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ABSTRACT

Prompt-tuning is an emerging strategy to adapt large language models (LLM)
to downstream tasks by learning a (soft-)prompt parameter from data. Despite
its success in LLMs, there is limited theoretical understanding of the power of
prompt-tuning and the role of the attention mechanism in prompting. In this
work, we explore prompt-tuning for one-layer attention architectures and study
contextual mixture-models where each input token belongs to a context-relevant
or -irrelevant set. We isolate the role of prompt-tuning through a self-contained
prompt-attention model. Our contributions are as follows: (1) We show that
softmax-prompt-attention is provably more expressive than softmax-self-attention
and linear-prompt-attention under our contextual data model. (2) We analyze
the initial trajectory of gradient descent and show that it learns the prompt and
prediction head with near-optimal sample complexity and demonstrate how prompt
can provably attend to sparse context-relevant tokens. We also provide experiments
that verify our theoretical insights on real datasets and demonstrate how prompt-
tuning enables the model to attend to context-relevant information.

1 INTRODUCTION

Prompt-tuning provides a more efficient (cheaper/faster) alternative to fine-tuning the entire weights
of the transformer by instead training (fewer) so-called prompt parameters that are appended on the
input and can be thought of as an input interface. In fact, several recent works have demonstrated
experimentally that prompt-tuning is not only more efficient, but often even becomes competitive to
fine-tuning in terms of accuracy (Lester et al., 2021; Liu et al., 2023; Li and Liang, 2021). However,
there is currently limited formal justification of such observations. This motivates our first question:

How does prompt-tuning compare to fine-tuning in terms of expressive power? Are there scenarios
prompt-tuning outperforms fine-tuning in that regard?

The core constituent of a transformer, and thus of prompt-tuning, is the attention mechanism. Through
the attention layer, prompts get to interact with other input features, create/modify attention weights,
and facilitate the model to attend on latent task-specific information. The standard attention layer
relies on softmax nonlinearities. Operationally, the softmax function allows a model to selectively
focus on certain parts of the input tokens when generating attention outputs. However, there is little
rigorous understanding of attention-based prompt-tuning. Concretely:

What is the role of the softmax-attention in prompt-tuning in terms of optimization and
generalization? How does it locate and extract relevant contextual information?

Contributions. (i) We motivate a simplified prompt attention model naturally arising from self-
attention with prompt tuning. We identify regimes where prompt-attention is more expressive than
self-attention, demonstrating provable scenarios where prompt-tuning is superior to full-fine-tuning.
We also rigorously show that prompt-attention is superior to linear-counterpars without softmax
activation. (ii) By studying optimization and generalization dynamics of the initial trajectory of
gradient descent for optimizing prompt attention, we find that a few iterations suffice to learn the
prompt and prediction head with near-optimal sample complexity and high accuracy. (iii) The
analysis provides insights into the role of softmax during optimization, by showing that it enables
provably attending to sparse context-relevant tokens, while ignoring noisy/nuisance tokens. (iv) We
also characterize the exact finite sample performance of prompt-attention assuming known prompt
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but unknown prediction head. This reveals fundamental performance limits and the precise benefit
of context information. (v) We uncover tradeoffs between model parameters such as the role of
sparsity (i.e. fraction of context-relevant tokens), and the relative effects of the different constituents
of context-relevant tokens. (vi) Finally, we empirically validate our findings on both synthetic
contextual-mixture datasets and image-classification datasets. We compared multiple variants of
prompt tuning against standard fine-tuning on the latter. Furthermore, we highlight the role of
prompt-attention in selecting relevant tokens in the image classification setting.

2 RESULTS

2.1 MOTIVATION: PROMPT-TUNING

Consider a single-head self-attention layer Opre = ϕ(XWQW
⊺
KX⊺)XWV with input X ∈ RT×d

consisting of T tokens of dimension d each, trainable parameters (WK ,WQ,WV ) and softmax
nonlinearity. We scalarize the output of the self-attention output with a trainable linear head Ū which
yields ypre = ⟨Ū ,Opre⟩ = ⟨Ū , ϕ(XWQW

⊺
KX⊺)X⟩ Note here that we implicitly subsume the value

matrix WV in the linear head via U ∶= ŪW ⊺
V . We assume that the model above is pre-trained

so that WK ,WQ,U are fixed. Our goal is to use the pretrained transformer on (potentially) new
classification tasks. Towards this goal, we explore the use of prompt-tuning, introduced in Li and
Liang (2021); Lester et al. (2021) as an alternative to fine-tuning the existing transformer weights.

Prompt-tuning appends a trainable prompt P ∈ Rm×d to the input features X ∈ RT×d with the
goal of conditioning the transformer to solve the new classification task. Let XP ∶= [P

⊺ X⊺]⊺ ∈

R(T+m)×d be the new transformer input. The output of the attention-layer is thus is of the form
O = ϕ(XPWQW

⊺
KX⊺)X. Note that this is slightly different from Opre in that now the layer

computes a cross-attention between the augmented inputs XP and the original inputs X . This is also
equivalent to self-attention on XP after masking the prompt P from keys. This masking is used to
cleanly isolate the residual contribution of the prompt without impacting the frozen attention output.
Concretely, let W be the prediction head associated with the prompt tokens. As before, we scalarize
the output by projecting with a linear head of size (T +m) × d as follows:

y = ⟨[W ⊺ U⊺]⊺, ϕ(XPWQW
⊺
KX⊺

)X⟩ = ⟨W , ϕ(PWQW
⊺
KX⊺

)X⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

prompt-attention ynew

+ ⟨U , ϕ(XWQW
⊺
KX⊺

)X⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

frozen self-attention ypre

.

Here, ynew captures the additive impact of prompt-tuning on the prediction. We denote the trainable
parameters in the model above as θ ∶= (W ,P ). Since the ynew term becomes a self-contained module
and the features attend directly to the prompt vector, we will refer to it as prompt-attention.

Our goal is understanding expressivity, training dynamics, and generalization of the above model.
To simplify our analysis, we consider the following setting. (i) We focus our attention on the novel
component ynew so as to isolate and fully understand the capabilities of prompt-attention. (ii) We
assume WK ,WQ ∈ Rd×d are full-rank. (iii) We assume a single trainable prompt q ∈ Rd i.e., m = 1.

Prompt-attention model. Using these assumptions and setting q ∶= WKW ⊺
QP

⊺ ∈ Rd and w =

W ⊺ ∈ Rd, we arrive at our core prompt-attention model

fθ(X) = ⟨w,X
⊺ϕ (Xq)⟩, θ = (w,q). (1)

We shall see that this model exhibits exciting properties to learn rich contextual relationships within
the data and can even be more expressive than a single self-attention layer.

We remark that the model above is of interest even beyond the context of prompting: the prompt-
attention model in (1) is reminiscent of the simplified model proposed in earlier seq2seq architectures
Bahdanau et al. (2014); Xu et al. (2015); Chan et al. (2015) preceding self-attention and TFs Vaswani
et al. (2017). Indeed, in the simplified attention mechanism of Bahdanau et al. (2014); Xu et al.
(2015); Chan et al. (2015), the tokens’ relevance scores and corresponding attention weights are
determined by a = ϕ(Xq) in which q is a trainable vector and ϕ is the softmax score transformation.
Note here that the trainable parameter q corresponds exactly to the trainable prompt vector in (1).
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2.2 CONTEXTUAL DATA MODEL

Dataset model. Consider supervised classification on IID data (X, y) ∼ D with features X ∈ RT×d

and binary label y ∈ {±1}. The labels y are distributed as P(y = 1) = 1−P(y = −1) = π; for simplicity,
we set π = 1/2 so that E[y] = 0. The tokens xt, t ∈ [T ] of input example X ∶= [x1, . . . ,xT ] are
split into a context-relevant set R ⊂ [T ] and context-irrelevant set Rc ∶= [T ] −R. Specifically,
conditioned on the labels and relevance setR, tokens xt, t ∈ [T ] within X are i.i.d. as follows

xt∣y = {
q⋆ + yw⋆ , t ∈R (relevant token)
−δqq⋆ − δ

wyw⋆ + zt , t /∈R (irrelevant token) .
(DATA)

In the above, q⋆ is a context-vector indicating token relevance and w⋆ is a regressor vector. y, δ ∶=
(δq, δw), (zt)

T
t=1 are independent variables as follows: ● δ = (δq, δw) ∈ R+ × R is a bounded random

variable that reflects out-of-context information within irrelevant tokens. However, δ is allowed to
expose label information through δw. When δ = (0,0), we refer to (DATA) as core dataset model.
● zt are independent centered σ-subgaussian vectors with covariance Σ, symmetric distribution and
zero-third moment E[zT ⊗ (z⊺t zt) ] = 0. When Σ = 0, we refer to (DATA) discrete dataset model.

We allow the relevance setR to be non-stochastic. This includesR being adversarial to the classifi-
cation model. We assume constant fraction ζ = ∣R∣/T ∈ (0,1) of label-relevant tokens for each input
example X drawn from D. Thus, ζ represents the sparsity of relevant signal tokens.

Training dataset S ∶= (Xi, yi)
n
i=1. We draw n i.i.d. samples from D to form our training dataset

S ∶= (Xi, yi)
n
i=1. For i’th example (yi,Xi), we denote the tokens by (xi,t)Tt=1, noise by (zi,t)Tt=1,

relevance set by Ri, and out-of-context variable by δi = (δ
q
i , δ

w
i ). Ideally, for each i, we wish to

identify its context-relevant setRi and discard the rest: This would especially help when the SNR is
small, i.e. ζ = ∣Ri∣/T ≪ 1. This is precisely the role of the context-vector q⋆: Observe that relevant
tokens have positive correlation with q⋆ whereas irrelevant tokens have non-positive correlation with
q⋆ in expectation. Thus, by attending based on q⋆ correlation, we can select relevant tokens.

2.3 POWER OF PROMPT-TUNING ON DISCRETE DATASET

Denote W = ∥w⋆∥,Q = ∥q⋆∥, w̄⋆ = w⋆/W , q̄⋆ = q⋆/Q. To proceed, we first study the discrete
dataset where Σ = 0 and correlation coefficient ρ = w̄⊺⋆q̄⋆ obeys ∣ρ∣ < 1. First note that if δ = (δq, δw)
admits a single value, even a linear model f LIN(X,w) ∶=w⊺X1T can solve the problem.
Observation 1 (Linear model). Suppose (δq, δw) = (∆q,∆w) almost surely for ∆w ≠ ζ/(1 − ζ).
Set w′⋆ = (I − q̄⋆q̄

⊺
⋆)w⋆. Either f LIN(w′⋆) or f LIN(−w′⋆) achieves perfect accuracy.

Thus, to investigate the expressivity of f ATT and f SATT, (δq, δw) would need to admit two or more
values. Perhaps surprisingly, we prove that, as soon as, (δq, δw) comes from a binary distribution,
then f SATT can indeed provably fail in the regime δq ≥ 0 where prompt-attention thrives.
Theorem 1 (Separation of Population Accuracy). The following statements hold for discrete dataset:
1. Prompt Attention: Suppose δq ≥ 0 and ∣δw ∣ ≤ C almost surely. Set q′⋆ = (I − w̄⋆w̄

⊺
⋆)q⋆,w

′
⋆ =

(I − q̄⋆q̄
⊺
⋆)w⋆. Choosing θ = (w′⋆,Γq

′
⋆), f

ATT
θ achieves perfect accuracy for large Γ > 0.

2. Self-attention: In (DATA), choose (δq, δw) to be (0,0) or (∆,∆) equally-likely with ∆ > (1−ζ)−2.
For any choice of (U ,W ), f SATT(U ,W ) = ⟨U , ϕ(XWX⊺)X⟩ achieves 50% accuracy.
3. Linear Prompt Attention: Choose (δq, δw) to be (0,0) or (∆,−∆) equally-likely with ∆ >
√
ζ/(1 − ζ). For any (w,q), f LIN-ATT(w,q) =w⊺X⊺Xq achieves at most 75% accuracy.

While surprising, the reason prompt-attention can provably beat self-attention is because it is op-
timized for context-retrieval and can attend perfectly on the relevant contextual information. In
contrast, self-attention scores are fully feature-based; thus, context information is mixed with other
features and can be lost during aggregation of the output.

2.4 GRADIENT-BASED ANALYSIS OF PROMPT ATTENTION

Our GD analysis concerns the prompt-attention model f ATT
θ , so we simply write fθ. Also, without

any further explicit reference, we focus on the core dataset model, i.e. (DATA) with δ = (0,0). All
our results hold under the mild correlation assumption ∣ρ∣ < W /Q and for simplicity we assume

3



Under review at the Workshop on Understanding Foundation Models at ICLR 2023

isotropic noise Σ = σ2I and handle the general case in the appendix. We use square-loss L̂S(θ) ∶=
1
2n ∑

n
i=1(yi − fθ(Xi))

2. For data generated from (DATA), we show that a three-step gradient-based
algorithm achieves low classification error: ERR(θ̂) ∶= P(yfθ̂(X) > 0).

Algorithm: We split the train set in three separate subsets S1,S2,S3 of size n each. Starting from
w0 = 0,q0 = 0, the algorithm proceeds in three gradient steps for step sizes η > 0 and γ > 0
and a final debiasing step as follows: (1) ŵ1 ∶= −η∇wL̂S1(0,0), (2) q̂1 ∶= −γ∇qL̂S2(0, ŵ1),
(3) ŵ2 ∶= −η∇wL̂S3(q̂1, ŵ1), where L̂Sj , j = 1,2,3 is the loss evaluated on sets Sj .

To gain intuition consider first the population counterpart of the algorithm, i.e., (3) substituting
L̂(w,q) with its population version E [L̂(w,q)] in all three steps. To see how the second population
update q1 selects good tokens, we investigate the (normalized) relevance scores x⊺t q1 of signal vs
noise tokens: Attending to context-relevant tokens requires the signal/context relevance scores be
larger than the noisy ones. Concretely, suppose we have

B ∶=min
t∈R
(q⋆ + yw

⊺
⋆)q1 ≥ 2 max

t∈Rc
z⊺t q1. (2)

Then, a large enough second gradient step (large γ) finds q1 that attends (nearly) perfectly to
context-relevant tokens inR and attenuates (almost) all the noise tokens inRc:

at = [ϕ(Xq1)]t = e
γrt/S {

= eγB/S → 1/(ζT ) t ∈R

≤ eγB/2/S → 0 t ∈Rc
.

Theorem 2 (Population). Consider the three-step algorithm with population gradients and assume
q⋆ ⊥w⋆ for simplicity. For step-size η small enough, there exist sufficiently large α > 1 and step-size
γ such that ERR (fθγ ) ≤ 2/Tα−1 , provided Q ∶= ∥q⋆∥ ≥ σ

√
8 log (2(1 − ζ)Tα).

As per our discussion, the theorem’s condition for Q to be large guarantees (2) so that attention
weights ϕ(Xq1) provably select the relevant tokens and discard those irrelevant.

Below we provide a finite-sample counterpart of Theorem 2. (This is a simplified version; see Section
E for details). For clarity, we fix σ ∝ 1 and use ≳, Õ() to suppress logarithmic dependencies on T,n.
Theorem 3 (Finite-sample). Consider the three-step algorithm with an additional de-biasing step
explained in Sec. E.3. Choose step sizes η ∝ 1/(Q2ζ) and large enough γ. Suppose Q ≳ 1 +W ,
ζ ≤ 0.9. Declare rateLIN = ζ

2W 2T and error rate rate ∶= Q2 ∧Q
√
d ∧ n1/3ζ2/3(W /Q)4/3 ∧

(n/d)rateLIN.With probability 1−ce−Õ(rate∧d) over the training process, ERR(f(θ)) ≤ ce
−Õ(rate).

rateLIN corresponds to the error rate of the linear baseline f LIN (see Fact D.1). This appears in our
theorem with (n/d)rateLIN; thus, as soon as n ∝ d, GD can beat the linear model. Remaining
components of rate are regularity conditions: Analogous to its population-counterpart discussed
above, we ask for Q to be large enough. We also need n ≳ (W /Q)4ζ2 to suppress the variance due
to the q⋆ terms during perturbation analysis of ŵ1. By letting n→∞ in Theorem 3, we end up with
error rate of e−cQ(Q∧

√
d) which provably beats the rate of f LIN whenever Q(Q ∧

√
d) ≥ ζ2W 2T .

Sharp error rates: Finally, in Appendix D we provide an exact analysis of the classification error
when q⋆ is known and only w⋆ is estimated from data. This analysis exactly quantifies the value of
context-information and how prompt-tuning retrieves it. Specifically, we prove a sharp asymptotic

error rate of Q( eQ
2/4

√
1+ISNR(n/d)

⋅
√

ζ2W 2T
1−ζ

) where ISNR(α) ∶= α−1 (1−ζ)e
−Q2/2

rateLIN
, Q(⋅) is the gaussian

tail function and noise is isotropic gaussian. This strictly improves over the existing optimal rates for
(context-free) Gaussian mixture models thanks to the context information.

DISCUSSION

We initiate a theoretical investigation of prompt-tuning. Our results suggest many interesting future
directions including (1) extension to deeper architectures by characterizing the role of softmax-
attention in individual layers, (2) developing a stronger theoretical and empirical understanding of
when/if prompt-tuning is superior to fine-tuning, (3) extending our model to include multiple prompt
vectors (and perhaps extending (DATA) to include multiple context vectors), and (4) investigating the
role of multiple attention heads in prompt-tuning.
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A RELATED WORKS

Attention, specifically the so-called Self-attention, is the backbone mechanism of transform-
ers (Vaswani et al., 2017). It differs from conventional models (e.g., multi-layer perceptrons (MLPs)
and convolutions neural networks (CNNs)) in that it computes feature representations by globally
modeling interactions between different parts of an input sequence. Despite tremendous empirical
success (see, e.g., Vaswani et al., 2017; Brown et al., 2020; Saharia et al., 2022; Ramesh et al., 2022;
cha; Narayanan et al., 2021; Reed et al., 2022, and references therein), the underlying mechanisms
of the attention layer remain largely unknown: How does it learn? What makes it better (and when)
compared to conventional architectures? Yun et al. (2020) show that self-attention based transformers
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with large enough depth are universal approximators of seq2seq functions. Focusing on the self-
attention component, Edelman et al. (2021) show that self-attention can efficiently represent sparse
functions of its input space, while Sahiner et al. (2022); Ergen et al. (2022) analyze convex-relaxations
of Self-attention, and Baldi and Vershynin (2022); Dong et al. (2021) study the expressive ability
of attention layers. However, these works do not characterize the optimization and generalization
dynamics of attention. To the best of our knowledge, the only prior works attempting this are Jelassi
et al. (2022) and ICL. Jelassi et al. (2022) assume a simplified attention structure in which the
attention matrix is not directly parameterized in terms of the input sequence. An interesting recent
ICLR submission (ICL) studies optimization/generalization of training a full self-attention model.
Our paper differs in a variety of ways including: (1) the data model in ICL is different as it has
no notion of context vector and the noise in the data is assumed to be bounded whereas our model
captures the role of context and our noise model is sub-Gaussian. (2) unlike ICL, we develop a
precise asymptotic analysis that reveals the precise role of various problem parameters. (3) Finally,
our focus here is on understanding prompt tuning via prompt-attention and when it can potentially
improve upon vanilla self-attention (which is the focus of ICL).

B EXPERIMENTS

First, we verify the utility of the prompt attention via experiments on a synthetic setting that precisely
follows the contextual data model (cf. Section 2.2). Subsequently, we explore prompt-tuning on
various image-classification tasks that are motivated by the contextual data model and compare it with
the standard fine-tuning method. Finally, we validate the utility of prompt vectors in distinguishing
relevant tokens from irrelevant tokens via prompt attention under an image classification setting.

B.1 SYNTHETIC EXPERIMENTS

Here, we generate a synthetic dataset according to the core dataset model, i.e., we have δ = (δq, δw) =
(0,0) for all examples in the dataset. In particular, we consider a setting with T = 500, d=50,
and ζ = 0.1, i.e., each example has 500 tokens out of which 10% tokens are relevant. As for the
noisy tokens, they consists of i.i.d. N (0, I) vectors. Assuming that q⋆ ⊥ w⋆ and

√
TW = 3, we

generate n = 10 ⋅d training examples from the core dataset model for varying Q. Fig. 1 showcases the
performance of prompt attention when combined with the estimates q̂ and ŵ gradient-based algorithm
in Section E. We also showcase the performance of the linear model and two oracle methods where
we assume access to true q⋆ and true (q⋆,w⋆) while applying the prompt attention, respectively.

Note that prompt attention achieves a vanishing classification test error in this setting whereas a
natural baseline (linear model) can fail to achieve a good performance. On the other hand, the
prompt attention enable by the gradient-based algorithm successfully achieves a high accuracy as
the context energy (defined by Q) increases, validating the utility of prompt attention as well as our
gradient-based algorithm.

B.2 IMAGE CLASSIFICATION EXPERIMENTS

B.2.1 EXPERIMENTAL SETUP

Dataset. Motivated by our contextual data model (cf. Section 2.2), we construct multiple datasets
based on the CIFAR-10 dataset (Krizhevsky et al., 2009) to conduct our evaluation. We construct
three such datasets (see Fig. 2 for examples).

• FULL-TILED. For this dataset, each examples consists of a 64x64 images obtained by arranging a
32x32 image from the original CIFAR-10 dataset a tiling pattern with four tiles (cf. Fig. 2a).

• PARTIAL-TILED. This is dataset is similar to FULL-TILED with the exception that each image has
at-least T out of 4 tiles replaced by a patch of i.i.d. random Gaussian noise with mean zero and
variance 0.2. Note that T ∈ {1,2,3} is a random number as well as the location of the noisy tiles
for each image in the dataset (cf. Fig. 2b).

• EMBED-IN-IMAGENET. In this dataset (Karp et al., 2021), we construct an example by simply
embedding a 32 x 32 image from CIFAR-10 at a random location in a 64 x 64 background
corresponding to a randomly selected image from ImageNet Russakovsky et al. (2015). We

7
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Figure 1: Performance of prompt attention on the synthetic setting described in Section B.1. For
prompt attention, we employ the gradient-based algorithm from Section E to obtain estimates q̂
and ŵ. For the baseline linear model and two oracle settings, we have closed-form expressions
for their asymptotic test error (cf. Theorem 4), which is depicted by solid lines. On the other
hand, markers show the finite sample performance of these three methods. All finite sample
performances are obtained by averaging over 20 independent runs.

Label: bird Label: cat Label: ship

(a) FULL-TILED

Label: bird Label: cat Label: ship

(b) PARTIAL-
TILED

Label: bird Label: cat Label: ship

(c) EMBED-IN-
IMAGENET

Figure 2: Illustration of different CIFAR-10 based datasets utilized in image classification
experiments (cf. Section B.2). Note that all three variants correspond to 10-way multiclass
classification tasks corresponding to 10 original classes in CIFAR-10.
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Figure 3: Performance of fine-tuning vs. prompt-tuning on 10-way classification tasks defined
by EMBED-IN-IMAGENET dataset. Full dataset has 50K training examples. Capped 10% and
2% correspond to sub-sampled train sets where we select exactly 500 and 100 examples per
class from the full dataset. Note that number of prompt vectors equal to 0 corresponds to
zero-shot performance.

also add a i.i.d. random Gaussian noise with mean zero and variance 0.2 to the background
(cf. Fig. 2c).

By construction, each dataset has 50,000 train and 10,000 test examples corresponding to train and
test set of CIFAR-10. We also considered data-limited setting where we keep the test set intact but
reduce the size of train set by sampling a fixed number of images for each class from the original
train set. Note that all three datasets define 10-way multiclass classification tasks with CIFAR-10
classes as potential labels.
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Figure 4: Performance of fine-tuning vs. prompt-tuning on 10-way classification tasks defined
by PARTIAL-TILED dataset. Full dataset has 50K training examples. Capped 10% and 2%
correspond to sub-sampled train sets where we select exactly 500 and 100 examples per class
from the full dataset. Note that number of prompt vectors equal to 0 corresponds to zero-shot
performance.

Model architecture. We utilize a tiny variant of the Vision transformer model Dosovitskiy et al.
(2021) for all of our experiments in this subsection. This variant has 12 transformer layers with
it hidden dimension, MLP intermediate dimension, and number of heads per attention layer being
equal to 192, 768, and 3, respectively. The patch size in our study is set to be 4x4. The model itself
(without counting the trainable parameters/weights during prompt-tuning) has approximately 5.44M
parameters. We rely on the CLS token to obtain the classification logits.

Training. We rely on Scenic library (Dehghani et al., 2022)1 to conduct our experiments on image
classification. Following the default settings in the library along with a coarse grid search, we employ
Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.999, weight decay = 0.1, and batch
size = 128 while training a randomly initialized model. Furthermore, we employ a linear warm-up
of learning rate followed cosine learning rate schedule with base learning rate 3e-3. As for the
fine-tuning and prompt-tuning experiments that (partially) initialize from a pre-trained model, we rely
on SGD with momentum parameter 0.9 and batch size = 128 to update trainable parameters. Again,
we utilize a linear warm-up of learning rate followed cosine learning rate schedule. Throughout our
experiments, the base learning rates for fine-tuning and prompt-tuning are 1e-3 and 0.1, respectively.

Methods. In our fine-tuning experiments, we update all pre-trained model parameters. As for
prompt-tuning, we only update newly introduced (prompt) variables and keep the pre-trained network
frozen. We consider three variants of prompt-tuning: 1) PROMPT-TUNING-I (Lester et al., 2021), where
we add trainable vector between CLS token embedding and first image (patch) embeddings only
at the input; 2) PROMPT-TUNING-II (Li and Liang, 2021), where we add the same trainable vectors
between the CLS embedding and the first image embedding at the input of every transformer layer;
and 3) PROMPT-TUNING-III, where we add different trainable vectors between the CLS embedding
and the first image patch embedding at the input of every transformer layer. Note that the number of
trainable parameters in PROMPT-TUNING-I and PROMPT-TUNING-II do not scale with the number of
layers whereas we have linear scaling with number of layers in PROMPT-TUNING-III. Interestingly, all
three prompt-tuning variant are identical when the number of layers is 1, which corresponds to the
setup we theoretically analyzed in the paper. However, they exhibit remarkably different behavior for
a multi-layer transformer model, as we show in the next subsection.

B.2.2 RESULTS

Here, the main goal of our exploration is to highlight the different behavior of fine-tuning and
prompt-tuning. Towards this, we utilize a model trained on FULL-TILED dataset as the pre-trained
model. This model achieves top-1 (in-domain) accuracy of 80.43 on FULL-TILED test set. In contrast,
it achieves zero-shot top-1 accuracy of 56.35 and 17.97 on PARTIAL-TILED and EMBED-IN-IMAGENET,

1https://github.com/google-research/scenic
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respectively. This alludes to the fact that EMBED-IN-IMAGENET corresponds to a larger distribution
shift from the pre-training distribution (FULL-TILED), as compared to PARTIAL-TILED.

Fig. 3 and Fig. 4 showcase the performance of fine-tuning and prompt-tuning approaches on EMBED-
IN-IMAGENET and PARTIAL-TILED, respectively. Note that fine-tuning outperforms prompt-tuning
in a data-rich setting (cf. Fig. 3a and 4a). This is due to fine-tuning having the ability to update
a large number of model parameters (5.4M in our case). In contrast, with 2000 prompt vectors,
PROMPT-TUNING-III (the most expensive prompt-tuning method out of all three) only updates 460.8K
parameters.

Interestingly, in the data-limited regimes, prompt-tuning becomes more competitive with fine-tuning.
In fact, the best performing prompt-tuning method outperforms the fine-tuning (cf. Fig. 3b and 3c) on
EMBED-IN-IMAGENET, where fine-tuning can easily overfit as it cannot leverage the benefits of the
pre-training data due to a large distribution-shift between FULL-TILED and EMBED-IN-IMAGENET.

As for the varying performance among different prompt-tuning approaches, part of the performance
gap between PROMPT-TUNING-III and PROMPT-TUNING-II can be attributed to the larger number of
trainable parameters available to PROMPT-TUNING-III. Even more interestingly, PROMPT-TUNING-II
consistently outperforms PROMPT-TUNING-I, even with the same number of trainable parameters. This
alludes to the fact that optimization and architecture choices play a major role beyond just the number
of trainable parameters. As mentioned earlier, our theoretical treatment for a single-layer model
cannot distinguish among these different prompt-tuning approaches. As a result, we believe that our
empirical observations point to multiple interesting avenues for future work.

B.3 ATTENTION WEIGHTS FOR PROMPT VECTORS

Finally, we explore what role prompt-attention, i.e., the attention weights with prompt vectors as
keys and image patches/tokens as values, plays towards underlying task. In Fig. 5, we illustrate one
representative example. The figures shows how average attention weights from prompt vectors to
image tokens/patches evolve across transformer layers, when we employ PROMPT-TUNING-III. Indeed,
the figure verifies that prompt-attention helps locate the relevant tokens/patches from the irrelevant
patches, validating our starting hypothesis in Section 2.1 and 2.2.

C FORMAL STATEMENT OF ASSUMPTIONS AND NOTATIONS

First, we formally state our assumptions on the noisy tokens. The more general condition is that noise
is subgaussian and satisfies a mild zero third-moment condition.
Assumption 1.a. The noise vector z ∼ SN (σ) is centered σ-subGaussian, i.e. ∥z∥ψ2 = σ. Moreover,
its distribution is symmetric and zero-third moment, i.e. E[z ⊗ (z⊺z) ] = 0. We denote the noise
covariance Σ ∶= E[zz⊺].

For some of our results it will be convenient to further assume that noise is Gaussian since this allows
leads to precise formulas that are easily interpretable.
Assumption 1.b. The noise vector z ∼ N (0, σ2I) is isotropic Gaussian with variance σ2.

Second, a mild assumption on the correlation between the context q⋆ and classifier w⋆, which
guarantees pure signal tokens q⋆ +yw⋆ are correctly classifier by the true regressor w⋆, i.e. yw⊺⋆q⋆ +
yw⋆ > 0. For convenience, we denoteW ∶= ∥w⋆∥,Q ∶= ∥q⋆∥, ρ ∶= q⊺⋆w⋆/∥q⋆∥∥w⋆∥.

Assumption 3.a. Correlation satisfies ∣ρ∣ < W
Q
.

We will also often consider the special case of zero correlation ρ and thus state it as separate
assumption below. This orthogonality assumption, is useful for more tractable analysis as it helps
decouple feature selection and prediction.
Assumption 3.b. The context and classifier vectors are orthogonal, i.e. q⋆ ⊥w⋆.

Notation. We use boldface letters for vectors and matrices. We use 1m to denote an m-dimensional
vector of all ones. For a vector v, ∥v∥ denotes its Euclidean norm and v/∥v∥ its normalization. ϕ(⋅)
denotes the softmax transformation. Q(⋅) denotes the tail function of standard normal distribution.
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Figure 5: Illustration of how attention weights progressive change from the first layer (Figure 5b-
top) to the last layer (Figure 5b-bottom) in the transformer model for a given input image
(Figure 5a) when we employ PROMPT-TUNING-III. We plot average attention weights from 50
prompt vectors (keys) to 256 image patches (values). The attention weights for each attention
head are naturally arranged in a 16 x 16 grid corresponding to the original locations of the
patches in the image. Note that the attention weights in the early layer have a tiling pattern
similar to that in FULL-TILED– the dataset utilized by the pre-trained model. However, as
we progress deeper into the transformer, attention weights begin to capture the relevant patch
locations in the dataset of interest, i.e., EMBED-IN-IMAGENET.

∧ / ∨ denotes the minimum / maximum of two numbers. Õ() and ≳ notation suppress logarithmic
dependencies. ∝ denotes proportionality.

D SHARP CHARACTERIZATION OF ACCURACY UNDER KNOWN CONTEXT

While the discrete dataset model is insightful, incorporating noise is crucial for understanding the
fundamental limits of the benefits of context in attention. To this end, let us focus on the core dataset
model where we set δq = δw = 0 and explore the role of noise in population accuracy. Also assume
that noise is standard normal, i.e. Assumption 1.b.

● Linear model. The linear model aggregates tokens to obtain a simple Gaussian mixture distribution.
Specifically, aggregated tokens are exactly distributed as 1

T
X⊺1T ∼ N (ζw⋆,

1−ζ
T

I), leading to the
following well-known result.

Fact D.1. For linear models, optimal accuracy obeys minw ERR(f LIN(w)) = Q(
√

ζ2W 2T
1−ζ

) where
Q(⋅) is the tail function of the standard normal distribution.

● Prompt Attention model. Since prompt-attention strictly generalizes the linear model, its accuracy
is at least as good. The theorem below quantifies this and demonstrates that how context vector
can enable an optimal weighting of relevant and irrelevant tokens to maximize accuracy. A general
version of this theorem is proven under a non-asymptotic setting (finite T, d) as Theorem 9.
Theorem 4. Consider the prompt-attention model f ATT

θ . Suppose w⋆ ⊥ q⋆ and let τ, τ̄ > 0 be
hyperparameters. Consider the following algorithm which uses the hindsight knowledge of q⋆ to
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estimate w⋆ and make prediction: Set ŵ = (I − q̄⋆q̄⋆)∇Lw(0, τ q̄⋆) and θ = (ŵ, τ̄ q̄⋆). Suppose
ζ2W 2T,1 − ζ,α ∶= n/d, eQ

2

, eτ each lie between two positive absolute constants. Suppose T is
polynomially large in n and these constants and Õ(⋅) hides polynomial terms in n. Define inverse-

signal-to-noise-ratio: ISNR(α, τ) = (1−ζ)e
2τ(τ−Q)

αζ2W 2T
. In the limit T, d→∞, the test error converges in

probability to Q( eQτ̄−τ̄2

√
1+ISNR(α,τ)

⋅
√

ζ2W 2T
1−ζ

). In this limit, optimal hyperparameters are τ = τ̄ = Q/2

and leads to optimal ISNR(α) ∶= (1−ζ)e
−Q2/2

αζ2W 2T
and the error

ERR(α,Q,W ) = Q
⎛

⎝

eQ
2
/4

√
1 + ISNR(α)

⋅

√
ζ2W 2T

1 − ζ

⎞

⎠

Here, a few remarks are in place. Note that rateLIN ∶=
√

ζ2W 2T
1−ζ

term is the population error
rate of f LIN from Fact D.1. In the limit α = n/d → ∞, the rate of f ATT is cleanly given by
eQ/4rateLIN demonstrating the strict superiority of prompt-attention. Moreover setting Q = 0
(no prompt info), since feature-output of f LIN (i.e. X⊺ϕ(X1)) is (essentially) a binary Gaussian
mixture distribution, our error rate recovers the Bayes-optimal f LIN classifier which has a finite-sample
rate of rateLIN/

√
1 + (1 − ζ)/(αζ2W 2T 2). Prompt-tuning also strictly improves this because our

ISNR(α) introduces an additional e−Q
2
/2 multiplier.

E GRADIENT-BASED ANALYSIS OF PROMPT ATTENTION

This section investigates how gradient-descent optimization of the prompt-attention model learns
(DATA). Concretely, it shows that a few gradient steps can provably attend on the context-relevant
tokens leading to high-classification accuracy. Our results capture requirements on sample complexity
in terms of all problem parameters, i.e. dimension d, correlation ρ, context / signal energies Q / W ,
number T of tokens, and sparsity ζ. This allows studying tradeoffs in different regimes.

Our analysis in this section concerns the prompt-attention model f ATT
θ , so we simply write fθ. Also,

without any further explicit reference, we focus on the core dataset model, i.e. (DATA) with δ = (0,0).
All our results here hold under the mild noise and correlation assumptions: Assumption 1.a and
Assumption 3.a. We will not further state these. Finally, for simplicity of presentation we assume
here isotropic noise Σ = σ2I and handle the general case in the appendix.

E.1 GRADIENT-BASED ALGORITHM

For data generated from (DATA), we show the three-step gradient-based algorithm described below
achieves high test accuracy. Our analysis also explains why three appropriately chosen steps suffice.

Algorithm: We split the train set in three separate subsets S1,S2,S3 of size n each. Starting from
w0 = 0,q0 = 0, the algorithm proceeds in three gradient steps for step sizes η > 0 and γ > 0 and a
final debiasing step as follows:

ŵ1 ∶= −η∇wL̂S1(0,0), (3a)

q̂1 ∶= −γ∇qL̂S2(0, ŵ1), (3b)

ŵ2 ∶= −η∇wL̂S3(q̂1, ŵ1), (3c)

where L̂Sj , j = 1,2,3 is the square-loss evaluated on sets Sj .

E.2 POPULATION ANALYSIS

To gain intuition we first present results on the population counterpart of the algorithm, i.e.,
(3) substituting L̂(w,q) with its population version L(w,q) = E [L̂(w,q)] in all three steps.
It is convenient to introduce the following shorthand notation for the negative gradient steps
Gq(q,w) ∶= −∇qLD(θ) = Ey,X[(y − fθ(X))∇qfθ(X)] and Gw(q,w) ∶= −∇wLD(θ) =

Ey,X[(y − fθ(X))∇wfθ(X)] .
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The first gradient step is easy to calculate and returns a classifier estimate that is already in the
direction of w⋆.

Lemma 1 (Population first step). The first population gradient step w1 = ηGw(0,0) satisfies
w1 = ηζw⋆ since under (DATA), Gw(0,0) =

Ey,X[yX
⊺1]

T
= ζw⋆.

The second gradient step q1 = γGw(w1,0) is more intricate: unless q⋆ ⊥w⋆, q1 also has nonzero
components in both directions q⋆ and w⋆.

Lemma 2 (Population second step). The second population gradient step q1 = γGw(w1,0) satisfies
for α ∶= ηζ

q1 = γαW
2
(ζ − ζ2)(1 +

ασ2

T
− αζ(W 2

+ ρ2Q2
))q⋆ (4)

+ γαρQW (ζ − ζ2)(1 − 2ζαW 2
− (1 +

2

T
)ασ2)w⋆ .

Proof. Since this computation involves several terms, we defer complete proof to Appendix G.1. The
above simplification is made possible by leveraging the third-moment noise Assumption 1.a.

Lemma 2 highlights the following key aspects: (i) As mentioned, q1 also picks up the w⋆ direction
unless ρ = 0. However, we can control the magnitude of this undesired term by choosing small
step-size η (see Cor. 1). (ii) As αW 2 grows, the gradient component in the q⋆ direction might end up
pointing in the direction of −q⋆. This is because large signal along the w⋆ direction might still allow
to predict ±1 label. However, this can always be avoided by choosing sufficiently small step-size η
(see Cor. 1). (iii) Relatedely, as the noise strength σ2 grows, gradient in the q⋆ direction grows as
well. This is because, going along q⋆ direction attenuates the noise and cleans up the prediction. (iv)
Finally, as ζ → 1 and ζ − ζ2 → 0 the magnitude of the gradient decays because all tokens contain
signal information and there is no need for q⋆.

To see how q1 selects good tokens, we investigate the relevance scores (normalized by the step
size γ) rt ∶= x⊺t q1/γ of signal vs noise tokens. Attending to context-relevant tokens requires the
signal/context relevance scores be larger than the noisy ones. Concretely, suppose we have

B ∶=min
t∈R
{rt =

(q⋆ + yw
⊺
⋆)q1

γ
} ≥ 2 max

t∈Rc
{rt =

z⊺t q1
γ
}. (5)

Then, ∣R∣ eγB + ∣Rc∣ eγB/2 ≥ S ∶= ∑t′∈[T ] e
γrt′ ≥ ∣R∣ eγB , which implies the following for the

attention weights as step size increases γ →∞:

at = [ϕ(Xq1)]t = e
γrt/S

⎧⎪⎪
⎨
⎪⎪⎩

= eγB

S
→ 1

ζT
t ∈R

≤ eγB/2

S
→ 0 t ∈Rc

. (6)

Provided (5) holds, a large enough second gradient step (large γ) finds q1 that attends (nearly)
perfectly to context-relevant tokens in R and attenuates (almost) all the noise tokens in Rc. The
following theorem formalizes the above intuition. We defer the complete proof to Appendix G.3.

Theorem 5 (Tying things together). Consider the model θγ = (wγ
2 ,q

γ
1 ) where qγ1 = γGq(w1,0),

wγ
2 = Gw(0,q

γ
1 ) and w1 = ηGw(0,0) for step-size η small enough (see Eq. (58) for details).

Then, there exists absolute constant C > 0 and sufficiently large α > 1 and step-size γ such that
ERR (fθγ ) ≤ 2/Tα−1 , provided

σ
√
log (2(1 − ζ)Tα) ≤

(1 − ρ2/2)Q − 2 ∣ρ∣W

2
√
2
√
1 + 3ρ2

. (7)

Eq. (7) guarantees the desired condition (5) holds. When ρ = 0 (q⋆ ⊥ w⋆), it requires Q =
Ω(
√
log(T )) to attend to context-relevant tokens irrespective of sparsity level ζ. For ρ ≠ 0, (7)

further imposes ∣ρ∣ < Q
2W

. Here the role of Q,W is reversed compared to ∣ρ∣ ≤ W
Q

in 3.a. The latter
guarantees classifier energy is larger so that signal yw⋆ dominates q⋆, while for prompt-attention to
attend to relevant tokens it is favorable that energy of q⋆ dominates w⋆.
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Finally, we compare the theorem’s error to the errorQ(
√

ζ2W 2T
1−ζ

) of the linear model in Fact D.1. For

concreteness, fix W = O(1), Q = O(log(T )) (satisfying (7)) and extreme sparsity ζ = O(1/
√
T ).

Then the error of linear model is O(1), while the error O(1/Tα−1) of (population) Algorithm 3 for
prompt-attention is decreasing in T.

E.3 FINITE-SAMPLE ANALYSIS

Here, we investigate the behavior of Algorithm 3 with finite sample-size n. For convenience, we first
introduce an additional de-biasing step after calculating the three gradients in (3). Specifically, for a
sample S4 of size n we compute a bias variable b̂ ∶= 1

n ∑
n
i=1 f(q̂1,ŵ2)(Xi) , and use it to de-bias the

model’s prediction by outputting f(θ,b)(X) ∶= fθ(X) − b. While this extra step is not necessary it
simplifies the statement of our results. Intuitively, b̂ helps with adjusting the decision boundary by
removing contributions of the context vector in the final prediction (the context vector is useful only
for token-selection rather than final prediction).

Below we provide a simplified version of our main result. Refer to Theorem 7 for precise details. For
clarity, we fix noise variance σ ∝ 1 and use ≳, Õ() to suppress logarithmic dependencies on T,n.

Theorem 6 (Error rate). Consider θ = (ŵ2, q̂1) as per Algorithm 3 with bias b̂ as explained
above. Choose step sizes η ∝ 1

Q2ζ
and γ large enough. Suppose Q ≳ 1 +W , ζ ≤ 0.9. Declare

rateLIN = ζ
2W 2T and set error rate to

rate ∶= Q2
∧Q
√
d ∧ n1/3ζ2/3(W /Q)4/3 ∧ (n/d)rateLIN.

For a constant c > 0, with probability 1 − ce−Õ(rate∧d) over the training process, the classification
error obeys

ERR(f
(θ,̂b)) ≤ ce

−Õ(rate).

A few remarks are in place. rateLIN corresponds to the linear baseline f LIN as it is known that
(see Fact D.1) its error rate (under gaussian noise) follows rateLIN. This rate appears in our theorem
with (n/d)rateLIN; thus, as soon as n ∝ d, gradient-descent can (potentially) beat the linear
model. The remaining components of our rate are regularity conditions: Importantly, we ask for
Q to be large enough so that the attention weights ϕ(Xq̂1) provably select the relevant tokens and
discard those irrelevant. This is analogous to its population-counterpart condition (7). We also need
n ≳ (W /Q)4ζ2 to suppress the variance due to the q⋆ terms during perturbation analysis of ŵ1.
Observe that, by letting n → ∞ in Theorem 6, we end up with rate = Q(Q ∧

√
d) to obtain an

error rate of e−cQ(Q∧
√
d). This is a very distinct learning regime compared to f LIN and provably

beats it whenever Q(Q∧
√
d) ≥ ζ2W 2T . This conclusion is consistent with the discussion following

Theorem 5.

Sharp error rates: Finally, in Appendix D we provide an exact analysis of the classification error
when q⋆ is known and only w⋆ is estimated from data. This analysis exactly quantifies the value of
context-information and how prompt-tuning retrieves it. Specifically, we prove a sharp asymptotic

error rate of Q( eQ
2/4

√
1+ISNR(n/d)

⋅
√

ζ2W 2T
1−ζ

) where ISNR(α) ∶= α−1 (1−ζ)e
−Q2/2

rateLIN
, Q(⋅) is the gaussian

tail function and noise is isotropic gaussian. This strictly improves over the existing optimal rates for
(context-free) Gaussian mixture models thanks to the context information.

F PROOFS FOR FINITE-SAMPLE GRADIENT ANALYSIS IN SECTION E.3

In this section, we focus on finite-sample analysis of Algorithm 3. Introduce the following shorthand
notation analogous to the population counterparts in Section E.2:

Ĝq(q,w) ∶= −∇qL̂D(θ) =
1

n
∑
i∈[n]

(yi − fθ(Xi))X
⊺
i ϕ
′
(Xiq)Xiw

Ĝw(q,w) ∶= −∇wL̂D(θ) =
1

n
∑
i∈[n]

(yi − fθ(Xi))X
⊺
i ϕ((Xiq)). (8)
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F.1 GRADIENT CALCULATIONS

We begin with the gradient calculations for the first two steps of the algorithm.

For convenience, we make use of the following shorthands

Rq⋆ ∶= Rw,q⋆ ∶=w
⊺q⋆, Rw⋆ ∶= Rw,w⋆ ∶=w

⊺w⋆, αi ∶= α(w, yi) ∶= Rq⋆ + yiRw⋆ ,

γi ∶= γ(Zi) =
1

T
ZT
i 1, βi ∶= β(Zi;w) = γ

T
i w, Σ̂i ∶=

1

T
ZT
i Zi.

for Zi ∈ R(1−ζ)T×d is the matrix of irrelevant tokens zi,t, t ∈Rc for sample i ∈ [n].
Lemma 3. Under dataset model (DATA) and Assumption 1.a, we have

Ĝw(0,0) = ζw⋆ + ζq⋆
⎛

⎝

1

n
∑
i∈[n]

yi
⎞

⎠
+
1

n
∑
i

yiγi. (10)

Lemma 4. Under dataset model (DATA) and Assumption 1.a, we have that

Ĝq(0,w) ∶=
1

n

n

∑
i=1

(yi − ζαi − βi) [((ζ − ζ
2
)αi − ζβi) (q⋆ + yiw⋆) + Σ̂iw − (ζαi + βi)γi] . (11)

F.1.1 PROOF OF LEMMA 3

By direct computation,

Ĝw(0,0) ∶= −∇wL̂D(θ) =
1

nT
∑
i∈[n]

yiX
T
i 1T =

1

nT
∑
i∈[n]

∑
t∈[T ]

yixi,t

=
1

n
( ∑
i∈[n]

ζiyi)q⋆ +
1

n
( ∑
i∈[n]

ζi)w⋆ +
1

n
∑
i∈[n]

yizavg,i

where ζi is the fraction of relevant tokens in the i-th sample and zavg,i =
1
T ∑

T
t=1 zi,t where we again

set noise zt = 0 for relevant tokens.

F.1.2 PROOF OF LEMMA 4

Recall that ϕ′(0) = 1
T
I − 1

T 211
T ; hence, for θ = (0,w):

Ĝq(0,w) ∶= −∇qL̂D(θ) =
1

n
∑
i∈[n]

1

T
(yi − fθ(Xi))X

⊺
i Xiw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term1,i

−
1

n
∑
i∈[n]

1

T 2
(yi − fθ(Xi))X

⊺
i 11

⊺Xiw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term2,i

.

Moreover, note that,

fθ(Xi) =
1

T
wTXT

i 1,

X⊺
i Xi = ζT (q⋆ + yiw⋆)(q⋆ + yiw⋆)

⊺
+Z⊺i Zi,

X⊺
i 1 = ζT (q⋆ + yiw⋆) +Z

⊺
i 1.

where recall the notation in Lemma 3 for Zi. Hence, using the lemma’s notation (repeated here for
convenience)

αi ∶= Rq⋆ + yiRw⋆ , βi ∶= β(Zi;w) ∶=
1

T
1TZiw, γi ∶= γ(Zi) =

1

T
ZT
i 1, Σ̂i ∶=

1

T
ZT
i Zi.

we find that

yi − fθ(Xi) = yi − ζαi − βi (12)
1

T
XiX

⊺
i w = ζαiq⋆ + ζyiαiw⋆ + Σ̂iw (13)

1

T 2
X⊺
i 11

⊺Xiw = ζ (ζαi + βi)q⋆ + ζ (ζαi + βi) yiw⋆ + (ζαi + βi)γi. (14)
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With the above, each one of the two terms becomes:

Term1,i = (yi − ζαi − βi) ζαiq⋆ + (yi − ζαi − βi) ζαiyiw⋆ + (yi − ζαi − βi) Σ̂iw (15)

Term2,i = ζ (yi − ζαi − βi) (ζαi + βi)q⋆ + ζ (yi − ζαi − βi) (ζαi + βi) yiw⋆ + (yi − ζαi − βi) (ζαi + βi)γi
(16)

Combining the above:

Term1,i − Term2,i = (yi − ζαi − βi) [ζ ((1 − ζ)αi − βi) (q⋆ + yiw⋆) + Σ̂iw − (ζαi + βi)γi] (17)

F.2 CONCENTRATION OF GRADIENT Ĝq(0,w) IN THE q DIRECTION

The main result of this section is the following lemma about concentration of gradient with respect to
q.

Lemma 5 (Concentration of Ĝq(0,w)). Fix any vectors v,w ∈ Rd. For convenience define Rv,q⋆ ∶=

vTq⋆ and Rv,w⋆ ∶= v
Tw⋆ and recall Rw⋆ ,Rq⋆ notations from Lemma 4. Then, we can decompose

vT Ĝq(0,w) = v
TGq(0,w) + v

T G̃q(0,w),

where the expectation term is given by

vTGq(0,w) ∶= E [vT Ĝq(0,w)] = ((ζ − ζ
2
) (Rw⋆ +w

TΣw/T ) − (ζ2 − ζ3) (R2
w⋆ +R

2
q⋆
)) Rv,q⋆

+ (((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆) Rw,q⋆ − ((1 + 2/T ) (ζ − ζ
2
)Rq⋆)v

TΣw

(18)
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and the deviation term obeys

vT G̃q(0,w) = [((ζ − ζ
2
) − 2(ζ2 − ζ3)Rw⋆)Rq⋆Rv,q⋆ + ((ζ − ζ

2
)Rw⋆ − (ζ

2
− ζ3) (R2

w⋆ +R
2
q⋆
))Rv,w⋆] (

1

n

n

∑
i=1

yi)

+ [(−ζ + 2ζ2)Rq⋆Rv,q⋆ + (−ζ + (−ζ + 2ζ
2
)Rw⋆)Rv,w⋆ + (1 − ζ)w

TΣv] (
1

n

n

∑
i=1

(γTi w))

+ [ζRw⋆ − ζ
2
(R2

q⋆ +R
2
w⋆) +

(1 − ζ)

T
wTΣw](

1

n

n

∑
i=1

vTγi)

+ [(−ζ + (−ζ + 2ζ2)Rw⋆)Rv,q⋆ + (−ζ + 2ζ
2)Rq⋆Rv,w⋆] (

1

n

n

∑
i=1

yi (γ
T
i w))

+ [ζRq⋆ − 2ζ
2Rq⋆Rw⋆] (

1

n

n

∑
i=1

yi (v
Tγi))

+ ζRv,q⋆ (
1

n

n

∑
i=1

(γTi w)
2
−
(1 − ζ)

T
wTΣw)

+ ζRv,w⋆ (
1

n

n

∑
i=1

(γTi w)
2
yi)

+ [1 − 2ζRw⋆] (
1

n

n

∑
i=1

yi (w
Tγi) (v

Tγi))

+ (1 − ζRw⋆)(
1

n

n

∑
i=1

yiv
T Σ̂iw)

− ζRq⋆ (
1

n

n

∑
i=1

vT Σ̂iw − (1 − ζ)v
TΣw)

− [2ζRq⋆] (
1

n

n

∑
i=1

(wTγi) (v
Tγi) −

1 − ζ

T
vTΣw)

− (
1

n

n

∑
i=1

(vTγi)((w
Tγi)

2
−
(1 − ζ)

T
wTΣw))

− (
1

n

n

∑
i=1

(γTi w) (v
T Σ̂iw − (1 − ζ)w

TΣv)) . (19)

Moreover, all random terms in (19) are zero-mean and concentrate as prescribed by Lemma 6 below
Lemma 6 (Main concentration lemma). Let yi, i ∈ [n] be iid Rademacher random variables. Let
Zi ∈ R(1−ζ)T×d, i ∈ [n] be iid copies of a random matrix Z. Each row zt, t ∈ [(1 − ζ)T ] of Z is an
iid copy of a random vector z satisfying Assumption 1.a. For convenience denote γi ∶= Z

T
i 1/T and

Σ̂i ∶= Z
T
i Zi/T . Then, the following statements are true for all vectors w,v ∈ Rd.

XXXXXXXXXXXX

1

n
∑
i∈[n]

yi

XXXXXXXXXXXXψ2

≤
C
√
n

XXXXXXXXXXXX

1

n
∑
i∈[n]

γTi w

XXXXXXXXXXXXψ2

∨

XXXXXXXXXXXX

1

n
∑
i∈[n]

yiγ
T
i w

XXXXXXXXXXXXψ2

≤
Cσ
√
1 − ζ∥w∥2
√
nT

XXXXXXXXXXXX

1

n
∑
i∈[n]

(γTi w) (γ
T
i v) −

1 − ζ

T
vTΣw

XXXXXXXXXXXXψ1

∨

XXXXXXXXXXXX

1

n
∑
i∈[n]

yi (γ
T
i w) (γ

T
i v)

XXXXXXXXXXXXψ1

≤
Cσ2(1 − ζ)∥w∥2∥v∥2

T
√
n

XXXXXXXXXXXX

1

n
∑
i∈[n]

wT Σ̂iv − (1 − ζ)w
TΣv

XXXXXXXXXXXXψ1

∨

XXXXXXXXXXXX

1

n
∑
i∈[n]

yiw
T Σ̂iv

XXXXXXXXXXXXψ1

≤
Cσ2
√
1 − ζ∥w∥2∥v∥2
√
nT

17
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XXXXXXXXXXXX

1

n
∑
i∈[n]

((γTi w)
2
−
1 − ζ

T
wTΣw)γTi v

XXXXXXXXXXXXψ2/3

≤
Cσ3(1 − ζ)3/2∥w∥22∥v∥2

T 3/2
√
n

logn

XXXXXXXXXXXX

1

n
∑
i∈[n]

(γTi w) (w
T Σ̂iv − (1 − ζ)w

TΣv)

XXXXXXXXXXXXψ2/3

≤
CK3(1 − ζ)∥w∥22∥v∥2

T
√
n

logn

Also, all the random variables that appear above are zero mean.

F.2.1 PROOF OF LEMMA 5

We split (11) in four terms and handle each of them separately.

● TermI =
1
n ∑

n
i=1 (yi − ζαi − βi) ((ζ − ζ

2)αi − ζβi)q⋆
We first focus on

TermI =
1

n

n

∑
i=1

(yi(1 − ζRw⋆) − βi − ζRq⋆) (yi(ζ − ζ
2
)Rw⋆ − ζβi + (ζ − ζ

2
)Rq⋆)q⋆ =∶ Aq⋆.

We we can express A above conveniently as follows (recall y2i = 1):

A ∶= −ζ(ζ − ζ2)R2
q⋆ + (1 − ζRw⋆)(ζ − ζ

2
)Rw⋆ + ((1 − ζRw⋆)(ζ − ζ

2
)Rq⋆ − ζ(ζ − ζ

2
)Rw⋆Rq⋆)(

1

n

n

∑
i=1

yi)

+ (−(ζ − ζ2)Rq⋆ + ζ
2Rq⋆)(

1

n

n

∑
i=1

βi) + (−(1 − ζRw⋆)ζ − (ζ − ζ
2
)Rw⋆)(

1

n

n

∑
i=1

yiβi) + ζ (
1

n

n

∑
i=1

β2
i )

= (ζ − ζ2)Rw⋆ − (ζ
2
− ζ3) (R2

w⋆ +R
2
q⋆
) + ((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆ (

1

n

n

∑
i=1

yi)

+ (−ζ + 2ζ2)Rq⋆ (
1

n

n

∑
i=1

βi) + (−ζ + (−ζ + 2ζ
2
)Rw⋆)(

1

n

n

∑
i=1

yiβi)

+ ζ (
1

n

n

∑
i=1

β2
i −
(1 − ζ)

T
wTΣw) +

(ζ − ζ2)

T
wTΣw.

From Lemma 6, all random terms above are zero mean. Hence,

E[A] = −(ζ2 − ζ3)R2
q⋆ + (1 − ζRw⋆)(ζ − ζ

2
)Rw⋆ + (ζ − ζ

2
)
wTΣw

T

= −(ζ2 − ζ3)R2
q⋆ + (ζ − ζ

2
) (Rw⋆ +w

TΣw/T ) − (ζ2 − ζ3)R2
w⋆

= (ζ − ζ2) (Rw⋆ +w
TΣw/T) − (ζ2 − ζ3) (R2

w⋆ +R
2
q⋆
) . (20)

● TermII =
1
n ∑

n
i=1 (yi − ζαi − βi) ((ζ − ζ

2)αi − ζβi) yiw⋆

TermII =
1

n

n

∑
i=1

(yi(1 − ζRw⋆) − βi − ζRq⋆) (yi(ζ − ζ
2
)Rw⋆ − ζβi + (ζ − ζ

2
)Rq⋆) yiw⋆ = Bw⋆.

We we can express B above conveniently as:

B ∶= ((ζ − ζ2)Rw⋆ − (ζ
2
− ζ3) (R2

w⋆ +R
2
q⋆
))
⎛

⎝

1

n
∑
i∈[n]

yi
⎞

⎠
+ ((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆

+ (−ζ + 2ζ2)Rq⋆ (
1

n

n

∑
i=1

βiyi) + (−ζ + (−ζ + 2ζ
2
)Rw⋆)(

1

n

n

∑
i=1

βi) + ζ (
1

n

n

∑
i=1

β2
i yi) .

All the random terms above are zero-mean. Hence,

E[B] = ((ζ − ζ2) − 2(ζ2 − ζ3)Rw⋆)Rq⋆ . (21)

18



Under review at the Workshop on Understanding Foundation Models at ICLR 2023

● TermIII =
1
n ∑

n
i=1 (yi − ζαi − βi) Σ̂iw

Fix any vector v ∶

vT {TermIII} = (
1

n

n

∑
i=1

yiv
T Σ̂iw) − ζ (Rq⋆ + yiRw⋆)(

1

n

n

∑
i=1

vT Σ̂iw) − (
1

n

n

∑
i=1

(γTi w)v
T Σ̂iw)

= (1 − ζRw⋆)(
1

n

n

∑
i=1

yiv
T Σ̂iw) − ζRq⋆ (

1

n

n

∑
i=1

vT Σ̂iw) − (
1

n

n

∑
i=1

(γTi w)v
T Σ̂iw)

= (1 − ζRw⋆)(
1

n

n

∑
i=1

yiv
T Σ̂iw) − ζRq⋆ (

1

n

n

∑
i=1

vT Σ̂iw − (1 − ζ)v
TΣw) − (ζ − ζ2)Rq⋆v

TΣw

−
1

n

n

∑
i=1

(γTi w) (v
T Σ̂iw − (1 − ζ)w

TΣv) + (1 − ζ)(wTΣv)
1

n

n

∑
i=1

(γTi w)

From Lemma 6 all random terms above are zero mean. Hence,

E [vT {TermIII}] = −(ζ − ζ
2
)Rq⋆w

TΣv. (22)

Moreover, from Lemma 6 we have the following:

● TermIV =
1
n ∑

n
i=1 (yi − ζαi − βi) (ζαi + βi)γi

For fixed vector v, vT {TermIV} =
1
n ∑

n
i=1 (yi − ζαi − βi) (ζαi + βi)v

Tγi. Reorganizing, note that

(yi − ζαi − βi) (ζαi + βi) = ζyi(Rq⋆ + yiRw⋆) − ζ
2
(R2

q⋆ +R
2
w⋆ + 2yiRq⋆Rw⋆) − 2ζRq⋆βi − 2ζRw⋆yiβi + yiβi − β

2
i

= (ζRq⋆ − 2ζ
2Rq⋆Rw⋆) yi + (ζRw⋆ − ζ

2
(R2

q⋆ +R
2
w⋆)) − (2ζRq⋆)βi + (1 − 2ζRw⋆) yiβi − β

2
i

Overall,

vT {TermIV} = (ζRw⋆ − ζ
2
(R2

q⋆ +R
2
w⋆))(

1

n

n

∑
i=1

vTγi) + (ζRq⋆ − 2ζ
2Rq⋆Rw⋆)(

1

n

n

∑
i=1

yi (v
Tγi))

+ (1 − 2ζRw⋆)(
1

n

n

∑
i=1

yi (w
Tγi) (v

Tγi))

− (2ζRq⋆)(
1

n

n

∑
i=1

(wTγi) (v
Tγi) −

1 − ζ

T
vTΣw) − (2ζRq⋆)

1 − ζ

T
vTΣw

−
1

n

n

∑
i=1

(vTγi)((w
Tγi)

2
−
(1 − ζ)

T
wTΣw) +

(1 − ζ)

T
wTΣw (

1

n

n

∑
i=1

(vTγi))

According to Lemma 6 all random terms above are zero mean. Thus,

E [vT {TermIV}] = −2ζRq⋆

1 − ζ

T
wTΣv (23)

● Combined
The desired identities (18) and (19) follow by combining all the terms above.

F.2.2 PROOF OF LEMMA 6

First bound: Obvious by boundedness (hence, sub-gaussianity) of yi and Fact J.1.

Second bound: For convenience set T̃ = (1 − ζ)T and assume wlog thatRc = [T̃ ]. Recall that

βi =
1

T

T̃

∑
t=1

zTi,tw =
1 − ζ

T̃

T̃

∑
t=1

zTi,tw.
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Also for all t: ∥zTi,tw∥ψ2
≤K∥w∥2. Thus, from Fact J.1:

∥βi∥ψ2
≤
Cσ(1 − ζ)∥w∥2

√

T̃
=
Cσ
√
(1 − ζ)∥w∥2
√
T

(24)

The bound then follows by applying Fact J.1 once more.

For the second term in this bound recall that yi ∈ {±1} and βi = ∑t z
T
i,tw/T . Also, for all i ∈ [n]:

yi,{zi,t}t are zero-mean and independent. Thus (i) E[yiβi] = 0, and (ii) {yizi,t
D
∼ zi,t and yizi,t ⊥

yizi,t′} Ô⇒ yiβi
D
∼ βi. Thus, the same bound as the first term holds.

Third bound: It is easy to compute

E[(γTi w) (γ
T
i v)] =

1

T 2

T̃

∑
t=1

T̃

∑
t′=1

E[wTzi,tzi,t′v] =
1 − ζ

T
vTΣw, (25)

and, using (24)

∥(γTi w) (γ
T
i v) − E[(γTi w) (γ

T
i v)]∥ψ1

≤ C ∥(γTi w) (γ
T
i v)∥ψ1

≤ C ∥γTi w∥ψ2
∥γTi v∥ψ2

=
Cσ2(1 − ζ)∥w∥2∥v∥2

T
.

(26)

Since (γTi w) (γ
T
i v) , i ∈ [n] are independent, the desired bound on the first term follows from Fact

J.1.

Consider now the second term. By independence of yi,γi it holds that E[yi (γTi w) (γ
T
i v)] = 0.

Arguing as we did above for the second bound, yiγTi w
D
∼ γTi w. Hence, the subexponential bound is

the same as for the first term.

Fourth bound: First, it is easy to compute that for all i ∈ [n]:

E[wTΣiv] =
1

T
E[wTZT

i Ziv] =
1

T

T̃

∑
t=1

E[wTzTi,tzi,tv] =
T̃

T
wTΣv = (1 − ζ)wTΣv.

Thus,

wT Σ̂iv − E[wT Σ̂iv] =w
T Σ̂iv − (1 − ζ)w

TΣv =
1

T

T̃

∑
t=1

((zTi,tw)(z
T
i,tv) −w

TΣv)

and so

1

n

n

∑
i=1

wT Σ̂iv − (1 − ζ)w
TΣv =

1

nT

n

∑
i=1

T̃

∑
t=1

((zTi,tw)(z
T
i,tv) −w

TΣv).

Now, each random variable in the double sum above is independent and such that

∥(zTi,tw)(z
T
i,tv) −w

TΣv∥ψ1 ≤ 2∥(z
T
i,tw)(z

T
i,tv)∥ψ1 ≤ 2∥z

T
i,tw∥ψ2∥z

T
i,tv∥ψ2 ≤ Cσ

2
∥w∥2∥v∥2.

(27)

Hence, from Fact J.1,

∥
1

n

n

∑
i=1

wT Σ̂iv − (1 − ζ)w
TΣv∥

ψ1

≤
Cσ2
√
1 − ζ∥w∥2∥v∥2
√
nT

The bound for the second term follows along the same lines. The two key observations are that (i)
E[yiwT Σ̂iv] = 0 because yi and zi,t are independent, and, (ii)

yiw
T Σ̂iv =

1

T
wT yiZ

T
i Ziv

D
∼

1

T
wT Z̃T

i Ziv =
1

T

T̃

∑
t=1

(z̃Ti,tw)(z
T
i,tv)

where Z̃i is an independent copy of Zi.
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Fifth bound:From (28) and (25), we have for all i ∈ [n] that

∥(γTi w) (γ
T
i v) −

1 − ζ

T
wTΣw∥

ψ1

≤
Cσ2(1 − ζ)∥w∥22

T
.

Moreover, recall from Eq. (24) that

∥γTi v∥ψ2
≤
Cσ
√
1 − ζ∥v∥2
√
T

.

Combining the above two displays and applying Fact J.2 we find for all i ∈ [n] that

∥((γTi w)
2
−
1 − ζ

T
wTΣw)γTi v∥

ψ2/3

≤
Cσ3(1 − ζ)3/2∥w∥22∥v∥2

T 3/2
. (28)

The desired bound follows from the above after using Fact J.3.

Sixth bound: From Eq. (27):

∥wT Σ̂iv − (1 − ζ)w
TΣv∥

ψ1
≤
Cσ2
√
1 − ζ∥w∥2∥v∥2
√
T

and from Eq. (24)

∥γTi w∥ψ2
≤
Cσ
√
1 − ζ∥w∥2
√
T

.

Next we use Fact J.2 with α = 2 and β = 1 to find that

∥(γTi w) (w
T Σ̂iv − (1 − ζ)w

TΣv)∥
ψ2/3
≤
CK3(1 − ζ)∥w∥22∥v∥2

T

Next we use Fact J.3 which allows us to conclude that

∥
1

n

n

∑
i=1

(γTi w) (w
T Σ̂iv − (1 − ζ)w

TΣv)∥
ψ2/3

≤
CK3(1 − ζ)∥w∥22∥v∥2

T
√
n

logn

Finally, the zero-mean property follows since

E[(1TZiw) (w
TZiZ

T
i v)] =

T̃

∑
t=1

T̃

∑
t′=1

E[(zTi,tw) (w
Tzi,t′z

T
i,t′v)] =

T̃

∑
t=1

T̃

∑
t′=1

E[wTzi,t tr (zi,t′z
T
i,t′vw

T )]

= T̃ 2E[tr (zTw) tr (zzTvwT )] = T̃ 2E[tr ((zTw)⊗ (zzTvwT
))]

= T̃ 2 tr (E[(zT ⊗ zzT )](w ⊗ vwT
)) = 0

where the last equality follows by the zero third moment property in Assumption 1.a.

F.3 FINITE-SAMPLE ANALYSIS: FIRST AND SECOND GRADIENT STEPS

The lemma below studies the deviation of the first-step of GD ŵ1 with respect to its population
counterpart w1. Provided that n and nζT /d are larger than appropriate functions of other problem
parameters, then the deviations are of small multiplicative order. We remark that the constants below
have not been optimized (eg. the factor 1/2 in (30) is arbitrary and can be replaced by and small
positive constant by appropriately increasing the constant C in (29)).
Lemma 7 (First gradient step). Consider the one-step population and finite updates w1 = ηGw(0,0)

and ŵ1 = ηĜw(0,0), respectively. For convenience denote Rw⋆ = wT
1 w⋆,Rq⋆ = wT

1 q⋆ and
R̂w⋆ = ŵ

T
1 w⋆, R̂q⋆ = ŵ

T
1 q⋆ their finite-sample counterparts. Suppose for large enough absolute

constant C > 0 and any u > 0,
√
n ≥ CuQ/W and

√
nζT ≥ Cu

σ

W

√
ζ−1 − 1 (29)

Then, for absolute constants c, c′ > 0 with probability at least 1 − c′e−cu
2

∣R̂w⋆ −Rw⋆ ∣ ≤ Rw⋆/2 and ∣R̂q⋆ −Rq⋆ ∣ ≤ ηζ QW /2 (30)
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Additionally, if
√
n ≥ CuQ/W and

√
nζT ≥ Cu

σ

W

√
ζ−1 − 1

√
d (31)

then with the same probability

∣∥ŵ1∥ − ∥w1∥∣ ≤ ∥w1∥/2. (32)

Proof. Note that the conclusions of the lemma are all homogeneous in η. Hence, without loss of
generality, set η = 1.

By Lemma 3,

ŵ1 = Ĝw(0,0) = ζw⋆ + ζq⋆
⎛

⎝

1

n
∑
i∈[n]

yi
⎞

⎠
+
1

n
∑
i

yiγi. (33)

and recall w1 =Gw(0,0) = ζw⋆ (thus, Rw⋆ = ζW
2). From these, and also using Lemma 6 , for any

u > 0 with probability at least 1 − 2e−cu
2

∣R̂w⋆ −Rw⋆ ∣ = ∣w
T
⋆ (ŵ1 −w1)∣ ≤ ζ ∣ρ∣WQ

RRRRRRRRRRRR

1

n
∑
i∈[n]

yi

RRRRRRRRRRRR

+ ∣
1

n
∑
i

yiγ
T
i w⋆∣ ≤

Cuζ ∣ρ∣WQ
√
n

+
Cuσ
√
1 − ζ

√
ζW

√
nζT

≤
ζW 2

2
=
Rw⋆

2
.

where the last inequality follows by assuming n, ζT large enough as in the condition of the lemma.
Similarly,

∣R̂q⋆ −Rq⋆ ∣ = ∣q
T
⋆ (ŵ1 −w1)∣ ≤ ζQ

2

RRRRRRRRRRRR

1

n
∑
i∈[n]

yi

RRRRRRRRRRRR

+ ∣
1

n
∑
i

yiγ
T
i q⋆∣ ≤

CuζQ2

√
n
+
Cuσ
√
1 − ζ

√
ζW

√
nζT

≤
ζQW

2

for sufficiently large n as in (29).

Finally,

∥ŵ1∥ − ∥w1∥ ≤ ∥ŵ1 −w1∥ ≤
CuζQ
√
n
+
Cuσ
√
1 − ζ

√
ζ
√
d

√
nζT

≤
ζW

2
=
∥w1∥

2
(34)

where, again, the last inequality follows by assuming n, ζT large enough as stated in the lemma. In
the second inequality, we used from Lemma 6 that ∑i∈[n] yiγi/n is Cσ

√
1 − ζ/

√
nT -subGaussian

and applied Fact J.4 to get a high-probability bound on its euclidean norm.

Next, we move on to the second gradient update in the direction of Ĝq(0, ŵ1). Recall our goal of
controlling the relevance scores of signal and noisy tokens. The first lemma below takes a step in
this direction by computing the signal and noise relevance scores assuming access to the population
gradient Gq(0, ŵ1) ∶= E [Ĝq(0, ŵ1)] .

Lemma 8 (Ĝq(0, ⋅) control: Expectation term). Let Gq(0,w1) = E [Ĝq(0,w1)] be the expectation
of a step in the q-gradient evaluated at (0, ŵ1) and recall that ŵ1 = ηĜw(0,0) for η > 0. Suppose
ŵ1 satisfies (30) and (32). Further assume that the step-size η satisfies the following for sufficiently
small absolute constant cη > 0:

η < cη (W
−2
∨ Q−2 ∨ σ−2) (35)

Then, for y ∈ {±1} it holds that

(q⋆ + yw⋆)
T
Gq(0, ŵ1) ≥ ηζ(ζ − ζ

2
)W 2Q ((15 − 8ρ2 − 6 ∣ρ∣)Q − (210 ∣ρ∣ + 33)W ) /64 (36)

Moreover, for fresh noise variables zt, t ∈Rc satisfying Assumption 1.a, it holds that

zTt Gq(0, ŵ1)
D
== ηζ (ζ − ζ2)W 2Qσ

√
3
√
(3/2)4 + 2 ((1 + 1/(4 ⋅ 162))ρ2 + 1/4) ⋅Gt, Gt ∼ SN (1)

(37)
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Proof. Fix any v and recall the notation of Lemma 7. With these, we have from Lemma 5 that

vTGq(0, ŵ1) = ((ζ − ζ
2
) (R̂w⋆ + σ

2
∥ŵ1∥

2
/T ) − (ζ2 − ζ3) (R̂2

w⋆ + R̂
2
q⋆
)) vTq⋆

+ ((ζ − ζ2) − 2(ζ2 − ζ3)R̂w⋆) R̂q⋆ v
Tw⋆ − σ

2
(1 + 2/T ) (ζ − ζ2)R̂q⋆v

T ŵ1

= (ζ − ζ2)R̂w⋆ (1 + σ
2
∥ŵ1∥

2
/(TR̂w⋆) − ζ (R̂w⋆ + R̂

2
q⋆/R̂w⋆)) v

Tq⋆

+ (ζ − ζ2)R̂q⋆ (1 − 2ζR̂w⋆) v
Tw⋆ − σ

2
(1 + 2/T ) (ζ − ζ2)R̂q⋆v

T ŵ1

= (ζ − ζ2)R̂w⋆ (1 + σ
2
∥ŵ1∥

2
/(TR̂w⋆) − ζ (R̂w⋆ + R̂

2
q⋆/R̂w⋆))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=Ĉ1

vTq⋆

+ (ζ − ζ2)R̂q⋆ (1 − 2ζR̂w⋆ − ηζσ
2
(1 + 2/T ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=Ĉ2

vTw⋆ − ησ
2
(1 + 2/T )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=Ĉ3

(ζ − ζ2)R̂q⋆v
T δ1

where we used (33) and set δ1 ∶= (ŵ1 −w1)/η = ζq⋆ (
1
n ∑i∈[n] yi) +

1
n ∑i yiγi.

Recall that Rw⋆/2 ≤ R̂w⋆ ≤ 3Rw⋆/2, Rq⋆ − ηζQW /2 ≤ R̂q⋆ ≤ Rq⋆ + ηζQW /2 and ∥w1∥/2 ≤
∥ŵ1∥ ≤ 3∥w1∥/2. Also, Rw⋆ = ηζW

2 Rq⋆ = ηζρWQ and ∥w1∥ = ηζW . With these, we can set step
size η small enough such that Ĉ1 ∈ [1/2,3/2], Ĉ2 ∈ [−1/8,1] and Ĉ3 ∈ [0,1/(16ζ)]. Also, recall
from (34) ∥δ1∥ ≤ ζW /2; thus,

Ĉ3 ∣R̂q⋆ ∣ ∥δ1∥ ≤
1

16ζ
ηζQW (∣ρ∣ + 1/2)

ζW

2
= ηζ

(∣ρ∣ + 1/2)QW 2

32
.

With these, we arrive at the following:

qT⋆Gq(0, ŵ1) ≥ ηζ(ζ − ζ
2
) (W 2Q2

/4 − ∣ρ∣ (∣ρ∣ + 1/2)Q2W 2
/8 − (∣ρ∣ + 1/2)Q2W 2

/32) ≥ ηζ(ζ − ζ2)W 2Q2 (15 − 8ρ2 − 6 ∣ρ∣) /64

and for y ∈ {±1}

∣ywT
⋆Gq(0, ŵ1)∣ ≤ ηζ (ζ − ζ

2)W 3Q (∣ρ∣ (9/4 + 1 + 1/32) + (1/2 + 1/64)) = ηζ (ζ − ζ2)W 3Q (∣ρ∣ (105/32) + 33/64) .

The above two displays put together yield (36).

To see (37), note that zTt w⋆ ∼ SN (σW ), z
T
t q⋆ ∼ SN (σQ) and zTt δ1 ∼ SN (σ∥δ1∥). Thus, the

noise relevant scores are IID subgaussian random variables with sub-gaussian constant σ̂ upper
bounded as follows

zTt Gq(0, ŵ1) = ηζ (ζ − ζ
2)W 2Qσ̂ ⋅Gt, Gt ∼ SN (1) and σ̂ ≤ σ

√
3
√
(3/2)4 + 2 ((1 + 1/(4 ⋅ 162))ρ2 + 1/4) .

(38)

The next lemma controls the effect on the relevance scores of the deviation term G̃q(0, ŵ) =

Ĝq(0, ŵ) −Gq(0, ŵ).

Lemma 9 (Ĝq(0, ⋅) control: Deviation term). Let G̃q(0, ŵ1) ∶= Ĝq(0, ŵ1) − Gq(0, ŵ1) and
suppose ŵ1 satisfies (30) and (32). Fix any u > 0 and any small constant c1 > 0. Then, there exists
small enough constant cη (dependent on c1) such that if step-size η is small enough as per (35) the
following statements hold.

First, for signal tokens, there exist positive constants C, c′, c such that with probability at least
1 − c′e−cu

2/3

∣(q⋆ + yw⋆)
T G̃q(0, ŵ1)∣ ≤ uC c1 (W

2
∨ Q2

)(1 ∨
σ ∨ σ2

√
T
∨
σ3

T
)
log(n)
√
n

, y ∈ {±1} (39)

Second, for fresh noise variables zt, t ∈Rc satisfying Assumption 1.a, it holds that

zTt Gq(0, ŵ1) ∼ SN (σ̃) where w.p. ≥ 1 − c′d e−cu
2/3

σ̃ ≤ uσC c1 (W ∨ Q ∨
σ ∨ σ2

√
T
∨
σ3

T
)
log(n)
√
n

.

(40)
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Proof. We study each one of the terms of G̃q(0, ŵ1) in (19) separately. We repeat the terms here for
convenience, also noting the substitutions Rw⋆ ← R̂w⋆ = ŵ

T
1 w⋆ and Rq⋆ ← R̂q⋆ = ŵ

T
1 q⋆.

vT G̃q(0, ŵ1) = [((ζ − ζ
2
) − 2(ζ2 − ζ3)R̂w⋆) R̂q⋆Rv,q⋆ + ((ζ − ζ

2
)R̂w⋆ − (ζ

2
− ζ3) (R̂2

w⋆ + R̂
2
q⋆
))Rv,w⋆] (

1

n

n

∑
i=1

yi)

+ [(−ζ + 2ζ2) R̂q⋆Rv,q⋆ + (−ζ + (−ζ + 2ζ
2
)R̂w⋆)Rv,w⋆ + (1 − ζ)ŵ

T
1 Σv] (

1

n

n

∑
i=1

(γTi ŵ1))

+ [ζR̂w⋆ − ζ
2
(R̂2

q⋆ + R̂
2
w⋆) +

(1 − ζ)

T
ŵT

1 Σŵ1](
1

n

n

∑
i=1

vTγi)

+ [(−ζ + (−ζ + 2ζ2)R̂w⋆)Rv,q⋆ + (−ζ + 2ζ
2) R̂q⋆Rv,w⋆] (

1

n

n

∑
i=1

yi (γ
T
i ŵ1))

+ [ζR̂q⋆ − 2ζ
2R̂q⋆R̂w⋆] (

1

n

n

∑
i=1

yi (v
Tγi))

+ ζRv,q⋆ (
1

n

n

∑
i=1

(γTi ŵ1)
2
−
(1 − ζ)

T
ŵT

1 Σŵ1)

+ ζRv,w⋆ (
1

n

n

∑
i=1

(γTi ŵ1)
2
yi)

+ [1 − 2ζR̂w⋆] (
1

n

n

∑
i=1

yi (ŵ
T
1 γi) (v

Tγi))

+ (1 − ζR̂w⋆)(
1

n

n

∑
i=1

yiv
T Σ̂iŵ1)

− ζR̂q⋆ (
1

n

n

∑
i=1

vT Σ̂iŵ1 − (1 − ζ)v
TΣŵ1)

− [2ζR̂q⋆] (
1

n

n

∑
i=1

(ŵT
1 γi) (v

Tγi) −
1 − ζ

T
vTΣŵ1)

− (
1

n

n

∑
i=1

(vTγi)((ŵ
T
1 γi)

2
−
(1 − ζ)

T
ŵT

1 Σŵ1))

− (
1

n

n

∑
i=1

(γTi ŵ1) (v
T Σ̂iŵ1 − (1 − ζ)ŵ

T
1 Σv)) . (41)

Recall from the lemma assumption that (30) holds and from Rw⋆ = ηζW
2 and Rq⋆ = ηζρWQ, that

1/2ηζW 2 ≤ R̂w⋆ ≤ 3/2ηζW
2 and ηζ(ρ − 1/2)WQ ≤ ∣R̂q⋆ ∣ ≤ ηζ(ρ + 1/2)WQ. The observation is

that we can choose step-size η small enough (as stated in (35)) to bound (in absolute value) all the
coefficients in (41) (aka all terms in square brackets) that include R̂w⋆ , R̂q⋆ . Therefore, for any small
positive constant c1 > 0 it can be checked that there is sufficiently small constant cη that determines
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step-size η in (35) such that

∣vT G̃q(0, ŵ1)∣ ≤ c1 [∣Rv,q⋆ ∣ + ∣Rv,w⋆ ∣] ∣
1

n

n

∑
i=1

yi∣

+ [c1 ∣Rv,q⋆ ∣ + c1 ∣Rv,w⋆ ∣ + (1 − ζ)σ
2 ∣ŵT

1 v∣] ∣
1

n

n

∑
i=1

(γTi ŵ1)∣

+ [c1 +
(1 − ζ)

T
σ2
∥ŵ1∥

2
] ∣

1

n

n

∑
i=1

vTγi∣

+ [c1 ∣Rv,q⋆ ∣ + c1 ∣Rv,w⋆ ∣] ∣
1

n

n

∑
i=1

yi (γ
T
i ŵ1)∣

+ [c1] ∣
1

n

n

∑
i=1

yi (v
Tγi)∣

+ ζ ∣Rv,q⋆ ∣ ∣
1

n

n

∑
i=1

(γTi ŵ1)
2
−
(1 − ζ)

T
ŵT

1 Σŵ1∣

+ ζ ∣Rv,w⋆ ∣ ∣
1

n

n

∑
i=1

(γTi ŵ1)
2
yi∣

+ [1 + c1] ∣
1

n

n

∑
i=1

yi (ŵ
T
1 γi) (v

Tγi)∣

+ [1 + c1] ∣
1

n

n

∑
i=1

yiv
T Σ̂iŵ1∣

+ c1 ∣
1

n

n

∑
i=1

vT Σ̂iŵ1 − (1 − ζ)v
TΣŵ1∣

+ [c1] ∣
1

n

n

∑
i=1

(ŵT
1 γi) (v

Tγi) −
1 − ζ

T
vTΣŵ1∣

+ ∣
1

n

n

∑
i=1

(vTγi)((ŵ
T
1 γi)

2
−
(1 − ζ)

T
ŵT

1 Σŵ1)∣

+ ∣
1

n

n

∑
i=1

(γTi ŵ1) (v
T Σ̂iŵ1 − (1 − ζ)ŵ

T
1 Σv)∣ . (42)

Now, we use successively Lemma 5 to bound the random terms. Also note that ∣Rv,q⋆ ∣ ≤ Q∥v∥,
∣Rv,w⋆ ∣ ≤ W ∥v∥ and ∥ŵ1∥ ≤ (3/2)∥w1∥ = (3/2)ηζW. For any u > 0, with probability at least
1 − c′e−cu

2/3
we have
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∣vT G̃q(0, ŵ1)∣ ≤ u ⋅
C
√
n
∥v∥ c1 (W +Q)

+ u ⋅
Cσ
√
1 − ζ

√
nT

∥v∥ (c1 (2W + 2Q + ηζ(1 − ζ)σ
2W )ηζW + (2c1 + σ

2
(1 − ζ)η2ζ2W 2

/T ))

+ u ⋅
Cσ2(1 − ζ)

T
√
n

∥v∥ (η2ζ3W 2Q + η2ζ3W 3
+ (1 + c1)ηζW)

+ u ⋅
Cσ2
√
1 − ζ

√
nT

∥v∥ ((1 + 2c1)ηζW )

+ u
Cσ2(1 − ζ)

T
√
n

∥v∥ (c1ηζW )

+ u
Cσ3(1 − ζ)3/2 log(n)

T 3/2
√
n

∥v∥ (η2ζ2W 2)

+ u
Cσ3(1 − ζ) log(n)

T
√
n

∥v∥η2ζ2W 2 . (43)

Now, again using small step size η as per (35), this can be further simplified to the following (here
the value of constant c1 might be different from (43))

∣vT G̃q(0, ŵ1)∣ ≤ u ⋅
C
√
n
∥v∥ c1 (W +Q) + u ⋅

Cσ
√
1 − ζ

√
nT

∥v∥ c1 (1 +W +Q) + u ⋅
Cσ2(1 − ζ)

T
√
n

∥v∥ c1

+ u ⋅
Cσ2
√
1 − ζ

√
nT

∥v∥ c1 + u
Cσ3(1 − ζ)3/2 log(n)

T 3/2
√
n

∥v∥ c1 + u
Cσ3(1 − ζ) log(n)

T
√
n

∥v∥ c1

≤ u ⋅ ∥v∥ ⋅
C
√
n
⋅ c1 (W ∨ Q ∨

σ ∨ σ2

√
T
∨
σ2

T
∨
σ3 log(n)

T 3/2
∨
σ3 log(n)

T
)

≤ u ⋅ ∥v∥ ⋅
C log(n)
√
n

⋅ c1 (W ∨ Q ∨
σ ∨ σ2

√
T
∨
σ3

T
) (44)

Now, we can compute the deviation of the relevance scores. For signal tokens we have for both
y ∈ {±1}, and all u > 0 with probability at least 1 − c′e−cu

2/3
, there exist constant C > 0 such that

∣(q⋆ + yw⋆)
T G̃q(0, ŵ1)∣ ≤ uC(W

2
∨ Q2

)(1 ∨
σ ∨ σ2

√
T
∨
σ3

T
)
log(n)
√
n

(45)

For a noisy token zt, t ∈ R
c note that zTt G̃q(0, ŵ1) ∼ SN (σ∥G̃q(0, ŵ1)∥). We can bound

∥G̃q(0, ŵ1)∥ applying (44) for all standard basis vectors v = ej , j ∈ [n] and union bounding.
This gives for all u > 0 with probability at least 1 − c′de−cu

2/3
,

∥G̃q(0, ŵ1)∥ ≤ uC (W ∨ Q ∨
σ ∨ σ2

√
T
∨
σ3

T
)
log(n)
√
n

.

With lemmas 8 and 9 at hand, we are now ready to put things together stating our final bounds for
relevance scores. The finding is presented as a stand-alone lemma below.

Lemma 10 (Put things together). Consider the finite-sample gradient step q̂1 = Ĝq(0, ŵ1), where
recall that ŵ1 = ηĜw(0,0). Fix any u0, u1, u2, u3 > 0 and any small constant c̃1 > 0. Suppose
step-size η of first gradient step satisfies (35) for sufficiently small constant cη > 0 (dependent on c̃1)
and further assume

√
n ≥ u0 ⋅C0

Q

W
and

√
nζT

d
≥ u0 ⋅C0

σ

W

√
ζ−1 − 1. (46)

26



Under review at the Workshop on Understanding Foundation Models at ICLR 2023

for some large enough constant C0 > 0. Finally, assume for simplicity that

σ ∨ σ2

√
T
∨
σ3

T
≤W ∨ Q (47)

Consider a fresh dataset (Xi, yi)i∈[n] and consider the signal and noise relevance scores r̂i,t ∶=
ri,0 ∶= (q⋆ + yiw⋆)

T
q̂1, t ∈ R and r̂i,t ∶= zTi,tq̂1, t ∈ R

c, respectively. Then, there exist positive
absolute constants C, ci, c′i, i = 0,1,2,3 such that the following statements hold

• With probability at least 1 − c′0e
−c0u

2
0 − c′1e

c1u
2/3
1 , the signal relevance scores satisfy

min
i∈[n]

ri,0 ≥ ηζ(ζ − ζ
2
)W 2Q ((15 − 8ρ2 − 6 ∣ρ∣)Q − (210 ∣ρ∣ + 33)W ) /64 − u1C c̃1 (W

2
∨ Q2

)
log(n)
√
n
=∶ B(u1)

(48)

• With probability at least 1 − c′0e
−c0u

2
0 − c′2n(1 − ζ)Te

−c2u
2
2 − c′3dn(1 − ζ)Te

c3u
2/3
3 , the noise

relevance scores satisfy

max
i∈[n],t∈Rc

ri,t ≤ u2 ηζ (ζ − ζ
2)W 2QσC + u3 σC c̃1 (W ∨ Q)

log(n)
√
n
=∶M(u2, u3) (49)

Proof. The lemma follows by collecting (36), (39), (37), (40), and applying union bound for the
noise terms over i ∈ [n], t ∈Rc.

F.4 FINISHING THE FINITE SAMPLE ANALYSIS: THIRD GRADIENT STEP

With the characterization of the relevant scores from Lemma 10 in hand we are now ready to turn our
attention to the third gradient step and finish the finite sample analysis. To this aim we first formally
state our finite sample result before turning our attention to its proof. We note that Theorem 6 stated
in the main paper follows immediately from this theorem as discussed in Appendix F.4.1.
Theorem 7. Consider Algorithm 3 with step size η obeying

η ≤
cη

max (Q +W,cu4σ
√
α log(ndT ))max (Q +W,cu4σ

√
d) ζ

for small enough constant cη and with γ sufficiently large. Furthermore, assume the sample size n
obeys

√
n ≥ u0 ⋅C0

Q

W
and

√
nζT

d
≥ u0 ⋅C0

σ

W

√
ζ−1 − 1.

for large enough constant C0 > 0 and some u0 > 0. For simplicity we also assume

σ ∨ σ2

√
T
∨
σ3

T
≤W ∨ Q.

Recall (48), (49) and suppose that B(u1) ≥ 2M(u2, u3). Also define

δ ∶=
2

n
e−

n
8 + (1 − ζ)Te−u4d + c′0e

−c0u
2
0 + c′1e

c1u
2/3
1 + c′2(1 − ζ)Te

−c2u
2
2 + c′3d(1 − ζ)Te

c3u
2/3
3

Then, we can conclude that

ERR(f ′θ) ≤ δ ∶=
2

n
e−

n
8 +(1−ζ)Te−u4d+c′0e

−c0u
2
0+c′1e

c1u
2/3
1 +c′2(1−ζ)Te

−c2u
2
2+c′3d(1−ζ)Te

c3u
2/3
3

holds with probability at least

1 − 2ecu
2
5 − (1 − ζ)Te−cu4d −

nT (d + 2)

(ndT )α
− 2(d + 1)e−u

2
6

− c′0e
−c0u

2
0 − c′1e

c1u
2/3
1 − c′2n(1 − ζ)Te

−c2u
2
2 − c′3dn(1 − ζ)Te

c3u
2/3
3

− 2n(
2

n
e−

n
8 + (1 − ζ)Te−cu4d + c′0e

−c0u
2
0 + c′1e

c1u
2/3
1 + c′2(1 − ζ)Te

−c2u
2
2 + c′3d(1 − ζ)Te

c3u
2/3
3 ) .

Above we remark that u7 is free variables. Because it can be chosen arbitrarily large by picking a
sufficiently large γ and consequently, its associated failure events can be made arbitrarily small.
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F.4.1 PROVING THEOREM 6 AS A COROLLARY

Setting variables in light of Theorem 7: The log factors will be hidden under Õ() notation. σ ∝ 1
and set γ to sufficiently large in terms of all other variables. Set Q ≳ 1 +W and ζ ≤ 0.9 so that
1 − ζ ≳ 1. Set η ∝ 1/Q2ζ and u4 ∝ Q/

√
d and α ∝ Õ(d) (sufficiently large constant). α results in a

failure rate of 1 − e−Õ(d) however this will only appear in the probability of failure of the training
(and not the classification error). In contrast, u4 results in an error rate of

e−Õ(Q
√
d)
∶= Te−cu4d.

For variables u1, u3, (48) and (49) yield that

ηζ2W 2Q2
≳ (u1Q

2
+ u3Q) log(n)/

√
n

Now, set u1 ∝ u3 ∝ η
√
nζ2W 2/ log(n) and plug in η. This yields an error rate of

e−Õ(n
1/3ζ2/3(W /Q)4/3)

∶= e−Õ(η
2/3n1/3ζ4/3W 4/3

).

Secondly, we satisfy the u2 term in (49) via u2 ∝ Q which yields another e−Õ(Q
2
) rate. These satisfy

all conditions of Theorem 7 with the exception of condition for u0. To proceed, u0 is chosen to be

u20 ∝ n[(W /Q)2 ∧ ζ2W 2T /d],

resulting in an error rate of
e−n[(W /Q)

2
∧ζ2W 2T /d].

Combining these, we find

log δ ≤ −Õ(Q(
√
d ∧Q) ∧ n1/3ζ2/3(W /Q)4/3 ∧ n(W /Q)2 ∧ nζ2W 2T /d) (50)

= −Õ(Q(
√
d ∧Q) ∧ n1/3ζ2/3(W /Q)4/3 ∧ nζ2W 2T /d). (51)

To proceed, note that, the failure probability over the dataset is cn × δ + e−Õ(d), thus the advertised
failure probability (under Õ() which subsumes ×n) applies to the training process.

In contrast, recall that the linear model achieves a log-error rate of logQ(
√
ζ2T /(1 − ζ))∥w⋆∥ ∝

−ζ2TW 2.

F.4.2 PROOF OF THEOREM 7

Note that under the assumption of the theorem, Lemma 10 holds. For convenience we shall use the
notation in that lemma. We also define

M(u2, u3) ∶=u2 ηζ (ζ − ζ
2)W 2QσC + u3 σC c̃1 (W ∨ Q)

log(n)
√
n

B(u1) ∶=ηζ(ζ − ζ
2
)W 2Q ((15 − 8ρ2 − 6 ∣ρ∣)Q − (210 ∣ρ∣ + 33)W ) /64 − u1C c̃1 (W

2
∨ Q2

)
log(n)
√
n

As per theorem assumption, note that B ≥ 2M .

We define the events

Ei ∶= {max
t∈Rc

ri,t ≤M} ∩ {min
t∈R

ri,t ≥
B

2
}

Also note that using the theorem assumption that B ≥ 2M we have
ζTeγri,0

ζTeγri,0 +∑t∈Rc eγri,t
=

1

1 + 1
ζT ∑t∈Rc eγ(ri,t−ri,0)

≥
1

1 + 1
ζT ∑t∈Rc eγ(maxt∈Rc ri,t−B)

≥
1

1 + 1
ζT ∑t∈Rc e−

γ
2B

=
1

1 + 1−ζ
ζ
e−

γ
2B
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Thus

1TRc
i
ϕ(Xiq) =1 −

ζTeγri,0

ζTeγri,0 +∑t∈Rc eγri,t

≤

1−ζ
ζ
e−

γ
2B

1 + 1−ζ
ζ
e−

γ
2B

=
1 − ζ

ζe
γ
2B + (1 − ζ)

∶= ϵγ

The latter also implies that

∣1TRi
ϕ(Xiq) − 1∣ = 1TRc

i
ϕ(Xiq) ≤ ϵγ (52)

Note that

Ĝw(q,w) ∶= −∇wL̂D(θ) =
1

n
∑
i∈[n]

(yi − fθ(Xi))X
⊺
i ϕ((Xiq)).

Thus

w2 ∶= Ĝw(q, ŵ1) =
1

n
∑
i∈[n]

yiX
⊺
i ϕ(Xiq) −

1

n
∑
i∈[n]

(ŵT
1 X

⊺
i ϕ(Xiq))X

⊺
i ϕ(Xiq)

=
1

n
∑
i∈[n]

yi (q⋆ + yiw⋆)1
T
Ri
ϕ(Xiq) +

1

n
∑
i∈[n]

yiZ
⊺
i ϕ(Xiq)

−
1

n
∑
i∈[n]

(ŵT
1 X

⊺
i ϕ(Xiq))X

⊺
i ϕ(Xiq)

=
1

n
∑
i∈[n]

(yiq⋆ +w⋆) +
1

n
∑
i∈[n]

(yiq⋆ +w⋆) (1
T
Ri
ϕ(Xiq) − 1) +

1

n
∑
i∈[n]

yiZ
⊺
i ϕ(Xiq)

−
1

n
∑
i∈[n]

(ŵT
1 X

⊺
i ϕ(Xiq))X

⊺
i ϕ(Xiq)

=
⎛

⎝

1

n
∑
i∈[n]

yi
⎞

⎠
q⋆ +w⋆ +

1

n
∑
i∈[n]

(yiq⋆ +w⋆) (1
T
Ri
ϕ(Xiq) − 1) +

1

n
∑
i∈[n]

yiZ
⊺
i ϕ(Xiq)

−
1

n
∑
i∈[n]

(ŵT
1 X

⊺
i ϕ(Xiq))X

⊺
i ϕ(Xiq)

Let us focus on bounding the penultimate term in a unit norm direct v. That is

1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq).

To this aim we define the events

Ev,i ∶= {∥Ziv∥ℓ∞ ≤ σ
√
cα log (ndT )} ,

and focus on the truncated sum
1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq)1Ev,i1Ei .

To continue note that yivTZ⊺i ϕ(Xiq)1Ev,i1Ei is a sub-Gaussian random variable as it is bounded
due to the fact that

∣yiv
TZ⊺i ϕ(Xiq)1Ev,i1Ei ∣ ≤ ∥Ziv∥ℓ∞1TRc

i
ϕ(Xiq)1Ev,i1Ei ≤ σ

√
cα log(ndT )ϵγ

Thus by concentration of sum of i.i.d. Sub-Gaussian random variables we have
RRRRRRRRRRRR

1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq)1Ev,i1Ei − E[yiv

TZ⊺i ϕ(Xiq)1Ev,i1Ei]
RRRRRRRRRRRR

≤ cu6σ

√
cα log(ndT )ϵγ
√
n
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holds with probability at least 1 − 2e−u
2
6 . Furthermore, note that by Jensen’s inequalities

∣E[yiv
TZ⊺i ϕ(Xiq)1Ev,i1Ei]∣ ≤ E[ ∣yiv

TZ⊺i ϕ(Xiq)1Ev,i1Ei ∣ ] ≤ E[∥Ziv∥ℓ∞1TRc
i
ϕ(Xiq)1Ev,i1Ei] ≤ σ

√
cα log(ndT )ϵγ

Now use the fact that
1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq) =

1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq)1Ev,i1Ei

holds with probability at least 1− nT
(ndT )α

−∑
n
i=1 P{Eci }. Combining this with the latter two inequalities

(via the triangular inequality) we conclude that
RRRRRRRRRRRR

1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq)

RRRRRRRRRRRR

≤ cσϵγ
√
cα log(ndT )(

Cu6
√
n
+ 1) (53)

holds with probability at least 1 − nT
(ndT )α

−∑
n
i=1 P{Eci } − 2e

−u2
6 . Applying the above to standard

basis vectors ej ∈ Rd, j ∈ [d] we can conclude that

∥
1

n
∑
i∈[n]

yiv
TZ⊺i ϕ(Xiq)∥ ≤ cσϵγ

√
cα log(ndT )(

Cu6
√
n
+ 1)

holds with probability at least 1 − ndT
(ndT )α

− 2de−u
2
6 −∑

n
i=1 P{Eci }.

To control the last term note that we have

∥
1

n
∑
i∈[n]

(ŵT
1 X

⊺
i ϕ(Xiq))X

⊺
i ϕ(Xiq)∥ ≤

1

n
∑
i∈[n]

∥Xiŵ1∥ℓ∞ (max
t
∥eTt Xi∥)

≤max (∥q⋆∥ + ∥w⋆∥, cu4σ
√
α log(ndT ))max (∥q⋆∥ + ∥w⋆∥, cu4σ

√
d) ∥ŵ1∥

≤max (∥q⋆∥ + ∥w⋆∥, cu4σ
√
α log(ndT ))max (∥q⋆∥ + ∥w⋆∥, cu4σ

√
d)

3

2
ηζW

=max (Q +W,cu4σ
√
α log(ndT ))max (Q +W,cu4σ

√
d)

3

2
ηζW

holds with probability at least 1 − nT
(ndT )α

− (1 − ζ)Te−cu4d where in the penultimate line we used
(34). Assuming

η ≤
1

3max (Q +W,cu4σ
√
α log(ndT ))max (Q +W,cu4σ

√
d) ζ

the latter is less than 1
2
W .

Using the above together with triangular inequality on w2

∥w2∥ ≤

RRRRRRRRRRRR

1

n
∑
i∈[n]

yi

RRRRRRRRRRRR

∥q⋆∥ + ∥w⋆∥ + (∥q⋆∥ + ∥w⋆∥) ϵγ + cσϵγ
√
cα log(ndT )(

Cu6
√
n
+ 1) +

W

2

≤
u5
√
n
∥q⋆∥ + ∥w⋆∥ + (∥q⋆∥ + ∥w⋆∥) ϵγ + cσϵγ

√
cα log(ndT )(

Cu6
√
n
+ 1) +

W

2

=
u5
√
n
Q +W + (Q +W ) ϵγ + cσϵγ

√
cα log(ndT )(

Cu6
√
n
+ 1) +

W

2

holds with probability at least 1 − (1 − ζ)Te−cu4d − 2ecu
2
5 −

nT (d+1)
(ndT )α

− 2de−u
2
6 −∑

n
i=1 P{Eci }.

Furthermore, using (53) we also have
RRRRRRRRRRRR

1

n
∑
i∈[n]

yiw
T
⋆Z

⊺
i ϕ(Xiq)

RRRRRRRRRRRR

≤ cσϵγ
√
cα log(ndT )(

Cu6
√
n
+ 1)∥w⋆∥
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with an added failure probability of nT
(ndT )α

+ 2e−u
2
6 . Therefore,

wT
2 w⋆ ≥∥w⋆∥

2
−
u5
√
n
∣qT⋆w⋆∣ − (∣q

T
⋆w⋆∣ + ∥w⋆∥

2) ϵγ − cσϵγ
√
cα log(ndT )(

Cu6
√
n
+ 1)∥w⋆∥ −

W 2

2

=(
1

2
− ϵγ)W

2
− (

u5
√
n
+ ϵγ)QW ∣ρ∣ − cσϵγ

√
cα log(ndT )(

Cu6
√
n
+ 1)W

Combining the upper bound on ∥w2∥ and lower bound on wT
2 w⋆ we can thus conclude that

wT
2 w⋆
∥w2∥

=
( 1
2
− ϵγ)W

2 − ( u5√
n
+ ϵγ)QW ∣ρ∣ − cσϵγ

√
cα log(ndT ) (Cu6√

n
+ 1)W

u5√
n
Q + 3

2
W + (Q +W ) ϵγ + cσϵγ

√
cα log(ndT ) (Cu6√

n
+ 1)

with probability at least

1 − 2ecu
2
5 −

nT (d + 2)

(ndT )α
− 2(d + 1)e−u

2
6 −

n

∑
i=1

P{Eci }

= 1 − 2ecu
2
5 − (1 − ζ)Te−cu4d −

nT (d + 2)

(ndT )α
− 2(d + 1)e−u

2
6

− c′0e
−c0u

2
0 − c′1e

c1u
2/3
1 − c′0e

−c0u
2
0 − c′2n(1 − ζ)Te

−c2u
2
2 − c′3dn(1 − ζ)Te

c3u
2/3
3 .

Finally note that

∥XTϕ(Xq) − (q⋆ + yw⋆)∥ =∥(q⋆ + yw⋆) (1
T
Rϕ(Xq) − 1) +ZTϕ(Xq)∥

≤(Q +W +max
t
∥zt∥)ϵγ

≤(Q +W + cu4σ
√
d)ϵγ ∶= ϵ

which holds with probability at least 1 − (1 − ζ)Te−cu4d − c′0e
−c0u

2
0 − c′1e

c1u
2/3
1 − c′0e

−c0u
2
0 − c′2(1 −

ζ)Te−c2u
2
2 − c′3d(1 − ζ)Te

c3u
2/3
3 .

Note that by picking

δ ∶=
2

n
e−

n
8 + (1 − ζ)Te−cu4d − c′0e

−c0u
2
0 + c′1e

c1u
2/3
1 + c′0e

−c0u
2
0 + c′2(1 − ζ)Te

−c2u
2
2 + c′3d(1 − ζ)Te

c3u
2/3
3

we also automatically have n ≥ 8 log ( 2
δn
). Thus by picking γ sufficiently large the assumptions of

Lemma 11 holds with δ and ϵ as defined above. Therefore, we can conclude that

ERR(f ′θ) ≤ δ ∶=
2

n
e−

n
8 +(1−ζ)Te−cu4d+c′0e

−c0u
2
0+c′1e

c1u
2/3
1 +c′0e

−c0u
2
0+c′2(1−ζ)Te

−c2u
2
2+c′3d(1−ζ)Te

c3u
2/3
3

holds with probability at least

1 − 2ecu
2
5 − (1 − ζ)Te−cu4d −

nT (d + 2)

(ndT )α
− 2(d + 1)e−u

2
6

− c′0e
−c0u

2
0 − c′1e

c1u
2/3
1 − c′0e

−c0u
2
0 − c′2n(1 − ζ)Te

−c2u
2
2 − c′3dn(1 − ζ)Te

c3u
2/3
3

− 2n(
2

n
e−

n
8 + (1 − ζ)Te−cd + c′0e

−c0u
2
0 + c′1e

c1u
2/3
1 + c′0e

−c0u
2
0 + c′2(1 − ζ)Te

−c2u
2
2 + c′3d(1 − ζ)Te

c3u
2/3
3 )

F.4.3 DE-BIASING STEP

Lemma 11 (Debiasing predictions). Suppose q1 is such that a test example (y,X) obeys

P(∥X⊺ϕ(Xq1) − (q⋆ + yw⋆)∥ ≤ ϵ) ≥ 1 − δ.

Given a fresh dataset S = (yi,Xi)
n
i=1, set b = 1

n ∑
n
i=1 fθ(Xi) =

1
n ∑

n
i=1w

⊺
2vi where vi ∶=

X⊺
i ϕ(Xiq1). Set the debiased classifier f ′θ(X) = fθ(X) − b. Set ∆ = w⊺2w⋆/∥w2∥. Suppose

n ≥ 8 log ( 2
δn
) and ϵ > 0 is such that ϵ <∆/4. Then, with probability 1− 2δn over S , the test error of

f ′θ obeys
ERR(f ′θ) ≤ δ.
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Proof. First, let us prove the following intermediate statement: With probability 1 − 2δn over S , for
a new test sample (y,X), with probability 1 − δ,

∣yf ′θ(X) −w
⊺
2w⋆∣ ≤

√
2 log(2/δn)

n
⋅w⊺2w⋆ + 2ϵ∥w2∥. (54)

Based on the choice of C, observe that, with probability 1 − nδ over the dataset (yi,Xi)
n
i=1, for each

vi,
∣w⊺2vi −w

⊺
2(q⋆ + yiw⋆)∣ ≤ ϵ∥w2∥.

Set b̄ = w⊺2q⋆. Set ȳ = ∣ 1
n ∑

n
i=1 yi∣. With probability 1 − δn, ȳ ≤

√
2 log(2/δn)

n
. Combining, with

overall probability at least 1 − 2δn, the classifier bias obeys

∣b − b̄∣ ≤ ∣w⊺2w⋆∣

√
2 log(2/δn)

n
+ ϵ∥w2∥.

To finalize, for a new sample (y,X), with probability 1 − δ, we have that ∣w⊺2v −w
⊺
2(q⋆ + yw⋆)∣ ≤

ϵ∥w2∥ where v =X⊺ϕ(Xq1). Thus, the prediction f ′(X) = f(X) − b obeys

∣yf ′θ(X) − y(fθ(X) − b̄)∣ ≤ ∣b − b̄∣ ≤ ∣w
⊺
2w⋆∣

√
2 log(2/δn)

n
+ ϵ∥w2∥. (55)

To conclude with (54), note that

∣y(fθ(X) − b̄) −w
⊺
2w⋆∣ ≤ ϵ∥w2∥,

and apply triangle inequality with (55).

To prove the statement of the theorem, note that, when n ≥ 8 log(2/δn) and w⊺2w⋆ > 4ϵ∥w2∥, a test
sample (with ≥ 1 − δ probability) obeys

yf ′θ(X) ≥w
⊺
2w⋆ −

√
2 log(2/δn)

n
w⊺2w⋆ − 2ϵ∥w2∥ ≥ 0.5w

⊺
2w⋆ − 2ϵ∥w2∥ > 0. (56)

Thus, classifier makes the correct decision with the same probability.

G PROOFS FOR POPULATION-GRADIENT ANALYSIS IN SECTION E.2

This section includes the missing proofs of all the results in Section E.2 regarding population analysis
of Algorithm 3.

G.1 PROOF OF LEMMA 2

We repeat here the lemma for convenience also stated for general (not necessarily isotropic) noise
covariance Σ.

Lemma 12. The second population gradient step q1 = γGw(w1,0) satisfies the following for
α ∶= ηζ

Gq(0, αw⋆) = ((ζ − ζ
2
) (αW 2

+ α2wT
⋆Σw⋆/T) − α

2
(ζ2 − ζ3) (W 4

+ (wT
⋆ q⋆)

2
)) q⋆

+ (((ζ − ζ2) − 2(ζ2 − ζ3)αW 2)α (wT
⋆ q⋆)) w⋆

− ((1 + 2/T ) (ζ − ζ2)α (wT
⋆ q⋆))αΣw⋆ (57)

Proof. The lemma follows immediately from Eqn. (18) of Lemma 5 by recognizing that for w = αw⋆
it holds Rq⋆ = αq

T
⋆w⋆ and Rw⋆ = αW

2.
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G.2 COROLLARY 1

Corollary 1. Suppose small enough step-size η obeying

η (ζ2 (W 2
+Q2) − σ2

/T ) ≤ 1/2. (58a)

ηζ (2ζW 2
+ (1 + 2/T )σ2) ≤ 5/4. (58b)

ηζ (σ2
/T ) ≤ 1/2. (58c)

Then, for C1 ∈ [1/2,3/2] and C2 ∈ [−1/4,1], we have that

q1 = γηζ(ζ − ζ
2
)W (C1Wq⋆ +C2ρQw⋆) .

In particular, q⊺⋆q1 = γηζ(ζ − ζ
2)W 2Q2 (C1 +C2ρ

2) and w⊺⋆q1 = γηζ(ζ − ζ
2)W 3Qρ (C1 +C2) .

Proof. Set α = ηζ and

3/2 ≥ C1 ∶= (1 + ασ
2
/T) − αζ (W 2

+ ρ2Q2) ≥ 1/2. (59a)

1 ≥ C2 ∶= 1 − 2αζW
2
− (1 + 2/T )ασ2

≥ −1/4. (59b)

The gradient formula follows directly from (4). For the lower/upper bounds on C1,C2 use (58a),
(58b) and (58c).

Remark 1 (Condition on correlation). To classify correctly the signal tokens, we need

ywT
⋆ (q⋆ + yw⋆) > 0 ⇐⇒ yρQ +W > 0⇐⇒ ∣ρ∣ <W /Q (60)

Note that if (60) holds, then

C1 ≥ 1 + ασ
2
/T − 2αζW 2

= C2 + (1 + 3/T )ασ
2. (61)

G.3 PROOF OF THEOREM 5

From Corollary 1, we have qγ1 = γηζ(ζ − ζ
2)W (C1Wq⋆ +C2ρQw⋆) for 3/2 ≥ C1 ≥ 1/2 and

1 ≥ C2 ≥ −1/4. Set a = ϕ(Xqγ1 ). Our goal is to compare the relevance scores rt = zTt q
γ
1 , t ∈R

c of
noisy tokens to the relevance scores rt = (q⋆ + yw⋆)Tq

γ
1 , t ∈R of signal tokens:

t ∈R ∶ rt = (q⋆ + yw⋆)
Tqγ1 = γηζ(ζ − ζ

2
)W ((C1 +C2ρ

2
)WQ2

+ yρ(C1 +C2)W
2Q)

= γηζ(ζ − ζ2)W 2Q ((C1 +C2ρ
2
)Q + yρ(C1 +C2)W ) =∶ γBy ,

(62)

where the notation By emphasizes the dependency on the label y (unless ρ = 0), and,

t ∈Rc ∶ rt ∶= z
T
t q

γ
1 = γηζ(ζ − ζ

2
)W (C1WqT⋆ zt + ρC2QwT

⋆ zt)

= γηζ(ζ − ζ2)W 2Q (C1q
T
⋆ zt + ρC2w

T
⋆ zt)

D
= γηζ(ζ − ζ2)W 2Qσ

√
2
√

C2
1 + ρ

2C2(C2 + 2C1) ⋅ Gt, Gt
IID
∼ SN (1)

(63)
=∶ γΓ ,

where we have denoted for convenience Gt ∶=
C1q

T
⋆ zt+ρC2w

T
⋆ zt

σ
√
2
√
C2

1+ρ
2C2(C2+2C1)

∼ SN (1).

With these, the attention coefficients at ∶= a[t] are

t ∈R ∶ at = e
γBy/Sy =∶ a0,y (64a)

t ∈Rc ∶ at = e
γΓGt/Sy. (64b)

where we denote Sy ∶= ζTeγBy +∑t∈Rc eγΓGt and a0,y ∶= eγBy/Sy for convenience.
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Thus,

w2 ∶=Gw(0,q
γ
1 ) = E [yXTϕ(Xqγ1 )] = E [yXTa]

= E [(
ζTeγBy

ζTeγBy +∑t∈Rc eγΓGt
)(w⋆ + yq⋆)] + ∑

t∈Rc

E [
eγΓGt

ζTeγBy +∑t∈Rc eγΓGt
yzt]

(65)

Denote M ∶=
√
2 log(2(1 − ζ)Tα), define the good event

E ∶= {max
t∈Rc
∣Gt∣ ≤M} (66)

and note that2
Pr(E) ≥ 1 − 1/Tα−1 =∶ 1 − δ.

In this event, we show that (7) implies

Γ ⋅max
t∈Rc

Gt ≤
1

2
min
y∈{±1}

By. (67)

To see this, observe that the desired (67) holds under E provided

Mσ
√
2
√

C2
1 + ρ

2C2(C2 + 2C1) ≤
1

2
((C1 +C2ρ

2
)Q − ∣ρ∣ (C1 +C2)W ) (68)

Now use C1 > 0, as well as, C2 ≤ C1 from (61) for the lower bound) to note that√
C2

1 + ρ
2C2(C2 + 2C1) ≤ C1

√
1 + 3ρ2. Hence, it suffices that

Cσ
√
log((1 − ζ)T ) ≤

1 + (C2/C1)ρ
2

2
√
2
√
1 + 3ρ2

Q −
∣ρ∣ (1 +C2/C1)

2
√
2
√
1 + 3ρ2

W

Using C2/C1 ∈ [−1/2,1] (for the lower bound recall C2 ≥ −1/4,C1 ≥ 1/2) we arrive at (7).

Now, note the following implications of (67) (i.e. holding conditioned on the good event E). First,
for all y ∈ {±1},

T (ζeByγ + (1 − ζ)eByγ/2) ≥ Sy ≥ Tζe
Byγ .

Using this, we can show similar to the proof for the finite-sample case in Section F.4.2 that for
sufficiently large γ, the attention weights attend up to a small error to the context-relevant tokens (see
Eqn. (52)). To avoid repeating those approximation arguments, we assume onwards for simplicity
that γ →∞.

Then, conditioned on E , as γ →∞, the sequence of random variables Ψγ
R
= eByγ

Sy
converges pointwise

(over the sample space of random y and zt, t ∈R
c ) to 1/(ζT ), i.e. Ψγ

R
= eByγ

Sy
→ 1/(ζT ). Similarly,

for all t ∈Rc the sequences Ψγ
Rc,t =

eγΓGt

Sy
→ 0 because from (67): eγΓGt < eγBy/2 and eγBy/2

Sy
→ 0.

Thus, conditioned on E the following pointwise convergence is true:

aγt ∶= at =

⎧⎪⎪
⎨
⎪⎪⎩

= eByγ

Sy
→ 1

Tζ
if t ∈R,

≤ eByγ/2

Sy
→ 0 if t ∈Rc.

, (69)

where the added superscript γ denotes the (random variables of) attention weights are parameterized
by γ.

We now use (69) towards computing the limit of yfθ for θ = (w2,q
γ
1 ). Recall from (65) that

wγ
2 = ∑

t∈R

E [aγt (w⋆ + yq⋆)] + ∑
t∈Rc

E [aγt yzt] . (70)

Thus, it suffices to study the limits of the following sequences of random variables:

Aγw⋆ ∶=w
T
2 w⋆, Aγq⋆ ∶=w

T
2 q⋆, and Aγz̃t

∶=wT
2 z̃t

2Recall Gt ∼ SN (1). Thus, by union bound P(maxt ∣Gt∣ >M) ≤ 2(1 − ζ)Te
−M2/2.
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since the model output at θ = (wγ
2 ,q

γ
1 ) is

yfθγ (X) = ∑
t∈R

ãγt (A
γ
w⋆ + yA

γ
q⋆
) + ∑

t∈Rc

ãγt yA
γ
z̃t

(71)

and we use ãγt to denote the attention weights evaluated at test data (y,X). This distingushing them
from aγt in (70), but note (69) still holds for ãγt .

We start by controlling Aγw⋆ . We have

Aγw⋆ = E [∑
t∈R

aγt (W
2
+ yρQW )] + E [∑

t∈Rc

aγt yw
T
⋆ zt] . (72)

Denote Φγ
R

and Φγ
Rc the two random variables inside the expectations in the above display. Recall

that ∣aγt ∣ ≤ 1 and ∣y∣ ≤ 1. This implies Φγ
R

is absolutely bounded, i.e. ∣Φγ
R
∣ ≤ ζT (W 2 + ∣ρ∣QW ) .

Thus, applying dominated convergence theorem (DCT) and using (69) together with E[y] = 0:

lim
γ→∞

E [Φγ
R
∣E] = E [ lim

γ→∞
Φγ
R
∣E] = E [W 2

+ yρQW ] =W 2.

Moreover, since ∑t∈R a
γ
t ≤ 1 and W 2 + yρQW ≥ 0,

E [Φγ
R
∣E
c] = E [Ey [(W

2
+ yρQW)∑

t∈R

aγt ] ∣E
c
] ≤ E [Ey [(W

2
+ yρQW)] ∣Ec] ≤W 2 .

Combining the above two displays, we find

E [Φγ
R
] ≤ E [Φγt ∣E] + δE [Φ

γ
t ] ≤ (1 + δ)W

2 . (73)

Consider now Φγ
Rc = ∑t∈Rc a

γ
t yw

T
⋆ zt. Note that

Φγ
Rc = ∑

t∈Rc

aγt yz
T
t w⋆ ≤W max

t∈Rc
∥zt∥ ∑

t∈Rc

aγt ≤W max
t∈Rc
∥zt∥,

where we used that aγt ≥ 0, ∣y∣ ≤ 1 and ∑t∈Rc a
γ
t ≤ 1. Thus, Φγ

Rc is absolutely bounded since
E[maxt∈Rc ∥zt∥] <∞; thus, by DCT and (69)

lim
γ→∞

E [Φγ
Rc ∣E] = E [ lim

γ→∞
Φγ
Rc ∣E] = 0 .

Next, we bound E [Φγ
Rc ∣E

c]P(Ec)as follows: E [Φγ
Rc ∣E

c]P(Ec) ≤W E [maxt∈Rc ∥zt∥∣E
c]P(Ec)

and use Lemma 13 to conclude that

E [Φγ
Rc ∣E

c]P(Ec) ≤ 12Wδσ
√
d
√
log (2(1 − ζ)T /δ) .

The above two displays combined yield:

lim
γ→∞

E [Φγ
Rc] ≤ 12Wδσ

√
d
√
log (2(1 − ζ)T /δ) .

Putting things together, we have shown that

lim
γ→∞

Aγw⋆ ≤ (1 + δ)W
2
+CWδσ

√
d
√
log (2(1 − ζ)T /δ). (74)

In exact same way we can show that

lim
γ→∞

Aγq⋆ ≤ ρWQ + δ (∣ρ∣WQ +Q2) +CQδσ
√
d
√
log (2(1 − ζ)T /δ) , (75)

and for all t ∈Rc

lim
γ→∞

Aγz̃t
≤wT

⋆ z̃t + δ (W + ∣ρ∣Q) ∥z̃t∥ +C∥z̃t∥δσ
√
d
√
log (2(1 − ζ)T /δ) . (76)
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To continue, we can now use the above displays together with the limits of attention coefficients in
(69) to compute from (71) that on the event Ẽ (over the randomness of z̃t):

lim
γ→∞

yyfθγ (X) =W (W + yρQ)

+ (W 2
+ yQ2

+ y ∣ρ∣QW) /Tα−1

+C (W + yQ)σ
√
d
√
log (2(1 − ζ)T 2−α)/Tα−1

Note that (60) together with the following

W (W − ρQ) ≥
C

Tα−1
((−W 2

+Q2
+ ∣ρ∣QW ) + (−W +Q)σ

√
d
√
log (2(1 − ζ)T 2−α)) (77)

guarantee the expression on the RHS above is nonnegative. That is, under event E , limγ→∞ ŷ
γ > 0

Hence,

ERR∞ ≤ Pr( lim
γ→∞

yfθγ (X) < 0 ∣E) +Pr(Ec) ≤ 1/Tα−1.

G.3.1 AUXILIARY LEMMA

Lemma 13 (Subgaussian euclidean-norm tail control). Let Let zi ∈ Rd, i ∈ [N] be K-subgaussian
random vectors. Then, for any event E with P(E) = δ, it holds that

E [max
i∈[n]
∥zi∥∣E

c
] ≤ 12K

√
d
√
log (2N/δ).

Proof. Set Z = maxi∈[n] ∥zi∥ and define event B = {Z ≥ M} for M ∶= 4K
√
d
√
log (2N/δ). By

Fact J.4 for all t > 0, P (Z > t) ≤ 2Ne−t
2
/(16dK2

). Thus, by choice of M , P(B) ≤ P(E) = δ.

Denote the pdf and cdf complement of Z by fZ ,QZ respectively. Observe that, we set QZ(M) ≤ δ.
Using integration by parts we have,

E[Z ∣B]P(B) = ∫
∞

M
zfZ(z)dz = −∫

∞

M
zdQZ(z) = ∫

∞

M
QZ(z)dz − [QZ(z)z]

∞
M

= ∫

∞

M
QZ(z)dz + δM

= δM + ∫
∞

M
P(Z ≥ t)dt ≤ δM + ∫

∞

M
2Ne−t

2
/(16dK2

)dt

≤ δM + 2
√
2K
√
d (2N) ∫

∞

√
2 log(2N/δ)

e−u
2
/2du

= δ 4K
√
d
√
log(2N/δ) + 2

√
πK
√
d δ ≤ 2δM.

We can conclude the proof by noting:

E [Z ∣E]P(E) = E[Z ∣E ∩ Bc]P(E ∩ Bc) + E[Z ∣E ∩ B]P(E ∩ B)

≤Mδ + E[Z ∣B]P(B) .

H PROOFS OF THE RESULTS ON DISCRETE DATASETS

H.1 PROOF OF THEOREM 1 AND OBSERVATION 1

● Proof for Prompt Attention: Let w̄⋆ =w⋆/∥w⋆∥ and q̄⋆ = q⋆/∥q⋆∥. q′⋆ be the projection of q⋆ to
the orthogonal complement of w⋆ i.e. q′⋆ = q⋆ − w̄⋆w̄

⊺
⋆q⋆. Similarly, let w′⋆ be the projection of w⋆

to the orthogonal complement of q⋆ i.e. w′⋆ =w⋆ − q̄⋆q̄
⊺
⋆w⋆. Denote correlation coefficient between

two vectors by ρ(a,b) = a⊺b
∥a∥∥b∥

.
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To proceed, observe that, q′⊺⋆ q⋆ = ∥q⋆∥
2 − (w̄⊺⋆q⋆)

2 = ∥q⋆∥
2(1 − ρ(q⋆,w⋆)

2) > 0. The positivity
follows from the fact that q⋆,w⋆ are not parallel, thus, the absolute value of their correlation
coefficient is strictly bounded away from 1. Similarly w′⊺⋆ w⋆ = ∥w⋆∥

2(1 − ρ(q⋆,w⋆)
2)>0. To

proceed, set ρ̄ ∶= 1 − ρ(q⋆,w⋆)2 and observe that the classifier θ = (w′⋆,Γq
′
⋆) achieves the attention

scores

ai = ϕ(Xq′⋆)i =

⎧⎪⎪
⎨
⎪⎪⎩

S−1e∥q⋆∥
2Γρ̄ if i relevant

S−1e−∥q⋆∥
2Γδq ρ̄ if i irrelevant

.

where S = Tζe∥q⋆∥
2Γρ̄ +T (1− ζ)e−∥q⋆∥

2Γδq ρ̄. Using orthogonality of w′⋆ and q⋆, the final prediction
obeys

yfθ(X) = ∥w⋆∥
2ρ̄S−1 [ζe∥q⋆∥

2Γρ̄
− δw(1 − ζ)e−∥q⋆∥

2Γδq ρ̄
]

The classifier achieves perfect accuracy when ζe∥q⋆∥
2Γρ̄ > ∣δw ∣(1 − ζ)e−∥q⋆∥

2Γδq ρ̄. Since we have
δq ≥ 0 and we have assumed δw is a C-bounded variable (i.e. ∣δw ∣ ≤ C), thus, the desired inequality
can be guaranteed by choosing

Γ >
1

∥q⋆∥2ρ̄
log(

C(1 − ζ)

ζ
).

● Proof for Observation 1: To prove this, observe that for any δq = ∆q, δw = ∆w choices, using
orthogonality of q⋆,w⋆, for any (y,X) ∼ D, we have

yf LIN
(w′⋆) = ∥w⋆∥

2ρ̄(ζ − (1 − ζ)δw).

Thus, as long as δw ≠ ζ/(1 − ζ), sign(yf LIN(w′⋆)) is always 1 or always −1, resulting in perfect
accuracy for w′⋆ or −w′⋆.

● Proof for Self-attention: The proof is provided under Theorem 8.

● Proof for Linear Prompt Attention: Let W1 = w⊺w⋆,W2 = w⊺q⋆, Q1 = q⊺q⋆,Q2 = q⊺w⋆.
Since context-irrelevant tokens are of the form −δqq⋆ − yδww⋆, the model decision is given by
1
T
f(X) = 1

T
w⊺X⊺Xq = ζw⊺(yw⋆+q)(yw⋆+q)

⊺q+(1−ζ)w⊺(yδww⋆+δ
qq)(yδww⋆+δ

qq)⊺q
and
1

T
f(X) = ζ(yW1 +W2)(Q1 + yQ2) + (1 − ζ)(yδ

wW1 + δ
qW2)(yδ

wQ2 + δ
qQ1) (78)

= ζy(W1Q1 +W2Q2) + ζ(W2Q1 +W1Q2)+ (79)

(1 − ζ)yδqδw(W1Q1 +W2Q2) + (1 − ζ)(δ
q2W2Q1 + δ

w2
W1Q2). (80)

yf(X)

T
= (ζ + (1 − ζ)δqδw)(W1Q1 +W2Q2) + y((ζ + (1 − ζ)δ

q2
)W2Q1 + (ζ + (1 − ζ)δ

w2
)W1Q2).

(81)

To proceed, set (δq, δw) to be (0,0) or (∆,−∆) equally-likely for ∆ >
√
ζ/(1 − ζ). For fixed ∆,

for any choice of W1,W2,Q1,Q2 observe that, with 1/2 probability the event E = {y((ζ + (1 −
ζ)δq2)W2Q1 + (ζ + (1 − ζ)δ

w2
)W1Q2) ≤ 0} happens. On this event (which is over the label y),

probability that (ζ +(1−ζ)δqδw)(W1Q1+W2Q2) > 0 is at most 1/2 because sign(ζ +(1−ζ)δqδw)
is Rademacher variable. Combining, we find that P(yf(X)

T
≤ 0) ≥ 25% as advertised whenever

∆ >
√
ζ/(1 − ζ).

H.2 FAILURE PROOF FOR SELF-ATTENTION

We have the following theorem regarding self-attention.
Theorem 8. Fix ∆ > 0 to be sufficiently large. In (DATA), choose δ = (δq, δw) to be (0,0) or
(∆,∆) equally-likely, where ∆ > 1/(1 − ζ)2.

• For any choice of (U = 1u⊺,W ), f SATT(1u⊺,W ) achieves 50% accuracy (i.e. random guess).

• For any choice of (U ,W ), there exists a (DATA) distribution with adversarial relevance set
choices such that f SATT(U ,W ) achieves 50% accuracy.
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Here, adversarial relevance set choice means that, the relevance set can be chosen adaptively to the
label y, out-of-context term δ, and the self-attention model weights (U ,W ) to cause misclassification.

Proof. Let w̃ =Ww⋆ and q̃ =Wq⋆. Also let bw = u⊺w⋆ and bq = u⊺q⋆. Since W is allowed to be
full-rank and arbitrary, w̃, q̃ are allowed to be arbitrary as well (but fixed given W ). In our analysis,
the critical terms are the attention weights given by the correlation between the relevant/irrelevant
keys/queries.

Setting attention queries as the raw tokens (without losing any generality), relevant queries xR and
keys kR become

xR = yw⋆ + q⋆, kR = yw̃ + q̃.

Thanks to our choice of δ ∶= δw = δq to be equally-likely in {0,∆}, observe that irrelevant queries
and keys are simply

xI = −δxR, kI = −δkR.

This will greatly help the proof because it will mean that attention weights are highly structured.
Specifically, set ρ = x⊺RkR. All weights of the attention similarities belong to the set (ρ,−δρ, δ2ρ).

Consequently, softmax-attention output A = ϕ(XWX⊺)X =

⎡
⎢
⎢
⎢
⎢
⎣

a⊺1
⋮

a⊺T

⎤
⎥
⎥
⎥
⎥
⎦

is given by

ai =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ζeρ−δ(1−ζ)e−δρ

ζeρ+(1−ζ)e−δρ
⋅xR if i ∈R (relevant)

ζe−δρ−δ(1−ζ)eδ
2ρ

ζe−δρ+(1−ζ)eδ2ρ
⋅xR if i ∈Rc (irrelevant)

. (82)

Set a+ = eρ

ζeρ+(1−ζ)e−δρ
, a− = e−δρ

ζeρ+(1−ζ)e−δρ
, b− = e−δρ

ζe−δρ+(1−ζ)eδ2ρ
, b+ = eδ

2ρ

ζe−δρ+(1−ζ)eδ2ρ
. With this, we

also set

∆R =
ζeρ − δ(1 − ζ)e−δρ

ζeρ + (1 − ζ)e−δρ
= ζa+ − δ(1 − ζ)a− (83)

∆I =
ζe−δρ − δ(1 − ζ)eδ

2ρ

ζe−δρ + (1 − ζ)eδ2ρ
= ζb− − δ(1 − ζ)b+. (84)

Also define ∆i =∆R if i is relevant and ∆I otherwise. With this, we have ai =∆ixr based on (82).

The following lemma will be helpful for the downstream analysis. The goal of this lemma is showing
that, by choosing δ ∈ {0,∆}, we can confuse the model output.

Lemma 14. Fix a scalar κ. Set fδ = κ∆R+(1−κ)∆I . Recalling ρ = x⊺RkR, the following statements
hold:

• Set δ = 0. Suppose “1 ≥ κ ≥ 0′′ OR “κ ≥ 1, ρ ≥ 0′′ OR “κ ≤ 0, ρ ≤ 0′′. Then fδ > 0.

• Fix 0 ≤ α ≤ 1. Suppose

δ >∆0 ∶=
1

1 − ζ
max(

ζ

α(1 − ζ)
,

1

1 − α
).

and “κ ≤ α, ρ ≥ 0′′ OR “κ ≥ α, ρ ≤ 0′′. Then fδ < 0.

Proof. Plugging in δ, we write

fδ = κ∆R + (1 − κ)∆I = κζa+ − δκ(1 − ζ)a− + ζ(1 − κ)b− − δ(1 − ζ)(1 − κ)b+ (85)
= ζ(κa+ + (1 − κ)b−) − δ(1 − ζ)(κa− + (1 − κ)b+). (86)

● Suppose δ = 0. In this case, we obtain the first statement of the lemma as follows

fδ/ζ =
κeρ

ζeρ + 1 − ζ
+ 1 − κ > 0 whenever

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 ≥ κ ≥ 0 OR
κ ≥ 1, ρ ≥ 0 OR
κ ≤ 0, ρ ≤ 0

(87)
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● Now suppose δ >∆0. First, assume ρ ≥ 0 and κ ≤ α. We use the facts

1/(ζT ) ≥ a+ ≥ 1/T, 1/T ≥ a− ≥ 0, b+ ≥ 1/T, 1/T ≥ b− ≥ 0.

Observe that, since b+ ≥ a− and κ ≤ α

κa− + (1 − κ)b+ ≥ {
b+ if κ ≤ 0

(1 − α)b+ if κ ≥ 0
≥ (1 − α)/T.

Additionally, if κ ≤ 0, we have that

κa− + (1 − κ)b+ ≥ b+ ≥ b− ≥ κa+ + (1 − κ)b−.

If κ ≤ 0, we obtain fδ ≤ ζb− − δ(1 − ζ)b+. Thus, Tfδ < 0 whenever δ >∆0 ≥ ζ/(1 − ζ).

If κ ≥ 0, we use κa+ + (1 − κ)b− ≤ 1/(ζT ) to obtain that whenever δ >∆0 ≥
1

(1−ζ)(1−α)

Tfδ ≤ 1 − δ(1 − ζ)(1 − α) < 0.

Now assume ρ ≤ 0 and κ ≥ α. We use the facts

1/T ≥ a+ ≥ 0, a− ≥ 1/T, 1/T ≥ b+ ≥ 0,
1

(1 − ζ)T
≥ b− ≥ 1/T.

Observe that, since b+ ≤ a− and κ ≥ α

κa− + (1 − κ)b+ ≥ {
a− if κ ≥ 1

αa− if κ ≤ 1
≥ α/T.

Additionally, if κ ≥ 1, we have that

κa− + (1 − κ)b+ ≥ a− ≥ a+ ≥ κa+ + (1 − κ)b−.

If κ ≥ 1, we obtain fδ ≤ ζa+ − δ(1 − ζ)a−. Thus, Tfδ < 0 whenever δ >∆0 ≥ ζ/(1 − ζ).

If κ ≤ 1, we use κa+ + (1 − κ)b− ≤ 1
(1−ζ)T

to obtain that whenever δ >∆0 ≥
ζ

(1−ζ)2α

Tfδ ≤
ζ

1 − ζ
− δ(1 − ζ)α < 0.

To proceed, we will conclude with the proof as follows. Set νi = yu⊺ixR for i ∈ [T ] where ui is the
ith row of the output layer weights U . Here νi is obviously y-dependent however we will show that
for any choice of y, the model accuracy is at most 50%. Thus we fix y and (mostly) omit it from the
notation during the following discussion. Let ai be the ith token of the attention output. The linear
output layer U aggregates u⊺i ai to obtain

yf(U ,W ) =
T

∑
i=1

u⊺i ai =
T

∑
i=1

νi∆i.

Aggregating v+ = 1
T ∑i∈R=relevant vi and v− = 1

T ∑i∈Rc=irrelevant vi and recalling from (82) that over
relevant/irrelevant sets attention tokens are given by ∆RxR and ∆IxI , we find

1

T
yf(U ,W ) = νR∆R + νI∆I .

Scenario 1: Rows of U are identical and we have U = 1u⊺. In this scenario, we simply have
νi = ν and νR = ζν and νI = (1 − ζ)ν. Thus, we find

1

T
yf(U ,W ) = Tν[ζ∆R + (1 − ζ)∆I].

Set fδ = ζ∆R + (1 − ζ)∆I . We claim that sign(fδ) is Rademacher (given arbitrary y choice) which
will prove that accuracy is at most 50%. Specifically, let us apply Lemma 14 with κ = ζ and α = ζ.
When δ = 0, we have fδ > 0. When δ =∆, since the conditions κ ≤ α and κ ≥ α hold, for any choice
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of ρ, for ∆ > ∆0 ∶=
1

(1−ζ)2
we have that fδ < 0. Thus, we have that Pδ(fδ > 0) = Pδ(fδ < 0) = 0.5

as advertised. This follows from the fact that fδ > 0 for δ = 0 and fδ < 0 for δ =∆ and δ is equally
likely over two options.

Scenario 2: Suppose rows of U are not identical. In this case, we will leverage the fact that relevant
setR is allowed to be chosen adversarially with respect to the self-attention weights. We will show
that by selectingR adversarially, on any label y event, accuracy is a coin flip.

First consider the scenario νtot ∶= νR + νI ≤ 0: We will show that model achieves at least 50% error
on label y: Let us denote νR with νRR which makes the relevance set dependence explicit. GivenR,
fixing δ = 0, the model outputs (following (87))

1

T
yf(U ,W ) =

νRR e
ρ

ζeρ + 1 − ζ
+ νRI .

Suppose there is a relevance setR0 (that depends on y) such that the right hand side is non-positive.
Let us select thisR0 as our relevance set. Then, the model makes 50% error on label y thanks to the
event δ = 0 (which is exactly what we want). If there is no suchR0, then, for allR, we have

νRR e
ρ

ζeρ + 1 − ζ
+ νRI > 0

By taking average of all relevance sets (“T choose ζT ” many), all vi’s will be equally-weighted and
we obtain νtot = νR + νI > 0. This contradicts with our initial νtot ≤ 0 assumption, thus, R0 has to
exist.

Now consider the scenario νtot = νR +νI > 0: Let D be the uniform distribution over “T choose ζT ”
relevant setsR. Clearly ED[νRR ] = ζνtot > 0. Thus, there is a relevance setR+ such that νR+R ≥ ζνtot

and there is a relevance setR− such that νR−R ≤ ζνtot. We will make use of these two sets to finalize
the proof.

To proceed, set κ± = νR±/νtot and again set α = ζ and ∆0 =
1

(1−ζ)2
in Lemma 14. Here, we are

investigating the sign of the prediction

1

Tνtot
yf(U ,W ) =

νR∆R + νI∆I

νtot
= κ±∆R + (1 − κ±)∆I .

First, assume that the attention weights are so that ρ = ρy ≥ 0. In this case (and for this particular
label y),

• When δ = 0, we choose the relevance setR+ which ensures κ+ ≥ ζ ≥ 0 and f0 > 0.

• When δ =∆ >∆0, we choose the relevance setR− which ensures κ− ≤ ζ and f∆ < 0.

Secondly, assume that the attention weights are so that ρ = ρy ≤ 0. In this case,

• When δ = 0, we choose the relevance setR− which ensures κ− ≤ ζ ≤ 1 and f0 > 0.

• When δ =∆ >∆0, we choose the relevance setR+ which ensures κ+ ≥ ζ and f∆ < 0.

In either case, by adaptively choosingR ∈ {R+,R−} as a function of (δ, y) pair, we ensure accuracy
is at most 50% because f∆ and f0 have conflicting signs.

H.3 SUCCESS PROOF FOR R-ADAPTIVE SELF-ATTENTION

Consider the setting of Theorem 1 and Appendix H.2. We have the following lemma which shows
that self-attention can succeed in Theorem 1 if U can adapt to the relevance set (rather thanR being
adversarial to U ).
Lemma 15. In (DATA), choose (δq, δw) to be (0,0) or (∆,∆) equally-likely. Consider the self-
attention model f SATT(U ,W ) where we set

U = 1Rw
′⊺
⋆ and W = ΓI.
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This model achieves perfect accuracy whenever w′⋆ = (I − q̄⋆q̄
⊺
⋆)w⋆ ≠ 0 by choosing

Γ >
1

(1 +∆)(∥q⋆∥ − ∥w⋆∥)2 + ∥w⋆∥∥q⋆∥(1 − ∣ρ(q⋆,w⋆)∣)
log(∆

1 − ζ

ζ
).

where ρ(⋅) is the correlation coefficient.3

Proof. Thanks to the masking 1R, we only need to consider the attention scores along relevant
tokens. Let c = ∥yw⋆ + q⋆∥2. For each relevant token, the attention rows are given by

ai = {
eΓc if i ∈R

e−∆Γc if i /∈R.

To proceed, attention tokens corresponding to relevant tokens are given by

f = ∑
i∈R

ai(w⋆ + yq⋆) −∑
i/∈R

∆ai(yw⋆ + q⋆) (88)

= (ζeΓc −∆(1 − ζ)e−∆Γc
)(yw⋆ + q⋆). (89)

Thus, using w′⋆w⋆ > 0,

sign(yf SATT
(U ,W )) = sign(yw′⊺⋆ f) = sign(ζe

Γc
−∆(1 − ζ)e−∆Γc

).

Thus, we need e(1+∆)Γc >∆ 1−ζ
ζ

which is implied by Γ > 1
(1+∆)c

log(∆ 1−ζ
ζ
). To conclude, note that

for both y = ±1

c ≥ ∥yw⋆ + q⋆∥
2
≥ ∥q⋆∥

2
+ ∥w⋆∥

2
− 2∣q⊺⋆w⋆∣ ≥ (∥q⋆∥ − ∥w⋆∥)

2
+ ∥w⋆∥∥q⋆∥(1 − ∣ρ(q⋆,w⋆)∣) > 0.

where we used ∣q⊺⋆w⋆∣ = ∥q⋆∥∥w⋆∥∣ρ(q⋆,w⋆)∣.

I PROOFS FOR SHARP CHARACTERIZATION OF POPULATION RISK (THEOREM
4)

Throughout this section, we use slightly different notation from the one stated in the main body for
compactness purposes. Specifically, we set Q = ∥q⋆∥2,W = T ∥w⋆∥2 rather than Q = ∥q⋆∥,W =
∥w⋆∥.
Theorem 9. Consider the prompt-attention model f ATT

θ . Set Q = ∥q⋆∥2,W = T ∥w⋆∥
2, suppose

w⋆ ⊥ q⋆, and let τ, τ̄ > 0 be hyperparameters. Consider the following algorithm which uses the
hindsight knowledge of q⋆ to estimate w⋆ and make prediction:

1. ŵ = (I − q̄⋆q̄⋆)∇Lw(0, τ q̄⋆).

2. Set θ = (ŵ, τ̄ q̄⋆).

Suppose ζ2W,1 − ζ,α ∶= n/d, eQ, eτ each lie between two positive absolute constants. Suppose
T is polynomially large in n and these constants and Õ(⋅) hides polynomial terms in n. Define

inverse-signal-to-noise-ratio: ISNR(α, τ) = (1−ζ)e
2τ(τ−

√
Q)

ζ2Wα
. With probability 1−2e−t

2
/2 − Õ(T −1/3)

over the training data, the test error obeys

ERR(f ATT
θ ) = Q

⎛
⎜
⎝

e
√
Qτ̄−τ̄2

√
1 + (1 ∓ 1+t

√
d
)ISNR(α, τ)

⋅

√
ζ2W

1 − ζ

⎞
⎟
⎠
± Õ(T −1/3).

Above, ∓,± highlights the upper/lower range of the test error (see (93) for exact statement). In the
limit T, d→∞, the test error converges in probability to

ERR(α, ζ,Q,W, τ, τ̄) = Q
⎛

⎝

e
√
Qτ̄−τ̄2

√
1 + ISNR(α, τ)

⋅

√
ζ2W

1 − ζ

⎞

⎠

3Note that the only instance Γ does not exist is when q⋆ = cw⋆ for ∣c∣ ≥ 1. In this scenario, classification
is impossible using the linear head w′⋆ without a bias term because all tokens are in the sign(c) direction
regardless of the label y.
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In this limit, optimal hyperparameters are τ = τ̄ =
√
Q/2 and leads to optimal ISNR(α) ∶= (1−ζ)e

−Q/2

ζ2Wα

and the error

ERR(α, ζ,Q,W ) = Q
⎛

⎝

eQ/4
√
1 + ISNR(α)

⋅

√
ζ2W

1 − ζ

⎞

⎠

Proof. Without losing generality, assume first ζT tokens are relevant and remaining tokens are
irrelevant. Consider XI of size (1−ζ)T ×d induced by the irrelevant tokens with normal distribution.
Observe that g =XIw̄⋆ and h =XI q̄⋆ are two independent i.i.d. N (0,I(1−ζ)T ) vectors. Also for
standard normal g ∼ N (0,1), recall that moment-generating function is given by E[eτg] = eτ

2
/2.

Step 1: Characterizing the distribution of ŵ. Note that, the attention weights have the form a =

ϕ(τ [

√
Q1ζT
h
]). Here, the softmax denominator is T ⋅DT where DT ∶= (ζe

√
Qτ + 1

T ∑
(1−ζ)T
i=1 eτhi).

Define eτh to be the numerator corresponding to irrelevant tokens i.e.

eτh = [eτh1 . . . eτh(1−ζ)T ].

Define the matrix Q⊥ = I − q̄⋆q̄
⊺
⋆ , W⊥ = I − w̄⋆w̄

⊺
⋆ . Set the vector v = 1

T
Q⊥X

⊺
I e
τh and v⊥ =

1
T
h⊺eτhq̄⋆. To proceed, observe that, for a single sample (y,X), the gradient has the form

∇L
y,X
w (0, τ q̄⋆) = yX

⊺a =
ζ(w⋆ + yq⋆)e

√
Qτ + v + v⊥

DT
. (90)

After projection this onto the q⋆-complement Q⊥, we get rid of the q⋆ direction to obtain

ŵy,X =Q⊥∇L
y,X
w (0, τ q̄⋆) =

1

DT
[ζw⋆e

√
Qτ
+Q⊥X

⊺
I e
τh
/T ].

The projected gradient over the full dataset is given by the empirical average

ŵ =Q⊥∇Lw(0, τ q̄⋆) =
1

n

n

∑
i=1

1

Di,T
[ζw⋆e

√
Qτ
+Q⊥X

⊺
i,Ie

τhi/T ].

Here hi,Xi,I ,Di,T denote the random variables induced by the ith sample. Here, a critical ob-
servation is the fact that Q⊥Xi,I is independent of hi (thanks to Gaussian orthogonality), thus,
Q⊥Xi,Ie

τhi is normal conditioned on hi. To proceed, we apply Chebyshev’s inequality over number
of tokens T . Recall that we assumed eτ ≤ C for an absolute constant C ≥ 1. This means that
ecτ

2

≤ Ccτ ≤ Cc logC is polynomial in C and is also upper bounded by a constant. In what follows
Õ(⋅) only reflects the T dependence and subsumes polynomial dependence on the terms n,C. For
all 1 ≤ i ≤ n, applying Chebyshev’s inequality, for T ≳ poly(n, eτ

2

), with probability 1 − T −1/3, we
have that

• Since ∥eτhi∥2/T = 1
T ∑

T
j=1 e

2τhij thus ∥eτhi∥2/T − (1 − ζ)e2τ
2

≤ Õ(T −1/3),

• Set E[DT ] =D∞ ∶= ζe
√
Qτ + (1 − ζ)eτ

2
/2. ∣Di,T −D∞∣ ≤ Õ(T

−1/3).

With these, set bi =
√

1−ζeτ
2

∥eτhi∥
eτhi which is a vector with fixed ℓ2 norm that is perfectly parallel to

eτhi . Since ∥bi∥2 = E[∥eτhi∥2/T ] = (1 − ζ)e2τ
2

, from above, observe that,

∥bi −
1
√
T
eτhi∥ ≤ Õ(T −1/3).

Now, let

v̄ =
1
√
n

n

∑
i=1

Q⊥X
⊺
i,Ibi.

Since Q⊥X
⊺
i,I ,bi are independent and bi has fixed ℓ2 norm, we have that

v̄ ∼ N (0, (1 − ζ)e2τ
2

Q⊥).
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Finally, let c = ζe
√
Qτw⋆. Recalling

√
T ∥w⋆∥ =W , combining the perturbations bounds above, we

have that
√
T ∥c/D∞ −

1

n

n

∑
i=1

1

Di,T
(ζw⋆e

√
Qτ
)∥ ≤ Õ(T −1/3).

Combining these observe that

∥
√
TD∞ŵ −

√
Tζe

√
Qτw⋆ − v̄/

√
n∥ ≤ Õ(T −1/3). (91)

Since v̄ is normally distributed, above also implies that
√
TD∞ŵ converges to the normal distribution

N (
√
Tζe

√
Qτw⋆,

(1−ζ)e2τ
2

n
Q⊥) in the limit T →∞.

Lemma 16 (Inverse Signal-to-Noise Ratio (ISNR)). Set W⊥ = I − w̄⋆w̄
⊺
⋆ . Define SNR of ŵ to be

ISNR(ŵ) =
∥W⊥ŵ∥

2

∥w̄⊺⋆ŵ∥2
.

Recall ISNR(α, τ) = (1−ζ)e
2τ(τ−

√
Q)

ζ2Wα
. With probability 1 − 2e−t

2
/2 − T −1/3 over the dataset, we have

that

(1 −
t + 1
√
d
− Õ(T −

1
3 ))

2

+

≤
ISNR(ŵ)

ISNR(α, τ)
≤ (1 +

τ
√
d
+ Õ(T −

1
3 ))

2

.

Proof. Let us recall the standard normal concentration: For g ∼ N (0,Id−1),
√
d − 1 ≥ E[∥g∥] ≥ d−1

√
d

.

Thus, with probability 1 − 2e−t
2
/2, through Lipschitz concentration,
√
d + t ≥ ∥g∥ ≥

√
d − 1 − t.

This means that, with the same probability
√
d + t ≥

∥v̄∥
√
1 − ζeτ2

≥ (
√
d − 1 − t)+.

We first upper bound ∥W⊥ŵ∥
2. Recalling (91),

∥W⊥ŵ − v̄/
√
n∥ ≤ Õ(T −1/3).

Thus,

(
√
d + t)2 + Õ(T −1/3) ≥

n∥W⊥ŵ∥
2

(1 − ζ)e2τ2 ≥ (
√
d − 1 − t)2+ − Õ(T

−1/3
).

Using ∥w⋆∥2T =W , We similarly have that

∣∥w̄⊺⋆ŵ∥
2
−Wζ2e2

√
Qτ
∣ ≤ Õ(T −1/3).

To conclude, with probability 1 − 2e−t − T −1/3, ISNR(ŵ) obeys

(
√
d + t)2 + Õ(T −1/3)

Wζ2e2
√
Qτ − Õ(T −1/3)

≥
n

(1 − ζ)e2τ2 ISNR(ŵ) ≥
(
√
d − 1 − t)2+ − Õ(T

−1/3)

Wζ2e2
√
Qτ + Õ(T −1/3)

Rewriting this bound, we find

(1 +
t
√
d
+ Õ(T −

1
3 ))

2
(1 − ζ)e2τ

2

ζ2Wαe2
√
Qτ
≥ ISNR(ŵ) ≥ (1 −

1 + t
√
d
− Õ(T −

1
3 ))

2

+

(1 − ζ)e2τ
2

ζ2Wαe2
√
Qτ
.

Recalling the definition of ISNR(α, τ) = (1−ζ)e
2τ(τ−

√
Q)

ζ2Wα
, we conclude with the bound.

Step 2: Characterizing the error rate of θ = (ŵ, τ̄q⋆). To achieve this goal, we will leverage
Theorem 10. Since conditions of this theorem is satisfied (noticing that their γ is our ISNR(ŵ)
which is upper bounded by a positive constant), for a new test point (y,X), we have that

RRRRRRRRRRR

ERR(f ATT
θ ) −Q

⎛

⎝

e
√
Qτ̄−τ̄2

√
1 + ISNR(ŵ)

⋅

√
ζ2W

1 − ζ

⎞

⎠

RRRRRRRRRRR

≤ Õ(T −1/3).
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Using the Lipschitzness of the Q-function (i.e. Q(x + ϵ) −Q(x) = ∫
x+ϵ
x e−t

2
/2dt ≤ ϵ), as we have

done in Theorem 10, we pull out the perturbation term Õ(T −1/3) within ISNR(ŵ) to obtain the
advertised bound

Q
⎛
⎜
⎝

e
√
Qτ̄−τ̄2

√
1 + (1 + t

√
d
)ISNR(α, τ)

⋅

√
ζ2W

1 − ζ

⎞
⎟
⎠
− Õ(T −1/3) ≤ ERR(f ATT

θ ) ≤ (92)

Q
⎛
⎜
⎝

e
√
Qτ̄−τ̄2

√
1 + (1 − 1+t

√
d
)+ISNR(α, τ)

⋅

√
ζ2W

1 − ζ

⎞
⎟
⎠
+ Õ(T −1/3). (93)

To emphasize, this bound holds with probability 1 − 2e−t
2
/2 − Õ(T −1/3) over a new test datapoint

(y,X). To see the optimal choices for τ̄ , τ , we need to optimize the error bound. This results in

τ̄⋆ = argmin
τ̄

√
Qτ̄ − τ̄2 =

√
Q/2 (94)

τ⋆ = argmin
τ

ISNR(α, τ) = 2τ(τ −
√
Q) =

√
Q/2. (95)

Theorem 10. Consider the prompt-attention model f ATT
θ where we set θ = (w⋆ + p, τ q̄⋆). Set

Q = ∥q⋆∥
2,W = T ∥w⋆∥

2. Here τ is a tuning parameter and p is a perturbation vector and assume all
vectors are perpendicular i.e. p ⊥w⋆ ⊥ q⋆. Set γ ∶= ∥p∥2/∥w⋆∥2 and suppose 1+γ, ζ2W,1−ζ, eQ, eτ

each lie between two positive absolute constants. Õ(⋅) subsumes polynomial dependencies in these
constants. We have that

RRRRRRRRRRR

ERR(f ATT
θ ) −Q

⎛

⎝

e
√
Qτ−τ2

√
1 + γ

⋅

√
ζ2W

1 − ζ

⎞

⎠

RRRRRRRRRRR

≤ O(T −1/3).

Thus, as T →∞, the optimal tuning obeys τ⋆ =
√
Q/2 and yields an error of Q(eQ/4 ⋅

√
ζ2W
1−ζ
).

Proof. Let us recap the notation of Theorem 4. Without losing generality, assume first ζT tokens are
relevant and remaining tokens are irrelevant. Consider XI of size (1−ζ)T×d induced by the irrelevant
tokens with normal distribution. Using orthogonality of q⋆,w⋆,p, observe that g =XI(w̄⋆+

p
∥w⋆∥
) ∼

N (0, (1 + γ)I(1−ζ)T ) and h =XI q̄⋆ ∼ N (0,I(1−ζ)T ) are independent vectors. Also for standard
normal g ∼ N (0,1), recall that moment-generating function is given by E[eτg] = eτ

2
/2.

Note that, the attention weights have the form a = ϕ(τ [

√
Q1ζT
h
]). Here, the softmax denominator

is T ⋅DT where DT ∶= (ζe
√
Qτ + 1

T ∑
(1−ζ)T
i=1 eτhi). Define eτh to be the numerator corresponding to

irrelevant tokens i.e.
eτh = [eτh1 . . . eτh(1−ζ)T ].

Define the matrix Q⊥ = I − q̄⋆q̄
⊺
⋆ , W⊥ = I − w̄⋆w̄

⊺
⋆ . To proceed, observe that, the prediction with

θ = (w⋆ + p, τ q̄⋆) is given by

DT
√
T ∥w⋆∥

yf ATT
θ (X) =

√
T (w̄⋆ +

p

∥w⋆∥
)
⊺
[ζe∥q⋆∥τ(w⋆ + yq⋆) +

XIe
τh

T
] (96)

= ζe∥q⋆∥τ
√
W +

1
√
T
g⊺eτh. (97)

With this, conditioned on eτh observe that g⊺eτh ∼ N (0, 1
T
∥eτh∥2), thus,

Pg(yf
ATT
θ (X) > 0) = 1 −Q(

ζe
√
Qτ
√
W

√
1 + γ∥eτh∥/

√
T
) .

To proceed, similar to Theorem 4, we apply Chebyshev’s inequality over number of tokens T to find
that with probability 1 − Õ(T −1/3) over h,

∣∥eτh∥2/T − e2τ
2

∣ ≤ Õ(T −1/3).
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In aggregate, this implies that, with probability 1 − Õ(T −1/3) over h, we have that

1−Q((1 + Õ(T −1/3))
ζe
√
Qτ
√
W

√
1 + γeτ2 ) ≥ Pg(yf

ATT
θ (X) > 0) ≥ 1−Q((1 − Õ(T

−1/3
))
ζe
√
Qτ
√
W

√
1 + γeτ2 ) ,

Finally, note that since ζe
√

Qτ
√
W

√
1+γeτ2 is upper/lower bounded by a positive constant, and since Q(x +

ϵ) −Q(x) = ∫
x+ϵ
x e−t

2
/2dt ≤ ϵ, we can rewrite

∣Pg(yf
ATT
θ (X) > 0) −Q(

ζe
√
Qτ
√
W

√
1 + γeτ2 )∣ ≤ Õ(T

−1/3
).

Union bounding with failure probability over h, we conclude with the result.

J USEFUL FACTS

For a random variable Z and α > 0, ∥Z∥ψα denotes its ψα-norm for Orlicz function ψα(z) = ez
α

− 1
Ledoux and Talagrand (1991).
Fact J.1. Let X1, . . . ,Xn be independent zero-mean sub-gaussian or sub-exponential random
variables with ∥Xi∥ψm

≤K for all i ∈ [n] for either m = 2 or m = 1. Then,

XXXXXXXXXXXX

1

n
∑
i∈[n]

Xi

XXXXXXXXXXXXψm

≤
CK
√
n
.

Fact J.2. Pollard (1990) The following identity holds for Orlitz norms

∥XY ∥ψ αβ
α+β
≤ c ∥X∥ψα ⋅ ∥Y ∥ψβ

(98)

for a fixed numerical constant c.

Next we state a Lemma from Talagrand quoted directly from Lemma 22 of Mohammadi et al. (2019).
Fact J.3. Ledoux and Talagrand (1991)For any scalar α ∈ (0,1], there exists a constant Cα such
that for any sequence of independent random variables ξ1, ξ2, . . . , ξN we have

∥∑
i

ξi − E[∑
i

ξi]∥
ψα

≤ Cα (max
i
∥ξi∥ψα)

√
N logN.

Fact J.4. Let z ∈ Rd be zero-mean k-subgausssian vector. Then, the following are true

P (∥z∥ ≥ t) ≤ 2e−t
2
/(16dK2

)
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