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ABSTRACT

Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying
equivalent entity pairs. Existing methods can be categorized into symbolic and
neural models. Symbolic models, while precise, struggle with substructure het-
erogeneity and sparsity, whereas neural models, although effective, generally lack
interpretability and cannot handle uncertainty. We propose NeuSymEA, a proba-
bilistic neuro-symbolic framework that combines the strengths of both methods.
NeuSymEA models the joint probability of all possible pairs’ truth scores in a
Markov random field, regulated by a set of rules, and optimizes it with the varia-
tional EM algorithm. In the E-step, a neural model parameterizes the truth score
distributions and infers missing alignments. In the M-step, the rule weights are
updated based on the observed and inferred alignments. To facilitate interpretabil-
ity, we further design a path-ranking-based explainer upon this framework that
generates supporting rules for the inferred alignments. Experiments on bench-
marks demonstrate that NeuSymEA not only significantly outperforms baselines
in terms of effectiveness and robustness, but also provides interpretable results.

1 INTRODUCTION

Knowledge graphs (KGs) are crucial for organizing structured knowledge about entities and their
relationships, enhancing search capabilities across various applications. They are widely used in
question-answering systems (Bast & Haussmann| 2015} [Dong et al., 2023), recommendation sys-
tems (Catherine & Cohenl, [2016)), social network analysis (Tang et al., [2008)), Natural Language
Processing (Weikum & Theobald, [2010), etc.. Despite their utility, real-world KGs often face issues
like incompleteness, domain specificity, and language constraints, which hinder their effectiveness
in cross-disciplinary or multilingual contexts. To address these issues, entity alignment (EA) aims
to merge disparate KGs into a unified, comprehensive knowledge base by identifying and linking
equivalent entities across different KGs. For example, aligning entities between a biomedical KG
and a pharmaceutical KG allows for mining cross-discipline relationships through the aligned en-
tities, such as identifying the same drugs and their effects on different diseases to enhance drug
repurposing efforts. This alignment enables more nuanced exploration and interrogation of inter-
connected data, providing richer insights into how entities function across multiple domains.

Entity alignment models aim to determine the equivalence of two entities by assessing their align-
ment probability. Existing methods can be broadly categorized into symbolic models and neural
models. Symbolic models (Suchanek et al., 2012} Jiménez-Ruiz & Cuenca Graul 2011} |Q1 et al.}
2021) provide interpretable and precise inference by mining ground rules, but they struggle with
aligning long-tail entities, especially those without aligned neighbors. In such cases, the lack of
supporting rules leads to low recall. Conversely, neural models, such as translation models (Chen
et al, [2017; Sun et al.||2018) and Graph Convolutional Networks (GCNs) (Mao et al., [2020; 2021}
‘Wang et al.,[2018; [Mao et al.,2022; Li et al., 2024)), excel in recalling similar entities by embedding
them in a continuous space, yet they often fail to distinguish entities with similar representations,
causing a drop in precision as the entity pool grows. Neuro-symbolic models aim to combine the
strengths of both approaches, offering the interpretability and precision of symbolic models along-
side the high recall capabilities of neural models.

However, neuro-symbolic reasoning in entity alignment (EA) faces several challenges. First, com-
bining symbolic and neural models into a unified framework is suboptimal due to the difficulty in



Under review as a conference paper at ICLR 2025

aligning their objectives. Current approaches either use neural models as auxiliary modules for
symbolic models to measure entity similarity (Qi et al., 2021) or employ symbolic models to refine
pseudo-labels (Liu et al.l 2022} (Chen et al., 2024b). Second, in EA task, the search space for rules
is large, as the EA task requires deriving ground rules from both intra-KG and inter-KG structural
patterns, leading to an exponentially large search space with increasing rule length. Finally, generat-
ing interpretations for EA remains underexplored. Effective interpretations should not only generate
supporting rules but also quantify their confidence through rule weights.

To overcome these challenges, we propose NeuSymEA, a neuro-symbolic framework that combines
the strengths of both symbolic and neural models. NeuSymEA models the joint probability of truth
score assignment for all possible entity pairs using a Markov random field, regulated by a set of
weighted rules. This joint probability is optimized via a variational EM algorithm. During the E-
step, a neural model parameterizes the truth scores and infers the missing alignments. In the M-step,
the rule weights are updated based on both observed and inferred alignments. To leverage long
rules without suffering from the exponential search space, we employ logic deduction to decompose
rules of any length into shorter, unit-length rules. This allows for efficient inference and weight
updates for long rules. After training, the learned rules are adapted into an explainer, enhancing
interpretability. Specifically, we reverse the logic deduction process to calculate the weights of
long rules based on the learned weights of their shorter counterparts. Additionally, an explainer is
introduced to efficiently generate supporting rules with quantified confidence through breadth-first
search, as explanations for inferred alignments. Our contributions are summarized as below:

* A principled neuro-symbolic reasoning framework: NeuSymEA seamlessly integrates
neural and symbolic models through a principled variational EM framework, combining
their strengths for effective entity alignment.

« Efficient optimization via logical decomposition: We introduce a logic deduction mech-
anism that decomposes long rules into shorter ones, significantly reducing the complexity
of rule inference and enabling efficient reasoning over large knowledge graphs.

* Interpretable inference: The explainer utilizes learned rules to generate support paths for
interpreting both aligned and misaligned pairs. It offers two modes: (1) Hard-anchor
mode—generates supporting paths from prealigned anchor pairs; and (2) Soft-anchor
mode—incorporates inferred anchor pairs for more informative interpretation.

* Empirical validation and superior results: NeuSymEA demonstrates state-of-the-art
performance on benchmark datasets, delivering both robust alignment accuracy and in-
sightful rule-based interpretations.

2 PRELIMINARIES

2.1 PROBLEM STATEMENT

A knowledge graph G comprises a set of entities &, a set of relations R, and a set of relation triples
T where each triple (e;,7,e;) € T represents a directional relationship between its head entity
and tail entity. Given two KGs G = {£,R, T}, G’ = {&',R’,T'}, and a set of observed aligned
entity pairs O = {(e;, €})|e; € E,e; € £}, the goal of entity alignment is to infer the missing
alignments by reasoning with the existing alignments. This problem can be formulated in a proba-
bilistic way: each pair (e, e’),e € £,¢’ € £ is associated with a binary indicator variable v c).
V(e,er) = 1 means (e, €’) is an aligned pair, and v(. .y = 0 otherwise. Given some observed align-
ments vo = {v(e}e/) = 1}(6761)60, we aim to predict the labels of the remaining hidden entity pairs
H=E X 5/\0, ie., vy = {U(e,e’)}(e,e’)e?{'

2.2  SYMBOLIC REASONING FOR ENTITY ALIGNMENT

Given an aligned pair (e;, €’;), a new aligned pair (e;, e;) can be inferred with confidence score w,
if they are each connected to the existing pair via a relational path p and p’ respectively, formally:
wpp i (€5 = €f) Apleise) Ap'(er,€5) = (ei =€), M
where p = |R|L,p’ = |R’|F are a pair of paths each consisting of L connected relations, and w,, ,r
measures the rule quality that considers the intra-KG structure and inter-KG structure, such as the
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Figure 1: Framework illustration of NeuSymEA. The yellow solid line represents the alignment of
an anchor pair. The symbolic model computes the matching probability of entity pairs by mining
supporting rules (path pairs from anchor pairs) and evaluating their corresponding weights. The
neural model learns embeddings and calculates entity-level matching scores based on embedding
similarity. NeuSymEA models the agreement between the symbolic reasoning and neural represen-
tations using a joint probability distribution over observed pairs and parameterized truth scores for
hidden pairs, optimized through a variational EM algorithm.

indicative of each path, and the similarity between two paths. By instantiating such rule with the
constants (real entities and relations) in the KG pair, a symbolic model predicts the label distribution
of an entity pair (e, €’) by:

Pw(V(e,en|G,G'), for(e,e') e {OUH}. )
Using logic rules to infer the alignment probability can leverage the high-order structural infor-
mation for effective alignment as well as provide interpretability. However, exact inference is in-

tractable due to the massive amount of possible instantiated rules (exponential to L), limiting its
applicability to real-world KGs.

3 NEURO-SYMBOLIC REASONING FRAMEWORK FOR ENTITY ALIGNMENT

3.1 VARIATIONAL EM

Given a set of observed labels vo, our goal is to maximize the log-likelihood of these labels, i.e.,
log p., (vo). Directly optimizing this objective is intractable because it requires computing an in-
tegral over all the hidden variables. Instead, we optimize the evidence lower bound (ELBO) of the
log-likelihood as follows:

Pw(V0) > Egvyy) [l0g puw(vo,vi) —logq(vy)] = ELBO(q, vo; w), 3)
here, g(vy) is a variational distribution of the hidden variables vy . This inequality holds for all ¢
because p,, (v0) = ELBO(q, vo; w) + Dicr (q(vir) [pu(vir | v0)), where Dic 1, (a(vi)|[pu (v |
vo)) > 0 is the KL-divergence between ¢(vy) and p,(vy | vo). Under this framework, the
log-likelihood p,,(vo) can be optimized using an EM algorithm, an efficient method to find the
maximum likelihood where the model depends on unobserved hidden variables: during the E-step,
we fix w and update the variational distribution ¢; during the M-step, we update w to maximize the
log-likelihood of all the entity pairs, i.e., Ey(,,,)[log pw(vo, va)], as illustrated in Figure

Explicitly representing the variational distribution ¢ is parameter intensive, which requires ~ |£||£’|
variables because the observed pairs are very sparse. To this end, we parameterize ¢ with a neural
model as gy, with 6 being the parameters of the neural model.

3.2 E-STEP: INFERENCE

In this step, we fix w and update gg to minimize the KL divergence Dy . Directly minimizing
the KL divergence is intractable, as it involves computing the entropy of qy. Therefore, we follow
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Qu & Tang| (2019) and optimize the reverse KL divergence of ¢y and p,,, leading to the following
objective:

¢vH,9 = Z Epw(’IJ(e’e/)"vo)qe(vH)' (4)

(e,e’)EH

To optimize this objective, we first use the symbolic model with weighted rules to predict pu, (v(e,er) |
vo) for each (e, e’) € H. If py(V(e,er) | Vo) > 0, where 0 is a threshold, we treat this entity pair as
a positive label; otherwise, we regard the pair as a negative pair that can be selected during negative
sampling process of the neural model.

The observed labels can also be used as training data for supervised optimization. The objective is:

Dvo,0 = Z log CIH('U(e,e’) = 1)' o)

(e,e’)eO

The final objective for gy is obtained by combining these two objectives: ¢y = ¢y ;.0 + Pveo,6-

3.3 M-STEP: RULE WEIGHT UPDATE

In this step, we fix ¢p and update the rule weight w to maximize ELBO(q, vo; w). Since the right
term of the ELBO in equation [3is constant when gy is fixed, the objective is equivalent to maximiz-
ing the left term E, (,,,)[log pw (vo, vi )], which is the log-likelihood function.

Specifically, we start by predicting the labels of hidden variables using the current neural model.
For each (e,e’) € H, we predict the labels 9. .)(¢) and obtain the prediction set v (0) =
{D(e,e)(0) }e,eryer- In this way, maximizing the likelihood practically becomes maximizing the
following objective:

d)w = Ingw (UOa vy (9)) (6)

To obtain the pseudo-label ¥, .y using gy, we employ the trained neural model to compute the
matching score of any entity pair (e,e’) € H. However, this strategy can easily introduce false
positives into the pseudo-label set especially when the number of entities is large. To mitigate this,
we consider one-to-one matching to sift only the most confident pairs. Practically, we first sort all
pairs by their confidence score, then we annotate the pairs as positive following the order of the
confidence. If a pair contains an entity observed in the annotated pairs, then this pair is skipped.
This simple greedy strategy significantly reduces the amount of false positives.

4  OPTIMIZATION AND INFERENCE

4.1 EFFICIENT OPTIMIZATION VIA LOGICAL DEDUCTION

Inference and learning with logic rules of length L can be computationally intensive, as the search
space for paths grows exponentially with increasing L. To enhance reasoning efficiency, we decom-
pose a rule in equation[Tjusing logic deduction, inspired by [Cheng et al.| (2023) in KG completion:

L L
Wy (€5 =€) A (/\ rk(ek_l,ek)> A (/\ TL(€2_1,62)> = (e; =¢)). (7)

k=1 k=1
L . .
Here A\,_; 7x(ex—1, ex) represents the path formed by 71, 72, ..., r, connecting e; to e; witheg = e;
and ey, = e;. This can be reorganized as a series of single-step logic reasoning:
L

Wy o (ej =¢€)) A ( /\ [k (ex—1,er) Arilel_, €2)]) = (ei =€) 3)
k=1
In this way, each logic rule of length L can be viewed as a deductive combination of L short rules of

length 1. At each step, following |Suchanek et al.| (2012), we perform one-step inference to update
Puw(V(e,ey) for each (e, e') € H by aggregating the alignment probability from neighbors:

1- H (1 - n(r)psub(r - T/)pw(v(et,e;))) X (1 - n(rl)psub(r/ - r)pw(v(et,e;))) -9
(e,rer)E€T,
(e',r’,e;)ET/
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where 7)(r) is a relation pattern of r measuring the uniqueness of e through relation r given a speci-
fied tail entity e;, quantified by n(r) = | {(e"{eélgf(’gfte)sz% - psub(r C ') denotes the probability

that relation r is a subrelation of /. This technique enables inference with confidence by explicitly
quantifying confidence w during each inference step by introducing 1 and ps,p(r C ). More-
over, in this way, the update of the weight w simplifies to updating ps,,(r C ') during the M-step
(equation @), as 7)(r) for each relation r is constant. In practice, the update of ps,,(r C 7’) can be

computed by:
> <1 ~ e ener (1 B v(eh,e;)v(e,,,e;)))

> (1 —Iler ereer (1 - v(e;L,e;,)v(et,e;>>>

where Vep ) and v(c, ;) are labels (or pseudo-labels) from vo U v (0).

(10)

After optimization, rule weights can be computed by taking the product of the importance scores 7
of relations and the sub-relation probabilities of the corresponding relation pair:

L ’ ’
Psub(rk S 73) + Psub(r), S T)
Wp,pr = I | n(re) - n(ry) - ‘ 2 - ‘ (11)
k=1

4.2 INFERENCE WITH INTERPRETABILITY

To predict new alignments, there are two approaches: using the symbolic model or the neural model.
The symbolic model infers alignment probabilities with the optimized weights w. Due to scalability
concerns, symbolic methods generally adopt a lazy inference strategy that only preserves the confi-
dent pairs implied by the neighbor structure during inference. On the other hand, the neural model
computes similarity scores for all entity pairs (e, e’) € H using the learned parameters 6, generating
a ranked candidate list for each entity.

The evaluation of these models thus differs. Symbolic models are generally evaluated by precision,
recall, and Fl-score for their binary outputs, while neural models are assessed using hit@k and
mean reciprocal ranks (MRR) for their ranked candidate lists. Following the practices in |Q1 et al.
(2021) and Liu et al.|(2022)), we unify the evaluation metrics by treating the recall metric of symbolic
models as equivalent to hit@ 1, facilitating comparison with neural models.

To enhance the interpretability of predictions, we adapt the optimized symbolic model into an ex-
plainer. For any given entity pair, the explainer generates a set of supporting rule path pairs that
justify their alignment, each associated with a confidence score indicating its significance. The ex-
plainer operates in two modes: (1) hard-anchor mode, which generates supporting paths only from
prealigned pairs, and (2) soft-anchor mode, which includes paths from both prealigned and inferred
pairs, providing more informative interpretations.

By integrating a breadth-first search algorithm (detailed in Appendix [A.3), the explainer efficiently
generates high-quality interpretations. For truly aligned pairs, it typically produces high-confidence
interpretations, while for non-aligned pairs, the interpretations may result in an empty set (indicating
no supporting evidence) or have low confidence scores. See Figure [3|for a visualized comparison.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In this section, we conduct experiments to answer the following questions. RQ1: Can NeuSymEA
outperform existing neural, symbolic, and neuro-symbolic methods in terms of alignment perfor-
mance? RQ2: Can symbolic and embedding-based methods complement each other in our frame-
work? RQ3: How does the incorporated embedding-based model affect the alignment performance?
RQ4: How does NeuSymEA interpret the inferred entity pairs, and how is the effectiveness of in-
terpretations with respect to the rule length?

Datasets. We utilize the multilingual DBP15K dataset, which consists of three cross-lingual knowl-
edge graph (KG) pairs: ja-en, fr-en, and zh-en. Note that the original full version (Sun et al., [2017)
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of this dataset contains a significant number of long-tail entities, presenting challenges for GCN-
based models in terms of sparsity and large size. Therefore, many recent works (Wang et al.| 2018;
Mao et al.l 20205 [Liu et al., [2022) employ a condensed version, where long-tail entities and their
connected triples are removed. For a comprehensive evaluation, we use both versions. Detailed
statistics for these datasets are provided in Appendix Each dataset is divided into training,
validation, and test sets following a 5-fold cross-validation scheme, with a ratio of 2:1:7.

Baselines and metrics. Baseline models include six neural models — GCNAlign (Wang et al.,
2018)), AlignE, BootEA (Sun et al.|[2018)), RREA (Mao et al.,[2020), Dual-AMN (Mao et al.,|2021)),
LightEA (Mao et al.,[2022), one symbolic models — PARIS (Suchanek et al.,[2012), and two neuro-
symbolic models — PRASE (Qi et al.}2021), EMEA (Liu et al.,2022). We use Hit@1, Hit@10, and
MRR as the evaluation metrics. For PARIS and PRASE that have binary outputs, we report their
recall as Hit@1, following [Liu et al.| (2022).

Hyperparameters. NeuSymEA has two key hyperparameters: the number of EM iterations
and the threshold ¢ for selecting positive pairs from the symbolic model. We tune these hy-
perparameters and select the best values based on the validation set. The search space for § is
{0.6,0.7,0.8,0.9,0.95,0.98,0.99}, while the number of iterations is searched from 1 to 9.

5.2 RESULTS

5.2.1 COMPARISON WITH BASELINES

Table 1: Entity alignment results on DBP15K dataset. The suffixes ”-D” and ”-L” indicate the use
of Dual-AMN and LightEA as the neural models. The results of RREA and EMEA are omitted on
the full dataset due to an OOM (Out of Memory) error.

ja-en fr-en zh-en
Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

Group 1: Results on the full DBP15K dataset
GCNAlign 0221 0461 0302 0205 0475 0295 0.189 0.438 0271

Category Model

BootEA 0454 0.782 0.564 0.443 0.799 0.564 0.486 0.814 0.600
Neural AlignE 0.356 0.715 0476 0346 0.731 0475 0.333 0.690 0.453
Dual-AMN 0.627 0.883 0.717 0.652 0908 0.744  0.650 0.884 0.732
LightEA 0.736  0.894 0.793  0.782 0919 0.832 0.725 0.874 0.779
symbolic PARIS ‘ 0.589 - - 0.618 - - 0.603 - -
Neuro-Symbolic =~ PRASE | 0.611 - - 0.647 - - 0.652 - -

NeuSymEA-D| 0.806 0.942 0.855 0.827 0.952 0.871 0.801 0.925 0.843

Ours NeuSymEA-L| 0.781 0.907 0.826 0.834 0.937 0.871 0.785 0.894 0.825
Group 2: Results on the condensed DBP15K dataset
GCNAlign 0331 0.662 0.443 0325 0.688 0.446  0.335 0.653 0.442
BootEA 0.530 0.829 0.631 0.579 0.872 0961 0.575 0.847 0.668
Neural AlignE 0433 0.783 0.552 0457 0.821 0.580 0474 0.806 0.587
RREA 0.749 0935 0.818 0.797 0.958 0.859 0.762 0.938 0.827
Dual-AMN 0.750 0.927 0.815 0.793 0.954 0.854 0.756 0.919 0.816
LightEA 0.778 0.911 0.828 0.827 0.943 0.830 0.770 0.894 0.816
symbolic PARIS | 0.565 - - 0.584 - - 0.543 - -
Neuro-Symbolic PRASE 0.580 - - 0.622 - - 0.593 - -
Y EMEA 0.736 - 0.807 0.773 - 0.841  0.748 - 0.815

NeuSymEA-D| 0.805 0.930 0.849 0.835 0953 0.879 0.815 0.926 0.855
NeuSymEA-L| 0.811 0928 0.854 0.858 0.954 0.894 0.804 0.904 0.840

Ours

To answer RQ1, RQ2 and RQ3, we compare NeuSymEA with baseline models on two versions
of the DBP15K dataset: the full version (groupl) and the condensed version (group2). Results are
presented in Table |1} The results for PRASE, and EMEA on the condensed DBP15K are adopted
from the original EMEA paper. We employ both Dual-AMN and LightEA as the neural models in
our framework, denoted as NeuSymEA-D and NeuSymEA-L, respectively. These results lead to
several key observations:
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First, NeuSymEA surpasses both symbolic and KG embedding-based models. This can be
attributed to the fact that it combines the capacity of both sides: 1) the ability to precisely infer
confident pairs with rules by leveraging the multi-hop relational structures; and 2) the ability to
effectively model entity representations in a unified space to jointly optimize the alignment of two
KGs. NeuSymEA seamlessly combines both symbolic reasoning and neural representations in a
principled variational framework, leading to improved performance.

Second, NeuSymEA outperforms both neuro-symbolic models, PRASE and EMEA. This im-
provement can be largely attributed to the model objective design in our framework. While PRASE
and EMEA treat the symbolic and neural models as separate components, NeuSymEA integrates
them within a principled variational EM framework, unifying their objective as the log-likelihood
of the observed variables. This approach allows for the joint optimization of both components, en-
suring they work together to maximize the log-likelihood. By iteratively refining both components
through the EM algorithm, NeuSymEA achieves a more coherent and convergent solution, leading
to superior performance, as shown by the empirical results.

Finally, NeuSymEA demonstrates superior robustness across both versions of the DBP15K
dataset. Comparisons between two groups of results offer an interesting insight: embedding-based
models experience significant performance degradation when moving from the condensed version
to the full version of DBP15K (e.g., MRR of Dual-AMN decreases from 0.815 to 0.717 on ja-en),
while symbolic models, in contrast, show improvements. We attribute this to two key factors: (1)
Embedding-based models rely on entity-level matching, which is sensitive to dataset size. As the
dataset grows, the number of similar entity embeddings increases, leading to reduced accuracy. The
full version of DBP15K contains significantly more entities than the condensed version, exacer-
bating this effect. (2) Symbolic models, on the other hand, perform path-level matching. Their
effectiveness is constrained more by substructure heterogeneity and sparsity than dataset size. The
full version of DBP15K includes more relational triples, which enhances the rule-mining process,
ultimately making the symbolic models more effective in this scenario. NeuSymEA, by combin-
ing symbolic reasoning with KG embeddings, mitigates the shortcomings of both approaches,
making it robust to changes in dataset scale and structure. This synergy allows NeuSymEA to
consistently outperform baselines in both sparse and dense settings.

5.2.2 EVOLUTION OF RULES AND EMBEDDINGS

9000 0.90

80001

70001

Pairs

/
6000 L

%
5000, 7

4000 T T T T 0.65-—
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Figure 2: (Left) Evolution of rule inferred pairs, with solid lines representing total inferred pairs
and dashed lines representing true inferred. The shaded areas indicate the number of false pairs.
Precision values are annotated at each data point. (Right) Convergence of MRR of the neural model.

We study how rules and embeddings evolve and interact with each other during the EM steps, with
results shown in Figure 2] Results in the left subplot indicate that in each EM iteration, the number
of rule-inferred pairs grows consistently with high precision, implying that the embedding model
continuously improves the inference performance of rules. These precise pairs, in turn, enhance the
performance of the neural model. As shown in the right subfigure, the MRR of the neural model
converges within a few iterations.

5.2.3 INTERPRETATIONS BY THE EXPLAINER

We investigate the interpretations generated by the explainer on the fr-en dataset. The left subfigure
of Figure [3] shows the probability density of confidence scores for supporting rules (with a maxi-
mum rule length of 3) associated with entity pairs. Positive pairs are derived from the test set, while
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Figure 3: (Left) Probability density of the top supporting rule’s confidence; (Middle) Number of
supporting rules (thresholded by confidence score) relative to the maximum rule lengths under the
soft anchor mode; (Right) Number of supporting rules relative to the maximum rule lengths under
the hard anchor mode.

Table 2: Examples of supporting rules for query pairs in fr-en. Anchor pairs are shown in bold.

Query Pair | Supporting Rule | Confidence
Maison_de_Savoie (Humbert_II_(roi_d’Italie), dynastie, Maison_de_Savoie), (Humbert_II_(roi_d’Italie), conjoint, Marie-José_de_Belgique) 0.80
House_of_Savoy (Umberto_II_of Ttaly, house, House_of_Savoy), (Umberto_II_of Italy, spouse, Marie_José_of_Belgium) -
Légion_espagnole (Légion_espagnole, commandantHistorique, Francisco_Franco), (Francisco_Franco, conjoint, Carmen_Polo) 0.59
Spanish_Legion (Spanish_Legion, notableCommanders, Francisco_Franco), (Francisco_Franco, spouse, Carmen_Polo,_1st_Lady_of Meirzs) -~
Premier_ministre_du_Danemark (Premier_ministre_du_Danemark, titulaireActuel, Lars_Lgkke_Rasmussen) 0.79
Prime_Minister_of_Denmark (Prime_Minister_of_Denmark, i bent, Lars_Lgkke .

negative pairs are created by replacing one entity in each test pair with another randomly sampled
entity. The distinct confidence distributions indicate that positive pairs generally have more evi-
dence for alignment, which aligns with intuition. However, the probability density distribution also
reveals that some positive pairs do not have high confidence scores. Upon further examination, we
found that many test pairs are isolated, i.e., they lack directly aligned neighbors. Despite this,
NeuSymEA successfully generates supporting rules for isolated pairs by exploiting multihop
dependencies. In Table [2) we provide several examples of supporting rules and their associated
confidence scores for the queried entity pairs.

To examine the impact of rule length on the explainer’s effectiveness, the middle and right subfigures
in Figure |3| show the number of supporting rules for test positive pairs as the maximum rule length
increases. Compared to hard anchor mode, the explainer in soft anchor mode generates more high-
quality supporting rules by leveraging inferred pairs as complementary anchor pairs, mitigating the
sparsity issue. We also observe that increasing the maximum rule length leads to more high-
quality rules; however, the number of high-confidence rules grows more slowly than lower-
confidence rules. This can be attributed to our method for calculating confidence: the logical
deduction-based approach computes a rule’s confidence as the product of the confidences of its
decomposed length-one sub-rules (as in Equation (TI))). For example, a rule with two sub-rules,
each with confidence 0.8, results in an overall confidence of 0.8 x 0.8 = 0.64. Considering this,
the confidence score tends to decrease when the rule length increases, thus increasing the maximum
length tends to discover supporting rules with lower scores.

5.2.4 ROBUSTNESS IN LOW RESOURCE SCENARIO

Figure [5] demonstrates the model performance under low-resource settings. As the percentage of
training data decreases, all models experience noticeable drops in Hit@1 performance. Despite this,
NeuSymEA (both NeuSymEA-L and NeuSymEA-D) exhibits remarkable robustness across all
datasets, consistently outperforming other models even with limited data. Notably, with only
1% of pairs used as training data, NeuSymEA-L achieves a Hit@1 score exceeding 0.7 on fr-en,
rivaling or even surpassing the performance of some state-of-the-art models trained on 20% of the
data. While models such as LightEA, Dual-AMN, and BootEA show improvement with additional
training data, they still fall short of NeuSymEA. In contrast, traditional models like GCNAlign
and AlignE demonstrate significant struggles in low-resource settings, underscoring their heavier
dependence on larger training datasets.
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Figure 4: Alignment performance with varying percentages of pairs as training data. For brevity, we
present only the Hit@ 1 metric, with comprehensive results available in Appendix

6 RELATED WORK

Neuro-symbolic reasoning on knowledge graphs. Neuro-symbolic methods aim to merge sym-
bolic reasoning with neural representation learning, leveraging the precision and interpretability of
symbolic approaches alongside the scalability and high recall of neural methods. In KG completion
task, |Guo et al.|(2016) and |Guo et al.| (2018)) employ horn rules to regularize the learning of KG
embeddings; |(Cheng et al.| (2022) and |Cheng et al.| (2023)) model the rule-based predictions as dis-
tributions conditioned on the input relational sequences, and parameterize these distributions using
a recurrent neural network; |Qu et al.| (2020) and |Cheng et al.| (2022)) enhances rule grounding by
augmenting the fact set using a pre-trained KG-embedding model; Qu & Tang| (2019), Zhang et al.
(2020) and|Chen et al.| (2024a) models the joint probability of neural model and the symbolic model
with a Markov random field, and employ gradient descent for weight updates. Despite extensive
advancements of neuro-symbolic reasoning in KG completion(DeLong et al.| [2024; (Cheng et al.,
2024]), these studies only consider single-KG structures, thus cannot be directly adopted to entity
alignment which requires consideration of both intra-KG and inter-KG structures.

Entity alignment. Recent models have sought to combine symbolic and neural approaches for
entity alignment. For instance, |Q1 et al.| (2021 enhances probabilistic reasoning by utilizing KG
embeddings, employing a KG-embedding model to measure similarities during both updating and
inference processes. [Liu et al.| (2022) implements self-bootstrapping with pseudo-labeling in a neu-
ral framework, using rules to choose confident pseudo-labels. However, it relies solely on unit-length
rules, which restricts its effectiveness for long-tail entities. Recently, Tian et al.| (2024} proposes to
generate interpretations to explain entity alignment, but their interpretations are subgraphs extracted
by semantic matching using a pre-trained neural model.

In contrast, our work measures agreement between symbolic and neural models by modeling joint
probability within a Markov random field, optimizing both components toward a unified objective
within a variational EM framework. We employ logic deduction to scale reasoning with long rules
of any length. These learned rules provide interpretations during inference.

7 CONCLUSIONS

In this work, we presented NeuSymEA, a neuro-symbolic framework for entity alignment that ef-
fectively integrates symbolic methods with neural approaches within a principled variational EM
framework. By unifying these traditionally distinct methodologies, NeuSymEA addresses the chal-
lenges of substructure heterogeneity, sparsity, and uncertainty. Our empirical results demonstrate
that NeuSymEA not only outperforms existing approaches but also provides interpretable alignment
predictions through its path-ranking-based explainer. These findings underscore the potential of
this unified neuro-symbolic framework to advance knowledge fusion by enabling effective entity
alignment with uncertainty-aware interpretations.
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A NOTATIONS AND ALGORITHMS

A.1 NOTATIONS

Notation Description

Gg.g The source and target knowledge graphs, respectively

E¢& The sets of entities in G and G, respectively

R, R The sets of relations in G and G’, respectively

T, T The sets of relational triplets in G and G’, respectively

O The set of observed aligned entity pairs between two knowledge graphs G and G’

H Set of unobserved entity pairs, i.e., £ x £'\O

V(e,er) Binary indicator variable for an entity pair (e, ¢’), where v, .y = 1 indicates alignment

Wy, p' Confidence score of a rule-inferred alignment based on paths p and p’

Puw(V(e,e)|G,G")  Probability distribution of the alignment indicator v, .-y given knowledge graphs G and G’
0 Parameters of the neural model

1 Threshold to select positive pair from the symbolic model

n(r) Relation pattern measuring the uniqueness of an entity through relation

Table 3: Notations

A.2 COMPLEXITY ANALYSIS OF THE SYMBOLIC REASONING

In the following, we present the analysis of runtime complexity and parameter complexity one by
one.

A.2.1 RUNTIME COMPLEXITY

In variational inference, the process of learning and inferring long rules (Eq. [7) is simplified by
decomposing them into unit-length rules (Eq. [8). Consequently, rule weight learning (Eq. [I0) is
only conducted for unit-length rules. The inference process for an L-length rule is then estimated by
iteratively applying inference steps with unit-length rules (Eq. [9) for L iterations. This strategy ef-
fectively avoids the exponential search space associated with longer rules, making the computational
complexity of the inference linear with respect to the rule length L.

Each iteration of reasoning with unit-length rules comprises an inference step (Eq. [0) and a rule-
weight learning step (Eq. [T0). These steps require computing the matching probability for all
possible entity pairs and relation pairs, respectively. As a result, the computational complexity of
the inference step and the weight updating step are O(|€||E’|) and O(|R||R’]), respectively.

Thus, the total computational complexity for reasoning with an L-length rule is O(L - (|€]|E'| +
|R||R'|)). Given that entity sizes are typically much larger than relation sizes, this complexity can
be approximated as O(L - |E]|E’]).

Notably, the computations involved in Eq. [9] and Eq. can be accelerated through parallel
processing, which we have implemented. This optimization reduces the runtime complexity to

0] (L . %) , where n represents the number of CPU cores available for parallelization.

A.2.2 PARAMETER COMPLEXITY

The total number of alignment probabilities for all entity pairs is |£]|E’|, which is large when the
entity sizes increase. We adopt a lazy inference strategy to enhance parameter efficiency. This
strategy involves only saving the alignment probabilities of the most probable alignments:

{pw(v(ei,eg)), l,ei € & el € El,pw(v(che’/i)) = max (rgleagxpw(v(e’e(i))7 ?ggpw(v(%e/))) } (12)

Probabilities of other entity pairs can be inferred from these saved alignment probabilities using Eq.
[ In this way, parameter complexity is reduced to O(max (|€| + [£'])).

12
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A.3 PSEUDO-CODE OF EXPLAINER

Below is the pseudo-code of how the explainer generates supporting rules as interpretations for the
query pair. It consists of two stages: searching reachable anchor pairs, and parsing rule paths as well
as calculating rule confidences.

Algorithm 1 Generating Interpretations for the Queried Entity Pair with Weighted Rules

Inputs: Subrelation probabilities psyu,(r C 7'), psus(r’ C 7) for r, 7’ € R; Knowledge Graph pair (G,G’);
Maximum rule length £; Anchor pairs A with source-to-target mapping S2T and target-to-source mapping
T2$S; Query entity pair (eq, ;)
Outputs: Ranked rules based on confidence
1. Search Reachable Anchor Pairs within Max Depth £
RN + BFS(eq,G,L) /=« Search reachable neighbors of e, using breadth-first search, max depth £ x/
RN’ + BFS(e;,G', L) /* Search reachable neighbors of e;, using breadth-first search, max depth £ */
RN, + RN UT2s(RN'; A) / = Find source nodes of reachable anchor pairs using hash mapping  /
RA + {(e,s2T(e; A)) | e € RN, } / = Identify reachable anchor pairs * /
2. Parse and Rank Rules Based on Confidence
for V(e,e') € RAdo

Extract paths: p(e,eq) =r1 Ara A...,p'(e',eq) =T ATy AL ..

if [p(e, eq)| # [P'(¢', €q)| then

Wp(e,eq),p! (¢'ely) = 0 / * If path lengths don’t match, rule confidence is 0 */

else , ,
P 1Y . Psub(TiCT3)+Psup (T7C73)
Wp(ereq) p(ehrey) =TIy m(ra) - m(r}) - PeublriCrd i penn Cucr:

products of subrelation probabilities and relation functionalities * /
end if
end for
Sort the rules (p, p’) by w,,, in descending order
Return the ranked rules

/+ Compute rule confidence by

A.4 COMPLEXITY ANALYSIS OF THE EXPLAINER
B EXPERIMENTAL DETAILS

B.1 DATASET STATISTICS

The DBP15K dataset is designed for cross-lingual knowledge graph alignment and comes in two
versions: the full version and the condensed version. The full version of DBP15K includes compre-
hensive data across three language pairs. The condensed version eliminates the less frequent entities
and their connected triples. Statistics of both versions are presented below.

Datasets KG Entities Relations Rel. Triplets Aligned Entity Pairs
o G i OB s
po g G S s
fren gl e 105889 2209 278590 15,000

Table 4: Data statistics of the full DBP15K dataset.

B.2 COMPREHENSIVE RESULTS WITH DIFFERENT RATIO OF TRAINING DATA
Below we present the comprehensive performance evaluation with various ratios of pairs as training
data. In these 3x3 subfigures, each row shows the results of the same dataset, and each column shows
the results of the same metric. To summarize, we have the following observations from Figure [5}
* Neural-symbolic models, particularly our proposed NeuSymEA (NeuSymEA-L and
NeuSymEA-D), consistently outperform other approaches across all datasets and metrics.
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Datasets KG Entities Relations Rel. Triplets Aligned Entity Pairs
o gmmh PR BN o
e Eidichn 19780 D13 o3asd 15,000
fren  pihien 19993 1208 115722 15.000

Table 5: Data statistics of the condensed DBP15K dataset.

10 ja_en - hit@!1 o ja_en - hit@10 1o ja_en - MRR
A K B — k
0.84 0.8 7%"" 0.8
8 8 8
£ 0.6 206 206
G 04 G 04 504
a [ &
0.2 0.2 0.2
0.0 0.0 0.0
1 5 10 20 1 5 10 20 1 5 10 20
Training Data Percentage (%) Training Data Percentage (%) Training Data Percentage (%)
fr_en - hit@1 fr_en - hit@10 fr_en- MRR
10 = 10 = = 10 =
%"—’_ —.
0.84 0.8 0.8 7‘7;‘
8 8 8
£ 0.6 206 £06
S 0.4+ 504 504
o ~ a~
0.2 0.2 0.2
0.0 0.0 0.0
1 5 10 20 1 5 10 20 1 5 10 20
Training Data Percentage (%) Training Data Percentage (%) Training Data Percentage (%)
zh_en - hit@1 zh_en - hit@10 zh_en - MRR
1.0 = 1.0 = 1.0 =
"
0.84 7%,/—‘4 0.8 t%'—/ 08 :%——b"g‘
o o o
3 3 S
5 0.6 £ 0.6 £ 0.6
E E E
£ 041 £ 04 £ 04
[ ~ ~
0.2 0.2 0.2
0.0 0.0 0.0
1 5 10 20 1 5 10 20 1 5 10 20
Training Data Percentage (%) Training Data Percentage (%) Training Data Percentage (%)
-@ NeuSymEA-D @)~ NeuSymEA-L  -W- BootEA Dual-AMN ~ ~@- PARIS  —@- PRASE
RREA —A— GCNAlign —& AlignE LightEA EMEA
Figure 5: Alignment performance with varying percentages of pairs as training data.

These models demonstrate remarkable robustness, maintaining high performance even with
limited training data (as low as 1%). Their success highlights the effectiveness of combin-
ing neural and symbolic approaches in entity alignment tasks, offering a significant advan-
tage over traditional neural or purely symbolic methods.

The performance of all models generally improves as the percentage of training data in-
creases, but the rate of improvement varies significantly. Traditional neural models like
GCNAlign and AlignE show the steepest improvement curves, indicating their heavy re-
liance on large training datasets. In contrast, neural-symbolic models, especially our pro-
posed NeuSymEA, demonstrate high performance even with minimal training data, show-
casing their efficiency and potential for low-resource scenarios.

The experiments reveal varying levels of difficulty in entity alignment across different lan-
guage pairs. Japanese-English alignment generally shows the highest performance across
models, followed by French-English, while Chinese-English proves to be the most chal-
lenging. This variance underscores the importance of considering language-specific char-
acteristics in entity alignment tasks and suggests that some language pairs may require
more sophisticated approaches or additional resources for effective alignment. The ob-
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served differences might be attributed to factors such as linguistic distance, writing system
differences, or the availability and quality of pre-existing resources for each language pair.
These findings emphasize the importance of developing flexible models that can adapt to
the specific challenges posed by different language combinations.

* The exceptional performance of NeuSymEA across various scenarios — different language
pairs, metrics, and data availability levels — points to their robustness and scalability. This
consistency suggests that these models might be more easily adaptable to new languages
or domains without requiring extensive retraining or modification. Such robustness is cru-
cial for developing general-purpose entity alignment systems that can be deployed across
diverse linguistic and domain-specific contexts. Additionally, its ability to perform well
with limited data indicates potential for scalability to a wider range of languages and do-
mains, including those with limited resources, which could significantly expand the reach
and applicability of cross-lingual knowledge integration technologies.

B.3 PARAMETER ANALYSIS

We present the hit@1 performance of NeuSymEA across three datasets, varying hyperparameters,
illustrated by a three-dimensional graph. The threshold hyperparameter ¢ is explored within the
set {0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99}, while the number of EM iterations ranges from 1 to 9.
Performance levels are indicated using a colormap. Performance sensitivity analysis in Figure [f]
reveals that for all datasets, performance generally improves as the iteration increases. On the other
hand, the performance is less sensitive to the threshold J.

Hit@] for ja-en Hit@] for fr-en Hit@]1 for zh-en

Figure 6: Performance sensitivity to hyperparameters iteration and threshold §.
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