
Enhancing Transformation from Natural Language to Signal Temporal
Logic Using LLMs with Diverse External Knowledge

Anonymous ACL submission

Abstract001

Temporal Logic (TL), especially Signal Tem-002
poral Logic (STL), enables precise formal003
specification, making it widely used in cyber-004
physical systems such as autonomous driving005
and robotics. Automatically transforming NL006
into STL is an attractive approach to overcome007
the limitations of manual transformation, which008
is time-consuming and error-prone. However,009
due to the lack of datasets, automatic transfor-010
mation currently faces significant challenges011
and has not been fully explored. In this pa-012
per, we propose a NL-STL dataset named STL-013
Diversity-Enhanced (STL-DivEn), comprising014
16,000 samples enriched with diverse patterns.015
To develop the dataset, we first manually create016
a small-scale seed set of NL-STL pairs. Next,017
representative examples are identified through018
clustering and used to guide large language019
models (LLMs) in generating additional NL-020
STL pairs. Finally, diversity and accuracy are021
ensured through rigorous rule-based filters and022
human validation. Furthermore, we introduce023
the Knowledge-Guided STL Transformation024
(KGST) framework, a novel approach for trans-025
forming natural language into STL, involving026
a generate-then-refine process based on exter-027
nal knowledge. Statistical analysis shows that028
the STL-DivEn dataset exhibits more diversity029
than the existing NL-STL dataset. Moreover,030
both metric-based and human evaluations in-031
dicate that our KGST approach outperforms032
baseline models in transformation accuracy on033
STL-DivEn and DeepSTL datasets. Dataset034
and code will be released upon publication.035

1 Introduction036

Signal Temporal Logic (STL) (Maler and Ničković,037

2004) provides a flexible and precise framework038

for specifying requirements in safety-critical cyber-039

physical systems. Extending Temporal Logic040

(TL) (Pnueli, 1977) by introducing real-time and041

real-valued constraints, STL can describe not only042

discrete temporal events but also continuous-time043

and real-valued dynamic changes. Therefore, STL, 044

as a powerful expression tool for system design, 045

offers valuable guidance in cyber-physical systems, 046

such as autonomous driving (Maierhofer et al., 047

2020) and robot control (Tellex et al., 2020). But 048

one of the main challenges in leveraging the STL 049

specification is the need to accurately transform the 050

potentially ambiguous and complex constraints ex- 051

pressed in natural language into precise STL logical 052

expressions, as shown in the following example: 053

• Natural Language: 054

Whenever the robot detects an obstacle within 055

1 meter in the first 60 seconds, it should move 056

away from the obstacle and remain at least 1.5 057

meters away for at least 30 consecutive seconds 058

within the next 50 seconds. 059

• Signal Temporal Logic (STL): 060

G[0,60]((dobs < 1) → F[0,50] G[0,30] (dobs ≥ 1.5)) 061

Writing accurate STL formulas directly is a huge 062

burden for domain experts, as it is both time con- 063

suming and error-prone. With the development of 064

natural language processing (NLP) technology, re- 065

searchers have been experimenting with the use of 066

NLP technology to transform natural language into 067

TL and STL expressions, aiming to improve the ac- 068

curacy of the transformation. For example, Lignos 069

et al. (2015); Ghosh et al. (2016) use predefined 070

pattern formulas to transform natural language sen- 071

tences into intermediate representation. Subse- 072

quently, by applying a set of predefined rules man- 073

ually, the intermediate representation is mapped to 074

temporal logic formulas. These approaches require 075

extensive domain expertise and involve a steep 076

learning curve (Kulkarni et al., 2013). Specifically, 077

they can only be applied to very restrictive struc- 078

tured natural language expressions that match with 079

the given patterns. 080

In recent years, due to the great success of 081

deep learning and Large Language Models (LLMs), 082

increasing attention has been paid to use them 083

to solve the transformation problem from natu- 084

1

ral language to STL. For example, DeepSTL (He085

et al., 2022) introduces a grammar-based synthetic086

data generation technique and trains an attentional087

translator of English to STL using a transformer-088

based neural translation technique. NL2TL (Chen089

et al., 2023) uses LLMs to help create the Nat-090

ural Language-Temporal Logic dataset, which is091

then used to fine-tune the T5 models. However,092

since the dataset is generated based on predefined093

rules, these efforts suffer from insufficient expres-094

sive ability and diversity of expression. In addition,095

the transformation methods they propose also face096

challenges in accurately transforming complex nat-097

ural language into Signal Temporal Logic.098

In order to address these challenges, our efforts099

focus on the following two aspects. Firstly, aiming100

at developing high-quality and expressively diverse101

NL-STL datasets to deal with the scarcity of NL-102

STL datasets, we explore utilizing LLMs to synthe-103

sis NL-STL pairs under the guidance of prompts.104

However, NL-STL pairs generated by LLMs often105

closely resemble the examples in the prompts. To106

ensure diversity and comprehensiveness, we intro-107

duce a method for constructing the STL-Diversity-108

Enhanced (STL-DivEn) dataset. We start by hand-109

crafting a seed set of 120 NL-STL pairs, covering110

both basic and nested logic to serve as the foun-111

dation for data augmentation. Next, a clustering112

algorithm is employed to select representative sam-113

ples from the seed set. These examplars are used114

to guide LLMs in generating new NL-STL pairs,115

which are then refined using rule-based filters and116

human validation to ensure diversity and precision.117

Finally, the qualified NL-STL pairs expand the seed118

set and are stored in the STL-DivEn dataset.119

Secondly, transformer-based models perform120

poorly when handling complex natural language121

transformation tasks. Transforming NL sentences122

into STL formulas remains a challenging task due123

to the complexity of temporal constraints in the124

requirements of cyber-physical systems, including125

nested semantics (Boufaied et al., 2021). Even126

many advanced models, such as GPT-4 (Achiam127

et al., 2023) and DeepSeek (Liu et al., 2024), while128

excelling at text generation tasks, still face limita-129

tions in transforming NL into STL. To address this130

limitation, we propose a novel transforming frame-131

work called Knowledge-Guided STL Transforma-132

tion (KGST). This framework operates in two steps:133

first, we fine-tune an LLM on NL-STL dataset (e.g.,134

STL-DivEn) and use the finetuned LLM to gener-135

ate a preliminary STL formula from the natural136

language input; second, the top K similar NL-STL 137

pairs are retrieved from the dataset, and these pairs 138

are referenced as external knowledge; then, GPT- 139

4 is used to evaluate and refine the preliminary 140

STL with the external knowledge to generate the 141

refined STL. Experimental results demonstrate that 142

the KGST framework significantly outperforms ex- 143

isting baseline models in both quantitative and hu- 144

man evaluation metrics, showcasing its advantages 145

in STL transformation tasks. 146

In general, our contributions are as follows: 147

• We develop a dataset, named STL-DivEn, con- 148

taining 16k high-quality NL-STL pairs using 149

LLMs and manual annotation. Compared to 150

the existing DeepSTL dataset, the statistics 151

show that this dataset exhibits significantly 152

greater diversity. 153

• We propose a Knowledge-Guided STL Trans- 154

formation (KGST) framework. It substantially 155

improves the accuracy of the NL to STL trans- 156

formations. 157

• The proposed KGST framework demonstrates 158

superior performance not only on the newly 159

developed STL-DivEn dataset but also on the 160

existing DeepSTL dataset. This highlights 161

its versatility and robustness across different 162

datasets. 163

2 Related Work 164

2.1 From Natural Language to TL and STL 165

Many researchers have tried to transform natural 166

language sentences into Temporal Logic formu- 167

las (Dwyer et al., 1999; Žilka, 2010; Ghosh et al., 168

2016; Santos et al., 2018; Cosler et al., 2023). For 169

example, Žilka (2010) transform the properties 170

which are specified by controlled English to TL for- 171

mulas using syntax and grammatical dependency 172

parsing techniques. Santos et al. (2018) also de- 173

fine a controlled natural language to specify how a 174

system model interacts with its environment, and 175

sentences in this controlled language are automat- 176

ically transformed into TL using predefined rules. 177

Nl2spec (Cosler et al., 2023) derives formal formu- 178

las from unstructured natural language using LLMs 179

combined with human corrections. However, these 180

TL-specific approaches cannot be directly applied 181

to STL, as STL involves real-time and real-valued 182

constraints that exceed the expressiveness of TL. 183

As STL is widely used in academia and in- 184

dustry (Madsen et al., 2018), several efforts have 185

been made to transform natural languages into 186

2

STL (He et al., 2022; Chen et al., 2023; Mao et al.,187

2024; Mohammadinejad et al., 2024). For instance,188

DeepSTL (He et al., 2022) utilizes grammar-based189

techniques to synthesize data, which is then used190

to train Transformer models for transformation.191

NL2TL (Chen et al., 2023) fine-tunes T5, trained192

on lifted Natural Language-Temporal Logic (NL-193

TL) datasets created by LLMs to perform transfor-194

mation. However, synthetic data generated from195

specific templates do not capture the full diver-196

sity of the real-world language. In addition, Dia-197

logueSTL (Mohammadinejad et al., 2024) trans-198

forms natural language task descriptions into ac-199

curate STL formulas through user interaction and200

reinforcement learning, but relies on user feedback,201

increasing the complexity of usage. To address the202

insufficient dataset and inefficiencies in transfor-203

mation, we introduce a new comprehensive dataset204

and propose a framework to improve the transfor-205

mation from natural languages to STL.206

2.2 Instruction Dataset Construction207

The generation of instruction datasets involves208

both manual annotation and synthesis using LLMs.209

Manual annotation includes designing prompts and210

labeling them based on human expertise (Srivas-211

tava et al., 2023; Conover et al., 2023; Zheng et al.,212

2023; Zhao et al., 2024; Zhou et al., 2024; Köpf213

et al., 2024). However, obtaining high-quality data214

only through manual annotation can be costly. With215

the growing use of LLMs, research is shifting to-216

ward generating data using LLMs, reducing re-217

liance on manual annotation. For example, Taori218

et al. (2023); Wang et al. (2024); Sun et al. (2024)219

start with a small set of seed instructions, which220

are then expanded using in-context learning to221

generate diverse instruction-response pairs. How-222

ever, these methods often struggle with ensuring223

sufficient diversity in the generated data. To ad-224

dress this, strategies such as iterative generate-filter225

pipelines (Wang et al., 2023) and cluster-based data226

selection (Köksal et al., 2024) have been proposed.227

Additionally, WizardLM (Xu et al., 2023) intro-228

duces an instruction evolution paradigm to enhance229

diversity by increasing the complexity of new in-230

structions. In our work, the STL-DivEn dataset is231

created using manual annotation to generate a small232

set of high-quality seeds. LLMs are then used with233

carefully designed instructions to generate various234

NL-STL pairs, followed by rigorous validation to235

ensure consistency.236

3 Signal Temporal Logic 237

STL is widely adopted as a specification formal- 238

ism for cyber-physical systems. For example, Au- 239

tomatic transmission (AT), a widely-used bench- 240

mark (Ernst et al., 2020, 2021, 2022), is a trans- 241

mission controller of automotive systems. It con- 242

tinuously outputs the gear, speed and rpm of the 243

vehicle. One of its safety requirements is as fol- 244

lows: In the following 27 time units, whenever the 245

speed is higher than 50, the rpm should be below 246

3000 in three time units. STL can represent such 247

real-time and real-valued constraints. 248

Let R denote the set of real numbers. R≥0 and 249

R+ represent the nonnegative and positive real 250

numbers, respectively. Let N+ be the set of positive 251

integer numbers. 252

Let T ∈ R+ be a positive real number, and let 253

d ∈ N+ be a positive integer. A d-dimensional 254

signal is a function v : [0, T] → Rd, where T is 255

called the time horizon of v. Given an arbitrary 256

time instant t ∈ [0, T], v(t) is a d-dimensional real 257

vector; each dimension concerns a signal variable 258

that has a certain physical meaning, e.g., speed, 259

rpm, acceleration, etc. In this paper, we fix a set 260

X of variables and, without ambiguity, we call a 261

variable a signal (1-dimensional signal). 262

Definition 1 (STL Syntax). In STL, atomic formu- 263
las α and formulas φ are inductively defined as 264
follows: 265

α ::≡ f(x1, . . . , xK) > 0 266

φ ::≡ α | ⊥ | ¬φ | φ1 ∧ φ2 | GIφ | FIφ | φ1 UI φ2 267

where f is a K-ary function f : RK → R, 268

x1, . . . , xK ∈ X , and I is a closed non-singular in- 269

terval in R≥0, i.e., I = [l, u], where l, u ∈ R≥0 and 270

l < u. G,F, and U are temporal operators, which 271

are known as always, eventually and until, respec- 272

tively. The always operator G and eventually the 273

operator F are two special cases of the until oper- 274

ator U, which can be defined by FIφ ≡ ⊤UI φ 275

and GIφ ≡ ¬ FI ¬φ. Other Boolean connectives 276

such as ∨,→ are introduced as syntactic sugar, i.e., 277

φ1 ∨φ2 ≡ ¬(¬φ1 ∧¬φ2), φ1 → φ2 ≡ ¬φ1 ∨φ2. 278

The Boolean semantics of an STL formula can 279
be described in a satisfaction relation (v, t) |= φ, 280
which represents the signal v that satisfies an STL 281
formula φ at time t: 282

(v, t) |= α ⇔ f(v(t)) ≥ 0 283

(v, t) |= ¬φ ⇔ (v, t) ̸|= φ 284

(v, t) |= φ1 ∧ φ2 ⇔ (v, t) |= φ1 ∧ (v, t) |= φ2 285

(v, t) |= G[l,u]φ ⇔ ∀t′ ∈ [t+ l, t+ u]. (v, t′) |= φ 286

(v, t) |= F[l,u]φ ⇔ ∃t′ ∈ [t+ l, t+ u]. (v, t′) |= φ 287

3

(v, t) |= φ1 U[l,u] φ2 ⇔ ∃t′ ∈ [t+ l, t+ u]. (v, t′) |= φ2288

∧ ∀t′′ ∈ [t, t′]. (v, t′) |= φ1289

Now, we can formally specify the above AT
safety requirement by the following STL formula:

G[0,27](speed > 50 → F[1,3](rpm < 3000)).

Note that nested STL formula refers to an STL290

formula where temporal operators are applied291

within the scope of other temporal operators.292

4 Approach293

In this section, we first present our approach for294

constructing the STL-Diversity-Enhanced (STL-295

DivEn) dataset, which combines manual annota-296

tion and LLMs to generate diverse, high-quality297

data. Second, we introduce the Knowledge-Guided298

STL Transformation (KGST) framework to further299

enhance performance in STL transformation.300

4.1 Dataset Construction301

To build a comprehensive and diverse NL-STL302

dataset, we follow the steps below: 1) Seed Se-303

lection: Manually create an initial set of NL-STL304

pairs and use clustering algorithm to identify repre-305

sentative seeds, 2) Diversity-Guided Augmentation:306

Utilize the identified seeds as diverse examples to307

guide GPT-4 (gpt-4-0125-preview) for augmenta-308

tion in generating new NL-STL pairs, 3) Quality309

Assurance: Apply rule-based filters to remove low-310

quality pairs and human validation to verify seman-311

tic consistency, and 4) Dataset Expansion: Add312

qualified pairs to the seed set and store them in the313

STL-DivEn database. This pipeline is illustrated in314

Figure 1.315

Seed Selection. Signal Temporal Logic encom-316

passes a variety of complex applications. Without317

high-quality seeds, the generated data may lack di-318

versity. Therefore, the first step is to build a seed319

set, which includes natural language descriptions320

and corresponding STL formulas covering both321

nested and basic logic, as well as applications in322

fields such as autonomous driving, robotics, and323

electronics. To ensure both comprehensiveness and324

accuracy, these initial NL-STL pairs are manually325

created. The seed set is created by 6 domain ex-326

perts, two from each field, resulting in a total of327

120 NL-STL pairs, with 40 pairs from each field.328

When using GPT-4 to generate new NL-STL329

pairs, selecting appropriate examples is crucial as330

the generated NL-STL pairs tend to mimic the pro-331

vided examples. To ensure diversity, we employ the332

k-means (Hartigan et al., 1979) to cluster five cen- 333

ters from the seed set, and then use these centers as 334

examples to guide the GPT-4 in data augmentation. 335

We use the Sentence-Transformers (Reimers and 336

Gurevych, 2019) to map NL-STL pairs into a high- 337

dimensional vector space, determining the cluster 338

centers. This approach prevents any single category 339

of NL-STL pairs from dominating the generated 340

data. 341

Diversity-Guided Augmentation. After selecting 342

the most representative NL-STL pairs, the next step 343

is to generate new NL-STL pairs based on these 344

seeds to expand the dataset. The five chosen NL- 345

STL instruction seeds are used as input examples 346

for GPT-4, with evolution prompts guiding GPT-4 347

to generate new NL-STL pairs. The prompts can 348

be found in the Appendix A.2. 349

Quality Assurance. Since GPT-4 may produce in- 350

correct NL-STL pairs, including those with syntax 351

errors, redundancy with the seed set, or inaccurate 352

semantics, we employ rule-based filtering and hu- 353

man validation to ensure the quality of the dataset. 354

In detail, rule-based filtering is applied in two 355

stages. The first stage applies the syntax check 356

algorithm to eliminate NL-STL pairs that do not 357

adhere to the syntax rules outlined in Section 3. 358

Each NL-STL pair is then compared to the exist- 359

ing data in the seed set by calculating their Rouge 360

scores (Lin, 2004). If the Rouge score between 361

a new NL-STL pair and all existing seed pairs is 362

below 0.5, the new pair is considered to exhibit 363

sufficient diversity. 364

Next, the NL-STL pairs that pass the rule-based 365

filtering undergo human validation to ensure con- 366

sistency between the natural language and STL 367

specifications. Seven annotators who have been 368

trained in STL usage and expressions spend two 369

months conducting the annotation. 370

Dataset Expansion. To continuously enhance data 371

diversity, NL-STL pairs filtered through rule-based 372

filtering and human validation are added to the seed 373

set as candidates for guiding the next generation. 374

These pairs are also incorporated into the STL- 375

DivEn dataset, which is organized in a structured 376

format that links natural language expressions to 377

their corresponding STL formulas. 378

4.2 Applying LLMs to Generate Formulas 379

To enable LLMs to utilize the acquired knowledge 380

more effectively, we structure the NL-STL trans- 381

formation task as a generate-then-refine process, as 382

shown in Figure 2. 383

4

Seed
<NL,STL>

Clutsering for
Exemplars

GPT-4 Driven
Augmentation

Seed <NL,STL> Selection
NL: The distance between signal x_1 and …
STL: φ::=F[0,5](||x_1-x_2||<=3)
NL: During 0-300 time units,if signal x_1 is …
STL: φ::=G[0,300]((x_1>0.7)->F[3,5](x_2>0.7))
NL: Signal x turns from bigger than 0.7 to …
STL: φ::=(x>0.7)U[3,5](x<0.5)
…

Seed Selection
Diversity-Guided

Augmentation Quality Assurance

Rule-based
Filters

Human
Validation

Instructions:
Core Task:
Use the provided cases as a reference for inspiration,
but ensure the generated NL and STL are entirely
different in content.
Example:
<NL,STL1>
<NL,STL2>
…
Now, generate new NL-STL instances while adhering
to the above rules.

STL-DivEn

) < 0.5Seed
<NL,STL>

Generated
<NL,STL>

Rouge(
,

Syntax_Check() == True

Generated
<NL,STL>

#Rules:

NL-STL
Seed Set

New Generated
NL-STL

Seed Set Expansion

Generated
<NL,STL>

Generated
<NL,STL>

Generated
<NL,STL>

Figure 1: The pipeline of STL-DivEn construction. We first handcraft a set of seed NL-STL pairs. Next, representa-
tive NL-STL pairs are selected by clustering to guide GPT-4 in data augmentation. The newly generated NL-STL
pairs pass through rule-based filters and human validation. Finally, verified pairs are added to the STL-DivEn
dataset and seed set for the next round generation.

Natural Language
Description

Refined STL
Formula

Retrieve from
STL-DivEn

GPT-4 Based
Refinement

LLaMA 3-8B
Fine-tuned by STL-DivEn

Preliminary STL
Formula

NL STL

Top-K Similarity

NL STL

NL STL

2.

3.

1.

Reference Pairs

Figure 2: Architecture of Knowledge Guide STL Trans-
formation (KGST).

Specifically, we first fine-tune LLMs such as384

LLaMA 3-8B on STL-DivEn, enabling them to385

transform natural language descriptions into pre-386

liminary STL formulas.387

Next, GPT-4 is employed to refine the prelimi-388

nary STL formula. Specifically, we select the top389

K most similar NL-STL pairs from external knowl-390

edge (e.g., STL-DivEn) as reference pairs based391

on the input natural language description using a392

similarity algorithm, where K is set to 5. These393

reference pairs, along with the original natural lan-394

guage description and the preliminary STL formula,395

are then fed into GPT-4.396

Finally, GPT-4 evaluates and refines the prelim-397

inary STL formula based on the reference pairs,398

generating the refined STL formula. The prompts399

used for this process are detailed in Appendix A.3.400

5 Experiments 401

In this section, we conduct experiments on our 402

proposed dataset and the existing benchmark pro- 403

posed (He et al., 2022) to evaluate our methods. 404

5.1 Experiment Settings 405

We first introduce our empirical settings, includ- 406

ing datasets, evaluation measures, baselines and 407

implementation details. 408

Datasets. We conduct experiments on two NL- 409

STL datasets, including DeepSTL (He et al., 2022) 410

and the proposed STL-DivEn Dataset. Specifi- 411

cally, DeepSTL generates STL formulas through 412

randomly sampling from templates and operator 413

distributions, while STL-DivEn is a dataset created 414

using GPT-4 and human annotation. We randomly 415

selected 14,000 samples from each dataset for the 416

training set and 2,000 samples for the test set. 417

Evaluation Measures. To evaluate the results of 418

STL generation, we utilize both quantitative met- 419

rics and human evaluation in our experiment. In de- 420

tail, we use three evaluation metrics: STL Formula 421

Accuracy, Template Accuracy (He et al., 2022), and 422

BLEU (Papineni et al., 2002), which are used for 423

the STL generation task. STL Formula Accuracy 424

emphasizes strict alignment of symbols and syntax, 425

Template Accuracy evaluates the completeness of 426

logical structures, and BLEU assesses local seman- 427

tics and phrase-level similarity. The calculation 428

methods for STL Formula Accuracy and Template 429

Accuracy are provided in Appendix B. 430

For human evaluation, we randomly selected 100 431

NL-STL pairs from the test set of STL-DivEn and 432

DeepSTL. Five annotators (all students who have 433

5

grasped the usage of STL formulas) are required to434

compare our model with baseline models. They are435

unaware of which STL formulas are generated by436

our model and which are generated by the baseline437

models. The annotators evaluate whether the STL438

formula faithfully reflects the natural language de-439

scription in four aspects: whether the operators in440

the STL are correct, whether the values are accu-441

rate, whether the generated STL conforms to the442

syntax rules, and whether the semantics are con-443

sistent with the natural language description. The444

evaluation results are labeled as correct only when445

all aspects are correct; otherwise, they are marked446

as incorrect if any aspect is wrong.447

Baselines and Implementation Details. We448

conduct the comparison experiments using five449

baseline methods: DeepSTL, GPT-3.51, GPT-450

42, DeepSeek (Liu et al., 2024), and Self-451

Refine (Madaan et al., 2024). In our experiments,452

the GPT-4 version is "gpt-4-0125-preview", the453

GPT-3.5 version is "gpt-3.5-turbo-1106", and the454

DeepSeek version is "DeepSeek-V3". The Self-455

Refine method involves GPT-4 generating an initial456

STL formula, followed by refinement using GPT-457

4’s own knowledge. DeepSTL uses the Adam opti-458

mizer (Kingma, 2014) and is trained with the Trans-459

formers model architecture. KGST is fine-tuned460

on LLaMA 3-8B and utilizes GPT-4 for refinement461

with external knowledge, which is derived from the462

corresponding training set. Details on hyperparam-463

eter determination are provided in Appendix C.464

5.2 Experimental Results465

In this section, we show our experimental results466

on the two datasets STL-DivEn and DeepSTL.467

5.2.1 Metric-Based Evaluation468

The quantitative evaluation results on the STL-469

DivEn and DeepSTL datasets are shown in Table 1.470

For the STL-DivEn dataset, our model performs the471

best (Table 1a). Across the three metrics, our model472

achieves scores of 0.5587 for STL Formula Accu-473

racy, 0.5627 for Template Accuracy, and 0.2142474

for BLEU, surpassing other models. For exam-475

ple, DeepSeek obtains 0.4790, 0.4852, and 0.0791,476

while GPT-4 obtains 0.4733, 0.4741, and 0.1931477

for the respective metrics.478

For the DeepSTL dataset, as shown in Table 1b,479

we also observe that our model achieves the high-480

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://platform.openai.com/docs/models/gpt-4-turbo-

and-gpt-4

Model
STL Formula

Accuracy
Template
Accuracy

BLEU

DeepSTL 0.1986 0.1883 0.0293
GPT-3.5 0.3018 0.3034 0.0424
GPT-4 0.4733 0.4741 0.0831
DeepSeek 0.4790 0.4825 0.0791
GPT-4+Self-Refine 0.4422 0.4466 0.0521
KGST 0.5587 0.5627 0.2142

(a) STL-DivEn

Model
STL Formula

Accuracy
Template
Accuracy

BLEU

DeepSTL 0.2002 0.2916 0.3332
GPT-3.5 0.2145 0.3002 0.2249
GPT-4 0.2262 0.3048 0.2881
DeepSeek 0.2537 0.3254 0.3982
GPT-4+Self-Refine 0.2203 0.3019 0.2682
KGST 0.4538 0.4939 0.5686

(b) DeepSTL

Table 1: Metric-based evaluation results.

est scores. It obtains 0.4538 for STL Formula 481

Accuracy, 0.4939 for Template Accuracy, and 482

0.5686 for BLEU, outperforming all other mod- 483

els. Specifically, DeepSeek obtains 0.2537, 0.3254, 484

and 0.3982, while GPT-4 obtains 0.2262, 0.3048, 485

and 0.2882 for the respective metrics. 486

Furthermore, we observe a decrease in the perfor- 487

mance of the Self-Refine method after refinement. 488

This suggests that refining STL formulas requires 489

external knowledge rather than relying solely on 490

the model’s internal capabilities. In conclusion, our 491

KGST model demonstrates superior performance 492

in generating more accurate STL formulas com- 493

pared to the baseline models. 494

5.2.2 Human Evaluation 495

The human evaluation results are shown in Table 2. 496

We use the correctness percentage as a compre- 497

hensive evaluation of operator correctness, value 498

accuracy, semantic consistency, and syntax confor- 499

mity in generated STL formulas. From the results, 500

it can be observed that the evaluators consider the 501

proportion of correct STL formulas generated by 502

our model to be the highest among all methods. For 503

example, on the STL-DivEn dataset, the accuracy 504

of our model is 62.4%, validating the effectiveness 505

of our KGST model. 506

5.3 Analysis 507

5.3.1 Corpus Statistics 508

Table 3 presents the statistics for the DeepSTL and 509

STL-DivEn datasets. Specifically, Table 3a pro- 510

vides statistics on the STL formulas, including sub- 511

6

Model
Accuracy (%)

STL-DivEn DeepSTL

DeepSTL 43.4 42.0
GPT-3.5 48.4 45.6
GPT-4 53.0 48.8
DeepSeek 55.0 49.2
GPT-4+Self-Refine 51.2 47.0
KGST 62.4 54.6

Table 2: Human evaluation results.

Dataset
#subformula
per formula

#STL oper.
per formula

#N-gram
diversity

avg. median avg. median
DeepSTL 6.98 7 6.98 7 1.474
STL-DivEn 14.66 14 20.04 19 2.386

(a) STL formula statistics: # subformula for each STL formula,
operators for each STL formula and # N-gram diversity of
STL formulas.

Dataset #sent. #word
#words
per sent.

N-gram
d“ 1‘iversity

avg. median
DeepSTL 120,000 265 38.49 37 1.132
STL-DivEn 16,000 4,954 35.83 35 2.424

(b) Natural language descriptions statistics: # unique sen-
tences, # unique words, # words per sentences and # N-gram
diversity of natural language descriptions.

Dataset
#char per
identifier

#digits per
constant

#identifiers
per formula

avg. median avg. median
DeepSTL 5.50 5 2.31 2 2.59
STL-DivEn 2.63 2 1.70 2 7.2

(c) Identifier and constants statistics: # chars used per iden-
tifier, # number of digits used per constant and # average
number of identifiers per formula.

Table 3: Dataset statistical analysis of DeepSTL and
STL-DivEn.

formulas, STL operators, and the N-gram diversity512

of all STL formulas. A subformula is defined as513

any well-formed part of a formula that constitutes514

a complete expression. Table 3b displays statistics515

for the natural language descriptions, such as the516

total number of unique sentences, the number of517

unique words, the average number of words per518

sentence, and the N-gram diversity of all descrip-519

tions. Meanwhile, Table 3c shows the frequency of520

identifiers and constants.521

The numbers of subformulas and operators in522

each STL formula indicates that the formulas in the523

STL-DivEn dataset have more complex structures.524

The total word count of 4,954 unique words in STL-525

DivEn, compared to only 265 words in DeepSTL,526

highlights the richer vocabulary in the STL-DivEn527

dataset. Additionally, both the N-gram diversity528

of the STL formulas and the natural language de-529

Model
STL Formula

Accuracy
Template
Accuracy

BLEU

KGST 0.5587 0.5627 0.2142
- w/o Fine-tuning 0.5360 0.5390 0.1978
- w/o Refinement 0.4956 0.5007 0.1784

Table 4: Ablation experimental results on STL-DivEn.

scriptions demonstrate a greater level of diversity 530

in STL-DivEn. In conclusion, STL-DivEn is a com- 531

prehensive and diverse dataset, making it a valuable 532

resource for further research. 533

5.3.2 Ablation Study 534

To validate the effectiveness of the fine-tuning and 535

refinement modules, we conduct ablation experi- 536

ments on STL-DivEn, with results shown in Ta- 537

ble 4. KGST w/o Refinement indicates the KGST 538

model with the Refine module removed, where 539

STL is generated solely by fine-tuning the LLMs. 540

The results show that when STL is generated using 541

only the fine-tuned LLMs, the metrics are higher 542

than those of the baseline models but lower than 543

those of the complete KGST model. KGST w/o 544

Fine-tuning indicates the KGST model with the 545

fine-tuning module removed, where STL is gener- 546

ated using only the top five high-similarity NL-STL 547

pairs retrieved from external knowledge as refer- 548

ences. Compared to the complete KGST model, all 549

metrics show a decrease, but still higher than those 550

of the baseline models. Therefore, we conclude 551

that both fine-tuning and refinement play active 552

roles in STL generation. 553

5.3.3 Case Study 554

To intuitively demonstrate how KGST improves the 555

quality of STL generation, we present a case study 556

in Table 5. In this study, we compare the STL for- 557

mulas generated by KGST with those generated by 558

GPT-4 and the fine-tuned LLaMA 3-8B model. In 559

Case 1, according to the natural language descrip- 560

tion, x3 > 2 must occur within 2 to 4 time units 561

in the future. However, GPT-4 incorrectly uses 562

F[2,4](x3 > 2) to express a logical "until", which 563

is not accurate. On the other hand, while the syntax 564

of LLaMA 3-8B is not fully compliant (e.g., it does 565

not explicitly use G[20,50] to indicate the global 566

time interval constraint), its basic logic is correct. 567

In Case 2, both GPT-4 and LLaMA 3-8B use incor- 568

rect syntax for the triggering condition. The correct 569

expression should use the global operator G[0,500] 570

to specify that the triggering condition must be 571

monitored across the entire time interval, rather 572

than at a specific point in time. Furthermore, in 573

7

Case 1:

NL (STL-DivEn):
Between time 20 and 50, the sum of signals x1 and x2 must not exceed
1.5, unless within 2 to 4 time units later, x3 exceeds 2.

GPT4:
G[20,50](x1 + x2 ≤ 1.5 → F[2,4](x3 > 2))
LLaMA 3-8B (Finetuned):
20 ≤ t ≤ 50 → ((x1 + x2 ≤ 1.5) U[2,4] (x3 > 2)
KGST:
G[20,50]((x1[t] + x2[t] ≤ 1.5) U[2,4] (x3[t] > 2))

Ground Truth:
G[20,50]((x1[t] + x2[t] ≤ 1.5) U[2,4] (x3[t] > 2))

Case 2:

NL (STL-DivEn):
Whenever signal z2 falls below -0.5 or exceeds 0.5 within 0 to 500 time
units, signal z1 must exceed 1 within the next 200 time units and maintain
that level for at least 50 time units.
GPT4:
F[0,500](z2[t] < −0.5 ∨ z2[t] > 0.5) → (F[0,200](z1 > 1) ∧
G[0,50](z1 > 1))
LLaMA 3-8B (Finetuned):
F[0,500]((z2[t] < −0.5 ∨ z2[t] > 0.5) → F[0,200] G[0,50] (z1 > 1))
KGST:
G[0,500]((z2[t] < −0.5∨ z2[t] > 0.5) → F[0,200] G[0,50] (z1[t] > 1))

Ground Truth:
G[0,500]((|z2| > 0.5) → (F[0,200] G[0,50] (z1 > 1)))

Table 5: Generated STL formulas from different models
on STL-DivEn.

the formula generated by GPT-4, F[0,200](z1 > 1)574

and G[0,50](z1 > 1) are used in parallel, but there575

is no indication of the sequential relationship. The576

correct logic should specify that z1 > 1 must first577

occur, followed by its persistence for 50 time units.578

These results confirm that KGST effectively cor-579

rects errors in the generated STL, such as misused580

operators or invalid syntax.581

5.3.4 Impact of Refinement582

To validate the impact of refinement on specific er-583

ror types, we track four types of errors in 100 gener-584

ated STL formulas: incorrect operator usage, value585

errors, syntax violations, and semantic inconsisten-586

cies with the corresponding NL. The differences587

before and after the refinement process are shown588

in Figure 3, and it is observed that the frequencies589

of all error types have decreased.590

We also conduct an experimental analysis of the591

iteration rounds by calculating the STL Formula592

Accuracy, Template Accuracy, and Bleu score for593

different numbers of refinement iterations on STL-594

DivEn. Figure 4 shows that as the number of it-595

erations increases, there is no significant impact596

on the effect of refinement, because each iteration597

uses the same NL-STL as the reference.598

5.3.5 Scaling Effect599

Figure 5 presents the results of the scaling effect ex-600

periments on the STL-DivEn dataset. It illustrates601

how STL Formula Accuracy changes as the dataset602

Figure 3: Tracking errors before and after refinement.

Figure 4: Impact of iteration rounds on refinement.

Figure 5: Scaling effect of STL-DivEn dataset on STL
formula accuracy.

size increases. Both the fine-tuning and KGST 603

show gradual improvement with the growth of the 604

dataset, with KGST consistently outperforming the 605

fine-tuning across all dataset sizes, particularly on 606

larger datasets. The performance on other evalua- 607

tion metrics can be found in Appendix D. 608

6 Conclusion 609

In this work, we present a new dataset, STL-DivEn, 610

which features NL-STL pairs with enhanced diver- 611

sity. Additionally, we introduce the KGST frame- 612

work, a novel approach for transforming natural 613

languages into STL. Results from both metric- 614

based evaluations and human evaluations demon- 615

strate that our approach significantly improves 616

transformation capabilities across two datasets. 617

Our approach facilitates the automatic extraction 618

of temporal and continuous constraints in cyber- 619

physical systems, supporting efficient and reliable 620

modeling to ensure the safety and robustness. 621

8

Limitations622

Our dataset is currently built using GPT-4 rather623

than directly derive from requirement documents624

of real-world cyber-physical systems. Although we625

have already guided GPT-4 to generate diverse NL-626

STL pairs, it may still not fully cover the temporal627

property patterns of real-world cyber-physical sys-628

tems, or the dataset may be biased. This may limit629

the effectiveness and accuracy of our model when630

applied to real-world cyber-physical systems.631

To address this issue, at least the following ap-632

proaches can be considered in the future. First,633

we can extract temporal property patterns from ex-634

isting real-world cyber-physical systems. Second,635

for specific domains like autonomous driving, we636

can extract necessary data from domain-related re-637

quirements documentation, e.g., international stan-638

dards related to AUTOSAR for electronic vehicles.639

Furthermore, we can infer possible timing prop-640

erties and other temporal characteristics of cyber-641

physical systems by simulating their real interac-642

tive environments. In this way, our dataset can643

be continuously enriched by incorporating human644

validation to train better models.645

References646

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama647
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,648
Diogo Almeida, Janko Altenschmidt, Sam Altman,649
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.650
arXiv preprint arXiv:2303.08774.651

Chaima Boufaied, Maris Jukss, Domenico Bianculli,652
Lionel Claude Briand, and Yago Isasi Parache. 2021.653
Signal-based properties of cyber-physical systems:654
Taxonomy and logic-based characterization. J. Syst.655
Softw., 174:110881.656

Yongchao Chen, Rujul Gandhi, Yang Zhang, and657
Chuchu Fan. 2023. Nl2tl: Transforming natural658
languages to temporal logics using large language659
models. In Proceedings of the 2023 Conference on660
Empirical Methods in Natural Language Processing,661
pages 15880–15903.662

Mike Conover, Matt Hayes, Ankit Mathur, Xiangrui663
Meng, Jianwei Xie, Jun Wan, Ali Ghodsi, Patrick664
Wendell, and Matei Zaharia. 2023. Hello dolly: De-665
mocratizing the magic of chatgpt with open models.666
Databricks blog. March, 24.667

Matthias Cosler, Christopher Hahn, Daniel Men-668
doza, Frederik Schmitt, and Caroline Trippel. 2023.669
nl2spec: Interactively translating unstructured natu-670
ral language to temporal logics with large language671
models. In CAV 2023, volume 13965 of LNCS, pages672
383–396. Springer.673

Matthew B Dwyer, George S Avrunin, and James C 674
Corbett. 1999. Patterns in property specifications for 675
finite-state verification. In ICSE 1999, pages 411– 676
420. 677

Gidon Ernst, Paolo Arcaini, Ismail Bennani, Aniruddh 678
Chandratre, Alexandre Donzé, Georgios Fainekos, 679
Goran Frehse, Khouloud Gaaloul, Jun Inoue, Tan- 680
may Khandait, Logan Mathesen, Claudio Menghi, 681
Giulia Pedrielli, Marc Pouzet, Masaki Waga, Shakiba 682
Yaghoubi, Yoriyuki Yamagata, and Zhenya Zhang. 683
2021. ARCH-COMP 2021 category report: Falsifi- 684
cation with validation of results. In 8th International 685
Workshop on Applied Verification of Continuous and 686
Hybrid Systems (ARCH21), volume 80 of EPiC Se- 687
ries in Computing, pages 133–152. EasyChair. 688

Gidon Ernst, Paolo Arcaini, Ismail Bennani, Alexan- 689
dre Donzé, Georgios Fainekos, Goran Frehse, Logan 690
Mathesen, Claudio Menghi, Giulia Pedrielli, Marc 691
Pouzet, Shakiba Yaghoubi, Yoriyuki Yamagata, and 692
Zhenya Zhang. 2020. ARCH-COMP 2020 category 693
report: Falsification. In 7th International Workshop 694
on Applied Verification of Continuous and Hybrid 695
Systems (ARCH20), volume 74 of EPiC Series in 696
Computing, pages 140–152. 697

Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Fed- 698
erico Formica, Jun Inoue, Tanmay Khandait, Mo- 699
hammad Mahdi Mahboob, Claudio Menghi, Giu- 700
lia Pedrielli, Masaki Waga, Yoriyuki Yamagata, and 701
Zhenya Zhang. 2022. ARCH-COMP 2022 category 702
report: Falsification with ubounded resources. In 703
Proceedings of 9th International Workshop on Ap- 704
plied Verification of Continuous and Hybrid Systems 705
(ARCH22), volume 90 of EPiC Series in Computing, 706
pages 204–221. EasyChair. 707

Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick 708
Lincoln, Natarajan Shankar, and Wilfried Steiner. 709
2016. Arsenal: automatic requirements specification 710
extraction from natural language. In NFM 2016, 711
pages 41–46. Springer. 712

John A Hartigan, Manchek A Wong, et al. 1979. A 713
k-means clustering algorithm. Applied statistics, 714
28(1):100–108. 715

Jie He, Ezio Bartocci, Dejan Nickovic, Haris Isakovic, 716
and Radu Grosu. 2022. Deepstl - from english re- 717
quirements to signal temporal logic. In ICSE 2022, 718
pages 610–622. ACM. 719

Diederik P Kingma. 2014. Adam: A method for stochas- 720
tic optimization. arXiv preprint arXiv:1412.6980. 721

Abdullatif Köksal, Timo Schick, Anna Korhonen, and 722
Hinrich Schuetze. 2024. Longform: Effective in- 723
struction tuning with reverse instructions. In ICLR 724
2024 Workshop on Navigating and Addressing Data 725
Problems for Foundation Models. 726

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, 727
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, 728
Abdullah Barhoum, Duc Nguyen, Oliver Stan- 729
ley, Richárd Nagyfi, et al. 2024. Openassistant 730

9

https://doi.org/10.29007/xwl1
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/fhnk
https://doi.org/10.29007/fhnk
https://doi.org/10.29007/fhnk

conversations-democratizing large language model731
alignment. Advances in Neural Information Process-732
ing Systems, 36.733

Dhanashree Kulkarni, Andrew N Fisher, and Chris J734
Myers. 2013. A new assertion property language for735
analog/mixed-signal circuits. In Proceedings of the736
2013 Forum on specification and Design Languages737
(FDL), pages 1–8. IEEE.738

Constantine Lignos, Vasumathi Raman, Cameron Fin-739
ucane, Mitchell P. Marcus, and Hadas Kress-Gazit.740
2015. Provably correct reactive control from natural741
language. Auton. Robots, 38(1):89–105.742

Chin-Yew Lin. 2004. Rouge: A package for automatic743
evaluation of summaries. In Text summarization744
branches out, pages 74–81.745

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,746
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi747
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.748
Deepseek-v3 technical report. arXiv preprint749
arXiv:2412.19437.750

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler751
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,752
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,753
et al. 2024. Self-refine: Iterative refinement with754
self-feedback. Advances in Neural Information Pro-755
cessing Systems, 36.756

Curtis Madsen, Prashant Vaidyanathan, Sadra Sadrad-757
dini, Cristian Ioan Vasile, Nicholas A. DeLateur, Ron758
Weiss, Douglas Densmore, and Calin Belta. 2018.759
Metrics for signal temporal logic formulae. In 57th760
IEEE Conference on Decision and Control, CDC761
2018, Miami, FL, USA, December 17-19, 2018, pages762
1542–1547. IEEE.763

Sebastian Maierhofer, Anna-Katharina Rettinger,764
Eva Charlotte Mayer, and Matthias Althoff. 2020.765
Formalization of interstate traffic rules in temporal766
logic. In 2020 IEEE Intelligent Vehicles Symposium767
(IV), pages 752–759. IEEE.768

Oded Maler and Dejan Ničković. 2004. Monitoring769
temporal properties of continuous signals. In FOR-770
MATS/FTRTFT 2004, volume 3253 of LNCS, pages771
152–166. Springer.772

Yuchen Mao, Tianci Zhang, Xu Cao, Zhongyao Chen,773
Xinkai Liang, Bochen Xu, and Hao Fang. 2024.774
Nl2stl: Transformation from logic natural language775
to signal temporal logics using llama2. In 2024 IEEE776
International Conference on Cybernetics and Intel-777
ligent Systems (CIS) and IEEE International Con-778
ference on Robotics, Automation and Mechatronics779
(RAM), pages 469–474. IEEE.780

Sara Mohammadinejad, Sheryl Paul, Yuan Xia, Vidisha781
Kudalkar, Jesse Thomason, and Jyotirmoy V Desh-782
mukh. 2024. Systematic translation from natural783
language robot task descriptions to stl. In Interna-784
tional Conference on Bridging the Gap between AI785
and Reality, pages 259–276. Springer.786

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 787
Jing Zhu. 2002. Bleu: a method for automatic eval- 788
uation of machine translation. In ACL 2002, pages 789
311–318. 790

Amir Pnueli. 1977. The temporal logic of programs. In 791
FOCS 1977, pages 46–57. IEEE. 792

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 793
Sentence embeddings using siamese bert-networks. 794
In Proceedings of the 2019 Conference on Empirical 795
Methods in Natural Language Processing. Associa- 796
tion for Computational Linguistics. 797

Tainã Santos, Gustavo Carvalho, and Augusto Sampaio. 798
2018. Formal modelling of environment restrictions 799
from natural-language requirements. In SBMF 2018, 800
pages 252–270. Springer. 801

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 802
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 803
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià 804
Garriga-Alonso, et al. 2023. Beyond the imitation 805
game: Quantifying and extrapolating the capabili- 806
ties of language models. Transactions on Machine 807
Learning Research. 808

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin 809
Zhang, Zhenfang Chen, David Cox, Yiming Yang, 810
and Chuang Gan. 2024. Principle-driven self- 811
alignment of language models from scratch with 812
minimal human supervision. Advances in Neural 813
Information Processing Systems, 36. 814

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 815
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 816
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 817
An instruction-following llama model. 818

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and 819
Cynthia Matuszek. 2020. Robots that use language. 820
Annual Review of Control, Robotics, and Autonomous 821
Systems, 3(1):25–55. 822

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al- 823
isa Liu, Noah A Smith, Daniel Khashabi, and Han- 824
naneh Hajishirzi. 2023. Self-instruct: Aligning lan- 825
guage models with self-generated instructions. In 826
ACL 2023. 827

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long Le, 828
Jin Miao, Zizhao Zhang, Chen-Yu Lee, and Tomas 829
Pfister. 2024. Codeclm: Aligning language models 830
with tailored synthetic data. In Findings of the Asso- 831
ciation for Computational Linguistics: NAACL 2024, 832
pages 3712–3729. 833

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 834
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 835
Jiang. 2023. Wizardlm: Empowering large lan- 836
guage models to follow complex instructions. arXiv 837
preprint arXiv:2304.12244. 838

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, 839
Yejin Choi, and Yuntian Deng. 2024. Wildchat: 1m 840
chatgpt interaction logs in the wild. In ICLR 2024. 841

10

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/SFCS.1977.32
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle842
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,843
Zhuohan Li, Zi Lin, Eric Xing, et al. 2023. Lmsys-844
chat-1m: A large-scale real-world llm conversation845
dataset. In ICLR 2023.846

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,847
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping848
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-849
ment. Advances in Neural Information Processing850
Systems, 36.851

Lukáš Žilka. 2010. Temporal logic for man. Ph.D. the-852
sis, Master’s thesis, Brno University of Technology.853

11

A Prompts input to Large Language854

Models855

In this section, we present the prompts designed to856

guide large language models.857

A.1 Prompts for GPT-4 to generate NL-STL858

pairs859

Dataset Construction Prompt:

I am constructing a dataset that pairs Natural Language descriptions with their
corresponding Signal Temporal Logic (STL) expressions.
Please generate three unique instances in each request.
Use the provided cases as a reference for inspiration, but ensure the generated NL
and STL are completely different in content.
{Example_Pairs}
Now, generate new NL-STL instances while adhering to the above rules.
The format for each generated pair must adhere strictly to the following format:
NL:[Natural Language Description]
STL:[Signal Temporal Logic Expression].

Figure 6: Evolution Prompts for GPT-4 in NL-STL Pairs
Generation.

Figure 6 shows the prompt used for GPT-4 to860

generate NL-STL pairs. The example pairs are861

selected from the seed set using a clustering algo-862

rithm.863

A.2 Prompts for LLMs to Generate STL864

STL Generation Prompt:
Please translate the Natural Language into STL specification.
Let a and b be two variables, and let φ be the specification. The rules are as follows:
1. φ₁U[a,b]φ₂ indicates that there exists a moment t' such that φ₁ is satisfied before t',
and φ₂ is satisfied at t', where t' is within a time distance of a to b from the current
moment.
2. F[a,b]φ indicates that there exists a point within the interval [a, b] where φ is
satisfied.
3. G[a,b]φ indicates that φ is satisfied at every point within the interval [a, b].
Additionally, assume signals x1[t], x2[t], . . . , xn[t], then atomic predicates are of the
form:f(x1[t], . . . , xn[t]) > 0.
The STL formula should only contain atomic propositions, boolean operators &, ~, ->,
<-> and temporal operators U[a,b], G[a,b], F[a,b].

Figure 7: The prompt for Baseline Models to generate
STL formulas.

Figure 7 shows the prompts used for baseline865

models, including GPT-3.5, GPT-4, and DeepSeek,866

to generate STL formulas from input natural lan-867

guage descriptions.868

A.3 Prompts for Refinement Part in KGST869

KGST Prompt:
Given the input natural language description {Input_Natural_Language}
and the preliminary STL formula {Preliminary_STL}.
Validate and refine the STL formula using the following five most similar NL-STL
pairs from external knowledge: {Reference_Pairs}.
Ensure that the refined STL accurately captures the intended meaning.
Correct any inconsistencies to improve clarity and precision.
Refined STL:

Figure 8: The prompts in the refinement part of KGST.
Figure 8 shows the prompts used for KGST to870

refine the preliminary STL. Reference pairs refer871

to the top K NL-STL pairs selected from external 872

knowledge based on their similarity to the trans- 873

formed natural language. 874

Feedback Prompt:

The following STL specification was generated from a natural language description.
Please review the STL formula for correctness, clarity, and adherence to the
following rules:\n
1. Temporal operators should include U[a,b], F[a,b], and G[a,b].
2. Use atomic predicates in the form of f(x1[t], ..., xn[t]) > 0.
3. Boolean operators should be limited to &, ~, ->, and <->.
4. Ensure the STL formula accurately represents the intent of the natural language
description.
Identify any errors, ambiguities, or improvements needed.
Natural Language: {Input_Natural_Language}
Preliminary STL: {Preliminary_STL}
Feedback:

Figure 9: The prompts in the feedback part of Self-
Refine.

A.4 Prompts for Self-Refine 875

Refiner Prompt:
Based on the provided feedback, refine the STL specification to address the
identified issues.
Ensure that the updated STL formula:
1. Correctly reflects the original natural language intent.
2. Follows the syntax rules for STL with appropriate temporal and boolean operators.
3. Improves clarity, correctness, and logical consistency.\n\n"
Natural Language: {Input_Natural_Language}
Preliminary STL: {Preliminary_STL}
Feedback: {Feedback}
Refined STL:

Figure 10: The prompts in the refinement part of Self-
Refine.

Figure 9 shows the prompts used for GPT-4 to 876

generate feedback on whether the STL is correct 877

based on the STL generation criteria for the given 878

natural language input and its corresponding STL. 879

Figure 10 shows the prompts used for GPT-4 to 880

refine the preliminary STL based on the feedback. 881

A.5 Prompts for KGST w/o Finetune 882

KGST w/o Finetune Prompt:
Given the input natural language description {Input_Natural_Language}
Generate the STL formula refering the following five most similar NL-STL pairs :
{Reference_Pairs}.
Ensure that the generatedSTL accurately captures the intended meaning.
Generated STL:

Figure 11: The prompts for KGST w/o Finetune to
generate STL.

Figure 11 shows the prompts used for GPT-4 to 883

generate STL based on the input natural language 884

description and the top K NL-STL pairs retrieved 885

from external knowledge with the highest similarity 886

to the input, which serve as reference pairs in the 887

context. 888

12

B Evaluation Metrics889

STL formula accuracy (AF) and template accuracy890

(AT). The first metric measures the alignment accu-891

racy between the reference and predicted sequences892

at the string level, while the second metric involves893

transforming both the reference and predicted in-894

stances into STL templates and then calculating895

their alignment accuracy. For example:896

Formula: eventually (a < 5) ⇒ Template :897

G (ϕ)898

Formula: eventually (b < 5) ⇒ Template :899

G (ϕ)900

The first line represents the reference sequence,901

and the second line corresponds to the model’s902

prediction. To illustrate more clearly, spaces are903

inserted between each token, resulting in six to-904

kens in the formula and four tokens in the tem-905

plate. In the formula, five tokens appear in the906

same positions—‘G’, ‘(’, ‘<’, ‘5’, ‘)’—while the907

remaining token ‘a’ in the reference is mistrans-908

lated as ‘b’. Therefore, the formula accuracy (AF)909

is calculated as:910

AF =
5

6

For the template, since all tokens align perfectly,911

the template accuracy (AT) equals:912

AT = 1

C Details of Implementation913

The experiments are conducted on eight NVIDIA914

4090 GPUs, with all implementations utilizing915

PyTorch3, LLaMA-Factory4, and Huggingface’s916

Transformers5. To ensure efficient training, the917

learning rate is set to 5e-5 and the batch size is 16.918

To ensure the adequacy of the training results, the919

model is run for 10 epochs under each setting.920

3https://pytorch.org/
4https://github.com/hiyouga/LLaMA-Factory
5https://github.com/huggingface/transformers

Figure 12: Scaling effect of STL-DivEn on three evalu-
ation metrics.

D Scaling Effect of Multi-Metrics 921

Figure 12 shows the scaling effect of the STL- 922

DivEn dataset, illustrating the performance metrics 923

of STL generation after fine-tuning with Llama- 924

3-8B on the STL-DivEn dataset, as well as the 925

performance of KGST in generating STL formulas. 926

The metrics include STL formula accuracy, tem- 927

plate accuracy, and BLEU score, as the dataset size 928

increases from 1k to 16k. 929

13

	Introduction
	Related Work
	From Natural Language to TL and STL
	Instruction Dataset Construction

	Signal Temporal Logic
	Approach
	Dataset Construction
	Applying LLMs to Generate Formulas

	Experiments
	Experiment Settings
	Experimental Results
	Metric-Based Evaluation
	Human Evaluation

	Analysis
	Corpus Statistics
	Ablation Study
	Case Study
	Impact of Refinement
	Scaling Effect

	Conclusion
	Prompts input to Large Language Models
	Prompts for GPT-4 to generate NL-STL pairs
	Prompts for LLMs to Generate STL
	Prompts for Refinement Part in KGST
	Prompts for Self-Refine
	Prompts for KGST w/o Finetune

	Evaluation Metrics
	Details of Implementation
	Scaling Effect of Multi-Metrics

