Ma et al., 2019; Freitag et al., Human annotations on machine translations released 5

2022) by the Conference on Machine Translation (WMT).

Topical-Chat (Gopalakrishnan et al., A dataset evaluating response quality based on dia- 4

2019; Mehri and Eskenazi, 2020) logue history and related knowledge.

MT-Bench (Zheng et al., 2023) A benchmark consisting of LLM’s responses in multi- 2
turn conversations.

NewsRoom (Grusky et al., 2018) A dataset for machine summarization. 2

QAGS (Wang et al., 2020) A benchmark for evaluating hallucinations in sum- 2
marization.

WebNLG (Gardent et al., 2017; Cas- A benchmark for data-to-text evaluation methods. 2

tro Ferreira et al., 2020)

Table 3: Datasets and benchmarks used by multiple papers.

summarization(Liu et al., 2023), and machine trans-
lation (Fernandes et al., 2023). However, there are
also instances that use LLMs as reviewers for text
written by human, such as evaluating test-taker
written responses (Naismith et al., 2023) and per-
forming paper reviewing tasks (Zhou et al., 2024).

4.2 Datasets and Benchmarks

There is considerable variation in the datasets and
benchmarks employed, with only a minority of pa-
pers utilizing the same ones. Table 3 illustrates the
datasets and benchmarks shared by multiple papers.
Among the 42 surveyed papers, a maximum of 6
papers use any single dataset, while approximately
20 papers utilize datasets that are unique to their
studies and not used elsewhere.

4.3 Correlations

To assess the correlation between LLMs’ assess-
ments and human judgments, commonly used
methods include Pearson (), Spearman (p), and
Kendall-Tau (7) correlations for direct assessment,
and accuracy (the frequency with which the rank-
ings match) for comparative assessment. Some
studies employ alternative approaches; for instance,
in one study (Huang et al., 2024), it is treated as
a classification task, where assessments are cate-
gorized into tiers based on scores, and the perfor-
mance of LLMs in classification is measured.

4.4 Results

Most studies report that LLM-as-a-judge achieves
strong correlations with human assessments and
surpasses state-of-the-art methods (Liu et al., 2023;
Ferron et al., 2023). However, there are cases
where no significant correlation is found, such as
factuality evaluation (Fu et al., 2023) or grading
math questions (Zheng et al., 2023). In paper re-
viewing task, it has been shown that LL.M-based
evaluators struggle with processing long papers
and frequently make mistakes(Zhou et al., 2024).
Additionally, LLMs have difficulty comparing can-
didates with similar performance and become less
reliable when evaluating higher-quality summaries
in summarization tasks (Shen et al., 2023).

4.5 Interpretability

Interpretability is recognized as a advantage of
LLM-as-a-judge, as it enables the request for ex-
planations (Zheng et al., 2023). Several studies
have examined explanations for assessments. For
instance, Naismith et al. (2023) discovered that
LLMs can provide coherent rationales, whereas
Zhou et al. (2024) suggested caution is needed
as mistakes are frequently found. Moreover, the
method of deriving assessments through error diag-
nosis also emphasizes interpretability by requesting
error reports instead of scores.



5 Potential Risks

5.1 Biases

Zheng et al. (2023) investigated three types of bi-
ases, which we outline below along with other stud-
ies that support their findings.

* Verbosity bias: Zheng et al. (2023) discov-
ered that LLM-based evaluators are prone to
verbose text. Furthermore, Wu and Aji (2023)
revealed that texts with factual errors receive
higher ratings than those that are too brief.

* Self-enhancement bias: LLMs recognize and
favor their own generations (Xu et al., 2024;
Panickssery et al., 2024).

* Position bias: When doing comparative as-
sessment, the judgement of LLMs can be
skewed by manipulating the order of the can-
didate responses (Wang et al., 2023b).

5.2 Replicability

The majority (33 out of 42) of the papers use GPT-
3.5/4 as the backbone, which raises concerns about
replicability, as GPTs might be constantly updated.

6 Towards Building a Leaderboard for
LLM-as-a-judge

As detailed in Section 4, the meta-evaluations con-
ducted vary across the papers. This could lead to a
worrisome scenario where different developers can
claim a new state-of-the-art on specific datasets and
settings. Thus we recommend building a leader-
board as a common ground.

6.1 Correlations

To assess correlation, we suggest using methods
from the recent WMT metrics shared tasks (Freitag
etal., 2023), like pairwise ranking accuracy with tie
calibration (Deutsch et al., 2023) and Pearson’s r.
These methods have been validated through exten-
sive testing in previous shared tasks or have been
well-supported by recent studies.

6.2 Core Tasks

Chatbot Arena is an open platform facilitates
anonymous comparisons between models. Users
can engage with two anonymous models simul-
taneously by asking them the same question and
voting for their preferred response. Instead of pre-
defined questions, this approach allows for diverse
use cases and gathers votes reflecting users’ varied

interests. Additionally, Chiang et al. (2024) have
released more than 100k pairwise votes collected
from this platform, enabling large-scale compara-
tive assessments.

WMT is a key event in machine translation re-
search. Annually, WMT releases annotations by
professional translators evaluating outputs from
various translation systems. These high-quality
human annotations, coupled with their annual re-
lease schedule, make this task valuable and up-
to-date. Furthermore, the data is extensive; for
instance, WMT23 comprises more than 4,000 seg-
ments translated by over 10 systems.

SummEval includes both expert and crowd-
sourced human evaluations for outputs from 16
models across 100 articles, evaluated on 4 different
criteria. Humans rate the summaries based on vari-
ous aspects, including coherence and consistency.
It is the most utilized dataset in previous studies.

MT-Bench is a benchmark comprising 80 high-
quality multi-turn questions, encompassing typical
use cases and emphasizing challenging inquiries de-
signed to distinguish between models. It includes
8 standard categories of user prompts, such as writ-
ing, math, and coding.

6.3 Challenge Sets

The challenge sets are intended to stress test the
LLM-based evaluators, with a primary focus on
identifying and testing biases. For the biases dis-
cussed in Section 5.1, Zheng et al. (2023) have ex-
plored applicable methods. For instance, to test po-
sition bias, they interchange the positions of two re-
sponses and measure how frequently LLMs change
their judgment. Besides, it is crucial to update
the challenge sets accordingly if new biases are
revealed.

7 Conclusion

By surveying 42 papers on LLM-as-a-judge in NLP,
we found that various methods are proposed to use
LLMs for assessment; LLM-based evaluators have
surpassed previous state-of-the-art methods, while
still have limitations on certain tasks; and the meta-
evaluations vary across the papers. To support the
development and adoption of LLM-as-a-judge, we
recommend creating a leaderboard and offer a draft
proposal.



Limitations

It is possible that our survey missed some existing
publications. Additionally, some of the papers we
reviewed have not gone through peer review.

Our recommendations for creating a leaderboard
are not comprehensive and further discussion is
needed.
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