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Figure 1: GeneMAN is a generalizable framework for single-view-to-3D human reconstruction,
built on a collection of multi-source human data. Given a single in-the-wild image of a person,
GeneMAN could reconstruct a high-quality 3D human model, regardless of its clothing, pose, or body
proportions (e.g., a full-body, a half-body, or a close-up shot) in the given image. The anonymous
project page of GeneMAN is: https://roooooz.github.io/GeneMAN/.

Abstract

Given a single in-the-wild human photo, it remains a challenging task to reconstruct
a high-fidelity 3D human model. Existing methods face difficulties including a)
the varying body proportions captured by in-the-wild human images; b) diverse
personal belongings within the shot; and c) ambiguities in human postures and in-
consistency in human textures. In addition, the scarcity of high-quality human data
intensifies the challenge. To address these problems, we propose a Generalizable
image-to-3D huMAN reconstruction framework, dubbed GeneMAN, building
upon a comprehensive multi-source collection of high-quality human data, includ-
ing 3D scans, multi-view videos, single photos, and our generated synthetic human
data. GeneMAN encompasses three key modules. 1) Without relying on parametric
human models (e.g., SMPL), GeneMAN first trains a human-specific text-to-image
diffusion model and a view-conditioned diffusion model, serving as GeneMAN 2D
human prior and 3D human prior for reconstruction, respectively. 2) With the help
of the pretrained human prior models, the Geometry Initialization-&-Sculpting
pipeline is leveraged to recover high-quality 3D human geometry given a single
image. 3) To achieve high-fidelity 3D human textures, GeneMAN employs the
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Multi-Space Texture Refinement pipeline, consecutively refining textures in the
latent and the pixel spaces. Extensive experimental results demonstrate that Gene-
MAN could generate high-quality 3D human models from a single image input,
outperforming prior state-of-the-art methods. Notably, GeneMAN could reveal
much better generalizability in dealing with in-the-wild images, often yielding
high-quality 3D human models in natural poses with common items, regardless of
the body proportions in the input images.

1 Introduction

Creating high-quality 3D human models is crucial in various real applications, including VR/AR,
telepresence, digital human interfaces, film, and 3D game production. Traditional methods [5, 26, 65]
usually utilize a dense camera array to capture synchronized posed multi-view images for human
reconstruction, which typically involves complicated and time-consuming processes. Towards
efficient 3D human reconstruction, many approaches [49, 58, 11, 50, 19, 64, 76, 14] delve into the
challenge of reconstructing 3D human models from a single image, which, however, remains an
ill-posed problem due to the absence of comprehensive 3D human observation data.

To facilitate 3D human reconstruction, previous methods [78, 68, 67, 19, 76, 14] often employ
parametric human models, e.g., SMPL [32] or SMPL-X [40] as 3D human geometry prior. Nev-
ertheless, these parametric models fail to capture 3D clothing details, which impedes the accurate
reconstruction of 3D human figures, particularly when individuals are adorned in loose garments.
Recently, image-to-3D human reconstruction methods [14, 19, 76] integrate pretrained text-to-image
diffusion models [46, 47] to incorporate 2D priors into the reconstruction process. Despite advances
in generalizability, single-view 3D human reconstruction has not been fully resolved, especially when
dealing with in-the-wild images. The primary challenges are shown in Fig. 1: (a) Varying Body
Proportions: many portraits are captured with varying body proportions, such as full-body, half-body,
and headshots, while existing methods primarily focus on full-body reconstructions; (b) Human with
Objects: in everyday photography, it is common to capture people holding objects, standing on items,
or wearing various accessories, which could greatly impact the reconstruction quality. (c) Human
Reconstruction with Natural Pose and Textures: due to the absence of a broadly applicable human-
specific geometry and texture model, existing methods struggle to reconstruct credible geometry and
consistent texture from real-world images. Additionally, the scarcity of high-quality human body
data exacerbates the difficulty of tackling the problem.

In this paper, we propose GeneMAN, a Generalizable image-to-3D huMAN reconstruction frame-
work for high-fidelity 3D human reconstruction from a single image. To enhance generalizability, we
first collect a comprehensive, multi-source training dataset of high-quality, multi-modal human data,
including 3D scans, multi-view videos, single images, and our augmented human data. Based on the
multi-source human data collection, human-specific prior models, including a text-to-image diffusion
model as the 2D prior and a view-conditioned diffusion model as the 3D prior, have been trained,
which could provide more generalizable human priors compared to traditional human parametric
models. Leveraging the pretrained human prior models, GeneMAN generates 3D human models
through two primary stages. 1) 3D Geometry Reconstruction. To create precise and intricate 3D
human geometry, GeneMAN employs an Initialization-&-Sculpting strategy, which initially predicts
a coarse human geometry using NeRF [38], followed by a sculpting process for adding geometry
details. 2) 3D Texture Generation. Utilizing the refined human geometry, GeneMAN implements
a multi-space texture refinement pipeline to produce high-fidelity, consistent 3D textures. Initially,
coarse textures are created through multi-view texturing and iteratively refined in the latent space.
Subsequently, detailed 3D textures are achieved via pixel space texture refinement, optimizing the
UV maps with a 2D prior-based ControlNet [72]. Extensive experiments demonstrate that GeneMAN
surpasses existing state-of-the-art (SoTA) methods, showcasing strong generalization capability and
high generation quality. We would like to highlight that GeneMAN could faithfully reconstruct 3D
human models with diverse clothing, complex poses, and different personal belongings, given a single
in-the-wild image with varying body proportions. Our contributions are summarized as follows:

• We introduce GeneMAN, a generalizable 3D human reconstruction framework built on human-
specific prior models trained on collected multi-source data. Our framework enables high-quality
3D human reconstruction regardless of its clothing, pose, or body proportions.
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• A few effective 3D human reconstruction modules, such as Geometry Initialization & Sculpting,
and Multi-Space Texture Refinement, have been proposed, facilitating template-free 3D human
geometry modeling and view-consistency texturing.

• According to experimental results, GeneMAN outperforms previous SoTA methods in single-view
3D human reconstruction, which could also effectively reconstruct high-quality 3D humans for
real-world human images.

2 Related Work

Text-to-3D Generation The rapid advancements in 2D image generation have also greatly accelerated
progress in text-to-3D generation. DreamFusion [43] and Magic3D [27] have demonstrated that
utilizing pretrained 2D text-to-image diffusion models [48, 46] as guidance can greatly enhance the
optimization of 3D representations through Score Distillation Sampling (SDS). Trained on large-scale
2D datasets, these text-to-image models possess excellent capabilities in providing comprehensive
2D knowledge and hallucinating unseen scenes based on specific prompts. Nevertheless, as these
models are limited to 2D knowledge, the aforementioned text-to-3D methods are susceptible to
multi-view consistency issues. MVDream [55] improves 3D consistency by training a multi-view
diffusion model that offers a robust multi-view prior. However, these methods are not well-suited
for direct image-to-3D reconstruction tasks because images cannot be accurately captured through
textual descriptions, leading to inconsistencies in color and texture across the generated assets.

Singe Image-to-3D Reconstruction Single image-to-3D reconstruction has greatly benefited from
the thriving advancement of diffusion models. Zero-1-to-3 [30] trains a view-dependent diffusion
model on Objaverse [8] by explicitly incorporating the camera parameters into the diffusion process.
It enables zero-shot image-conditioned novel view synthesis and facilitates general image-to-3D
reconstruction with consistent geometric view. Magic123 [44] and DreamCraft3D [61] integrate
the 3D prior from Zero-1-to-3 [30] with 2D prior from text-to-image diffusion model, employing a
coarse-to-fine two-stage optimization to achieve high-quality 3D reconstruction. LRM [17] leverages
both synthetic data from Objaverse [8] and multi-view data from MVImageNet [71] to train a
transformer-based 3D architecture, enhancing its generalizability for 3D reconstruction. However,
these general image-to-3D approaches often yield poor results in human reconstruction, resulting in
inaccurate geometry of human bodies and the neglect of intricate details, such as facial features and
clothing. This limitation arises from the lack of human-specific priors.

Template-based 3D Human Reconstruction. Template-based approaches rely on human parametric
models [32, 41, 69] to guide 3D reconstruction [78, 68, 67, 20, 12, 74, 76, 14]. PaMIR [78] and
ICON [68] leverage SMPL-derived features to facilitate implicit surface regression, while ECON [67]
employs explicit representations, predicting normals and depths to generate 2.5D surfaces. GTA [74]
utilizes transformers with learnable embeddings to translate image features into 3D triplane features.
Several methods [19, 14, 76] exploit the generative capabilities of pretrained diffusion models [46] for
3D human reconstruction. SiTH [14] finetunes an image-conditioned diffusion model to hallucinate
back views, while SIFU [76] and TeCH [19] utilize diffusion-based geometry and texture refinement
to improve reconstruction quality. Recently, IDOL [79] predicts Gaussian-based representation [22]
of 3D human to enable fast reconstruction. However, template-based methods are highly reliant on
precise human parametric models, which are frequently unattainable for in-the-wild human images.

Template-Free 3D Human Reconstruction. Without parameterized human models, PIFu [49]
introduces a novel approach by extracting pixel-aligned features to build neural fields. PIFuHD [50]
improves this with high-resolution normal guidance, while PHOHRUM [4] jointly predicts 3D
geometry, surface albedo, and shading. Recently, HumanSGD [3] leverages pretrained 2D diffusion
models [46] as a human appearance prior. HumanLRM [64] trains a diffusion-guided feed-forward
model to predict the implicit field of a human without template priors. Nonetheless, they still
encounter challenges, such as unrealistic and inconsistent textures, and inferior geometric details,
largely due to insufficient priors and overly simplistic model designs.

3 Preliminaries

Diffusion Model. Diffusion models [15, 57, 59] learn to transform samples from a tractable noise
distribution towards a data distribution. They comprise a forward process {qt}t∈[0,1], which pro-
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Figure 2: Overview of the Multi-Source Human Dataset and Our GeneMAN Pipeline. We
have constructed a multi-source human dataset comprising 3D scans, videos, 2D images, and
synthetic data. This dataset is utilized to train human-specific 2D and 3D prior models, which
provide generalizable geometric and texture priors for our GeneMAN framework. Through geometry
initialization, sculpting, and multi-space texture refinement in GeneMAN, we achieve high-fidelity
3D human body reconstruction from single in-the-wild images.

gressively adds random noise to a data point x0 ∼ q0(x0), and a reverse process {pt}t∈[0,1], which
gradually recovers clean data from noise. The forward process is defined by a conditional Gaussian
distribution: qt(xt|x0) := N (αtx0, σ

2
t I), where αt, σt > 0 are time-dependent coefficients. The re-

verse process is defined by denoising from p1(x1) := N (0, I) with a parameterized noise prediction
network ϵϕ(xt, t) to predict the noise added to a clean data x0, which is trained by minimizing

LDiff(ϕ) := Ex0∼q0(x0),t∼U(0,1),ϵ∼N (0,I)[
ω(t)∥ϵϕ(αtx0 + σtϵ, t)− ϵ∥22

]
,

(1)

where ω(t) is a time-dependent weighting function. After training, we approximate the real data
distribution with pt ≈ qt, and thus we can generate samples from p0 ≈ q0.

Score Distillation Sampling. Score Distillation Sampling (SDS) is proposed to supervise synthesized
novel views by distilling a pretrained text-to-image diffusion model [48] for text-to-3D generation [43].
As the diffusion model is trained on 2D datasets, the SDS loss is referred as L2D

SDS, and its gradient
∇θL2D

SDS is formulated as:

∇θL2D
SDS(ϕ, I) = Et,ϵ

[
ω(t)(ϵϕ(It; y, t)− ϵ)

∂I

∂θ

]
, (2)

where ω(t) is a weighting function, I = g(θ) is the rendered image at random viewpoints, It is the
noisy image from adding noise ϵ ∼ N (0, I) to the rendered image I0 at timestep t, and y denotes
the conditioned text prompt. The 3D representation is parameterized by θ, and the diffusion model ϕ
predicts the sampled noise ϵϕ(It; y, t).

A pivotal work, Zero-1-to-3 [30] finetunes a variant of Stable Diffusion [46] model on the Obja-
verse [8] dataset, resulting in a view-conditioned diffusion model ϕ, which could synthesize novel
view images at any arbitrary viewpoint c given a reference image Î . Hence, ϕ offers a strong 3D
prior, based on which could derive a 3D-aware SDS loss L3D

SDS. Its gradient ∇θL3D
SDS is formulated as:

∇θL3D
SDS(ϕ, I) = Et,ϵ[ω(t)(ϵϕ(It; Î, c, y, t)− ϵ)

∂I

∂θ
]. (3)

4 Method

In this section, we propose GeneMAN, a generalizable image-to-3D human pipeline aimed for recon-
structing high-quality 3D humans from in-the-wild images. By leveraging GeneMAN prior models,
which provide human-specific geometric and texture priors, we achieve high-fidelity 3D human
reconstruction with varying body proportions, diverse poses, clothing, and personal belongings. The
success of GeneMAN prior models is closely tied to the multi-source human dataset we constructed.
We first introduce the construction of a multi-source human dataset and GeneMAN prior models
in Sec. 4.1 and Sec. 4.2, respectively. Then, we illustrate the details of our GeneMAN framework,
including the Geometry Initialization & Sculpting (Sec. 4.3), as well as the Multi-Space Texture
Refinement (Sec. 4.4). The overview of GeneMAN framework is shown in Fig. 2.
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4.1 Multi-Source Human Dataset

The success of LRM [17] has demonstrated that training on multi-source datasets, including the
3D synthetic dataset Objaverse [8] and the video dataset MVImgNet [71], significantly enhances
the generalization ability and reconstruction quality of models. However, existing 3D human
reconstruction methods typically rely on scarce 3D scanned human data [70, 1] or only video data [77,
66, 7] for training, which restricts their ability to generalize to in-the-wild images, particularly human
portraits with diverse poses, clothing, and various body proportions. To address this challenge, we
construct a large-scale, multi-source human dataset by collecting diverse human data from 3D scans,
multi-view videos, single photos, and synthetically generated human data, as illustrated in Fig. 2.

Our 3D scanned human data is aggregated from the commercial dataset RenderPeople [1], alongside
several open-source datasets: CustomHumans [13], HuMMan [6], THuman2.0 [70], THuman3.0 [60]
and X-Humans [53]. Additionally, we enrich the dataset by integrating human-specific data filtered
from Objaverse [8]. For multi-view human videos, we leverage datasets such as DNA-Rendering [7],
ZJU-Mocap [42], AIST++ [24], Neural Actor [29] and Actors-HQ [21]. In terms of 2D human
imagery, we select data from DeepFashion [31] and LAION-5B [51] to ensure comprehensive
coverage of diverse human appearances. Furthermore, we employ data augmentation strategies
to synthesize additional data. Specifically, we utilize ControlNet-based [72] image synthesis to
generate multi-view human data with diverse clothing options through various prompts, enabling the
creation of human images featuring different garments. To account for varying body proportions,
we apply image cropping to preprocessed multi-view human renderings, expanding our dataset to
include instances with diverse body proportions. In total, our dataset comprises over 50K multi-view
instances. Further details of the dataset are provided in the supplementary materials.

4.2 GeneMAN Prior Models

Previous studies [27, 61] highlight the complementary benefits of hybrid 2D and 3D priors for
3D reconstruction, where 2D priors provide detailed geometry and texture, and 3D priors ensure
multi-view consistency. Inspired by this, we finetune a text-to-image diffusion model [46] and a
view-conditioned diffusion model [30] on our multi-source human dataset, serving as GeneMAN
2D and 3D priors for modeling human-specific texture and geometry. For the GeneMAN 3D prior,
we finetune the pretrained Zero-1-to-3 [30] model leveraging our collected 3D scans, multi-view
videos, synthetic data and 2D images from DeepFashion [31]. Additionally, we incorporate an extra
20% of data curated from the Objaverse [8] dataset. Training on this extensive dataset enables the
view-conditioned diffusion model to acquire a generalizable prior for human geometry. Notably,
the base Zero-1-to-3 model, originally trained on Objaverse, demonstrates a robust capability for
accurately reconstructing objects. This facilitates our finetuned model to handle humans with complex
clothing and personal belongings, as discussed earlier. The fine-tuning process is conducted using
AdamW [33] optimizer with a learning rate of 10−4 on eight NVIDIA A100 GPUs for one week.
For the GeneMAN 2D prior, we finetune Stable Diffusion V1.5 [46] with our entire multi-source
human dataset. An equivalent amount of images from LAION-5B [51] are included to preserve the
model’s capabilities. Finetuning is performed using AdamW [33] with a learning rate of 10−5 on
four NVIDIA A100 GPUs for five days.

4.3 Geometry Initialization & Sculpting

As illustrated in Fig. 3, we adopt hybrid representations, incorporating NeRF [38] and DMTet [54] to
reconstruct detailed human geometry from a reference image. Instead of relying on SMPL [32] for
initialization, we first train the NeRF network [38] using GeneMAN 2D and 3D prior models to craft
a template-free initialized geometry. We leverage Instant-NGP [39] as our NeRF implementation
due to its fast inference and ability to recover complex geometry. To supervise the reference view
reconstruction, we maximize the similarity between the rendered image and the reference image Î
using the following loss:

Lref = ||m̂⊙ (Î − g(θ; ĉ))||2 + ||m̂− gm(θ; ĉ)||2, (4)

where g(θ; ĉ) represents the rendered image at the reference viewpoint ĉ, θ denotes the NeRF
parameters and ⊙ indicates the Hadamard product. The foreground mask is denoted as m̂, and
gm(θ; ĉ) renders the silhouette. In addition to supervising the RGB image and mask, we utilize
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Figure 3: Geometry Initialization & Sculpting. During the geometry reconstruction stage, we
initialize a template-free geometry using NeRF [38], incorporating GeneMAN 2D and 3D priors with
SDS losses. Alongside diffusion-based guidance, a reference loss ensures alignment with the input
image. We then convert NeRF into DMTet [54] for high-resolution refinement, guided by pretrained
human-specific normal- and depth-adapted diffusion models [18].

the geometry prior inferred from the reference image, specifically depth and normal information.
The reference depth Îd and normal În are derived using the human foundation model Sapiens [23].
To enforce consistency between the rendered and reference values, we impose depth and normal
losses, Ldepth and Lnormal. The normal loss is calculated as the mean squared error (MSE) between
the reference normal În and In, i.e., Lnormal = ||În − In||2. For the depth loss, we employ the
normalized negative Pearson correlation:

Ldepth = 1− cov(m̂⊙ Id, m̂⊙ Îd)

σ(m̂⊙ Id)σ(m̂⊙ Îd)
, (5)

where cov(·) and σ(·) represent the covariance and variance operators, respectively.

For novel view guidance, we leverage the GeneMAN 2D and 3D prior models, which distill human-
specific priors from our multi-source human dataset for hybrid supervision. The GeneMAN 2D prior
model ϕ2d provides rich details of human geometry and texture, while the GeneMAN 3D prior model
ϕ3d encodes a pluralistic 3D human prior, ensuring multi-view consistency in both geometry and
texture. The hybrid guidance loss Lguid is denoted as:

Lguid = L2D-SDS(ϕ2d, g(θ)) + L3D-SDS(ϕ3d, g(θ)). (6)

To further refine the geometric details, we adopt DMTet [54], a hybrid SDF-Mesh representation
that enables memory-efficient, high-resolution 3D shape reconstruction. The trained NeRF [38]
is converted into a mesh, which serves as the geometric initialization for DMTet optimization.
During optimization, we compute the reconstruction loss by applying both the MSE loss and the
perceptual loss [56] between the rendered normal from the reference view and the reference normal
În. Inspired by HumanNorm [18], we leverage its pretrained normal-adapted and depth-adapted
diffusion models for novel view guidance to craft high-quality geometry. Furthermore, the SDF
loss Lsdf is incorporated to regularize the geometry, preventing significant deviation from the initial
mesh and avoiding improper shapes. Through geometry initialization and sculpting, we achieve
high-fidelity 3D human geometry with plausible poses and intricate geometric details.

4.4 Multi-Space Texture Refinement

With the detailed geometry in place, we implement multi-space texture refinement in both latent and
pixel spaces, ensuring that the textures remain consistent and realistic. First, we perform latent space
optimization using the hybrid SDS loss [43, 30], leveraging our GeneMAN 2D and 3D prior models
to create an initial coarse texture. The GeneMAN 2D prior model guarantees texture realism, while
the GeneMAN 3D prior model excels at maintaining view-consistent textures. We also supervise
the reference view by applying an MSE loss between the reference image Î and the rendered image
gc(θ; ĉ)) at viewpoint ĉ. The overall loss function for latent space optimization is formulated as:

Lcoarse = λc
ref (||Î − gc(θ; ĉ))||2 + ||m̂− gc(θ; ĉ))||2) + λc

guidLc
guid, (7)
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Figure 4: Multi-Space Texture Refinement. In the texture generation stage, we propose multi-
space texture refinement to optimize texture in both latent space and pixel space. First, we generate
the coarse textures using multi-view texturing, which are then iteratively refined in latent space.
Subsequently, detailed textures are obtained by optimizing the UV map in pixel space with a 2D
prior-based ControlNet.

where λc
ref denotes the weighting parameter of the reference loss, and Lc

guid represents the guidance
loss in the coarse texture stage, as defined in Eq. 6.

Multi-View Training. Multi-view training strategies effectively enhance consistency across
views [30, 55], but they typically require retraining diffusion models. In contrast, we employ a
training-free approach by adding identical Gaussian noise to a batch of images rendered from differ-
ent views. These images are then concatenated into a single image for inference, ensuring that the
resulting multi-view images exhibit consistent textures and colors.
The coarse texture stage prioritizes learning consistent and plausible texture but still lacks realism. To
enhance texture realism, we employ pixel-space optimization by minimizing the distance between the
rendered multi-view images and their refined counterparts, thereby improving the UV texture map.
Akin to DreamGaussian [62], we adopt the image-to-image synthesis framework of SDEdit [37] to
generate the refined images. Specifically, we render the coarse image Icorase from an arbitrary camera
view c, perturb it with random Gaussian noise, and apply a multi-step denoising process using the
GeneMAN 2D prior based ControlNet [72] ϕ2d(·) to obtain the refined image Ifine:

Ifine = ϕ2d(Icoarse + ϵ(tstart); tstart, e), (8)

where ϵ(tstart) represents random noise at timestep tstart, and e denotes the conditioned text embeddings.
We employ MSE loss for pixel-wise reconstruction and LPIPS [73] loss to enhance texture details.
Let λLP denote the weight of the LPIPS loss. The total loss for pixel space optimization Lfine is:

Lfine = ||Ifine − Icoarse||2 + λLP LPIPS(Ifine, Icoarse) (9)

5 Experiments

5.1 Implementation Details

Training Details. Our framework is built upon the open-source project ThreeStudio [10]. During
the geometry stage, we progressively increase the resolution of NeRF [38] from 256 to 384 over
5, 000 steps. We then convert it to an explicit mesh, which serves as the geometry initialization for
DMTet [54] at a resolution of 512. We subsequently optimize DMTet for 3, 000 steps to sculpt fine-
grained geometric details. In the texture stage, we perform an initial coarse texture optimization over
10, 000 steps, followed by a refinement of the texture UV map for 1, 000 steps. The full optimization
process takes approximately 1.4 hours on single NVIDIA A100 80G GPU. Additional details are
provided in the supplementary materials.

Testing Details. For both qualitative and quantitative evaluation, we randomly select 50 samples from
the Internet and CAPE [35]. The samples sourced from the Internet include challenging scenarios,
such as humans with varying body proportions (head shots, half-body shots, full-body shots), as
well as humans in diverse poses, clothing, and with personal belongings. We compare our model
with state-of-the-art image-to-3D human reconstruction methods, including PIFu [49], GTA [75],
TeCH [19] and SiTH [14]. For each method, we render 120 viewpoints across 360 degrees of the
reconstructed results for evaluation. We compute PSNR and LPIPS [73] between the reference view
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Table 1: Quantitative Comparison with State-of-the-art Methods. Evaluation images are sourced
from in-the-wild and the CAPE dataset [35]. Best results are in bold, second-best are underlined.

Method in-the-wild CAPE

PSNR↑ LPIPS↓ CLIP-Sim↑ PSNR↑ LPIPS↓ CLIP-Sim↑
PIFu [49] 26.968 0.035 0.594 26.912 0.028 0.764
GTA [74] 25.060 0.064 0.568 30.376 0.019 0.785
TeCH [19] 25.740 0.053 0.713 27.601 0.025 0.826
SiTH [14] 20.412 0.129 0.608 21.992 0.048 0.815

GeneMAN (Ours) 32.238 0.013 0.730 28.490 0.015 0.838

and the rendered front view to evaluate reconstruction quality. Additionally, CLIP similarity [45]
between the reference view and 119 novel views is measured to assess multi-view consistency.

5.2 Quantitative Comparison

Tab. 1 presents quantitative metrics comparing GeneMAN with baseline methods on in-the-wild
images and the CAPE dataset [35]. For in-the-wild images, GeneMAN outperforms all competing
approaches, showcasing its superiority in generalizable human reconstruction, with the highest
CLIP-Similarity [45] indicating better multi-view consistency. It also leads in PSNR and LPIPS,
highlighting its improved reconstruction quality. On CAPE dataset, GeneMAN continues to excel,
achieving the best results in LPIPS and CLIP-Similarity while maintaining competitive performance
in PSNR, proving its effectiveness on laboratory dataset as well. Additional geometric results are
placed in the supplementary materials.

5.3 Qualitative Comparison

Reference

Figure 5: Qualitative Results of Gene-
MANwith Complex Poses.

We present qualitative results on testing samples from in-
the-wild images and the CAPE [35] dataset, showcased
in Fig. 6 and Fig. 7, respectively. To better illustrate the
reconstruction quality, we visualize the multi-view surface
normals and color renderings. PIFu [49] fails to recover
realistic geometry and appearance, particularly in side
views. Template-based approaches, including GTA [74],
TeCH [19] and SiTH [14] heavily rely on precise human
pose and shape estimation (HPS). However, HPS meth-
ods [9] often produce artifacts such as “bent legs” and
struggle with the shapes of children, as seen in both Fig. 6
and Fig. 7. These limitations lead to cumulative errors in geometry reconstruction that are difficult to
eliminate, even with refinement. While TeCH captures more lifelike details with optimization-based
refinement, the reconstructed surface appears excessively noisy, and the textures are inconsistent,
especially in the back views of garments. In contrast, GeneMAN demonstrates exceptional generaliz-
ability to in-the-wild images featuring diverse clothing styles, poses and varying body proportions.
Its template-free design enables superior modeling of personal belongings and loose clothing, such as
basketball, skirts and dresses, while maintaining detailed, realistic geometry and natural body shapes.
GeneMAN also produces high-fidelity, multi-view consistent textures for clothing and hairstyles. In
Fig. 5, we present additional results to highlight the robust reconstruction capabilities of GeneMAN
under complex poses. More results on complex poses are provided in the supplementary.

5.4 User Study

We conduct a user study involving 40 participants to assess the reconstruction quality of GeneMAN
compared to each baseline method across 30 test cases, evaluating both geometry and texture quality.
Participants are provided with free-view rendering video for each method, and asked to select the most
preferred 3D model from five randomly shuffled options. A total of 40× 30 = 1200 comparisons are
conducted. As shown in Fig. 10, 73.08% of participants favor our method, demonstrating a significant
improvement over the baselines. This indicates that our model generates more plausible and detailed
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Figure 6: Qualitative Comparison with State-of-the-art Methods on in-the-wild Images. To
validate the generalizablity of each method, we select a diverse set of images for demonstration,
including human with complex poses, children, varying body proportions and human with personal
belongings. GeneMAN shows superiority over compared methods in image-to-3D human reconstruc-
tion, achieving both plausible geometry and realistic, consistent texture.

TeCH GeneMAN (Ours)SiTHGTAPIFuReference

Figure 7: Qualitative Comparison with State-of-the-art Methods on CAPE [35]. Without accurate
HPS results, template-based methods [74, 14, 19] suffer from artifacts like the “bent-leg” effect. In
contrast, GeneMAN reconstructs humans with natural poses, detailed geometry, and realistic textures.

geometry, along with realistic and consistent textures, confirming GeneMAN’s effectiveness in
generating high-quality reconstructions.

5.5 Ablation Study

Effectiveness of Geometry and Texture Reconstruction. Fig. 8 analyzes the effectiveness of each
stage proposed in our framework. Compared with geometry initialization (a), geometry sculpting
in (b) smooths the excessively noisy surface and recovers high-frequency details, such as clothing
wrinkles and facial features. In (c), the latent space texturing yields a reasonably satisfactory result;
however, the back view remains inconsistent, and the texture appears slightly blurred. To address this,
(d) enhance the coarse texture into a final refined texture through pixel space texturing.

Effectiveness of GeneMAN 2D Prior Model. To assess the efficacy of GeneMAN 2D prior model,
we compare the mesh results extracted from the NeRF [38] stage utilizing the pretrained DeepFloyd-
IF [47] model (“original 2D prior”) versus GeneMAN 2D prior model (“GeneMAN 2D prior”).
Note that we select the NeRF stage output for visualization to clearly demonstrate the impact of the
diffusion prior, whereas subsequent geometry and texture disentanglement may obscure this effect.
As shown in Fig. 9 (a) and (b), the red-boxed regions reveal that the original 2D prior results in an
uneven shirt hem, with the back extending lower than the front. In contrast, GeneMAN 2D prior
model ensures multi-view consistency in both geometry and texture, enhancing overall reconstruction.
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(a) Geometry Initialization (b) Geometry Sculpting (c) Latent Space Texturing (d) Pixel Space Texturing

Figure 8: Ablation on Geometry and Texture Reconstruction.
(a) shows the geometry initialization, (b) recovers finer details
through geometry sculpting, (c) applies latent-space texturing, and
(d) achieves the final reconstruction with pixel-space optimization.

(b) GeneMAN 2D Prior(a) Original 2D Prior (c) Original 3D Prior (d) GeneMAN 3D Prior

]] ]]

Figure 9: Ablation on GeneMAN 2D and 3D Prior Models. (a)
and (b) demonstrate the 2D prior model improves multi-view con-
sistency and texture details. (c) and (d) illustrate the enhanced pose
naturalness and geometric accuracy from the 3D prior model.

73.09%

16.50%

1.33% 3.50%

5.58%

Figure 10: User Study.
73.09% of subjects prefer
our method over the base-
lines in terms of geometry
and texture, highlighting the
significant superiority of our
approach in recovering ac-
curate geometry and high-
fidelity appearances.

Effectiveness of GeneMAN 3D Prior Model. To assess how GeneMAN 3D prior model (“Gene-
MAN 3D prior”) make influence on reconstruction results, we conduct a comparison by substituting
it with the original Zero-1-to-3 [30] model (“original 3D prior”) in our framework. As indicated in
Fig. 9, (c) reveals unnatural human poses, with the neck and head leaning forward, misaligned with
the input image. In contrast, our GeneMAN 3D prior model, finetuned on a large-scale multi-source
human dataset, captures a more natural pose and shape prior, as shown in (d). This comparison high-
lights that our GeneMAN 3D prior offers more reliable and coherent guidance, leading to improved
geometric accuracy and a more realistic human structure.

6 Conclusion

In this paper, we present GeneMAN, a generalizable framework for single-image 3D human recon-
struction. By leveraging the GeneMAN 2D and 3D prior models, trained on a large-scale, multi-source
human dataset, GeneMAN is capable of reconstructing high-fidelity 3D human models from in-the-
wild images, accommodating varying body proportions, diverse clothing, personal belongings, and
complex poses. Extensive experiments validate the effectiveness of our approach, demonstrating its
superiority over state-of-the-art methods.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction can accurately reflect
the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses the limitations of the work in Section E ("Limitations") of
the supplementary materials.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper focuses on applications rather than presenting new theoretical
results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all necessary details regarding the training pipeline and
dataset settings, which are essential for reproducing the main experimental results of the
paper that support its key claims.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper utilizes a combination of commercial and open-source data for
training. The open-source data is publicly accessible, whereas the commercial data requires
acquisition through purchase from relevant websites. The code will be open-sourced after
the review process.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper presents the training and test details in the Section 5.1 "Implementa-
tion Details" in the main text and Section B "Implementation Details" in the supplementary
materials.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper follows similar setups in the community to conduct the experiments,
but does not include errors bars or other statistical significance measures in the experimental
results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources in Section
5.1 "Implementation Details" in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper adheres to all stipulations presented in the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both potential positive and negative societal impacts in
Section F "Broader Impacts and Safeguards" of the supplementary materials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper discusses safeguards in Section F "Broader Impacts and Safeguards"
of the supplementary materials.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites all external resources used in our experiments,
including datasets and codebases. The corresponding licenses and terms of use are also
clearly stated in the paper.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper provides appropriate documentation for the new assets introduced
in the main text and supplementary materials.
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• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
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Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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This appendix serves to further enrich the discourse established in our main paper. Sec. A presents
the implementation details of GeneMAN. In Sec. B, we elaborate on the details of our multi-source
human dataset. Sec. C provides supplementary experimental results, including more visualizations
for the qualitative comparison, additional results of GeneMAN on in-the-wild images and CAPE [35],
additional quantitative comparisons across different body proportions, discussion on geometric
quantitative evaluation, and ablation studies conducted on our multi-source human dataset. In Sec. D
and E, we discuss the limitations of our approach, as well as the broader impacts and safeguards.

A Implementation Details

A.1 Camera Sampling

For novel view guidance, we sample the camera distance from the range U(3.0, 3.5). The eleva-
tion angle ϕ is drawn from U(−10◦, 45◦), and the azimuth angle θ is uniformly sampled from
[−180◦, 180◦). Additionally, the field of view (FOV) is constrained to the range [20◦, 25◦], aligning
with the fixed camera intrinsics optimized for our finetuned human diffusion models. Building upon
HumanNorm [18], we segment the human body into four regions: the head, upper body, lower body,
and full body. To enhance part-aware reconstruction with high-fidelity detail, we allocate a sampling
probability of 0.7 to the full body, and 0.1 to each of the head, upper body, and lower body. We also
manually adjust the camera distance for zooming in on specific parts. For instance, when refining the
facial region, the camera distance is reduced to U(0.8, 1.0). For half-body refinement (either upper
or lower body), the camera distance is adjusted to U(1.5, 2.0). Additionally, the camera center is
shifted to ensure that the relevant keypoint aligns with the center of the rendered images. To achieve
this, we use an off-the-shelf tool to identify 2D keypoints, which are then used during rasterization to
back-project the coordinates into 3D space. Note that if a keypoint lies outside the image boundaries,
we assign a sampling probability of zero to that point and renormalize the distribution accordingly.

A.2 Details of Each Stage

Geometry Initialization & Sculpting. In the phase of Geometry Initialization, we optimize Instant-
NGP [39] from a resolution of 128 to 384 over the course of 5, 000 steps. The loss weights for
this stage are set as follows: λr = 1 × 103, λm = 100, λd = 0.05, λn = 1, λ2D = 0.1, λ3D = 0.1.
Subsequently, we extract the resulting mesh from Instant-NGP with an isosurface resolution of
256 as the geometry initialization. During the geometry sculpting stage, we refine the geometry
adopting DMTet [54] at a resolution of 512 for 3, 000 steps, enabling the capture of intricate details of
humans. Inspired by HumanNorm [18], we incorporate a progressive positional encoding technique,
where the mask on the position encoding for DMTet’s SDF features is gradually lifted to introduce
higher-frequency components as training progresses. After 2, 000 iterations, the mask fully reveals
all positions, allowing the encoding to capture both low- and high-frequency details. Empirically, we
observe that omitting progressive positional encoding results in noisy surface reconstructions. The
loss weights are set as follows: λr = 5 × 103, λvgg = 1 × 103, λsdf = 1.5 × 103 and λsds = 1.0.
To ensure consistency between the rendered front view and the input image, we apply a relatively
small guidance scale of 20 for novel view generation using the normal- and depth-adapted diffusion
models [18]. The noise timestep t is sampled from U(0.02, 0.8). Besides, we adopt the AdamW [33]
optimizer with a base learning rate of 0.01 during Geometry Initialization and 2 × 10−5 during
Geometry Sculpting.

Multi-Space Texture Refinement. For latent space texture refinement, we employ SDS op-
timization [43] in the latent space to optimize the coarse texture at an image resolution of
1024 × 1024 for 10, 000 steps. The loss weights for the coarse texture stage are configured as
follows: λcolor

rgb = 1 × 103, λcolor
m = 100, λcolor

2D = 0.1, λcolor
3D = 0.1. Following this, we perform

pixel-space texture refinement by optimizing the UV texture map for an additional 1,000 steps to
achieve finer texture details. To ensure that the added noise does not corrupt the original content
while retaining the capacity to enhance image details, we empirically set the starting timestep tstart to
0.05 in Eq.8 in the main text. The weight for the VGG loss [56] in the pixel space texture refinement
is set to λLP = 0.01. We adopt the AdamW [33] optimizer with a base learning rate of 0.01 in the
coarse texture stage and 0.02 in the fine texture stage.
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Table 2: The Statistics of Multi-Source Human Dataset. Our multi-source human dataset encom-
passes a diverse range of human data, categorized into 3D part data: 3D scans, multi-view videos,
our synthetic data, and 2D data: single images. The number of 2D images and 3D instances for each
dataset is summarized in the table below.

Multi-Source Human Dataset

3D Part Data

3D Scanned and Synthetic Human Data
RenderPeople [1] Thuman2.0 [70] Thuman3.0 [60] HuMMan [6]

1853 526 458 9072

CostomHuman [13] X-Humans [53] Objaverse Human [8]

647 3384 3388

Video Human Data
DNA Rendering [7] ZJU-Mocap [42] Neural Actor [29]

8780 2646 4800

AIST++ [24] Actors-HQ [21]

3853 3600

Our Synthetic Human Data
ControlNet-based Synthetic Image Cropping Synthetic

5642 3706

2D Part Data
DeepFashion [31] LAION-5B [51]

20K 80K

(a) Three-quarters Body Cropping (b) Half Body Cropping

Figure 11: Image Cropping Synthesis. We apply half-body and three-quarters-length cropping to
the multi-view renderings of 3D scans to generate synthetic cropped images.

B Details of Multi-Source Human Dataset

To facilitate the training of multi-source human diffusion models, we construct a comprehensive
multi-source human dataset containing 100K 2D human images and 52, 345 multi-view 3D human
instances in total. Detailed statistics of our multi-source human dataset are provided in Tab. 2, with
its composition described as follows: (1) The 2D human data consists of 20K human images from
DeepFashion [31] and 80K human images filtered from LAION-5B [51]. The filtering process is
conducted using YOLOv7 [63], eliminating images without human subjects or containing multiple
individuals. Additionally, images are excluded if they have an aesthetics score below 4.5, if the largest
detected face measures less than 224× 224 pixels, or if the overall resolution falls below 640× 1280.
To enhance semantic richness, each image is captioned using a finetuned BLIP model [25]. (2) The
3D human data is collected from 3D scanned human data, synthetic human data, video human data,
and our synthetic human data. 3D Scanned Human Data contains human models sourced from
the commercial dataset RenderPeople [1] and open-source datasets including CustomHumans [13],
HuMMan [6], THuman2.0 [70], THuman3.0 [60] and X-Humans [53]. 3D Synthetic human data
contains human-category objects filtered from Objaverse [8]. For both scanned and synthetic data, we
adopt the dataset creation protocol of Zero-1-to-3 [30], with the exception that we uniformly select 48
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(a) Templated Pose Synthetic (b) Template-free Pose Synthetic

Figure 12: ControlNet-based Synthesis. We perform ControlNet-based synthesis for both templated
poses and template-free poses.

viewpoints across 360 degrees in azimuth and set the resolution of the rendered image to 1024×1024.
Video Human Data contains five open-source datasets: DNA-Rendering [7], ZJU-MoCap [42],
Neural Actor [29], AIST++ [24] and Actors-HQ [21]. For datasets containing background imagery,
we apply CarveKit [52] to extract human silhouettes and produce corresponding RGBA images.
When datasets feature multiple groups of surrounding cameras, we prioritize the group capturing
the human subject at the image center. Note that we filter out cases of matting failures in these
video datasets. As for DNA-Rendering [7], only Parts 1 and 2 of the released data are utilized.
Our Synthetic Human Data contains human data synthesized by two augmentation techniques:
ControlNet-based [72] image synthesis and image cropping synthesis. To further enhance the diversity
of human identities and outfits in the dataset, inspired by En3D [36], we use ControlNet to synthesize
a batch of multi-view human data based on diverse prompts describing outfits, genders, ages, and
more, all generated by ChatGPT [2]. Unlike En3D, we extract templated or template-free poses and
depth images from multi-view renderings of scanned human data (RenderPeople and XHumans [53])
as conditions fed into ControlNet and synthesize multi-view human images using diverse prompts.
As shown in Fig. 11 and Fig. 12, examples of Image Cropping Synthesis and ControlNet-based
Synthesis are presented, respectively. To ensure the quality of synthetic images, we concatenate
pose and depth images horizontally across all views, generating multi-view humans in a single
inference. This concatenation strategy ensures the texture consistency of the synthetic multi-view
images. To handle the reconstruction of in-the-wild images with arbitrary human proportions, we crop
the above fully body-length multi-view 3D human data into half-body length or three-quarters-body
length images to create the augmented images. As for 3D data captioning, inspired by 3DTopia [16]
and Cap3D [34], we use multi-modal large language model LLaVA [28] to generate captions for
3D objects by aggregating the descriptions from multiple views. The success of our GeneMAN
framework demonstrates the effectiveness of our dataset in providing generalized priors for diverse
human geometry and textures.

C Additional Experiment Results

C.1 More Qualitative Results

For a more comprehensive geometric evaluation, we incorporated six additional SOTA human
geometry reconstruction methods for comparison: PIFuHD [50], PaMIR [78], ICON [68], ECON [67],
PHORHUM [4], and SIFU [76]. The geometric comparison results are presented in Fig. 17 and
Fig. 18. It can be seen that our model effectively recovers natural human poses, accommodates loose
clothing, and excels at reconstructing images with diverse body ratios. In addition, we provide more
qualitative comparisons with state-of-the-art methods: PIFu [49], GTA [74], TeCH [19], SiTH [14]
as shown in Fig. 19 to Fig. 25. Our method surpasses the compared methods in generating consistent,
highly realistic textures with exceptional fidelity.
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Besides, in Fig. 13, we conduct additional comparisons with two generalizable methods: Hu-
manLRM [64] and IDOL [79], both of which are feed-forward models trained on large-scale human
datasets. As the code of Human-LRM is unavailable, we use the examples provided in its paper. Our
model authentically reconstructs 3D humans that closely align with the front view, while IDOL fails
to preserve facial details. Our model also produces natural poses with reasonable geometry (see the
legs of the first and the third subjects in Fig. 13). Moreover, it achieves high-fidelity appearance with
view-consistent details, significantly outperforming HumanLRM.

We provide additional visualization results, with a particular focus on complex poses, in Fig. 15
(in-the-wild images) and Fig. 16 (CAPE [35]). These results highlight the strong generalization
ability of GeneMAN to challenging poses.

Reference HumanLRM IDOL GeneMAN (Ours)

Figure 13: Additional Comparison on in-the-wild Cases with HumanLRM [64] and IDOL [79].
We conduct experiments on the examples reported by HumanLRM. Best view with zoomed in.

C.2 Additional Quantitative Comparison Different Across Body Proportions

To assess the robustness of our method under varying human proportions, we additionally evaluate
it on in-the-wild images that include head-shot, half-body, and full-body inputs. For comparison,
we only consider the template-free method PIFu, since template-based approaches generally fail to
reconstruct head-shot and half-body inputs reliably. As shown in Table 3, GeneMAN consistently
outperforms PIFu across all proportions setting, demonstrating its strong generalization capability.

Table 3: Quantitative Comparison Across Different Human Proportions. The best results are
highlighted in bold.

Method
Full-body Half-body Head-shot

PSNR ↑ LPIPS ↓ CLIP-Sim ↑ PSNR ↑ LPIPS ↓ CLIP-Sim ↑ PSNR ↑ LPIPS ↓ CLIP-Sim ↑

PIFu 28.039 0.029 0.622 25.383 0.052 0.477 25.047 0.075 0.522
GeneMAN (Ours) 32.529 0.012 0.751 28.245 0.016 0.681 26.374 0.022 0.661

C.3 Quantitative Geometric Evaluation

Following prior work, we perform a quantitative geometric comparison with baseline methods [49,
78, 68, 67, 74, 19, 14, 76] on the CAPE [35] dataset to assess geometry reconstruction quality.
Specifically, we report two commonly used metrics: Chamfer Distance (CD) and Point-to-Surface
distance (P2S), both measured in centimeters, between the ground truth scans and the reconstructed
meshes. Additionally, to assess the fidelity of reconstructed local details, we calculate the L2 error
between normal images rendered from the reconstructed and GT surfaces, referred to as Normal
Consistency (NC). These renderings are obtained by rotating the camera around the surfaces at angles
of {0◦, 120◦, 240◦} relative to the frontal view.
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However, it is crucial to highlight that previous template-based methods [78, 68, 67, 74, 19, 14, 76]
directly utilize ground truth SMPL [32, 41] provided in CAPE for evaluation. However, estimating
body shape and pose parameters from a single image is an ill-posed problem due to ambiguity,
leading to multiple possible solutions, as illustrated in Fig. 14. This presents an unfair advantage over
our template-free approach. Moreover, our work focuses on reconstructing 3D humans with high
fidelity from in-the-wild images, where accurate SMPL estimates are unavailable. To provide a fair
comparison, we re-evaluate the baselines on the CAPE dataset under an inference mode, where GT
body poses are not provided as input. The lack of access to such ground truth estimations leads to a
notable performance drop for template-based methods, which deviates from the results presented in
the original papers. The quantitative results are summarized in Tab. 4, where our method outperforms
the compared approaches across all geometric metrics, demonstrating the superior reconstruction
quality of our method.

Ours

GT

Input Image

Figure 14: Visualization Results of the Reconstructed Geometry on the CAPE [35] dataset. While
our template-free method successfully recovers plausible shapes, the orientation of the arms does not
perfectly align with the ground truth, as highlighted by the red bounding box. This misalignment is
difficult to avoid due to the inherent ambiguity, which can result in large 3D errors. Consequently,
it is unfair to compare our approach with SMPL-based methods that utilize GT body parameters
directly.

Table 4: Geometric Comparison with State-of-the-art Methods on the CAPE [35] dataset. The
best results are highlighted in bold. The second-place results are underlined.

Methods CD ↓ P2S ↓ NC ↓
PIFu [49] 2.5580 2.5770 0.0925
PaMIR [78] 2.5502 2.5920 0.0925
ICON [68] 2.4147 2.4581 0.0872
ECON [67] 2.0782 2.0296 0.0798
GTA [74] 2.6785 2.7760 0.0914
TeCH [19] 2.3217 2.4163 0.0935
SiTH [14] 1.9182 2.0427 0.0726
SIFU [76] 2.5226 2.5692 0.0875

GeneMAN (Ours) 1.8862 1.9724 0.0712

C.4 Ablation of Multi-Source Human Dataset

To validate the effectiveness of our constructed multi-source human dataset, we perform an ablation
study on each component: 3D scan human data, video human data, augmented human data, and 2D
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human data. Specifically, we compare the reconstruction results using prior models trained with
various combinations of these data components. The following experimental settings are evaluated:
(a) “Baseline", which replaces 2D and 3D prior models in GeneMAN with their original counterparts
(Stable Diffusion V1.5 [46] and Zero-1-to-3 [30]); (b) “Baseline + 3D”, which uses prior models
trained solely on 3D scanned human data; (c) “Baseline + 3D + Video", which employs prior models
trained on both 3D scanned human data and video human data; (d) “Baseline + 3D + Video +
AUG" which incorporates prior models trained on 3D scan human data, video human data and
augmented human data; (e) “Ours”, which utilizes prior models trained on the complete dataset.
As detailed in Sec. 5.2 of the main text, we evaluate the performance of each setting using PSNR,
LPIPS, and CLIP-Similarity across a set of 30 test cases. As shown in Tab. 5, incorporating 3D
scans significantly improves the model’s multi-view consistency, resulting in a 0.046 increase in
CLIP-similarity. Furthermore, adding video data and augmented data enhances both texture quality
and consistency. By utilizing the full dataset, our full-fledged method achieves the best performance
in both texture quality and consistency.

Table 5: The Effectiveness of Multi-source Human Dataset. The best results are highlighted in
bold.

Methods PSNR ↑ LPIPS ↓ CLIP-Sim ↑
Baseline 31.503 0.018 0.662
Baseline + 3D 30.873 0.017 0.708
Baseline + 3D + Video 31.326 0.015 0.713
Baseline + 3D + Video + AUG 31.205 0.015 0.722

GeneMAN (Ours) 32.238 0.013 0.730

Table 6: Model Efficiency. Comparison of inference times between our model and the baselines.
Note that PIFu [49], GTA [74], and SiTH [14] are feed-forward methods, whereas TeCH [19] and
GeneMAN (ours) are optimization-based approaches that require per-subject optimization. Our
GeneMAN model requires a total of 1.42 hours to generate a 3D human asset, with the following time
breakdown: Geometry Initialization (22 min), Geometry Sculpting (15 min), Latent Space Texture
Refinement (37 min), and Pixel Space Texture Refinement (11 min). All methods are tested on a
single NVIDIA A100 80GB GPU.

PIFu [49] GTA [74] TeCH [19] SiTH [14] GeneMAN(Ours)

Inference Time 4.6s 24s 3.5h 2min 1.42h

D Limitations

Although our method achieves superior reconstruction performance on in-the-wild images compared
to state-of-the-art approaches, it requires a longer optimization time to generate each 3D asset
compared to feed-forward methods such as PIFu [49], GTA [74], and SiTH [14], which may limit its
practical applicability. Nevertheless, our approach remains faster than TeCH [19], offering a 59.4%
increase in efficiency while delivering better quality. The model efficiency of both baseline methods
and ours are reported in Tab. 6. Regarding reconstruction quality, our method still struggles to achieve
fine-grained modeling for certain parts, such as the hands of full-body humans. Additionally, it
lacks specific designs for handling occluded individuals. For human-with-objects reconstruction,
our approach primarily focuses on reconstructing personal belongings, but it performs poorly with
particularly large or complex objects, such as bicycles. Research on human-with-object reconstruction
will be a key focus of our future work.

E Broader Impacts and Safeguards

GeneMAN introduces a generalizable framework for reconstructing high-quality 3D human models
from a single in-the-wild image. This method is capable of handling various body proportions,
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poses, clothing, and personal belongings, offering a wide range of applications, including virtual
reality (VR), augmented reality (AR), telepresence, digital human interfaces, film production, and
3D game development. However, the widespread application of GeneMAN may also pose risks.
For instance, 3D human reconstruction technology could be misused to generate synthetic content,
which may raise ethical and legal concerns. To ensure that the application of GeneMAN is positive
and sustainable, we have implemented the following safeguards: 1) Ensure that the technological
outcomes of GeneMAN are equitably accessible to diverse social groups, including marginalized
communities. 2) Actively collaborate with communities and stakeholders to ensure that technological
applications meet societal needs and expectations. 3) Ensure that the development and application
of GeneMAN comply with all relevant laws and regulations, including data protection laws and
intellectual property rights. 4) Respect all intellectual property rights and ensure that all used data
and methods have been appropriately authorized.
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Figure 15: More GeneMAN Results with Complex Poses on in-the-wild Images. Best view with
zoomed in.
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Figure 16: More GeneMAN Results with Complex Poses on CAPE [35]. Best view with zoomed
in.
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Figure 17: Geometric Comparison on in-the-wild Images. Best view with zoomed in.
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Figure 18: Geometric Comparison on in-the-wild Images. Best view with zoomed in.
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Figure 19: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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Figure 20: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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Figure 21: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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Figure 22: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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Figure 23: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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Figure 24: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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Figure 25: Qualitative Comparison on in-the-wild Image. Best view with zoomed in.
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