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Abstract

Spiking Neural Networks (SNNs) offer advantages such as sparsity and ultra-low1

power consumption, making them a promising alternative to conventional neural2

networks (ANNs). However, training deep SNNs is challenging due to the quanti-3

zation of membrane potentials into binary spikes, which can cause information loss4

and vanishing spikes in deeper layers. Traditional weight initialization methods5

from ANNs are often used in SNNs without accounting for their distinct computa-6

tional properties. In this work, we derive an optimal weight initialization method7

tailored for SNNs, specifically taking into account the quantization operation. We8

demonstrate through theoretical analysis and simulations with up to 100 layers9

that our method enables the propagation of activity in deep SNNs without loss of10

spikes. Experiments on MNIST confirm that the proposed initialization scheme11

leads to higher accuracy, faster convergence, and robustness against variations in12

network and neuron hyperparameters.13

1 Introduction14

Spiking Neural Networks (SNNs) are a class of artificial neural networks inspired by the dynamics15

of biological brains, where information is encoded and transmitted through discrete spikes [1, 2,16

3]. This unique mode of communication enables SNNs to perform fast computations with low17

power consumption [4, 5], especially when combined with specialized neuromorphic hardware18

[6, 7, 8]. However, SNNs still underperform compared to conventional artificial neural networks19

(ANNs), mainly due to the additional challenges associated with their training. While ANNs are20

typically trained via gradient descent, the discrete nature of spikes in SNNs complicates the use of21

backpropagation. Different methods such as ANN-SNN conversion [9, 10, 11] and backpropagation22

with surrogate functions [12, 13] have been proposed to circumvent this problem. Nevertheless, the23

proposed solutions haven’t been sufficient to fully bridge the performance gap between SNNs and24

ANNs, without compromising the efficiency advantages of SNNs.25

Similarly to ANNs, in SNNs a suboptimal weight initialization can hamper the training process [14,26

15], especially in deep networks [16]. While ANN weight initialization strategies tailored to specific27

activation functions and weight distributions have been widely explored [17, 18, 19], these methods28

are also often inappropriately applied to SNNs. Unlike ANNs, SNNs feature temporal dynamics,29

resetting mechanisms, information quantization and their activation function differs from those30

examined in the ANN literature. Hence, ANN initalization schemes are inadequate for SNNs and31

often cause undesired effects such as vanishing or exploding spikes in deeper layers.32

In this paper, we analytically derive a weight initialization method that accounts for the specific33

activation function of Spiking Neural Networks (SNNs), building on the approach proposed in [18]34

for standard ANNs. We empirically demonstrate that, unlike the standard ReLU-based method, our35

initialization enables spiking activity to propagate through deep networks without dissipation or36
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amplification. Additionally, we show that proper weight initialization leads to improved accuracy,37

faster convergence, and lower latency in a simple classification task.38

2 Related work39

A proper initialization method should avoid reducing or amplifying the magnitudes of input signals.40

In ANNs, Glorot & Bengio in [17] address the issue of saturated units for the logistic sigmoid41

activation function and propose a new weight initialization scheme aimed at maintaining constant42

activations and gradient variance across layers. He et. al [18] extend this analysis to Rectified Linear43

Unit (ReLU) activations, introducing the widely adopted Kaiming initialization for deep ANNs.44

In contrast, research on initialization schemes for SNNs is scarce and the problem of information45

propagation in SNNs has been often indirectly addressed. In [20] and [21] the appropriate membrane46

leak factor and firing threshold are learnt during training. Similarly, in [22, 23] some learnable47

parameters are incorporated in the SNN to optimize the neuron firing rate, thus increasing the48

computational complexity. Additionally, approaches like global unsupervised firing rate normalization49

[24], batch normalization adapted to SNNs [25, 26] and constraints on the membrane potential50

distributions [27, 28] help regulate spike response and information flow.51

Some studies regard ANN-SNN conversion as an initialization method [29], but this is limited to52

rate-based encoding, restricting its applicability to networks with alternative encoding schemes.53

Only a few studies directly address what constitutes a good initial state for SNNs. Some works attempt54

to empirically determine a suitable weight scale in the case of SNNs, often lacking a solid theoretical55

foundation [16, 30, 31, 32]. In [33] the authors derive a new initialization strategy considering56

the asymptotic spiking response given a mean-driven input. [15] proposes a fluctuation-driven57

initialization scheme, but neglects both the spiking and the resetting mechanism. In [34] a specular58

approach similar to the one presented in [18] is studied, yet the theoretical insights lack empirical59

validation.60

3 Methods61

3.1 The spiking neuron62

The Leaky-Integrate-and-Fire (LIF) neuron [1] is one of the most popular models used in SNNs63

[2, 35] and neuromorphic hardware [7, 6] to emulate the functionality of biological neurons. The64

state of a LIF neuron at time t is given by the membrane potential U(t) which evolves according to65

τ
dU(t)

dt
= −U(t) +RI(t), (1)

where τ is the membrane time constant, R is the resistance of the membrane and I(t) is the time-66

varying input current. Following previous works [26] we use the discretized equation with time step67

∆t which gives membrane potential u at time step t as:68

ut = βut−1 +
∑
j

wjx
t
j , (2)

where β ∝ (1−∆t/τ) is a leak factor ∈ [0, 1] governing the rate at which the membrane potential69

decays over time, j is the index of the pre-synaptic neuron, wj represents the weight of the connection70

between the pre- and post-synaptic neurons and xj is the binary spike activation. When the membrane71

potential u exceeds a firing threshold θ, the neuron emits a binary output spike x = 1. After firing,72

the membrane potential is reset by subtracting from its value the threshold θ (soft reset).73

3.2 Weight initialization for a spiking neural network74

Our derivation is inspired by He et al. [18], which suggests that an effective weight initialization75

should enable information flow across many network layers by keeping the variance of the input to76

each layer constant. We examine the variance of responses within each layer of a fully-connected77

SNN initialized at time step t = 0.78

For a generic layer l with m neurons:79

ul = wlxl (3)
xl = f(ul−1) (4)
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Figure 1: Comparison of standard activation functions for ANNs (top) and SNNs (bottom). When
applied to pre-activation distribution ul−1 (left) the SNN thresholding mechanism (middle) generates
binarized activations xl (right). The dark shaded areas of ul−1 correspond to the fraction of neurons
which will be activated and provide non-zero input to the next layer. With identical input distributions,
this fraction is considerably lower for SNNs. This highlights why weight initializations optimized for
ReLU will lead to vanishing activity in deep SNNs.

Here xl ∈ {0, 1}n is a binary vector representing the n input spikes, wl ∈ Rm×n is the weight80

matrix and ul ∈ Rm represents the membrane potentials of neurons in layer l. xl is obtained by81

applying the activation function f to the membrane potentials of layer l − 1. In a conventional SNN82

f is defined as the Heaviside step function:83

f(ul−1) =

{
1, if ul−1 > θ

0, if ul−1 < θ
(5)

where ul−1 are the elements of ul−1 and θ > 0 is the neurons firing threshold. We assume that the84

elements of wl are mutually independent and share the same distribution (i.i.d.). Following [18] and85

[17], the elements of xl are also considered to be mutually independent and identically distributed86

(i.i.d.). Lastly, wl and xl are independent of each other. We can then write:87

Var[ul] = nlVar[wlxl]. (6)

Here ul, wl, and xl represent each random variable element in ul, wl and xl respectively. We choose88

wl to be symmetrically distributed around 0. Since wl and xl are independent of each other, we can89

rewrite the variance of their product as:90

Var[ul] = nlVar[wl]E[x2
l ], (7)

where E[x2
l ] is the expected value of x2

l . It is worth noting that the expression E[x2
l ] strongly depends91

on the network activation function. Here is where our derivations differ from He et al. [18].92

By assuming that ul−1 is zero-centered and symmetric around its mean, for a ReLU activation93

function, xl = max(0, ul−1), one obtains E[x2
l ] =

1
2Var[ul−1]. This result stems from the fact that94

the ReLU function preserves exactly the positive half of the distribution it acts upon. As depicted in95

Figure 1, this doesn’t hold true for the activation function of SNNs where, by definition, θ > 0. This96

difference leads to considerably sparser activations in SNNs. In the case of an SNN, we can express97

E[x2
l ] as:98

E[x2
l ] =

n∑
j=1

xj2

l P (xl = xj
l ). (8)

The binary elements xj
l ∈ {0, 1} represent spikes. Applying the SNN activation function (5) to Eq. 8,99

we find that E[x2
l ] = P (ul−1 > θ). Equation 7 can then be rewritten as:100

Var[ul] = nlVar[wl]P (ul−1 > θ). (9)

As commonly done in recent works [28, 20, 36, 23], we consider a real-valued input I0 encoded to101

binary spikes using the first layer of the SNN. When feeding I0 to the membrane potentials u0 of the102

initial layer, u0 = I0 and u0 trivially follows the same distribution as the input. We let I0 be standard103

normal distributed I0 ∼ N (µ = 0, σ2 = 1), thus Var[u0] = 1, E[u0] = 0. A proper initialization104

method should avoid reducing or amplifying the magnitudes of the input signals when propagated105
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across the network layers. This condition can be met if Var[ul] = 1 for every layer l, which lets us106

simplify Eq. 9 and leads to a zero-mean Gaussian weight distribution with variance:107

Var[wl] =
1

nlP (ul−1 > θ)
(10)

Equation 10 is our proposed weight initialization method for training deep SNNs. Note that in terms108

of architecture parameters, it only depends on the number of input neurons n.109

Because ul−1 is symmetric around 0 and θ > 0, then P (ul−1 > θ) < 1
2 . It is important to note that:110

1

nlP (ul−1 > θ)
>

2

nl
, (11)

Where 2
nl

is the standard initialization for a ReLU network [18]. Thus, initializing the weights of111

an SNN using a method designed for conventional ANNs with ReLU activation functions does not112

ensure the propagation of information from the input throughout the network.113

4 Validation with numerical simulations114

Unless otherwise specified, we consider fully-connected SNNs with 100 layers and n = 1000 LIF115

neurons in each layer. The input I0 is real-valued and randomly drawn from N (µ = 0, σ2 = 1).116

Consistently with the derivation in 3.2, we encode the inputs to binary spikes by feeding them to the117

membrane potentials of the initial LIF layer u0.118

We investigate the behavior of activity propagation under different weight initialization schemes119

and compare our method against the prevailing choice for conventional ANNs: Kaiming initial-120

ization ([18]). The weights in the network are therefore randomly initialized respectively from121

N (0,
√

1
nP (u0>θ) ) (our method) and N (0,

√
2
n ) (Kaiming), where n is the layer width. Since122

u0 ∼ N (0, 1) , P (u0 > θ) is defined as:123

P (u0 > θ) =

∫ ∞

θ

1√
2π

e−
u2
0
2 du0. (12)

The integral in Eq. 12 doesn’t have a closed-form solution, but it can be numerically estimated using124

the error function [37]. We recall from 3.2 that, to retain the activity over depth, we aim to conserve125

Var[ul] across the layers. We initialize the network at time t = 0, propagate the input across its layers,126

record the values of the membrane potentials ul in every layer l and compute their variance. Figure 2127

shows how Var[ul] evolves with depth for the 2 different initialization schemes and for 6 different128

values of the firing threshold θ. For every different value of θ, we run the simulation 20 times and129

plot the average. The shaded areas represent the standard deviation over the different runs.130

The results (Figure 2, left) demonstrate that in an SNN initialized with our proposed method, the131

variance Var[ul] of the neuron states stays constant across layers regardless of the threshold θ, as132

the theory predicts. Conversely, with Kaiming initialization, information dissipates across layers,133

especially as firing thresholds increase. The only effective way to preserve information with Kaiming134

is to set θ = 0, where the activation function becomes effectively equivalent to ReLU.135
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Figure 2: Propagation of Var[ul] across network layers for (left) our initialization scheme and (right)
Kaiming for six firing threshold values (θ). For all θ, our proposed initialization method enables
information propagation across all 100 layers. In contrast, Kaiming initialization leads to information
dissipation across layers, particularly evident with higher threshold values. Each simulation was
repeated 20 times, and the shaded areas represent the standard deviation over these runs.
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4.1 Extension to multiple time steps136

SNNs excel at processing time-dependent input thanks to the intrinsic memory of their spiking137

neurons, represented by the membrane potential u. This makes them particularly suited for tasks138

involving dynamic temporal patterns, like speech recognition and video analysis [38, 39, 40].139

In this section, we extend the analysis from Section 4 to examine how weight initialization impacts140

information propagation across both space and time in multiple time-step simulations of deep SNNs.141

We employ fully-connected SNNs of 100 layers with n = 1000 neurons in each layer. We consider142

LIF neurons with soft reset and numerically compute the discrete-time dynamics based on Eq. 2. The143

dynamics of the membrane potentials including the reset term is given by:144

ut
l = wt

lx
t
l + βut−1

l − xt−1
l+1θ (13)

for time step t > 0 and layer l. β ∈ [0, 1] is the leak factor. Network weights are randomly initialized145

either using our initialization scheme or Kaiming, and the inputs are randomly drawn from ∼ N (0, 1),146

same as in Section 4. Differently, in this section, we iteratively feed the input (constant over time) to147

the membrane potentials of the initial LIF layer ut
0 at every time step t. We compute the variance of148

the membrane potentials ut
l and the total number of spikes at every layer l and time step t, for a total149

of T = 20 time steps. We repeat each simulation 10 times, and report their average.150

(a) β = 0.5 (b) β = 0.9

Figure 3: Propagation of Var[ut
l] (top row) and number of spikes (bottom row) across layers and

time steps for our initialization method and Kaiming averaged over 10 runs. (a) Our proposed
weight initialization preserves activity and propagates spikes through 100 layers and 20 time steps.
In contrast, with Kaiming initialization neuronal activity rapidly dies out. (b) The effect of the
leak and reset terms becomes more pronounced for high values of β and pushes the network into
the dissipative regime. However, with our proposed initialization method, we can still successfully
retrieve an output.
The network initialized with our method succeeds in conserving the Var[ut

l ] across both space and151

time, whereas the network initialized with Kaiming fails (Fig. 3a). Conserving Var[ut
l ] is crucial, as it152

means conserving the number of spikes, and therefore ensuring a consistent network output.153

Although our mathematical derivation does not explicitly take time into account, unlike methods154

derived for ANNs, it considers the specific SNN activation function, and by keeping the variance155

of the membrane potentials ul constant, it aims to indirectly keep the variance of the layer input156

wlxl constant (Eq. 3). This helps to effectively propagate information also across multiple time157

steps. Nevertheless, deviations from theory are expected due to the leak and reset terms (Eq. 13). In158

particular, the reset operation affects the membrane potential distributions, violating the assumption159

of a normal distribution symmetrically centered around 0 (see Appendix 7: Figure 5). However, how160

well the normal distribution still holds as an approximation depends on neuron hyperparameters.161

For example, deviations from theory are visible at higher values of β. A larger β leads to broader162

distributions of ut
l , and thus to a more abrupt change in the distributions when neurons with ut

l > θ are163

reset. As illustrated in Fig. 3b, when β = 0.9, the network dissipates energy over time. We attribute164

this dissipation to the shift in ut
l distributions. Still, we note that with our proposed initialization165

method, we can still successfully retrieve an output, unlike with Kaiming.166
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5 Experiments on MNIST167

To empirically evaluate our variance-conserving weight initialization, we conduct object classification168

experiments using the MNIST digits dataset [41]. The 28×28 pixel grey-scale images are normalized169

to have mean 0 and variance 1, in line with the assumptions used in the derivations. As in Section 4170

the inputs are encoded to binary spikes using the first LIF layer. The final layer of the network171

outputs binary spikes, which are accumulated over time steps and passed to the cross-entropy loss172

function. Unless otherwise specified, we employ a fully-connected SNN consisting of 10 layers, each173

comprising n = 600 LIF neurons with soft reset. We set θ = 1 and β = 0.5.174

Commonly, SNNs performing spike-count based object classification use a large number of total time175

steps T . A typical range of T can be between 10 and a few thousand [42]. Here, we set the number176

of total time steps to T = 3. We hypothesize that initializations which enable constant information177

propagation across depth might also enable inference with low latency, where there is no need to wait178

for many time steps to accumulate the necessary number of output spikes.179

The network is trained for 150 epochs using backpropagation through time (BPTT) [16] and the arctan180

surrogate gradient function [23]. We utilize the Adam optimizer [43] with a learning rate of 1× 10−3181

and employ cosine annealing scheduling. The runtime for each experiment is approximately 2 hours182

on a single GPU. Our weight initialization method is compared to Kaiming, as in previous sections.183

Figure 4: Test accuracy on MNIST for different values of network depth (left) and β (right). Our
proposed initialization (solid lines) achieves better generalization than Kaiming (dashed lines).

The results illustrated in Figure 4 show that our method generally allows an SNN to converge faster184

and to achieve better accuracy than Kaiming for different values of network depth and β. We attribute185

the poor convergence and lower task performance of Kaiming-initialized networks to inadequate186

activity propagation, as supported by both theoretical insights and empirical findings from previous187

sections. Specifically, training becomes increasingly challenging with deeper networks, lower values188

of β (leading to less information retention from the previous time step) and higher values of θ189

(resulting in fewer neurons emitting spikes) (see Appendix 7: Figure 6).190

6 Conclusion and Discussion191

In this paper, we address the problem of weight initialization in Spiking Neural Networks (SNNs)192

and show how the techniques developed for ANNs, such as Kaiming initialization, are inadequate for193

SNNs. We analytically derive and empirically test a novel weight initialization method which takes194

into account the specific activation function of SNNs. Our weight initialization depends only on the195

number of input neurons n to a layer and is therefore broadly applicable to all deep, spiking network196

architectures with fixed connectivity maps. We demonstrate that our proposed initialization is robust197

against variations in several network and neuron hyperparameters, which can enable deep activity198

propagation for diverse models and machine learning tasks.199

A limitation of our proposed initialization is that it does not account for the temporal dynamics of200

membrane potentials ul. Specifically, after neurons are reset, our assumption that ul is normally201

distributed around zero is violated. We observe that the extent to which the normal distribution202

remains a valid approximation depends on the neuron hyperparameters, although our initialization203

seems more robust than Kaiming and the theory can be expanded to explicitly take into account the204

temporal variations in ul. Another assumption of our derivation is that the activations xl are mutually205

independent. This assumption is typically violated in the case of real-world data, such as images.206

Empirically, in section 5 we illustrate how, for an SNN trained on MNIST, our variance-conserving207

initialization scheme still translates into accelerated training, improved accuracy and low latency208

compared to Kaiming. Nevertheless, we acknowledge the necessity of extending this analysis to209

more complex architectures and datasets, in order to evaluate its effectiveness in various settings.210
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7 Appendix314

The reset operation violates the assumption that ut
l is always normally distributed and symmetrically315

centered around 0, especially for higher values of β. In Figure 5 we show the values of skewness and316

excess kurtosis for ut
l across layers and time steps in the case of β = 0.9. Skewness measures the317

degree of asymmetry of the distribution, while excess kurtosis measures the degree of peakedness318

and flatness of a distribution. A normal distribution has 0 skewness and 0 excess kurtosis. We note319

how ut
l tends to a left-skewed and heavy-tailed distribution.320

Figure 5: Skewness (left) and excess kurtosis (right) of ut
l across layers and time steps for β = 0.9.

Figure 6: Test accuracy on MNIST for different values of layer width (left) and θ (right). We compare
our proposed initialization method (solid lines) to Kaiming (dashed lines) and find that it achieves
better training accuracy and faster convergence.
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