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ABSTRACT

Large Scale Pre-Trained Language Models (PTMs) have demonstrated unprece-
dented capabilities across diverse natural language processing tasks. Adapt-
ing such models to downstream tasks is computationally intensive and time-
consuming, particularly in black-box scenarios common in Language-Model-as-
a-Service (LMaaS) environments, where model parameters and gradients are in-
accessible. Recently, black-box prompt learning using zeroth-order gradients
has emerged as a promising approach to address these challenges by optimiz-
ing learnable continuous prompts in embedding spaces, starting with randomly
initialized discrete text prompts. However, its reliance on randomly initialized
discrete prompts limits adaptability to diverse downstream tasks or models. To
address this limitation, this paper introduces ZO-PoG, a novel framework that
optimizes prompts through a collaborative approach, combining Policy Gradient
optimization for initial discrete text prompts and Zeroth-Order optimization for
continuous prompts in embedding space. By optimizing collaboratively between
discrete and continuous prompts, ZO-PoG maximizes adaptability to downstream
tasks, achieving superior results without direct access to the model’s internal struc-
tures. Importantly, we establish the sub-linear convergence of ZO-PoG under mild
assumptions. The experiments on different datasets demonstrate significant im-
provements in various tasks compared to the baselines. Our code is available at the
following anonymous URL: https://anonymous.4open.science/r/ZO-PoG-12B4.

1 INTRODUCTION

Large-scale Pre-trained Language Models (PTMs) have demonstrated exceptional capabilities across
a broad spectrum of natural language processing tasks (Devlin, 2018; Raffel et al., 2020; Brown,
2020; Zhang et al., 2021; Zeng et al., 2021; Sun et al., 2021; Fedus et al., 2022), particularly since
the advent of models like GPT-3 by (Brown, 2020). Their popularity stems from their ability to
generalize to various downstream tasks with minimal supervision, often through few-shot or zero-
shot learning.

However, commercial models often limit users to interacting with PTMs solely via APIs, offer-
ing no access to the underlying parameters or gradients so we cannot optimize the model by the
traditional method. In reality, adapting PTMs to specific tasks remains computationally intensive,
especially in black-box scenarios common in Language-Model-as-a-Service (LMaaS) environments
(Zhao et al., 2022; Sun et al., 2022b), where direct access to model parameters and gradients is re-
stricted. Moreover, the growing size and complexity pose significant challenges for practical adap-
tation and deployment. Fine-tuning PTMs requires extensive computational resources and access to
model parameters, which is often impractical for many users due to cost and privacy concerns.

To overcome these challenges, black-box prompt learning has emerged as a promising solution. This
approach seeks to modify and optimize input prompts to improve task performance while avoiding
the need for full model access or fine-tuning. Prompt learning focuses on crafting or optimizing
input prompts to guide the PTM in producing task-relevant outputs. A successful prompt can trans-
form the model’s behavior on various downstream tasks, improving performance without modifying
the model. In scenarios where only function evaluations are available, derivative-free optimization
(DFO) algorithms have been widely used. In a black-box setting, this optimization needs to be
derivative-free, as gradients are not available.
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Building on these insights, several approaches for black-box prompt learning have emerged, such
as Black-Box Tuning (BBT) (Sun et al., 2022a), which optimizes continuous prompts through
derivative-free methods in embedding space. Since the dimensionality of the original embedding
space could be tens of thousands while DFO methods suffer from high variance in high-dimensional
space. BBT proposed to solve this problem by optimizing the continuous prompts in a low-
dimensional subspace based on the fact that common PTMs already have a low intrinsic dimen-
sionality (Li et al., 2018; Aghajanyan et al., 2020). This leads to an effective way of utilizing DFO
algorithms for black-box prompt learning. Despite these advances, these methods encounter notable
limitations.

Continuous prompt tuning often starts with randomly initialized discrete prompts, which can result
in suboptimal performance and limit adaptability across different tasks and models. The discrete-
to-continuous transfer lacks guidance from task-specific signals, reducing the efficiency and adapt-
ability of the learned prompts. Besides optimizing continuous prompt in embedding space, recent
research has also proposed effective methods for optimizing discrete prompts directly (Deng et al.,
2022; Diao et al., 2022). These approaches have demonstrated promising results, offering pathways
to enhance discrete prompt optimization. However, while these methods offer a structured way
to optimize discrete prompts, they often struggle to efficiently translate task-specific information
into the continuous embeddings used by language models or to effectively guide model behavior in
black-box settings where internal parameters are inaccessible.

This brings us to a critical question: can we harness the strengths of both discrete and continuous
prompt optimization to create a more adaptable and robust prompting framework? In order to tackle
the above problem, this paper presents zeroth-order and policy gradient method (ZO-PoG) - a collab-
orative framework that alternates between optimizing discrete prompts and continuous prompts in
low-dimensional intrinsic spaces. For discrete prompt optimization, we first reparamterize the cate-
gorical distribution of the PTM vocabulary with Gumbel-Softmax trick (Maddison et al., 2016; Jang
et al., 2016) and use the policy gradient method (Diao et al., 2022) for gradient approximation in
the black-box setting. This allows us to optimize in parameter space rather than token probabilities,
mitigating bias. For continuous prompt optimization, we use zeroth-order gradient to optimize in the
lower-dimensional subspace by using a random projection. By doing so, ZO-PoG bridges the gap
between discrete and continuous prompt learning, ensuring that prompts are tailored to maximize
performance across diverse downstream tasks in black-box environments.

The main contributions of this paper are summarized as follows:

• We introduce ZO-PoG, a prompt learning framework that alternates between optimizing
discrete and continuous prompts. This approach is the first to jointly optimize both discrete
text prompts and the continuous embeddings for black-box PTMs, enhancing the adapt-
ability and performance of the prompts across different downstream tasks.

• We formally establish the convergence of our framework, showing that ZO-PoG achieves
a sub-linear convergence rate under mild assumptions. Our analysis highlights how vari-
ance and biases are controlled by hyperparameters and mini-batch sizes, ensuring that our
method remains effective for tuning PTMs without accessing model parameters.

• Through extensive experiments on various datasets, we demonstrate that ZO-PoG signif-
icantly improves the performance of PTMs. Our findings also underscore the importance
of prompt initialization, showing that an optimized starting prompt is crucial for achiev-
ing better performance, thereby enhancing the overall effectiveness of our collaborative
optimization strategy.

2 RELATED WORK

Language Models as a Service. Language Models as a Service (LMaaS), which was early intro-
duced by Zhao et al. (2022); Sun et al. (2022b), describes a diagram where models are accessible
through APIs without direct access to their internal parameters. This paradigm has grown in promi-
nence with systems like OpenAI’s ChatGPT, Google’s PaLM. Recently, several lines of research
in the scope of LMaaS has focused on adapting pre-trained models to various downstream tasks.
One approach is through text prompting, where manually or automatically designed prompts help
tailor model outputs (Brown, 2020; Kojima et al., 2022). In-context learning further enhances this
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Figure 1: Overview of BBT (Up) and the proposed ZO-PoG framework (Down). Alternating
optimization process between discrete and continuous prompt tuning in the ZO-PoG framework.
The discrete prompts are first optimized through policy gradient in the parameter space to enhance
interpretability and task-specific alignment. Subsequently, the continuous prompt representations
are refined using zeroth-order gradient optimization in a low-dimensional intrinsic space.

by providing labeled examples within prompts to quickly adapt the model (Chen et al., 2021; Xie
et al., 2021). The capabilities of PTMs also evaluated across multiple benchmarks (Liang et al.,
2022; Chang et al., 2024; Bubeck et al., 2023).

Black-box Prompt Learning. Black-box prompt learning methods aim to modify input prompts
to guide the PTM toward producing task-relevant outputs. A key challenge lies in optimizing these
prompts without access to gradients or internal parameters, leading to reliance on derivative-free
optimization (DFO) algorithms. One line of this kind of works focused on optimizing the soft
prompts in continuous embedding space. One notable work in this area is Black-Box Tuning (BBT)
(Sun et al., 2022b), which optimizes soft prompt with Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). BBT addressed the challenge of high dimensionality in the embedding space
by focusing on a lower-dimensional subspace, leveraging the low intrinsic dimensionality of PTMs.
BBTv2 (Sun et al., 2022a), an improved version of BBT, optimizes prompts across all layers of a
pre-trained language model using a gradient-free, divide-and-conquer algorithm, achieving few-shot
learning performance comparable to full model tuning with significantly fewer tunable parameters.
Another line of work focused on optimizing discrete prompt tokens in black-box scenarios, which
is more suitable for black-box large language models with inference APIs like ChatGPT, GPT-4,
Claude, etc. These work can mainly be categorized by reinforcement learning (Deng et al., 2022;
Zhang et al., 2023), ensemble (Hou et al., 2023), iterative search (Prasad et al., 2022), policy gradient
optimization (Diao et al., 2022), Bayesian optimization for instruction optimization(Chen et al.,
2024; Hu et al., 2024), multi-armed bandit (Pryzant et al., 2023; Lin et al., 2023; Shi et al., 2024).

3 METHODOLOGY

In this section, we start by introducing the problem formulation in Section 3.1, where we define the
task of optimizing prompts for a pre-trained language model (PTM) in a black-box setting. Specif-
ically, we focus on optimizing input prompts to improve the model’s performance on downstream
tasks. Then, in Section 3.2, we present the discrete prompt optimization approach using policy gradi-
ent estimations to find optimal prompts over the vocabulary space. Next, we proceed to Section 3.3,
where we describe continuous prompt learning through zeroth-order gradient (ZO), which allows for
fine-grained adjustments in the prompt embeddings without requiring access to gradients. Finally,
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we present our alternating optimization strategy in Section 3.4, where we collaboratively optimize
both discrete and continuous prompts, enabling effective performance on downstream tasks.

Notations. Throughout this paper, we use bold uppercase letters (e.g., A) to denote matrices and
bold lowercase letters (e.g., z) to denote vectors. We use T = [t1, t2, . . . , tn] to represent the
prompt tokens of length n and each token ti is chosen from the PTM vocabulary V . We use
p = [p1, . . . , pn] ∈ R|V|×n to denote the probability distribution of the prompt tokens over the
vocabulary. Each pi should satisfy the categorical distribution, i.e., ∀i = 1, . . . , n, pi ∈ C := {p :
∥p∥1 = 1, 0 ⪯ p ⪯ 1}. We use e(·) : Vn → RD to denote the map from prompt tokens of length n
to the prompt embedding of dimension D. We use ∥ · ∥ to denote the Euclidean norm of a vector.

3.1 PROBLEM FORMULATION

Given a pre-trained language model (PTM) in a black-box scenario, we aim to optimize the input
prompts to enhance the model’s performance on specific downstream tasks. Specifically, for a batch
of primitive texts X and labels Y , the general goal of prompt learning is to find the optimal prompt
p∗ = argminp∈RD L(f(p;X), Y ), where D is the dimensionality of the prompt embedding space
and f represents a black-box PTM where the inputs are combined with learnable prompts and the
primitive texts X . Directly optimizing the prompt in the embedding space is impractical due to the
high dimensionality, which can reach tens of thousands. Sun et al. (2022b) proposed to optimize over
the subspace of the original embedding space with much lower intrinsic dimensionality. Specifically,
the objective is

z∗ = argmin
z
L(f(Az+ p0;X), Y ),

where z ∈ Rd, A ∈ RD×d is the projection matrix (with d≪ D), D = {X,Y } is the total dataset,
and p0 ∈ RD is the initial prompt, which are embedded tokens chosen randomly from the PTM
vocabulary.

However, random initialization may lead to a suboptimal prompt. A more effective approach is
to optimize the initial prompt p0. Directly optimizing the initial prompt in the embedding space
presents the same challenge of high dimensionality. To address this, we propose to optimize the
initial prompt p0 in the discrete probability space of the PTM vocabulary, rather than the continuous
embedding space. Specifically, instead of selecting prompt tokens uniformly at random from the
PTM vocabulary, we aim to learn a distribution over the vocabulary, allowing for more targeted and
meaningful token selection. The details of the optimization method of the probability distribution
will be discussed in Section 3.2.

Based on the above considerations, we will optimize the initial discrete prompt p0 by learning a
probability distribution over the vocabulary rather than selecting prompt tokens randomly. This
allows us to improve the selection of tokens and guide the model more effectively in black-box
settings. Following this, we will alternate between optimizing the discrete prompt p0 and optimizing
the continuous prompt z in the lower-dimensional intrinsic space, ensuring an efficient and scalable
solution to prompt learning in black-box scenarios. The main objective of this work becomes:

min
P (T ),z

ET∼P (T )L (f(Az+ p0;X), Y ) = ET∼P (T )L(f(Az+ e(T );X), Y ). (1)

In the above objective, the prompt p can be decomposed into three components: an initial discrete
prompt embedding p0 ∈ RD obtained by sampling n tokens from the PTM vocabulary with a
trainable distribution, a continuous intrinsic low dimensional vector z ∈ Rd, and a random matrix
A ∈ RD×d that projects z back to the original high dimensional prompt embedding space.

3.2 BLACK-BOX DISCRETE PROMPT LEARNING WITH POLICY GRADIENT

To optimize discrete text prompts in black-box scenarios, we adopt a policy gradient approach.
Specifically, we aim to optimize the distribution of discrete prompt tokens over a given vocabulary,
where each token is represented by a probability distribution. Let p = [p1, . . . , pn] ∈ R|V|×n denote
the probability distribution of n discrete prompt tokens over the vocabulary V of size |V|, where
pi ∈ C := {p : ∥p∥1 = 1, 0 ⪯ p ⪯ 1}.
Gumbel-Softmax Trick for Smoothing Optimization. Instead of directly manipulating the prob-
ability distribution, we reparameterize the categorical distribution using the Gumbel-Softmax trick
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(Jang et al., 2016; Maddison et al., 2016). This allows us to transform the optimization process into
one over continuous parameters, reducing bias and ensuring smooth optimization. To be specific,

pi,j = softmax
(
log(αi,j) + gi,j

τ

)
=

exp
(

log(αi,j)+gi,j
τ

)
∑|V|

l=1 exp
(

log(αi,l)+gi,l
τ

) , (2)

where αi,j denotes the j-th component of a column vector αi, gi,j is the Gumbel random variable,
which is sampled from the Gumbel(0, 1) distribution and τ is the temperature parameter controlling
the smoothness of the approximation. After reparameterization, the optimization objective becomes:

min
α,z

ET∼P (T |α)L(f(Az+ e(T );X), Y ). (3)

For abbreviation, we denote L(f(Az+ e(T );X), Y ) as L(T ) for fixed z in the rest of this subsec-
tion.

Since accessing the model’s internal parameters is often restricted, the problem involves optimizing
the discrete probability distribution with just forward passes through the black-box models. To
achieve this, we will adopt the policy gradient estimator (PGE) to optimize the above objective.
According to the policy gradient theorem (Sutton et al., 1999), we can estimate the parameter’s
gradient with respect to αi by:

∇αi
ET [L(T )] =

∑
T∈Vn

L(T )∇αi
P (T |α) =

∑
T∈Vn

L(T )P (T |α)

P (T |α)
∇αi

P (T |α)

=
∑

T∈Vn

P (T |α)L(T )∇αi logP (T |α) = EP (T |α)[L(T )∇αi log Π
n
j=1P (tj |αj)]

= EP (T |α)[L(T )∇αi
logP (ti|αi)].

Variance Reduction in Policy Gradient Estimation. One of the primary challenges in applying
policy gradient methods is the high variance in gradient estimates, which can lead to unstable updates
and slow convergence. To address this, we implement a variance-reduced policy gradient estimator
(VR-PGE) (Williams, 1992; Dong et al., 2020; Zhou et al., 2021; Diao et al., 2022), which reduces
variance by subtracting a baseline from the reward function during updates. The estimated gradient
is calculated by:

gvrαi
=

1

I − 1

I∑
k=1

L(T (k))− 1

I

I∑
j=1

L(T (j))

∇αi
logP (ti|αi), (4)

where T (k), k = 1, · · · , I are sampled independently from P (T |α) with parameter α ∈ R|V|×n.

3.3 BLACK-BOX CONTINUOUS PROMPT LEARNING WITH ZEROTH-ORDER GRADIENT

In addition to optimizing discrete prompts described in Section 3.2, continuous prompts provide a
more fine-grained mechanism to guide pre-trained models (PTMs) in black-box settings. Given that
the internal gradients of black-box models are inaccessible, zeroth-order gradient (ZO) (Nesterov
& Spokoiny, 2017) is an effective approach for optimizing continuous prompts without needing
gradient information.

For abbreviation, we denote L(f(Az + e(T );X), Y ) as L(z) for fixed e(T ) in the rest of this
subsection. Then, we aim to optimize a low-dimensional continuous vector z ∈ Rd in the intrinsic
subspace of the prompt embedding space. The ZO gradient estimator approximates the gradient of
the loss function using a symmetric difference:

gz =
L(z+ µu)− L(z− µu)

2µ
u, (5)

where µ > 0 is the smoothing parameter, which is a small positive constant and u ∈ Rd is distributed
in N (0, Id).

5
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3.4 ALTERNATING OPTIMIZATION BETWEEN DISCRETE AND CONTINUOUS PROMPTS

In this section, we describe our proposed optimization algorithm, which alternates between optimiz-
ing discrete and continuous prompts. This method takes advantage of the unique properties of both
prompt types to effectively enhance performance in black-box models. The algorithm leverages the
strengths of policy gradient for discrete prompt optimization and zeroth-order gradient estimation
for continuous prompts, achieving efficient prompt learning in black-box settings.

In each iteration, the optimization process alternates between two key steps: 1) Discrete Prompt
Optimization: This involves learning a distribution over discrete prompt tokens from the model’s
vocabulary. Each token in the prompt is sampled from a Gumbel-Softmax distribution, and policy
gradient methods are used to update the distribution parameters α ∈ R|V|×n. 2) Continuous Prompt
Optimization: After discrete prompts are optimized, the continuous prompt, represented as a low-
dimensional vector z ∈ Rd in the prompt embedding space, is optimized using zeroth-order gradient
estimation. This is crucial in the black-box setting where internal gradients are unavailable.

By alternating between discrete prompt optimization and continuous prompt optimization ensures
that both the categorical structure of tokens and the fine-grained continuous embeddings are op-
timized in tandem. This complementary approach maximizes the model’s performance on down-
stream tasks by balancing discrete token selection with smooth embedding adjustments.

Algorithm 1 Black-Box Prompt Learning via Zeroth-Order and Policy Gradient Method
Input: Parameters of categorical distributions α1, · · · ,αn, temperature parameter τ , prediction

model f , PTMs embedding function e(·), downstream dataset D, mini-batch size B, learning
rates ηα, ηz and sample times I1, I2.

1: Initialize α0
1, · · · ,α0

n, z
0

2: for t in 0 to T − 1 do
3: Draw a mini-batch St = {Xt, Yt} = {xi, yi}Bi=1 from D
4: for k in 1 to I1 do
5: Sample j

(k)
1,t ∼ GS(αt

1, τ), · · · , j
(k)
n,t ∼ GS(αt

n, τ)

6: p
(k)
0,t = e(t

(k)
1 , · · · , t(k)n ) = e(V[j(k)1 ], · · · ,V[j(k)n ])

7: Lavg = 1
I1

∑I1
k=1 L(f(Azt + p

(k)
0,t ;Xt), Yt)

8: for i in 1 to n do
9: gvrαt

i
= 1

I1−1

∑I1
k=1(L(f(Azt + p

(k)
0,t ;Xt), Yt)− Lavg)∇αi

logP (t
(k)
i |αt

i)

10: αt+1
i ← αt

i − ηαg
vr
αt

i
▷ Update discrete vocabulary distribution

11: for l in 1 to I2 do
12: Sample j

(l)
1,t ∼ GS(αt+1

1 , τ), · · · , j(l)n,t ∼ GS(αt+1
n , τ)

13: p
(l)
0,t = e(t

(l)
1,t, · · · , t

(l)
n,t) = e(V[j(l)1,t], · · · ,V[j

(l)
n,t])

14: Sample u
(l)
t ∼ N (0, Id)

15: g
(l)
zt =

L(f(A(zt + µu
(l)
t ) + p

(l)
0,t;Xt), Yt)− L(f(A(zt − µu

(l)
t ) + p

(l)
0,t;Xt), Yt)

2µ
u
(l)
t

16: gzt =
1

I2

∑I2
l=1 g

(l)
zt

17: zt+1 = zt − ηzgzt ▷ Update continuous prompt
Return: αT

1 , · · · ,αT
n , z

T

4 CONVERGENCE ANALYSIS

In this section, we provide a detailed analysis of the convergence behavior of our proposed frame-
work. Our goal is to demonstrate the convergence properties of the alternating optimization process
that integrates the policy gradient method for discrete prompt learning and the zeroth-order method
for continuous prompt optimization.

We begin by establishing several basic assumptions about the smoothness and bounded variance
of the loss function. Under these assumptions, we derive the convergence rate of our method and
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analyze the impact of both the policy gradient and zeroth-order gradient on the overall convergence.
Specifically, we make the following assumptions:
Assumption 1 (Smoothness). For convenience, we will use L(α, z) to represent the loss function
L(f(Az + p0;X), Y ), where D = {X,Y } is the whole dataset, f is the prediction function, and
p0 is sampled from the token distribution which is generated by α. Suppose that L(·) is block-wise
smooth with gradient Lipschitz constant Lα, that is for ∀α,α′ ∈ R|V|×n, z ∈ Rd :

∥∇αL(α, z)−∇αL(α′, z)∥ ≤ Lα∥α−α′∥. (6)

and block-wise smooth with gradient Lipschitz constant Lz, that is for ∀z, z′ ∈ Rd,α ∈ R|V|×n :

∥∇zL(α, z)−∇zL(α, z′)∥ ≤ Lz∥z− z′∥. (7)

Assumption 2 (Bounded Variance). Assume that the stochastic gradient has bounded variance, i.e.,

E(xi,yi)∈D∥∇αLi(α, z)−∇αL(α, z)∥2 ≤ σ2
α, ∀z ∈ Rd; (8)

E(xi,yi)∈D∥∇zLi(α, z)−∇zL(α, z)∥2 ≤ σ2
z, ∀α ∈ R|V|×n. (9)

Assumption 3. There exists a positive constant C < ∞ such that |LS(α, z)| < C, ∀α ∈
R|V|×n, z ∈ Rd.

Assumption 4. In the policy gradient method, we optimize αi, where i from 1 to n. The elements
in parameter vector αi can be written by αi,j has a lower bound denote: 0 ≤ ε ≤ αi,j .

Remark 1. During the experiments, after each iteration, we automatically set the elements αi,j

to 1 × 10−11 if they fall below this truncation threshold. This precaution prevents the gradient αi

from becoming excessively large or meaningless during optimization, which can occur due to the
properties of the logarithm. The lower bounded ε provides a guarantee to avoid the variance trends
to extremely large.

Proposition 1. Under Assumption 2, 3 and 4, the stochastic policy gradient gvrαi
has a bounded

variance

ESET∼P (T )∥gvrαi
−∇αiL(α, z)∥2

≤ 2ET∼P (T )∥gvrαi
−∇αi

LS(α, z)∥2︸ ︷︷ ︸
Where S is fixed

+2ES∥∇αiLS(α, z)−∇αiL(α, z)∥2︸ ︷︷ ︸
Variance from mini-batch S

≤
2σ2

g

I2
+

2σ2
α

B
,

where σ2
g =

8C2|V|
τ2ε2

, S = {xi, yi}Bi=1 and αi,j ≥ ε > 0.

Remark 2. This proposition demonstrates that the variance of the policy gradient is bounded under
the assumptions provided. The bounds depend on the mini-batch size B and the sampling times I ,
indicating that the variance can be controlled by choosing larger mini-batches and improving the
gradient approximation technique. By bounding this variance, the method ensures that the policy
gradient estimation is stable and reliable.

Based on these assumptions, we establish the following convergence result:

Theorem 1. Under Assumption 1, 2, 3 and 4, let {αt, zt}T−1
t=0 be the sequence generated by

running Algorithm 3.4, set ηα ≤ 1

2Lα
, ηz ≤

1

40(d+ 4)Lz
, I = O

(√
nκσg

ϵ

)
, B =

O
(
max{nκσ

2
α

ϵ2
,
κσ2

z

ϵ2
}
)
, µ = O

(
1

Lmax

√
ϵ2

d

)
and T = O

(
Lmax

ϵ2

)
, we have

1

T

T−1∑
t=0

E
(
∥∇αL(αt, zt)∥2 + ∥∇zL(αt+1, zt)∥2

)
≤ O(ϵ2), (10)

where Lmax = max{Lα, (d+ 4)Lz}, Lmin = min{Lα, (d+ 4)Lz}, and κ = Lmax/Lmin.

Remark 3. The above theorem establishes that ZO-PoG achieves an ϵ-stationary point in expecta-
tion with total query complexity (forward passes of the PTMs) T · I = O

(√
nκ
ϵ3

)
.
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5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Datasets. For performance evaluation, we chose 5 commonly utilized datasets from the GLUE
benchmark (Wang et al., 2018): CoLA (Warstadt et al., 2018), MNLI (Williams et al., 2017), QNLI
(Wang et al., 2019), SNLI (Bowman et al., 2015), and WNLI (Levesque et al., 2012). These datasets
encompass various typical language understanding tasks such as natural language inference.

Baselines. In our comparative analysis, we evaluate our proposed method against the following
black-box prompt learning techniques under the same experimental conditions: Manual Prompt
(MP) executes zero-shot evaluations on LLMs with human-crafted templates, providing initial per-
formance metrics. BBT (Sun et al., 2022b) optimizes continuous prompts within a random low-
dimensional subspace utilizing the Covariance Matrix Adaptation Evolution Strategy. BDPL (Diao
et al., 2022) is a policy gradient-based black-box discrete prompt learning method, which is men-
tioned in section 3.2. SSPT (Zhang et al., 2024) builds upon the BBT optimization paradigm by
employing subspace learning and selection to identify the optimal ultra-low-dimensional subspace,
replacing the random subspace.

Implementation Details. The experiments are executed on a cluster of NVIDIA A40 GPUs. We
employ RoBERTa-large (Liu et al., 2019), GPT2-XL (Radford et al., 2019), and Llama3 (AI@Meta,
2024) as our backbone models, and all pre-trained weights are sourced directly from HuggingFace.
All experiments are performed under the few-shot learning setting. We assemble the training and
development sets by randomly selecting m instances for each class from the original training data.
Comprehensive details of the input templates and hyperparameters used in our experiments can be
found in Appendix B.

Table 1: Comparison of test accuracy (mean±std) on RoBERTa-Large in 16-shot (per class) set-
ting. The best results are underlined. The bold represents the optimal result in the prompt learning
approach. Len represents the prompt length.

Len Method CoLA MNLI QNLI SNLI WNLI
- MP 48.51 27.18 51.91 38.00 42.25

20

BBT 56.18±3.34 27.82±0.38 52.97±1.58 37.39±0.33 50.23±6.95
BDPL 38.83±1.00 28.49±1.34 55.25±2.39 38.04±1.30 39.91±2.93
SSPT 44.65±7.52 30.32±1.28 53.10±2.23 36.84±2.99 46.01±3.54
Ours 56.79±8.28 35.11±0.34 55.44±0.98 39.12±0.29 53.99±0.81

50

BBT 49.76±4.51 26.98±0.34 52.83±0.86 38.80±0.35 44.60±6.95
BDPL 42.73±4.64 29.29±1.12 54.74±1.00 38.48±0.69 43.19±0.81
SSPT 49.60±1.20 29.75±2.49 53.74±0.14 41.52±2.05 51.17±4.07
Ours 56.18±7.59 35.46±0.15 55.33±0.32 41.99±0.60 56.34±1.41

Table 2: Comparison of test accuracy (mean±std) on GPT2-XL in 16-shot (per class) setting. The
best results are underlined. The bold represents the optimal result in the prompt learning approach.
Len represents the prompt length.

Len Method CoLA MNLI QNLI SNLI WNLI
- MP 67.88 30.95 50.30 35.16 47.89

20

BBT 30.97±0.10 32.31±1.82 50.73±0.30 33.25±0.09 55.40±1.63
BDPL 45.29±7.73 30.31±0.80 51.96±0.81 35.61±1.08 42.25±2.82
SSPT 49.89±3.54 31.48±0.93 50.97±0.69 36.25±0.44 48.83±1.63
Ours 53.69±3.74 34.26±0.52 52.21±1.93 37.17±1.75 56.81±0.81

50

BBT 31.83±0.10 32.40±2.46 50.72±0.17 33.27±0.12 55.40±1.63
BDPL 49.15±11.82 30.08±0.22 51.75±1.06 35.17±0.93 41.78±4.53
SSPT 53.18±3.29 32.34±2.16 51.17±1.24 37.84±0.34 53.52±2.82
Ours 58.87±2.55 34.84±0.77 51.85±0.49 37.88±0.35 56.34±2.44
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Table 3: Comparison of test accuracy (mean±std) on Llama3 in 16-shot (per class) setting. The best
results are underlined. The bold represents the optimal result in the prompt learning approach. Len
represents the prompt length.

Len Method CoLA MNLI QNLI SNLI WNLI
- MP 60.50 20.19 52.65 38.01 57.75

20

BBT 45.89±7.32 34.17±0.36 49.16±0.30 31.88±1.08 47.42±5.33
BDPL 45.83±7.12 31.10±0.44 55.11±1.21 34.45±1.16 54.93±2.44
SSPT 41.87±2.13 34.70±0.52 54.24±1.09 36.70±3.00 53.52±2.82
Ours 48.13±5.93 35.33±0.08 55.90±2.89 38.26±2.85 59.15±3.73

50

BBT 44.84±4.61 35.11±0.27 50.29±0.33 33.20±0.39 51.64±3.25
BDPL 39.98±1.26 31.94±1.45 53.80±1.76 37.32±3.17 57.28±0.81
SSPT 44.97±9.63 35.15±0.13 52.20±2.66 34.01±1.07 55.40±1.63
Ours 46.50±6.98 35.30±0.14 55.60±1.22 38.12±0.86 58.22±2.15

5.2 MAIN RESULTS

We perform experiments with different prompt lengths and report the mean test accuracy over 3
random seeds. The comparative results for each of the 3 backbone models are detailed in Tables 1,
2, and 3, respectively. Notably, the proposed collaborative optimization method outperforms other
prompt learning methods across all datasets. For instance, when employing the RoBERTa-large
model on WNLI with a prompt length of 50, ZO-PoG achieves an improvement of 5.17% over the
best baseline result. The experimental results confirm the effectiveness of jointly optimizing both
the discrete initialization prompt and the continuous prompt. When using GPT2-XL and Llama3
as backbone models on the CoLA dataset, all prompt learning methods perform worse than manual
prompts. This can be attributed to the CoLA task’s focus on grammatical acceptability, which aligns
better with the pretraining objectives of encoder-only models like RoBERTa. Decoder-only models
like GPT2-XL and Llama3, pretrained for generative tasks, are less sensitive to grammatical cor-
rectness unless explicitly encoded in the prompt. Additionally, learned prompts, such as those from
BDPL, may include grammatically incorrect tokens, further impairing the performance of decoder-
only models. In contrast, manual prompts, designed with grammatical correctness, provide clearer
guidance for these models, explaining their superior performance on CoLA. Additionally, the re-
sults for prompt lengths of 20 and 50 do not demonstrate a strict correlation between prompt length
and performance. We believe that shorter prompt lengths may constrain representational capac-
ity, whereas longer prompt lengths increase the number of parameters, making optimization more
challenging. We conducted an ablation study on the effect of prompt length in Appendix C.
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Figure 2: Ablations of the Gumbel-Softmax trick on RoBERTa-Large, GPT2-XL and Llama3 with
the prompt lengths of 20 (top) and 50 (bottom).
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5.3 ABLATION STUDY

Effect of Gumbel-Softmax Trick. We removed the Gumbel-Softmax trick from ZO-PoG and re-
placed it with the policy gradient estimation method used in (Diao et al., 2022). The comparative
results are presented in Figure 2. The results indicate that the Gumbel-Softmax trick has a positive
impact on the overall optimization in ZO-PoG.

Effect of Optimization Component. We separately removed the discrete prompt optimization
component (w/o Policy Gradient) and the continuous prompt optimization component (w/o Zeroth
Order) from ZO-PoG. The experimental results for the prompt lengths of 20 and 50 are presented
in Figure 3. It can be observed that ZO-PoG consistently maintains the best performance across all
backbone models. This demonstrates that ZO-PoG is capable of effectively combining both prompt
learning approaches, significantly enhancing the performance of LLMs on downstream tasks.
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Figure 3: Ablations of the collaborative optimization components on RoBERTa-Large, GPT2-XL
and Llama3 with the prompt lengths of 20 (left) and 50 (right).

6 CONCLUSION

In this paper, we propose a novel black-box prompt tuning framework for PTMs named Zeroth-
Order and Policy Gradient (ZO-PoG) method, which optimizes both discrete and continuous
prompts in the black-box setting. During the tuning process, we alternately optimize the discrete
prompts using the policy gradient in its parameters space and continuous prompts using the zeroth-
order gradient in the parameter’s low-intrinsic space. Our experiments show that ZO-PoG signifi-
cantly improves the Large language model’s performance in various downstream tasks while reduc-
ing the computational expense in the Black-box setting. Moreover, our convergence analysis proves
the effectiveness of our method.
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APPENDIX

A CONVERGENCE RATE ANALYSIS

A.1 AUXILIARY LEMMAS

Lemma 1. (Notation in Nesterov & Spokoiny (2017)) Denote: f ∈ C1,1(Rd), if:
∥∇f(x)−∇f(y)∥ ≤ L∥y − x∥,

where x, y ∈ Rd. This condition is equivalent to the following inequality:

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L2

2
∥y − x∥2, x, y ∈ Rd. (11)

Lemma 2. (Lemma 1 in Nesterov & Spokoiny (2017)) We often need bounds for the moments:

Mp :=
1

κ

∫
Rd

∥u∥pe− 1
2∥u∥

2

du,

where κ =
∫
Rd e

− 1
2∥u∥

2

du. For p ∈ [0, 2], d represents the dimensional of the space, then we have:

Mp ≤ dp/2.

If p ≥ 2, then we have two-side bounds:
dp/2 ≤Mp ≤ (p+ d)p/2. (12)

Lemma 3. (Theorem 3 in Nesterov & Spokoiny (2017)) If f is differentiable at x, then

Eu

(
∥g0(x)∥2

)
≤ (d+ 4) ∥∇f0(x)∥2 . (13)

Denote: g0(x) := f ′(x, u) · u where f ′(x, u) is a directional derivative of function f(x) along

u ∈ Rn, and ∇f0(x) :=
1

κ

∫
Rd ⟨∇f(x), u⟩ e−

1
2∥u∥

2

udu.

Lemma 4. f ∈ C1,1(Rd), which means that ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, x, y ∈ Rd. Then, let
random vectors ui ∈ Rd have stand Gaussian distribution N (0, Id) and return

ĝµ(x) :=
f(x+ µui)− f(x− µui)

2µ
ui.

Finally, we will have a conclusion:

Eu

(
∥ĝµ(x)∥2

)
≤ µ2

2
L2(d+ 6)3 + 2(d+ 4)∥∇f(x)∥2. (14)

Proof. For the symmetric oracle ĝµ, we have
|f(x+ µu)− f(x− µu)|2 = |f(x+ µu)− f(x)− ⟨∇f(x), µu⟩ − (f(x− µu)− f(x) + ⟨∇f(x), µu⟩)

+ 2⟨∇f(x), µu⟩|2

(a)

≤ 2|f(x+ µu)− f(x)− ⟨∇f(x), µu⟩+ ⟨∇f(x), µu⟩|2

+ 2|f(x− µu)− f(x) + ⟨∇f(x),−µu⟩+ ⟨∇f(x), µu⟩|2

(11)

≤ 2

∣∣∣∣µ2

2
L∥u∥2 + ⟨∇f(x), µu⟩

∣∣∣∣2 + 2

∣∣∣∣µ2

2
L∥u∥2 + ⟨∇f(x), µu⟩

∣∣∣∣2
= 4

∣∣∣∣µ2

2
L∥u∥2 + µ⟨∇f(x), u⟩

∣∣∣∣2 .
Then, take the expectation with respect to u following the Gaussian distribution:

Eu

(
∥ĝµ(x)∥2

)
=

1

4µ2
Eu

(
|f(x+ µu)− f(x− µu)|2∥u∥2

)
(a)

≤ 2

µ2

[
Eu

(
µ4

4
L2∥u∥6

)
+ Eu

(
µ2⟨∇f(u), u⟩2∥u∥2

)]
(12)(13)

≤ µ2

2
L2(d+ 6)3 + 2(d+ 4)∥∇f(x)∥2,

where inequality (a) holds because E∥a+ b∥2 ≤ 2E∥a∥2 + 2E∥b∥2.
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Lemma 5. (Theorem 1 and Lemma 3 in Nesterov & Spokoiny (2017)) If f ∈ C1,1(Rd) with constant
L, and x ∈ Rd then for the bias with respect to the zeroth-order function:

|fµ(x)− f(x)| ≤ µ2

2
Ld. (15)

For the bias with respect to the zeroth-order gradient:

∥∇fµ(x)−∇f(x)∥ ≤
µ

2
L(d+ 3)3/2, (16)

where:
fµ(x) =

1

κ

∫
Rd

f(x+ µu)e−
1
2∥u∥

2

du;

∇fµ(x) =
1

κ

∫
Rd

f(x+ µu)− f(x− µu)

2µ
e−

1
2∥u∥

2

udu.

Proposition 2. Now, let’s analyze the boundedness of the zeroth-order gradient’s variance. For any
x ∈ Rd, we have:

E

∥∥∥∥∥ 1

B

∑
i∈S

∇̂fi (x)− ∇̂f (x)

∥∥∥∥∥
2

≤ 4(d+ 4)

B
∥∇f(x)∥2 + 4(d+ 4)σ2

z

B
+

µ2

8B
L2(d+ 6)3, (17)

where ∇̂fi(x) and ∇̂f(x) are the estimated gradient by the zeroth-order gradients. For ∇̂fi(x), we
will sample one random disturbance ui per sample; ui follows Gaussian distribution. Then denote:
σ2
z := Ei∥∇fi(x)−∇f(x)∥2.

Proof. Let IS(·) be a indicator function, IS(i) =
{
1, if i ∈ S

0, if i /∈ S
, where S represents the mini-batch

set and denote Ii := IS(i). Then we have Ei

(
I2i
)
=

B

n
and Ei (IiIj) =

(
B
2

)(
n
2

) =
B(B − 1)

n(n− 1)
, when

i ̸= j. Let zi = ∇̂fi (x)− ∇̂f (x):

E

∥∥∥∥∥ 1

B

∑
i∈S

∇̂fi (x)− ∇̂f (x)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

B

∑
i∈S

zi

∥∥∥∥∥
2

=
1

B2
E

∥∥∥∥∥
n∑

i=1

ziIi

∥∥∥∥∥
2

=
1

|S|2

 n∑
i=1

EI2i ∥zi∥
2
+
∑
i ̸=j

EIiIj ⟨zi, zj⟩

 =
1

B2
Eu

B

n

n∑
i=1

∥zi∥2 +
B(B − 1)

n(n− 1)

∑
i ̸=j

⟨zi, zj⟩


=

1

B2
Eu

(B

n
− B(B − 1)

n(n− 1)

) n∑
i=1

∥zi∥2 +
B(B − 1)

n(n− 1)

∥∥∥∥∥
n∑

i=1

zi

∥∥∥∥∥
2


= Eu
n−B

n(n− 1)B

n∑
i=1

∥zi∥2
(a)

≤ 1

B
Eu

1

n

n∑
i=1

∥zi∥2 =
1

B
EuEi

∥∥∥∇̂fi (x)− ∇̂f (x)
∥∥∥2

≤ 1

B
EuEi

∥∥∥∇̂fi(x)∥∥∥2
(14)

≤ 1

B
Ei

(
µ2

2
L2(d+ 6)3 + 2(d+ 4)∥∇f(x)∥2

)
(b)

≤ µ2

2B
L2(d+ 6)3 +

4(d+ 4)

B
Ei

(
∥∇fi(x)−∇f(x)∥2 + ∥∇fi(x)∥2

)
=

4(d+ 4)

B
∥∇f(x)∥2 + 4(d+ 4)σ2

z

B
+

µ2

2B
L2(d+ 6)3,

where inequality (a) holds because
n−B

n(n− 1)B
≤ 1

B

n− 1

n(n− 1)
≤ 1

B

1

n
; inequality (b) holds be-

cause E∥a+ b∥2 ≤ 2E∥a∥2 + 2E∥b∥2.
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A.2 PROOF OF PROPOSITION 1

Proof. The variance between the policy gradient and true gradient can divided into two parts, The
first variance part comes from the sampling process with fixed mini-batch S and fixed P (T ), and the
second variance part comes from stochastic mini-batch S = {xi, yi}Bi=1. (Notice that the mini-batch
we use in both zeroth-order and policy gradient methods are the same)

ESET∼P (T )∥gvrαi
−∇αi

L(α, z)∥2 (18)

≤2ET∼P (T )∥gvrαi
−∇αi

LS(α, z)∥2︸ ︷︷ ︸
Where S is fixed

+2ES∥∇αi
LS(α, z)−∇αi

L(α, z)∥2︸ ︷︷ ︸
Variance from mini-batch S

. (19)

Then we analyze the first part of the variance, where S is fixed.

Var(gvrαi
) = Var

(
1

I − 1

I∑
k=1

∇αi logP (t
(k)
i )

(
LS(α

(k), z)− Lavg

))

= Var

1
I

I∑
k=1

1

I − 1

∑
j ̸=k

(
LS(α

(k), z)− LS(α
(j), z)

)
∇αi

logP (t
(k)
i )


= E

∥∥∥∥∥∥1I
I∑

k=1

1

I − 1

∑
j ̸=k

(
LS(α

(k), z)− LS(α
(j), z)

)
∇αi logP (t

(k)
i )−∇αiLS(α, z)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥1I
I∑

k=1

 1

I − 1

∑
j ̸=k

(
LS(α

(k), z)− LS(α
(j), z)

)
∇αi logP (t

(k)
i )−∇αiLS(α, z)

∥∥∥∥∥∥
2

≤ 1

I2
E

I∑
k=1

∥∥∥∥∥∥ 1

I − 1

∑
j ̸=k

(
LS(α

(k), z)− LS(α
(j), z)

)
∇αi

logP (t
(k)
i )−∇αi

LS(α, z)

∥∥∥∥∥∥
2

=
1

I
Eα(k)

∥∥∥∥∥∥ 1

I − 1

∑
j ̸=k

[(
LS(α

(k), z)− LS(α
(j), z)

)
∇αi

logP (t
(k)
i )−∇αi

LS(α, z)
] ∥∥∥∥∥∥

2

(c)

≤ 1

I(I − 1)
Eα(k),α(j),k ̸=j

∥∥∥(LS(α
(k), z)− LS(α

(j), z)
)
∇αi logP (t

(k)
i )
∥∥∥2

(d)

≤ 4C2

I(I − 1)
Eα(k),α(j),k ̸=j

∥∥∥∇αi
logP (t

(k)
i )
∥∥∥2

(e)

≤ 4C2|V|
I(I − 1)τ2ε2

(f)

≤ 8C2|V|
τ2ε2I2

.

Above, inequality (c) holds because E∥a− b∥2 ≤ E∥a∥2. Inequality (d) holds because Assumption
3, there exists a positive constant C < ∞ such that |LS(α, z)| < C, ∀α, z. Inequality (e) holds
because the j-th component of ∇αi logP (ti) could be solved explicitly by:

∇αi,j
logP (ti|αi) = ∇αi,j

log pi,ji =


∇αi,j

logP (ti) = (1− pi,ji)
1

ταi,ji

, j = ji;

∇αi,j logP (ti) = −pi,j
1

ταi,j
, j ̸= ji.

Then we have∥∥∥∇αi logP (t
(k)
i )
∥∥∥2 ≤ |V|max

{
(1− pi,ji)

1

ταi,ji

, pi,j
1

ταi,j

}2

≤ |V|
τ2ε2

.

The last inequality (f) holds when I ≥ 2, where |V| means the total number of the tokens in the
vocabulary list.
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Denote σ2
g =

8C2|V|
τ2ε2

, then we have:

Eα∼P (T )∥∇gvrαi
−∇LS(α, z)∥2 ≤

σ2
g

I2
.

On the other hand, under assumption 2, it is easy to get ES∥∇αi
LS(α, z)−∇αi

L(α, z)∥2 ≤ σ2
α

B
.

This completes the proof of Proposition 1.

A.3 PROOF OF THE THEOREM 1

Notation recap:

• L(α, z) is an abbreviation of the loss function. We utilize the cross-entropy loss function
during the experiment.

• Lµ(α, z) represents Gaussian smoothing of the original loss function:

Lµ(α, z) =
1

κ

∫
Rd

L(α, z+ µu)e−
1
2∥u∥

2

du,

where µ is hyper-parameter and κ =
∫
Rd e

− 1
2∥u∥

2

du.

• ∇αL(·) means that the block-wise true gradient with respect to α and, ∇zL(·), ∇zLµ(·)
represents that the block-wise true gradient with and zeroth-order gradient with respect to
z. Where α is the parameter that can create discrete prompts distribution, optimized by
the policy gradient algorithm and z is the continuous prompt in the low-dimensional space
optimized by the zeroth-order gradient.

• gz means the estimated gradient with a random mini-batch, and the ∇̂zL(·) represents the
estimated gradient calculated by a total dataset.

• gvrα represents the policy gradient in the parameter space.

• ηz and ηα represent the learning rates with respect to∇zL(·) and ∇αL(·) respectively.

• d represents the dimension of the parameter space, and n represents the length of the ini-
tialized discrete prompts. And each token is independent with others, so we can add their
variances together directly.

• Lz, Lα represent the Lipschitz constants with respect to L-Smooth functions Lµ(·) and
Lα(·) respectively.

• B is the size of the mini-batch, represented as St = {Xt, Yt} = {xi, yi}Bi=1, and I is the
sampling times in the policy gradient every iteration.

• For convenience, let L(f(Az+ p0;X), Y ) := L(α, z), where f represents the Black-box
API, total dataset D = {X,Y }.

• σz is the variance from SGD during continuous prompt optimization, σg is the variance
induced by policy gradient, and σα is the policy gradient variance from mini-batch.

Proof. According to the lemma 5, the value of the zeroth-order function (Gaussian smooth: Origin
function with a Gaussian kernel) has a bias compared with the true function value:

|Lµ(α, z)− L(α, z)| ≤ µ2

2
Lzd. (20)

We can also know that Lµ(α, z) with respect to z is a Lz Lipschitz smooth function and L(α, z)
with respect to α, is a Lα Lipschitz smooth function from the Assumption 1.

According to Eq.(12) in Nesterov & Spokoiny (2017), we can now that Lµ is Lipschitz smooth for
∀z, z′,α:

∥∇zLµ(α, z)−∇zLµ(α, z′)∥ ≤ Lz∥z− z′∥, (21)
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where ∇zLµ(α, z) =
1

κ

∫
Rd

L(α, z+ µu)− L(α, z− µu)

2µ
e−

1
2∥u∥

2

udu, and κ =∫
Rd e

− 1
2∥u∥

2

du.

Firstly, because of the smoothness of the L(·) with respect to z from the inequality (7) and the bias
from the zeroth-order gradient from the inequality (15):

L(αt+1, zt+1)− L(αt+1, zt)
(16)

≤
(
Lµ(α

t+1, zt+1) +
µ2

2
Lzd

)
−
(
Lµ(α

t+1, zt)− µ2

2
Lzd

)
= Lµ(α

t+1, zt+1)− Lµ(α
t+1, zt) + µ2Lzd

(21)(11)

≤
〈
∇zLµ(α

t+1, zt), zt+1 − zt
〉
+

Lz

2
∥zt+1 − zt∥2 + µ2Lzd.

Secondly, according to smoothness of the L(·) with respect to α according to the inequality (6) in
the assumption 6, we use equation (11):

L(αt+1, zt+1) ≤ L(αt+1, zt) +
〈
∇zLµ(α

t+1, zt), zt+1 − zt
〉
+

Lz

2
∥zt+1 − zt∥2 + µ2Lzd

(6)(11)

≤ L(αt, zt) +
〈
∇αL(αt, zt),αt+1 −αt

〉
+

Lα

2
∥αt+1 −αt∥2

+
〈
∇zLµ(α

t+1, zt), zt+1 − zt
〉
+

Lz

2
∥zt+1 − zt∥2 + µ2Lzd.

After rearranging the formulation above:

EL(αt+1, zt+1)− L(αt, zt)

≤ E
〈
∇αL(αt, zt),αt+1 −αt

〉
+

Lα

2
E∥αt+1 −αt∥2

+ E
〈
∇zLµ(α

t+1, zt), zt+1 − zt
〉
+

Lz

2
E∥zt+1 − zt∥2 + µ2Lzd

=− ηα∥∇αL(αt, zt)∥2 + η2αLα

2
E∥gvrαt∥2 − ηz∥∇zLµ(α

t+1, zt)∥2 + η2zLz

2
E∥gzt∥2 + µ2Lzd

(g)

≤ − ηα∥∇αL(αt, zt)∥2 + η2αLαE(∥gvrαt −∇αL(αt, zt)∥2︸ ︷︷ ︸
V aricance (19)

+∥∇αL(αt, zt)∥2)

− ηz∥∇zLµ(α
t+1, zt)∥2 + 3η2zLz

2
E(∥gzt − ∇̂zL(αt+1, zt)∥2︸ ︷︷ ︸

V ariance (17)

+ ∥∇̂zL(αt+1, zt)−∇zLµ(α
t+1, zt)∥2︸ ︷︷ ︸

E∥a−Ea∥2≤E∥a∥2, then use (14)

+ ∥∇zLµ(α
t+1, zt)∥2) + µ2Lzd

(h)

≤ −
(
ηα − η2αLα

)
E∥∇αL(αt, zt)∥2 + η2αLαn(

2σ2
g

I2
+

2σ2
α

B
)−

(
ηz −

3η2zLz

2

)
E∥∇zLµ(α

t+1, zt)∥2

+
3η2zLz

2
E
(
(4 + 2B)(d+ 4)

B
∥∇zL(αt+1, zt)∥2 + 4(d+ 4)σ2

z

B
+

µ2L2
z(d+ 6)3

2
(
1

B
+ 1)

)
+ µ2Lzd

≤−
(
ηα − η2αLα

)
E∥∇αL(αt, zt)∥2 + η2αLαn(

2σ2
g

I2
+

2σ2
α

B
)−

(
ηz −

3η2zLz

2

)
E∥∇zLµ(α

t+1, zt)∥2

+
3η2zLz

2
E
(
6(d+ 4)∥∇zL(αt+1, zt)∥2 + 4(d+ 4)σ2

z

B
+ 2µ2L2

zd
3

)
+ µ2Lzd

≤−
(
ηα − η2αLα

)
E∥∇αL(αt, zt)∥2 + η2αLαn(

2σ2
g

I2
+

2σ2
α

B
)

−
(
ηz −

3η2zLz

2

)
E
(
1

2
E∥∇zL(αt+1, zt)∥ − ∥∇zL(αt+1, zt)−∇zLµ(α

t+1, zt)∥2
)

+
3η2zLz

2
E
(
6(d+ 4)∥∇zL(αt+1, zt)∥2 + 4(d+ 4)σ2

z

B
+ 2µ2L2

zd
3

)
+ µ2Lzd

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

≤−
(
ηα − η2αLα

)
E∥∇αL(αt, zt)∥2 + η2αLαn(

2σ2
g

I2
+

2σ2
α

B
)

−
(
ηz −

3η2zLz

2

)
E
(
1

2
E∥∇zL(αt+1, zt)∥ − µ2

4
L2
z(d+ 3)3

)
+

3η2zLz

2
E
(
6(d+ 4)∥∇zL(αt+1, zt)∥2 + 4(d+ 4)σ2

z

B
+ 2µ2L2

zd
3

)
+ µ2Lzd

=−
(
ηα − η2αLα

)
E∥∇αL(αt, zt)∥2 + η2αLαn(

2σ2
g

I2
+

2σ2
α

B
)−

(ηz
2
− 10(d+ 4)η2zLz

)
E∥∇zL(αt+1, zt)∥2

+

(
ηz −

3η2zLz

2

)
µ2

4
L2
z(d+ 3)3 +

6(d+ 4)η2zLzσ
2
z

B
+ 3µ2η2zL

3
zd

3 + µ2Lzd.

Inequality (g) holds because E∥a + b∥2 ≤ 2E∥a∥2 + 2E∥b∥2 and E∥a + b + c∥2 ≤ 3E∥a∥2 +
3E∥b∥2 + 3E∥c∥2.

Inequality (h) holds because each gradient with respect to αi would have a variance, then the lower
bound of the variance need to multiply by n because the token length is n, and they are independent.

Let ηα =
1

2Lα
and ηz =

1

40(d+ 4)Lz
, we have

EL(αt+1, zt+1)− L(αt, zt) ≤− ηα
2
E∥∇αL(αt, zt)∥2 − ηz

4
E∥∇zL(αt+1, zt)∥2 +

nσ2
g

2LαI2

+
nσ2

α

2LαB
+ Lzd

2µ2 +
σ2
z

(d+ 4)LzB
+ Lzdµ

2 + Lzdµ
2

=− 1

4Lα
E∥∇αL(αt, zt)∥2 − 1

160(d+ 4)Lz
E∥∇zL(αt+1, zt)∥2 +

nσ2
g

2LαI2

+
nσ2

α

2LαB
+ Lzd

2µ2 +
σ2
z

(d+ 4)LzB
+ 2Lzdµ

2.

Rearranging the formulation, we have

1

4Lα
E∥∇αL(αt, zt)∥2 + 1

160(d+ 4)Lz
E∥∇zL(αt+1, zt)∥2

≤L(αt, zt)− EL(αt+1, zt+1) +
nσ2

g

2LαI2
+

nσ2
α

2LαB
+ Lzd

2µ2 +
σ2
z

(d+ 4)LzB
+ 2Lzdµ

2.

Let Lmax = max{Lα, (d+ 4)Lz}, Lmin = min{Lα, (d+ 4)Lz}, we have

1

4Lmax
E∥∇αL(αt, zt)∥2 + 1

160Lmax
E∥∇zL(αt+1, zt)∥2

≤L(αt, zt)− EL(αt+1, zt+1) +
nσ2

g

2LminI2
+

nσ2
α

2LminB
+

σ2
z

LminB
+ 3Lmaxdµ

2.

Let κ =
Lmax

Lmin
and multiple sides with 160Lmax, we have

E∥∇αL(αt, zt)∥2 + E∥∇zL(αt+1, zt)∥2

≤160Lmax(L(αt, zt)− EL(αt+1, zt+1)) +
80nκσ2

g

I2
+

80nκσ2
α

B
+

160κσ2
z

B
+ 480L2

maxdµ
2.

Summing them up from t = 0 to T − 1, we have

1

T

T−1∑
t=0

E
(
∥∇αL(αt, zt)∥2 + ∥∇zL(αt+1, zt)∥2

)
≤ 1

T

T−1∑
t=0

160Lmax(L(αt, zt)− EL(αt+1, zt+1)) +
80nκσ2

g

I2
+

80nκσ2
α

B
+

160κσ2
z

B
+ 480L2

maxdµ
2.
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≤160Lmax(L(α0, z0)− L∗)

T
+

80nκσ2
g

I2
+

80nκσ2
α

B
+

160κσ2
z

B
+ 480L2

maxdµ
2.

Let I = O
(√

nκσg

ϵ

)
, B = O

(
max{nκσ

2
α

ϵ2
,
κσ2

z

ϵ2
}
)
, µ = O

(
1

Lmax

√
ϵ2

d

)
and T =

O
(
Lmax

ϵ2

)
, we have

E
(
∥∇αL(αt, zt)∥2 + ∥∇zL(αt+1, zt)∥2

)
≤ O(ϵ2).

B MORE EXPERIMENTAL DETAILS

B.1 MANUAL TEMPLATES

Table 4: Input templates, and output label words used in RoBERTa-large. ⟨S⟩ represents the sen-
tences in the dataset. [MASK] represents the mask token.

Task Dataset Input Template Output Label Words
acceptability CoLA ⟨S⟩ correct? [MASK]. no, yes
NLI MNLI ⟨S1⟩⟨S2⟩ entailment? [MASK]. no, maybe, yes
NLI QNLI ⟨S1⟩⟨S2⟩ entailment? [MASK]. no, yes
NLI SNLI ⟨S1⟩⟨S2⟩ entailment? [MASK]. no, maybe, yes
NLI WNLI ⟨S1⟩⟨S2⟩ entailment? [MASK]. no, yes

Table 5: Input templates, and output label words used in GPT2-XL and Llama3. ⟨S⟩ represents the
sentences in the dataset.

Task Dataset Input Template Output Label Words
acceptability CoLA ⟨S⟩ correct? no, yes
NLI MNLI ⟨S1⟩⟨S2⟩ entailment? no, maybe, yes
NLI QNLI ⟨S1⟩⟨S2⟩ entailment? no, yes
NLI SNLI ⟨S1⟩⟨S2⟩ entailment? no, maybe, yes
NLI WNLI ⟨S1⟩⟨S2⟩ entailment? no, yes

B.2 HYPERPARAMETERS

Table 6: Main hyperparameters used in our algorithms.

Hyperparameter RoBERTa-large GPT2-XL Llama3
query limit 4000 2000 1000

train batch size B 32 16 8
prompt length n {50, 20} {50, 20} {50, 20}

small positive constant µ 0.01
sample times I1 20
sample times I2 10
temperature τ 1.0

vocabulary size |V| 100
intrinsic dimensionality d 500
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C MORE ABLATION STUDIES

Effect of Optimizing Initial Prompt. To evaluate the impact of optimizing the initial discrete
prompt, we conducted an ablation study where we compared the performance of ZO-PoG using
optimized and randomly initialized initial prompts. Specifically, we investigated whether learning a
task-specific distribution for selecting initial prompt tokens, instead of random selection, contributes
to performance improvements across downstream tasks. To achieve this, we replaced sampling from
Gumbel-Softmax with randomly selected tokens from the PTM vocabulary. Both setups employed
the same continuous prompt optimization pipeline to isolate the impact of initial prompt optimiza-
tion. The comparative results are reported in Table 7. The comparative results indicate that models
initialized with optimized discrete prompts consistently outperformed those using random initializa-
tion across all datasets.

Table 7: Comparison of the average accuracy (%) between randomly sampled p0 and optimized the
p0 (Zo-PoG) on Llama3 in 16-shot (per class)

Len Method CoLA MNLI QNLI SNLI WNLI

20 w/o optimize p0 43.52 32.71 53.37 36.89 53.05
ZO-PoG(ours) 48.13 35.33 55.90 38.26 59.15

Effect of Prompt Length. To investigate how the prompt length affects the performance of our
proposed ZO-PoG framework, we experimented with prompt lengths of 10, 20, 30, 40, 50 tokens on
the performance of Llama for QNLI dataset. The results in Table 8 show that the relationship be-
tween prompt length and model performance is non-linear. Short prompts may demonstrate limited
representational capacity, leading to suboptimal performance and longer prompts do not necessarily
produce better result. The observed trends suggest that a moderately long prompt provides a good
trade-off between capacity and learnability.

Table 8: Ablation study of prompt lengths on Llama3 in 16-shot (per class) setting with the QNLI
dataset.

Dataset
Prompt length 10 20 30 40 50 80

QNLI 53.17 55.90 56.13 55.83 55.60 54.73

Effect of Optimization Strategy. To verify the necessity and effectiveness of alternating opti-
mization, we conducted an ablation study to compare three optimization strategies: 1) Alternating
optimization: The proposed strategy alternates between discrete and continuous prompt optimiza-
tion across multiple iterations. 2) Single-round Optimization: This approach involves performing
one round of soft-prompt optimization followed by one round of zeroth-order optimization without
alternating iterations. 3) Joint optimization: Both soft prompt and discrete probability distribution
are optimized simultaneously using zeroth-order optimization. The results in Table 9 and 10 ver-
ify the design of the alternating optimization strategy. By leveraging the strengths of both policy
gradient and zeroth-order optimization iteratively, ZO-PoG achieves superior performance

Table 9: The comparison of the average accuracy between one round ZO + one round Policy gradi-
ent and ZO-PoG on Llama3 on 16-shot (per class). The best results are underlined. Len represents
the prompt length.

Len Method CoLA MNLI QNLI SNLI WNLI

20 one round + one round 43.50 34.93 50.58 34.29 54.93
ZO-PoG (ours) 48.13 35.33 55.90 38.26 59.15

50 one round + one round 42.25 35.18 55.09 33.70 54.93
ZO-PoG (ours) 46.50 35.30 55.60 38.12 58.22
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Table 10: The comparison of the average accuracy between joint optimization with zeroth-order
optimization and ZO-PoG on RoBERTa-Large in 16-shot setting. The best results are underlined.
Len represents the prompt length.

Len Method CoLA MNLI QNLI SNLI WNLI

20 joint optimization 52.33 29.79 54.19 35.47 46.95
ZO-PoG (ours) 56.79 35.11 55.44 39.12 53.99

50 joint optimization 53.05 28.07 55.56 35.74 46.00
ZO-PoG (ours) 56.18 35.46 55.33 41.99 56.34

D EXPERIMENTAL RESULTS ON BLACK-BOX LARGE LANGUAGE MODELS

D.1 ADAPT ZO-POG TO BLACK-BOX LARGE LANGUAGE MODELS

Modern black-box large language models (LLMs), such as GPT-4, offer powerful capabilities but
restrict user access to their internal components, such as the embedding space. These models accept
only discrete input tokens, which limits direct optimization in the continuous embedding space.
Additionally, feedback from black-box APIs is available only through forward evaluations, further
complicating optimization.

Algorithm 2 ZO-PoG with black-box Large Language Models
Input: Parameters of categorical distributions α1, · · · ,αn, temperature parameter τ , black-box

large language models f , surrogate embedding model e(·), downstream dataset D, mini-batch
size B, learning rates ηα, ηz and sample times I1, I2.

1: Initialize α0
1, · · · ,α0

n, z
0

2: for t in 0 to T − 1 do
3: Draw a mini-batch St = {Xt, Yt} = {xi, yi}Bi=1 from D
4: for k in 1 to I1 do
5: Sample j

(k)
1,t ∼ GS(αt

1, τ), · · · , j
(k)
n,t ∼ GS(αt

n, τ)

6: p
(k)
0,t = e(t

(k)
1 , · · · , t(k)n ) = e(V[j(k)1 ], · · · ,V[j(k)n ])

7: Lavg = 1
I1

∑I1
k=1 L(f(e−1(Azt + p

(k)
0,t );Xt), Yt)

8: for i in 1 to n do
9: gvrαt

i
= 1

I1−1

∑I1
k=1(L(f(e−1(Azt + p

(k)
0,t );Xt), Yt)− Lavg)∇αi logP (t

(k)
i |αt

i)

10: αt+1
i ← αt

i − ηαg
vr
αt

i
▷ Update discrete vocabulary distribution

11: for l in 1 to I2 do
12: Sample j

(l)
1,t ∼ GS(αt+1

1 , τ), · · · , j(l)n,t ∼ GS(αt+1
n , τ)

13: p
(l)
0,t = e(t

(l)
1,t, · · · , t

(l)
n,t) = e(V[j(l)1,t], · · · ,V[j

(l)
n,t])

14: Sample u
(l)
t ∼ N (0, Id)

15: L(l)
+ = L(f(e−1(A(zt + µu

(l)
t ) + p

(l)
0,t);Xt), Yt)

16: L(l)
− = L(f(e−1(A(zt − µu

(l)
t ) + p

(l)
0,t);Xt), Yt)

17: g
(l)
zt = (L(l)

+ − L
(l)
− )/(2µ) · u(l)

t

18: gzt =
1

I2

∑I2
l=1 g

(l)
zt

19: zt+1 = zt − ηzgzt ▷ Update continuous prompt
Return: αT

1 , · · · ,αT
n , z

T

To address these challenges, we propose an enhanced version of ZO-PoG tailored for discrete-token-
only LLMs. The new algorithm leverages a surrogate embedding model e(·) : Vn → RD to approx-
imate the black-box LLM’s embedding space and enables efficient optimization using a projection
function that maps continuous embeddings back to discrete tokens. We could adopt a pre-trained
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open-sourced as the surrogate embedding model (e.g., RoBERTa, GPT-2). This approach ensures
the method can adapt to real-world LLM scenarios without compromising performance.

The proposed algorithm consists of a preprocessing step for surrogate embedding computation and
an alternating optimization framework that integrates both discrete and continuous prompt optimiza-
tion. Let Vs denote the full vocabulary of the surrogate embedding model. Before the training of the
algorithm, we will first need to compute the embedding {e(v)|v ∈ Vs} for all tokens in Vs. Then
we could construct a lookup table Es = {(v, e(v)) | v ∈ Vs} for efficient access during training.
During training, we define a projection function e−1(·) : RD → Vn

s that map a learned embedding
p ∈ RD back to the nearest or the most similar token in Vs. In this work, we choose the cosine
similarity as the projection function, i.e.,

e−1(p) = arg max
v∈Vn

s

⟨p, e(v)⟩
∥p∥ ∥e(v)∥

, (22)

which is a token-wise projection operation.

D.2 EXPERIMENTS ON MATH TASK

To provide a detailed evaluation of ZO-PoG’s effectiveness on tasks requiring advanced reasoning,
we conducted experiments on a challenging mathematical problem-solving dataset GSM8K (Cobbe
et al., 2021) in the 64-shot setting. In addition to comparisons with prompt learning baselines, we
have also included comparisons with instruction optimization methods InstructZero (Chen et al.,
2024) and TRIPLE (Shi et al., 2024). For prompt learning methods, the prompt prefix is optimized,
which is concatenated with a manual prompt with Chain-of-Thought (CoT), i.e., Let’s think step
by step. We choose open-sourced GPT-2 as our surrogate embedding model. For instruction opti-
mization baselines, the entire instruction is optimized. The input templates are shown in Table 11.
The experimental results on the GPT-4 are presented in Table 12. Our method achieves the most
significant performance improvement compared to Manual Prompt with the Chain of Thought in the
context of prompt learning baselines and also demonstrates superior performance over instruction
optimization methods.

Table 11: Input templates used in GSM8K dataset. ⟨Q⟩ represents the questions in the dataset. \n
represents the line break.

Method Input Template
Prompt Learning [Prompt] Let’s think step by step.\n Question: ⟨Q⟩ \n Answer:

Instruction Optimization [Instruction] \n Question: ⟨Q⟩ \n Answer:

Table 12: Averaged scores of baselines and Zo-PoG on the GSM8K dataset using GPT-4.

Dataset
Method MP CoT BBT BDPL TRIPLE InstructZero ZO-PoG (ours)

GSM8K 86.48 78.22 85.77 70.26 89.16 89.94
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