
Policy Guided Tree Search for Enhanced LLM Reasoning

Yang Li 1

Abstract

Despite their remarkable capabilities, large lan-
guage models often struggle with tasks requiring
complex reasoning and planning. While existing
approaches like Chain-of-Thought prompting and
tree search techniques show promise, they are lim-
ited by their reliance on predefined heuristics and
computationally expensive exploration strategies.
We propose Policy-Guided Tree Search (PGTS),
a framework that combines reinforcement learn-
ing with structured tree exploration to efficiently
navigate reasoning paths. Our key innovation is a
learned policy that dynamically decides between
expanding, branching, backtracking, or terminat-
ing exploration, eliminating the need for man-
ual heuristics or exhaustive search. Experiments
across mathematical reasoning, logical deduction,
and planning benchmarks demonstrate that PGTS
achieves superior reasoning performance while
significantly reducing computational costs com-
pared to existing methods. These results establish
PGTS as a scalable and effective solution for tack-
ling complex reasoning tasks with LLMs.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities across diverse tasks, driven by advances in
model architecture, parameter scaling, and pretraining data
(Achiam et al., 2023; Team et al., 2023; Jiang et al., 2023;
Dubey et al., 2024). However, these models consistently
struggle with tasks requiring complex reasoning and plan-
ning (Valmeekam et al., 2022; Kambhampati, 2024; Kamb-
hampati et al., 2024). In mathematical problem-solving,
for instance, while LLMs excel at direct arithmetic calcu-
lations, they frequently falter when faced with multi-step
word problems that demand strategic decomposition and
careful planning (Kao et al., 2024; Huang & Chang, 2022).

1Independent Researcher. Correspondence to: Yang Li
<yli.ml.research@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

These limitations extend to logical reasoning and real-world
planning scenarios, where success depends on systemati-
cally breaking down complex problems into interconnected,
actionable steps (Kambhampati, 2024).

Recent approaches to enhance LLM reasoning fall into
three main categories. First, advanced prompting techniques
like Chain-of-Thought (CoT) (Wei et al., 2022) and Least-
to-Most prompting (Zhou et al., 2022) encourage step-by-
step reasoning by generating intermediate steps. Second,
verification-based methods aim to improve reasoning quality
through step validation (Cobbe et al., 2021; Lightman et al.,
2023; Li et al., 2022; Wang et al., 2024b; Zhang et al., 2024)
or iterative refinement (Qu et al., 2024), using either self-
evaluation (Qu et al., 2024) or external correctors (Havrilla
et al., 2024). Third, tree-based search methods reframe rea-
soning as a planning problem, using reward signals to guide
the exploration of reasoning paths (Feng et al., 2023; Yao
et al., 2024; Besta et al., 2024; Hao et al., 2023; Xie et al.,
2024b; Khalifa et al., 2023; Wang et al., 2024a).

While these approaches show promise, they face several
key limitations. Heuristic search methods rely heavily on
predefined rules and reward definitions, requiring signifi-
cant expert knowledge. Additionally, their trial-and-error
exploration process can be computationally expensive due
to the vast space of possible reasoning steps. The challenge
becomes even more pronounced when using self-evaluation
as a reward signal, making the process even more resource-
intensive (Feng et al., 2023; Hao et al., 2023; Xie et al.,
2024b). Moreover, the ability of LLMs to effectively cri-
tique their own outputs and refine their responses remains
an area of active research. This limitation is particularly pro-
nounced in tasks requiring intricate planning and reasoning
(Stechly et al., 2024; Huang et al., 2023; Hong et al., 2023).
Furthermore, even when the exploration process identifies
improved reasoning chains, distinguishing successful rea-
soning paths from failed ones without external guidance
continues to pose a significant challenge (Qi et al., 2024).

To address these challenges, we propose Policy-Guided Tree
Search (PGTS), a framework that integrates reinforcement
learning with structured tree exploration. The core of PGTS
is a learned policy that dynamically guides the reasoning
process through four key actions: expanding current nodes,
branching to alternative paths, backtracking to previous

1

Policy Guided Tree Search for Enhanced LLM Reasoning

states, or terminating exploration. This structured approach
enables efficient navigation of reasoning paths, focusing
computational resources on the most promising paths while
avoiding unnecessary exploration of less relevant areas.

PGTS offers several key advantages over existing methods.
First, its learned policy adapts dynamically to different tasks
without requiring predefined heuristics. Importantly, train-
ing the policy does not require ground-truth reasoning chain
annotations, making it more flexible and scalable. Second,
the framework’s backtracking capability allows recovery
from suboptimal paths, addressing a common limitation
of traditional search methods, such as Depth-Frist Search
(DFS) and Breadth-First Search (BFS) (Yao et al., 2024;
Xie et al., 2024b). Third, the terminate action prevents un-
necessary exploration by halting the process once sufficient
reasoning evidence has been gathered, significantly reducing
computational overhead and addressing the “overthinking”
phenomenon often observed in o1-like reasoning chains
(Chen et al., 2024c). Finally, the integration of reinforce-
ment learning with tree search creates an effective balance
between exploiting known high-reward paths and explor-
ing new alternatives. Collectively, these features make the
PGTS framework a robust, efficient, and versatile solution
for tasks requiring complex reasoning and planning.

Extensive experiments across mathematical reasoning, logi-
cal deduction, and planning benchmarks demonstrate the ef-
fectiveness of PGTS. Using LLaMA3.1-8B, PGTS achieves
a 41.00% accuracy on MATH, significantly improving upon
CoT’s 34.40% while using only one-third of the tokens
required by MCTS. These results establish PGTS as a prac-
tical and scalable solution for enhancing LLM reasoning
capabilities across diverse problem domains.

2. Method
2.1. Problem Formulation

Language model-based reasoning can be formalized as a se-
quence generation problem with intermediate steps. Large
language models, parameterized by θ and denoted as pθ,
generate text autoregressively. Given an input prompt
x = [x1, . . . , xn] consisting of tokens from a predefined vo-
cabulary, the model produces a response y = [y1, . . . , ym].
Each token yi is produced sequentially, conditioned on the
prompt x and all previously generated tokens y<i. The
probability of generating sequence y can be expressed as:

pθ(y | x) =
m∏
i=1

pθ(yi | x, y<i). (1)

For reasoning tasks, y typically comprises both intermediate
reasoning steps and the final answer.

This autoregressive procedure naturally maps to a Markov
Decision Process (MDP), defined as (S,A, T,R, γ), where

the state s ∈ S represents the current context, including the
prompt x and generated tokens so far; the action a ∈ A
corresponds the next token to be generated; the transition
s′ = T (s, a) is deterministically defined by appending ac-
tion a to state s; the reward R(s, a) evaluates the qual-
ity of each state-action pair; γ denotes the discount fac-
tor, weighting immediate rewards over future ones. The
objective of reasoning is to find an optimal sequence of
actions a∗ = [a1, . . . , aH] that maximizes the cumulative
discounted rewards, r =

∑H
h=1 γ

hR(sh, ah), where H is
the trajectory horizon. In practice, actions can represent
tokens, phrases, or complete sentences to improve optimiza-
tion efficiency (Feng et al., 2023; Zhao et al., 2024; Xie
et al., 2024a; Yao et al., 2024; Wang et al., 2024a). We refer
to this MDP formulation as LM-MDP.

2.2. Background: Tree Search for LLM Reasoning

Tree search methods offer a structured approach to explore
and optimize reasoning paths in LLMs by systematically
evaluating different sequences of reasoning steps. The rea-
soning process can be formalized as a tree (V, E), where
each node v ∈ V corresponds to a state s ∈ S, and each
edge (vi, vj) ∈ E represents an action a ∈ A. The root
node represents the initial prompt x, while a path from the
root to a leaf node denotes a complete reasoning chain y. To
evaluate the quality of each reasoning step, a process reward
model (PRM) R(s, a) is employed, implemented either as
a pretrained reward model (Lightman et al., 2023; Uesato
et al., 2022; Wang et al., 2024b) or an LLM-based evaluator
(Yao et al., 2024; Gao et al., 2024; Hao et al., 2023).

Various tree search algorithms have been developed to nav-
igate these reasoning trees effectively. Depth-First Search
(DFS) (Yao et al., 2024) and Breadth-First Search (BFS)
(Xie et al., 2024b) offer systematic exploration strategies,
while A∗ Search (Wang et al., 2024a) and Monte Carlo Tree
Search (MCTS) (Feng et al., 2023; Zhao et al., 2024; Xie
et al., 2024a) incorporate heuristics and sampling to balance
exploration with exploitation. While these methods have
proven effective in black-box optimization (Hart et al., 1968;
Zhai & Gao, 2022; Malherbe et al., 2022; Wang et al., 2024c;
2020) and reinforcement learning (Silver et al., 2017; Kartal
et al., 2019; Grill et al., 2020) contexts, their application
to LLM reasoning introduces distinct challenges: First, the
potential sequences of tokens, phrases, or sentences at each
step create an enormous action space, making exhaustive
exploration computationally infeasible. Second, feedback
signals R(s, a) are often sparse, noisy, or difficult to com-
pute, particularly in the absence of ground-truth annotations
for reasoning chains, complicating the evaluation of rea-
soning paths. Third, querying the LLM at each reasoning
step incurs significant resource demands, amplifying the
computational overhead of traditional tree search methods.

These challenges highlight the need for more efficient and

2

Policy Guided Tree Search for Enhanced LLM Reasoning

Figure 1. Expand, Branch and Backtrack actions in PGTS policy.

adaptive search strategies in LLM reasoning. To address
these limitations, we propose the PGTS framework, which
integrates a learned policy to dynamically guide the tree
search process, balancing exploration and exploitation while
reducing computational overhead.

2.3. Policy Guided Tree Search

2.3.1. OVERVIEW

Building on the tree search formulation for LLM reasoning,
PGTS introduces a structured action space designed to navi-
gate the reasoning tree effectively. Rather than relying on
predefined search strategies, PGTS learns to dynamically
select between four fundamental operations:

• Expand: Generate the next intermediate step in the rea-
soning chain by expanding the current node. This allows
the policy to progress along promising reasoning paths.

• Branch: Explore alternative reasoning paths by branching
to a sibling node from the current node. This enables the
policy to consider alternative solutions when the current
one is suboptimal.

• Backtrack: Revisit a previous node to explore alterna-
tive paths, enabling recovery from suboptimal reasoning
trajectories. The backtrack operation involves multiple ac-
tions, as the policy specifies how many steps to backtrack.

• Terminate: Conclude the search process once sufficient
evidence or a satisfactory reasoning chain is obtained,
preventing unnecessary exploration.

These actions (denoted as A) empower PGTS to adaptively
explore and refine reasoning chains, striking a balance be-
tween exploring promising steps and exploiting valuable
chains. This dynamic approach allows for efficient and tar-
geted navigation of the reasoning tree, even in the presence
of a vast reasoning steps. Please see Fig. 1 for an illustration.

In practice, we impose practical constraints to ensure com-
putational feasibility. We limit the maximum depth of the
reasoning tree, which naturally bounds the number of possi-
ble backtracking steps. To prevent unbounded exploration
from branching actions, we also restrict the tree’s breadth by
capping the number of child nodes per parent. These con-
straints maintain a finite action space while preserving the

policy’s ability to explore diverse reasoning paths. Please
see Sec. 2.3.3 for detailed discussion about the implication
of these depth and breadth limits.

The PGTS policy performs an exploratory walk on the un-
derlying reasoning tree, which is initially unobserved and
gradually revealed through exploration. This process can
be modeled as a MDP operating within an environment
represented by the complete reasoning tree. The state S cor-
responds to the portion of the tree revealed up to the current
step, transitioning deterministically based on the chosen
action a ∈ A. Note that this formulation differs from the
previously introduced LM-MDP, as it operates at the level
of tree exploration rather than token generation. Please see
Sec. 2.3.2 for the formal definition of this Tree Search MDP.

Since the state s ∈ S is naturally tree-structured, we imple-
ment the PGTS policy πϕ(· | s) as a graph neural network.
Specifically, we utilize the Graph Transformer architecture,
GPS, proposed in (Rampášek et al., 2022). The GPS ar-
chitecture utilizes both local message passing and global
attention to capture both the local structural relationships
and global context within the tree. Please see Sec. 2.3.4 for
details about the PGTS policy.

To guide the reasoning process effectively, the reward design
for PGTS balances two objectives: promoting high-quality
reasoning chains while encouraging efficient exploration.
We define immediate rewards based on task-specific met-
rics that evaluate the relevance and correctness of gener-
ated reasoning steps, R(s, a), while introducing costs for
exploration actions. This reward structure ensures the pol-
icy learns to navigate the reasoning tree efficiently, focus-
ing computational resources on the most promising paths.
Please see Sec. 2.3.2 for details about the reward design.

2.3.2. TREE SEARCH MDP

The tree search problem in PGTS can be formulated as a
MDP, which we refer to as Tree Search MDP (TS-MDP),
defined by the tuple (S,A,T,R, γ). The MDP interacts with
the underlying reasoning tree as its environment, with each
reasoning problem corresponding to a new environment.
Similar to the typical MDP settings, the environment is not
directly observable to the policy, while it gradually reveals
a part of the tree as the policy explores the environment.

The state space S represents the set of possible states in the
tree exploration process, where a state s ∈ S corresponds
to the portion of the reasoning tree that has been revealed
through previous interactions. The state includes the struc-
ture and content of all visited nodes, as well as the current
position of the policy in the tree. Each node in the tree
represents a partial reasoning path, which is equivalent to a
state s ∈ S in the LM-MDP. Node features are derived from
the hidden states extracted from the target LLM, specifically
the hidden state from the final layer corresponding to the

3

Policy Guided Tree Search for Enhanced LLM Reasoning

last generated token. Each edge in the tree captures the
parent-child relationship established by the reasoning step
a ∈ A. The edge features include the immediate reward
R(s, a), reflecting the quality of the reasoning step a. To-
gether, the structure of nodes and edges forms a dynamic
representation of the reasoning tree, allowing the PGTS
policy to effectively navigate and optimize the exploration.

The action space A comprises the structured actions avail-
able to the PGTS policy: expand, branch, backtrack, and
terminate. Each action transitions the policy to a new state
by modifying the observed reasoning tree. For a reasoning
tree with a maximum depth of D, the backtrack operation
includes D− 1 distinct actions, corresponding to backtrack-
ing between 1 and D − 1 steps. Notably, backtracking to
the root node (corresponding to the prompt x) is invalid, as
the root node lacks sibling nodes for exploration.

The transition function T determines how the state transi-
tions from s to s′ given an action a ∈ A. The transitions
in the TS-MDP are deterministic, as applying an action
updates the tree structure in a predefined manner. The rea-
soning process starts from a single root node, representing
the initial state, and terminates when the policy selects the
terminate action or when the exploration budget, i.e., the
maximum number of tree search steps, is exhausted. As
the policy updates the state, it records the node features and
edge features, and update the current node accordingly to
reflect the latest position of the policy in the reasoning tree.

The reward function R(s, a) assigns a scalar reward for
executing action a in state s. For each action type, the
reward is defined as follows:

• Expand: Let sd ∈ S be the partial reasoning path at
the current node and ad ∈ A be the new reasoning step
generated by the expand action, where d denotes the depth
of the current node. The reward is defined as

R(s, a) = R(sd, ad)− C(a), (2)

where R(sd, ad) evaluates the quality of the new reason-
ing step, and C(a) denotes the cost of the expand action.

• Branch: When the policy selects the branch action to
explore an alternative sibling node, let sd and s′d denote
the partial reasoning paths corresponding to the current
node and its sibling node respectively, with shared parent
sd−1, the reward is defined as

R(s, a) = R(s′d−1, a
′
d−1)−R(sd−1, ad−1)−C(a). (3)

Here, R(s′d−1, a
′
d−1)−R(sd−1, ad−1) quantifies the po-

tential improvement in reasoning by exploring the alter-
native path, while C(a) reflects the cost of branching.

• Backtrack: For the backtrack action, which reverts to a
previously visited node, all intermediate rewards along
the backtracked path are revoked. Suppose the backtrack

action reverts K steps. Denote the partial reasoning paths
for the current node and previous node as sd and sd−K ,
respectively. The reward R(s, a) is defined as

R(sd−K−1, a
′
d−K−1)−

K∑
k=1

R(sd−k, ad−k)−C(a), (4)

where
∑K
k=1R(sd−k, ad−k) represents the accumulated

reward along the backtracked path, R(sd−K−1, a
′
d−K−1)

captures the reward from the new path, and C(a) indicates
the cost of the backtrack action.

• Terminate: When the policy selects the terminate ac-
tion to end the reasoning process, let sd denote the final
reasoning path at the terminal node, the reward is

R(s, a) = R(sd)− C(a), (5)

where R(sd) measures the overall quality or correctness
of the reasoning chain at the terminal node, and C(a)
represents the cost of concluding the search. The reward
R(sd) can be derived from the commonly used outcome
reward model (ORM), and we can even compare the final
answer to the ground truth, as the reward is only used
during the training of the PGTS policy.

The cost function C(a) plays a pivotal role in guiding the
PGTS policy by assigning penalties to actions based on
their computational or logical expense. These costs act as
a mechanism to balance efficiency and reasoning quality.
Actions such as expand and branch typically incur lower
costs, as they change the reasoning tree locally. In contrast,
the backtrack actions involve higher cost, discouraging ex-
cessive reversions unless the potential improvements justify
the expense. The terminate action, which concludes the rea-
soning process and avoids further resource usage, generally
carries negligible or zero cost. In our implementation, C(a)
is treated as a hyperparameter that can be tuned to align the
system’s behavior with task-specific requirements or com-
putational constraints. By appropriately setting these costs,
the system fosters a balance between computational effi-
ciency and reasoning complexity. This cost structure works
in tandem with the reward function, which prioritizes accu-
rate, coherent, and relevant reasoning paths while penalizing
unproductive exploration. Together, the rewards and costs
enable the PGTS policy to navigate reasoning trees effec-
tively, balancing exploration and exploitation, and adapting
flexibly to diverse tasks and constraints.

2.3.3. CONSTRAINED ACTION SAMPLING

The reasoning tree enforces explicit depth and breadth lim-
its to maintain computational feasibility, which naturally
constrains the validity of actions in different states. For
expand actions, validity is determined by the depth limit and
answer state: the expand action becomes invalid when the

4

Policy Guided Tree Search for Enhanced LLM Reasoning

current node has reached the maximum depth limit or when
a final answer has already been generated at the current
node. Branch and backtrack actions face similar structural
constraints. These actions are prohibited at the root node as
it has no parent or siblings. They are also invalid when the
parent node has reached its maximum allowed children, pre-
venting unbounded tree growth. For backtrack specifically,
a node at depth d can only backtrack up to d− 1 steps, en-
suring the action remains within the explored portion of the
tree. The terminate action maintains the simplest constraint,
becoming valid only when the current node has reached a
final answer or the maximum depth limit has been reached.

These structural constraints ensure the reasoning process
remains well-defined and computationally tractable while
guiding the policy toward meaningful exploration paths. To
implement these constraints efficiently, we represent them
as a D + 2 dimensional binary vector, where D indicates
the depth limit of the reasoning tree. Each dimension corre-
sponds to the validity of a specific action: the first dimension
for expand, the second for branch, the next D − 1 dimen-
sions for different backtrack depths, and the final dimension
for terminate. This constraint vector serves dual purposes:
it augments the policy’s input state to inform action selec-
tion, and it masks invalid actions from the policy’s output
distribution, ensuring only valid actions can be sampled.
Through this mechanism, the policy naturally learns to navi-
gate within the feasible action space while maintaining the
structural integrity of the reasoning tree.

2.3.4. POLICY DESIGN FOR PGTS

The effectiveness of PGTS heavily depends on its ability to
process and navigate reasoning tree. In our TS-MDP formu-
lation, the state is naturally represented as a tree where each
node corresponds to a partial reasoning path. To effectively
learn from this structured data, we need a policy architecture
that can capture both local relationships between reasoning
steps and global patterns across the entire tree.

We design our policy using a graph-based architecture that
processes two types of features. Node features are derived
from the hidden states of the target LLM, capturing the
semantic content of each reasoning step. Edge features
encode the intermediate rewards of reasoning transitions,
quantifying the quality and relationships between consecu-
tive steps. This rich feature representation enables the policy
to assess both the local quality of individual steps and their
contribution to the overall reasoning path.

To process these features effectively, we employ a
Graph Transformer-based model using the GPS framework
(Rampášek et al., 2022). This architecture combines lo-
cal message passing operations from graph neural networks
with global attention mechanisms from transformers. The lo-
cal operations capture step-by-step reasoning relationships,

while global attention helps maintain coherence across the
entire reasoning process. We further enhance the struc-
tural understanding by incorporating random-walking struc-
ture embeddings (Dwivedi et al., 2021), which encode each
node’s position and connectivity within the tree.

The policy network processes these inputs through a se-
quence of GPS layers, each layer aggregating both local and
global information. The final representation of the current
node is concatenated with the action constraints vector to
ensure awareness of valid actions. This combined represen-
tation then passes through linear layers to produce logits for
a categorical distribution over theD+2 possible actions. In-
valid actions are masked out during sampling, ensuring the
policy’s decisions respect the tree’s structural constraints.

We implement the value network using the same architec-
tural backbone, sharing the GPS layers with the policy net-
work to maintain consistent representation learning. The
value network differs only in its final layers, which produce
a scalar estimate of the expected cumulative reward. This
shared structure allows both networks to leverage the same
learned representations of the reasoning tree while serving
their distinct purposes in the decision-making process.

2.3.5. TRAINING

The training process for the PGTS policy aims to enhance
reasoning effectiveness while minimizing unnecessary ex-
ploration. This is accomplished by optimizing the policy
through reinforcement learning, with rewards designed to
promote both accuracy and efficiency. The training itera-
tively refines the policy’s ability to navigate reasoning trees
and select actions that yield high-quality solutions.

We adopt Proximal Policy Optimization (PPO) (Schulman
et al., 2017) as our training algorithm due to its stabil-
ity and sample efficiency. Starting from randomly initial-
ized weights, the policy interacts with reasoning tasks in
episodes, learning to select actions that maximize cumula-
tive rewards. When sampling actions during training, we ap-
ply the constraint mask to zero out logits of invalid actions,
ensuring the decisions respect the tree’s structural limits.
The remaining logits are normalized to form a valid cate-
gorical distribution over permitted actions. This mechanism
allows the policy to learn feasible exploration strategies
while maintaining the integrity of the reasoning tree.

To encourage efficient exploration, we incorporate entropy
regularization into the policy loss. This ensures that the
policy maintains a balance between exploiting known high-
reward paths and exploring less certain but potentially re-
warding alternatives. Additionally, the cost components
C(a) in the reward function are tuned to discourage exces-
sive backtracking or branching, guiding the policy toward
concise, meaningful reasoning paths. Please refer to Algo-
rithm 1 for the complete training procedure.

5

Policy Guided Tree Search for Enhanced LLM Reasoning

3. Related Works
LLM Reasoning LLM reasoning has advanced through
techniques such as CoT (Wei et al., 2022), ToT (Yao et al.,
2024), and programmatic reasoning paradigms (Chen et al.,
2022; Sel et al., 2023), fostering structured and iterative
problem-solving. Recent innovations include heuristic
search methods like MCTS (Feng et al., 2023; Hao et al.,
2023) and A∗ search (Wang et al., 2024a). Building on these
developments, our PGTS framework integrates learned poli-
cies to improve search efficiency and reasoning performance.
For a detailed review of related approaches and their con-
nection to inference-time scaling, please refer to Sec. B.

Graph Transformers Graph Transformers (GTs) have
emerged as powerful architectures for processing graph-
structured data, building upon the success of Transformers
in other domains. These models are particularly attractive
due to their ability to address fundamental limitations of tra-
ditional Message Passing Neural Networks (MPNNs), such
as over-smoothing and over-squashing issues (Alon & Ya-
hav, 2020; Topping et al., 2021). Various GT architectures
have been proposed, from the initial Fully-connected Graph
Transformer with basic positional encodings (Dwivedi &
Bresson, 2020), to more sophisticated designs like SAN
with invariant eigenvector aggregation (Kreuzer et al., 2021),
and Graphormer with distance-based encodings (Ying et al.,
2021). GraphTrans (Wu et al., 2021) introduces the first
hybrid architecture, which combines local message passing
with global attention mechanisms. GPS (Rampášek et al.,
2022) systematically investigates and integrates different
components of GTs, offering a modular and scalable frame-
work. In this work, we implement the PGTS policy using
GPS layers given its ability to effectively combine local and
global information while maintaining linear complexity.

4. Experiments
In this section, we showcase the flexibility and effective-
ness of our PGTS framework across diverse problem do-
mains, including mathematical reasoning, commonsense
reasoning, logical reasoning, and real-world planning. For
mathematical reasoning, we evaluate our framework on the
GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al.,
2021; Lightman et al., 2023), and AQUA (Ling et al., 2017)
datasets, using 4-shot settings for GSM8K and MATH500,
and a 10-shot setting for AQUA. The in-context learning
(ICL) examples are adapted from OpenCompass (Contrib-
utors, 2023) for GSM8K and MATH500, and from LLM-
Reasoner (Hao et al., 2024) for AQUA. For commonsense
reasoning, we evaluate StrategyQA (Geva et al., 2021) in a
5-shot setting, with ICL examples also adapted from Open-
Compass. For logical reasoning, we evaluate the PrOntoQA
(Saparov & He, 2022) dataset for logical deduction in a
5-shot setting and the GPQA (Rein et al., 2023) dataset for

graduate-level multiple-choice questions in a 0-shot setting.
Finally, for the planning task, we evaluate our framework
on the Blocksworld benchmark (Valmeekam et al., 2022).

Across all datasets, we define a single reasoning step as
one sentence, maintaining consistency and simplicity. Un-
like RAP (Hao et al., 2023), which incorporates a world
model to simulate environment states after each action, our
approach directly focuses on reasoning in the generated text
without state modeling. For detailed dataset descriptions
and reasoning setups, refer to Sec. C.

We compare PGTS against CoT and MCTS baselines.
MCTS inherently explores multiple reasoning chains by
traversing different paths during search, while we enhance
CoT and our PGTS with self-consistency (SC) (Wang et al.,
2022). Specifically, CoT aggregate outcomes from multiple
chains using majority voting, whereas MCTS and PGTS
utilize weighted voting based on the reward of each reason-
ing chain. Additionally, we report MCTS results for the
highest-reward trajectory. Since one of our primary goals
is to reduce reasoning costs, we exclude MCTS approaches
that rely on self-evaluation as intermediate rewards (Xie
et al., 2024a; Gao et al., 2024), as they are computation-
ally expensive. Instead, we simply use the likelihood of
each reasoning step as the intermediate reward, R(s, a). An
oracle setting is included for MCTS, allowing it to access
task rewards by comparing generated answers with ground
truths during search. For both MCTS and PGTS approaches,
the tree breadth is limited to 4 child node per parent. For
detailed descriptions of the baselines, refer to Sec.D, and
for ablations on the reasoning tree constraints, see Sec.4.1.

For PGTS, we train the policy using up to 1,000 examples
from the training split of each dataset. This highlights the
sample efficiency of our approach, as 1,000 examples suffice
to learn an effective policy. For ablations on training settings,
refer to Sec. 4.1. The policy architecture consists of two
GPS layers followed by a single linear layer for action and
value prediction. To simplify experiments, the action cost
C(a) is fixed across datasets, with values of 0.1, 0.2, 0.5,
and 0.0 for expand, branch, backtrack, and terminate actions,
respectively. While dataset-specific tuning could further
enhance performance, we leave this for future exploration.
See Sec. E for training details of our PGTS policy.

Table 1 presents evaluation results for the LLaMA3.1-8B
and LLaMA3.1-70B models, both configured to generate
reasoning steps with a temperature of 0.6 and top p of 0.9.
Across all datasets, PGTS consistently outperforms CoT,
demonstrating the effectiveness of its learned policy in guid-
ing reasoning steps. The inclusion of SC further boosts
PGTS performance. For instance, on the MATH dataset,
PGTS improves accuracy from CoT’s 34.40% to 41.40% in
the 8B setting, illustrating its ability to explore high-quality
reasoning chains. Similarly, on Blocksworld, PGTS-SC

6

Policy Guided Tree Search for Enhanced LLM Reasoning

Table 1. Evaluation results of LLaMA3.1-8B and LLaMA3.1-70B on various datasets across multiple reasoning tasks: Mathematical
reasoning (GSM8K, MATH, AQUA), Commonsense reasoning (StrategyQA), Logical reasoning (PrOntoQA, GPQA), and Planning tasks
(Blocksworld with 4 and 8 steps). SC4 and SC8 denote self-consistency voting over 4 and 8 sampled chains, respectively. MCTS (Best)
reports results for the reasoning chain with the highest reward, while MCTS (Agg) presents results aggregated over multiple reasoning
chains using weighted voting on the final answer. MCTS (Oracle) compares final answer with groundtruth as an additional reward.

Mathematical Com. Sense Logical Planning

GSM8K MATH AQUA StrategyQA PrOntoQA GPQA BW (4) BW (8)

LLaMA3.1-8B

CoT 83.47 34.40 51.57 74.20 69.40 14.65 22.37 2.10
CoT (SC4) 87.79 42.20 53.94 77.10 73.00 15.66 22.37 2.79
CoT (SC8) 89.84 48.20 55.12 77.20 74.60 15.15 26.32 2.79

MCTS (Best) 86.13 43.80 60.63 79.00 74.20 34.34 28.95 6.29
MCTS (Agg) 87.72 46.00 59.45 79.50 74.20 32.83 28.95 6.29

MCTS (Oracle) 88.78 51.40 64.96 84.40 74.80 34.85 34.21 6.29

PGTS 85.29 41.00 60.63 77.70 68.20 18.69 27.63 3.50
PGTS (SC4) 89.61 47.00 66.93 83.80 74.40 22.73 35.53 4.90
PGTS (SC8) 89.99 52.20 66.54 85.70 77.40 27.78 36.84 6.99

LLaMA3.1-70B

CoT 91.66 53.80 72.83 83.60 92.00 20.20 39.47 18.88
CoT (SC4) 92.49 58.60 72.44 85.10 93.60 19.78 50.00 20.28

MCTS (Best) 91.28 56.20 76.38 85.70 95.20 41.92 50.00 22.38
MCTS (Agg) 92.27 57.20 77.17 86.70 95.20 43.94 50.00 22.37

MCTS (Oracle) 93.10 66.00 82.68 90.70 96.00 47.47 61.80 24.47

PGTS 91.05 54.77 73.23 85.50 91.40 32.18 46.05 22.38
PGTS (SC4) 92.54 59.65 79.92 91.00 96.80 36.36 50.00 25.87

achieves an accuracy of 36.84%, compared to CoT-SC’s
26.32%, showcasing its superior handling of multi-step rea-
soning tasks. While both CoT and PGTS benefit from SC,
PGTS exhibits more pronounced improvements, underscor-
ing its ability to generate diverse, high-quality chains suit-
able for aggregation. Please see Sec. G for examples of the
generated reasoning chains.

When compared to MCTS, PGTS demonstrates competitive
performance across most tasks. For example, PGTS without
SC achieves comparable accuracy to MCTS on GSM8K,
MATH, and StrategyQA and surpasses MCTS when aug-
mented with SC. However, one exception is the GPQA task,
where PGTS underperforms MCTS. This can be attributed
to the inherent complexity of GPQA, which includes di-
verse topics and is curated to challenge even non-expert
humans. Moreover, the limited training data available for
PGTS, given the task complexity, makes it difficult to fully
capture the intricacies of GPQA.

A key advantage of PGTS over MCTS is its computational
efficiency. As shown in Figure 2, MCTS incurs significantly
higher token costs due to its exhaustive search over rea-
soning chains. For instance, on MATH, MCTS requires
16.25 times more tokens than CoT, whereas PGTS achieves
competitive performance with only a 5.28 times increase.
Similarly, on GSM8K, MCTS uses 13.33 times the tokens of
CoT, while PGTS requires just 1.29 times. These reductions
in token usage make PGTS more practical for real-world ap-
plications where computational costs are critical. Although

SC requires generating additional tokens for aggregating out-
comes over multiple reasoning chains, these operations are
highly parallelizable, ensuring that PGTS with SC remains
computationally feasible despite the additional generations.
Notably, the overhead introduced by the PGTS policy is
negligible compared to the cost of LLM generation, thanks
to its lightweight architecture.

4.1. Ablations

Training Examples In the main results, we train the
PGTS policy using up to 1,000 examples. Here, we demon-
strate the convergence behavior of the training process. Fig-
ure 3 presents the training curve with evaluation results at
intermediate checkpoints, showing that the policy converges
quickly and plateaus at approximately 1,000 examples.

Tree Constraints In our main results, we limit the tree
breadth to 4 child nodes per parent. Table 2 shows evaluation
results on AQUA with varying tree breadths. Both MCTS
and PGTS achieve better performance with broader trees,
as expected, since a broader tree facilitates more diverse
reasoning chains. However, broader trees also generate
more tokens, so we use a breadth of 4 in our main results
to balance accuracy and reasoning cost. For tree depth, we
set an upper bound that ensures all examples can reach the
terminal state (i.e., the final answer), with the terminate
action allowing early stopping as needed.

Policy Network We implement our PGTS policy using
GPS layers, which combine local message passing and

7

Policy Guided Tree Search for Enhanced LLM Reasoning

Figure 2. Comparison of generated token counts for LLaMA3.1-8B, normalized relative to the CoT method.

(a) GSM8K (b) AQUA

Figure 3. Trajectory reward along training, with evaluation results
at intermediate checkpoints.

Table 2. AQUA results with different tree breadth.
2 4 8

Evaluation Results PGTS 55.91 60.63 61.47
MCTS 57.08 59.45 62.60

Generated Tokens PGTS 252.16 283.24 370.54
MCTS 399.13 1241.37 3282.41

global attention to extract node features effectively. The
reasoning tree also incorporates the immediate reward
R(s, a) as edge features to inform decision-making. Ta-
ble 3 presents ablation studies evaluating the importance
of each component in the GPS-based policy and com-
paring it to alternative policy implementations. SAN re-
places GPS layers with a different graph transformer ar-
chitecture proposed in (Kreuzer et al., 2021). SLM re-
places the graph-based policy with a small language model
(distilbert-base-uncased), which processes the
previous reasoning trajectory to predict the next action.
LLM Agent prompts the same target LLM to predict the
exploration action, aligning with an agentic approach where
the LLM assumes the role of an autonomous agent collab-
orating with others to solve the problem. Details of these
policy implementations are provided in Sec. F. The abla-
tion results demonstrate that the full GPS policy achieves
the best performance, highlighting the effectiveness of in-
tegrating local message passing, global attention, and edge
features. Removing edge features or global attention re-
sults in significant performance drops, especially on AQUA,
emphasizing their importance for reasoning. While SAN
performs competitively, it falls short of GPS, suggesting that

Table 3. Ablation studies on policy implementation.
AQUA GSM8K

GPS 60.63 85.29
GPS (w/o edge features) 50.79 81.96

GPS (w/o global attention) 54.72 84.15
GPS (w/o local MPNN) 58.76 84.78

SAN 60.24 82.56
SLM 53.94 82.87

LLM Agent 55.51 83.32

advanced graph modeling techniques could further enhance
results. SLM and LLM Agent perform worse, underscoring
the strengths of graph-based approaches over language-only
methods. We hypothesize that techniques such as improved
prompt engineering or memory-augmented agents (Chen
et al., 2024b) could boost agent-based performance, which
we leave for future work.

5. Conclusion
In this work, we introduced Policy-Guided Tree Search
(PGTS), a novel framework for reasoning with large lan-
guage models that combines the efficiency of policy-guided
exploration with the structured advantages of tree search.
PGTS dynamically allocates inference resources, prioritiz-
ing promising reasoning paths for targeted exploration, lead-
ing to significant improvements in inference efficiency and
the ability to tackle complex reasoning tasks. Moreover,
PGTS addresses the ”overthinking” problem commonly ob-
served in many o1-like models (Chen et al., 2024c), where
excessive reasoning steps are generated for simple problems.

A key paradigm shift in PGTS is treating the LLM as an
environment rather than a policy, enabling external decision-
making components to guide reasoning processes more ef-
fectively. While the current implementation uses simple log-
likelihood-based rewards as intermediate feedback, future
work could incorporate more sophisticated reward mecha-
nisms, such as LLM self-evaluation or task-specific metrics,
to provide richer guidance during the search and further en-
hance reasoning performance. PGTS represents a significant
step toward more efficient and structured inference-time rea-
soning with LLMs.

8

Policy Guided Tree Search for Enhanced LLM Reasoning

Impact Statement
This work aims to advance the field of reasoning with large
language models (LLMs) by introducing the Policy-Guided
Tree Search (PGTS) framework. By improving inference
efficiency and addressing challenges such as overthinking
in reasoning processes, PGTS contributes to the broader
objective of enhancing LLM usability in complex reasoning
tasks.

The proposed framework has the potential to positively im-
pact areas where efficient reasoning and decision-making
are critical, including education, scientific discovery, and
AI-driven assistance. However, it is essential to acknowl-
edge certain ethical considerations and limitations. PGTS
does not explicitly address the faithfulness of generated rea-
soning chains, meaning the reasoning paths may not align
with human-understandable logic or the true underlying rea-
soning process. This limitation could inadvertently lead to
misleading outputs in high-stakes applications.

Future work exploring richer reward signals, such as self-
evaluation or task-specific metrics, could mitigate these
concerns and ensure greater alignment with human expec-
tations. While PGTS optimizes reasoning efficiency, care
must also be taken to ensure it is applied responsibly, partic-
ularly in applications requiring transparency and trust in AI
reasoning processes.

In summary, this work represents a meaningful step toward
improving LLM reasoning capabilities, with both ethical
implications and societal benefits that warrant further explo-
ration and thoughtful application.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. arXiv preprint
arXiv:2006.05205, 2020.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 38, pp. 17682–17690, 2024.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Chen, L., Davis, J. Q., Hanin, B., Bailis, P., Stoica, I., Za-
haria, M., and Zou, J. Are more llm calls all you need?
towards scaling laws of compound inference systems.
arXiv preprint arXiv:2403.02419, 2024a.

Chen, M., Li, Y., Yang, Y., Yu, S., Lin, B., and He, X. Au-
tomanual: Generating instruction manuals by llm agents
via interactive environmental learning. arXiv preprint
arXiv:2405.16247, 2024b.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think
that much for 2+ 3=? on the overthinking of o1-like llms.
arXiv preprint arXiv:2412.21187, 2024c.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Contributors, O. Opencompass: A universal evaluation
platform for foundation models. https://github.
com/open-compass/opencompass, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Feng, X., Wan, Z., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. Alphazero-like tree-search can
guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Gao, Z., Niu, B., He, X., Xu, H., Liu, H., Liu, A., Hu,
X., and Wen, L. Interpretable contrastive monte carlo
tree search reasoning. arXiv preprint arXiv:2410.01707,
2024.

Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., and
Berant, J. Did aristotle use a laptop? a question answering
benchmark with implicit reasoning strategies. Transac-
tions of the Association for Computational Linguistics, 9:
346–361, 2021.

9

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Policy Guided Tree Search for Enhanced LLM Reasoning

Grill, J.-B., Altché, F., Tang, Y., Hubert, T., Valko, M.,
Antonoglou, I., and Munos, R. Monte-carlo tree search
as regularized policy optimization. In International Con-
ference on Machine Learning, pp. 3769–3778. PMLR,
2020.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. arXiv preprint arXiv:2305.14992,
2023.

Hao, S., Gu, Y., Luo, H., Liu, T., Shao, X., Wang, X.,
Xie, S., Ma, H., Samavedhi, A., Gao, Q., et al. Llm
reasoners: New evaluation, library, and analysis of step-
by-step reasoning with large language models. arXiv
preprint arXiv:2404.05221, 2024.

Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis
for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

Havrilla, A., Raparthy, S., Nalmpantis, C., Dwivedi-Yu,
J., Zhuravinskyi, M., Hambro, E., and Raileanu, R.
Glore: When, where, and how to improve llm reason-
ing via global and local refinements. arXiv preprint
arXiv:2402.10963, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hong, R., Zhang, H., Pang, X., Yu, D., and Zhang, C.
A closer look at the self-verification abilities of large
language models in logical reasoning. arXiv preprint
arXiv:2311.07954, 2023.

Huang, J. and Chang, K. C.-C. Towards reasoning in
large language models: A survey. arXiv preprint
arXiv:2212.10403, 2022.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kambhampati, S. Can large language models reason and
plan? Annals of the New York Academy of Sciences, 1534
(1):15–18, 2024.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M.,
Stechly, K., Bhambri, S., Saldyt, L., and Murthy, A. Llms

can’t plan, but can help planning in llm-modulo frame-
works. arXiv preprint arXiv:2402.01817, 2024.

Kao, K.-C., Wang, R., and Hsieh, C.-J. Solving for x and
beyond: Can large language models solve complex math
problems with more-than-two unknowns? arXiv preprint
arXiv:2407.05134, 2024.

Kartal, B., Hernandez-Leal, P., and Taylor, M. E. Action
guidance with mcts for deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelli-
gence and interactive digital entertainment, volume 15,
pp. 153–159, 2019.

Khalifa, M., Logeswaran, L., Lee, M., Lee, H., and Wang, L.
Grace: Discriminator-guided chain-of-thought reasoning.
arXiv preprint arXiv:2305.14934, 2023.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Li, C., Liang, J., Zeng, A., Chen, X., Hausman, K., Sadigh,
D., Levine, S., Fei-Fei, L., Xia, F., and Ichter, B. Chain
of code: Reasoning with a language model-augmented
code emulator. arXiv preprint arXiv:2312.04474, 2023.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-
G., and Chen, W. Making large language models bet-
ter reasoners with step-aware verifier. arXiv preprint
arXiv:2206.02336, 2022.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Pro-
gram induction by rationale generation: Learning to solve
and explain algebraic word problems. arXiv preprint
arXiv:1705.04146, 2017.

Malherbe, C., Grosnit, A., Tutunov, R., Bou Ammar, H.,
and Wang, J. Optimistic tree searches for combinatorial
black-box optimization. Advances in Neural Information
Processing Systems, 35:33080–33092, 2022.

Ning, X., Lin, Z., Zhou, Z., Wang, Z., Yang, H., and Wang,
Y. Skeleton-of-thought: Prompting llms for efficient par-
allel generation. In The Twelfth International Conference
on Learning Representations, 2024.

10

Policy Guided Tree Search for Enhanced LLM Reasoning

Qi, Z., Ma, M., Xu, J., Zhang, L. L., Yang, F., and Yang, M.
Mutual reasoning makes smaller llms stronger problem-
solvers. arXiv preprint arXiv:2408.06195, 2024.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive
introspection: Teaching language model agents how to
self-improve. arXiv preprint arXiv:2407.18219, 2024.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang,
R. Y., Dirani, J., Michael, J., and Bowman, S. R. Gpqa:
A graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022, 2023.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
arXiv preprint arXiv:2210.01240, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sel, B., Al-Tawaha, A., Khattar, V., Jia, R., and Jin, M.
Algorithm of thoughts: Enhancing exploration of ideas in
large language models. arXiv preprint arXiv:2308.10379,
2023.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint
arXiv:2312.06585, 2023.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Stechly, K., Valmeekam, K., and Kambhampati, S. On
the self-verification limitations of large language mod-
els on reasoning and planning tasks. arXiv preprint
arXiv:2402.08115, 2024.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong,
X., and Bronstein, M. M. Understanding over-squashing
and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Valmeekam, K., Olmo, A., Sreedharan, S., and Kambham-
pati, S. Large language models still can’t plan (a bench-
mark for llms on planning and reasoning about change).
In NeurIPS 2022 Foundation Models for Decision Mak-
ing Workshop, 2022.

Wang, C., Deng, Y., Lyu, Z., Zeng, L., He, J., Yan, S., and
An, B. Q*: Improving multi-step reasoning for llms with
deliberative planning. arXiv preprint arXiv:2406.14283,
2024a.

Wang, L., Fonseca, R., and Tian, Y. Learning search space
partition for black-box optimization using monte carlo
tree search. Advances in Neural Information Processing
Systems, 33:19511–19522, 2020.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, 2024b.

Wang, S., Xue, K., Song, L., Huang, X., and Qian, C. Monte
carlo tree search based space transfer for black-box opti-
mization. arXiv preprint arXiv:2412.07186, 2024c.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. An empir-
ical analysis of compute-optimal inference for problem-
solving with language models. 2024.

Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. Advances
in Neural Information Processing Systems, 34:13266–
13279, 2021.

11

Policy Guided Tree Search for Enhanced LLM Reasoning

Xie, Y., Goyal, A., Zheng, W., Kan, M.-Y., Lillicrap, T. P.,
Kawaguchi, K., and Shieh, M. Monte carlo tree search
boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024a.

Xie, Y., Kawaguchi, K., Zhao, Y., Zhao, J. X., Kan, M.-
Y., He, J., and Xie, M. Self-evaluation guided beam
search for reasoning. Advances in Neural Information
Processing Systems, 36, 2024b.

Yang, L., Yu, Z., Zhang, T., Cao, S., Xu, M., Zhang, W.,
Gonzalez, J. E., and Cui, B. Buffer of thoughts: Thought-
augmented reasoning with large language models. arXiv
preprint arXiv:2406.04271, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? Advances in neural information
processing systems, 34:28877–28888, 2021.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,
and Goodman, N. D. Quiet-star: Language models can
teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Zhai, Y. and Gao, S. Monte carlo tree descent for black-box
optimization. Advances in Neural Information Processing
Systems, 35:12581–12593, 2022.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar,
A., and Agarwal, R. Generative verifiers: Reward mod-
eling as next-token prediction, 2024. URL https://arxiv.
org/abs/2408.15240, 2024.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic
chain of thought prompting in large language models.
arXiv preprint arXiv:2210.03493, 2022.

Zhao, R., Li, X., Joty, S., Qin, C., and Bing, L. Verify-
and-edit: A knowledge-enhanced chain-of-thought frame-
work. arXiv preprint arXiv:2305.03268, 2023.

Zhao, Y., Yin, H., Zeng, B., Wang, H., Shi, T., Lyu, C.,
Wang, L., Luo, W., and Zhang, K. Marco-o1: Towards

open reasoning models for open-ended solutions. arXiv
preprint arXiv:2411.14405, 2024.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., et al.
Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625,
2022.

12

Policy Guided Tree Search for Enhanced LLM Reasoning

A. Training Algorithm

Algorithm 1 Policy Training in TS-MDP
Require: Reasoning tasks T , depth limit D, breadth limit B, reward function R(s, a), cost function C(a)
Ensure: Trained policy π(a|s) and value function V (s)

1: Initialize: Parameters of policy πϕ and value function Vψ
2: while not converged do
3: Sample a task from T , and initialize the root node s0
4: for t = 0, 1, . . . , Tmax do
5: Extract valid actions and construct the constraints vector c
6: Compute policy logits π ← πθ(st, c)
7: Sample action at ∼ Categorical(π)
8: Execute action at and observe next state st+1, reward rt, and constraints ct+1

9: Store transition (st, at, rt, st+1, ct+1) in replay buffer B
10: if at is Terminate then
11: Break
12: end if
13: end for
14: Compute Returns and Advantages:
15: for each sampled trajectory in B do
16: Compute discounted returns: Gt =

∑∞
j=0 γ

jrt+j
17: Compute advantages: At = Gt − Vψ(st)
18: end for
19: Policy Update:
20: Compute policy loss Lπ = −E

[
log πϕ(at|st, ct) ·At

]
− ω ·H(πϕ(at|st, ct))

21: Update policy parameters: ϕ← ϕ− ηπ∇ϕLπ
22: Value Function Update:
23: Compute value loss LV = E

[
(Vψ(st)−Gt)2

]
24: Update value parameters: ψ ← ψ − ηV∇ψLV
25: end while

B. Related Works
LLM Reasoning In the context of LLM reasoning, Chain-of-Thought (CoT) resoning (Wei et al., 2022) serves as a
foundational technique that decomposes problems into intermediate steps, facilitating step-by-step reasoning that mimics
human problem-solving strategies. Since its introduction, numerous enhancements to CoT have been proposed, including
Zero-Shot-CoT (Kojima et al., 2022), Self-Consistency with CoT (Wang et al., 2022), AutoCoT (Zhang et al., 2022), and
VerifyCoT (Zhao et al., 2023), among others. Least-to-Most Prompting (Zhou et al., 2022) represents another influential
paradigm that iteratively constructs solutions by dividing complex problems into simpler tasks. Building on this problem
decomposition paradigm, Program-of-Thought (Chen et al., 2022), Chain-of-Code (Li et al., 2023), Buffer-of-Thought
(Yang et al., 2024), and algorithm-of-Thought (Sel et al., 2023) incorporate programmatic reasoning steps to further enhance
problem-solving. Tree-of-Thought (Yao et al., 2024) extends CoT by organizing reasoning processes into a tree structure,
where each node represents a partial solution and edges signify transitions. However, ToT faces challenges with large
search spaces for deep trees, leading to computational inefficiencies. To address this, Graph-of-Thought (Besta et al., 2024)
generalizes ToT by modeling reasoning as a graph, allowing dynamic path selection, backtracking, and aggregation of
information across multiple paths. Meanwhile, Skeleton-of-Thought (Ning et al., 2024) reduces latency by generating a
skeleton outline of answers before completing the details in parallel. Recent research has also explored heuristic search
techniques, such as Monte Carlo Tree Search (MCTS) (Feng et al., 2023; Hao et al., 2023) and A∗ Search (Wang et al.,
2024a), to identify optimal reasoning chains. Building on these advancements, our proposed PGTS approach enhances
heuristic search by integrating a learned policy to guide the search process, enabling more efficient exploration.

Beyond directly eliciting reasoning capabilities from LLMs, external components have been developed to verify reasoning
steps (Cobbe et al., 2021; Lightman et al., 2023; Li et al., 2022; Wang et al., 2024b; Zhang et al., 2024) or refine generated
reasoning through iterative revision (Qu et al., 2024; Havrilla et al., 2024). Additionally, iterative bootstrapping techniques

13

Policy Guided Tree Search for Enhanced LLM Reasoning

(Zelikman et al., 2022; 2024; Singh et al., 2023; Yuan et al., 2023) have been explored to progressively enhance LLM
reasoning performance. These approaches are complementary to our method and can be integrated to achieve further
improvements.

Inference Time Scaling Optimizing inference-time compute has emerged as a critical area of research for improving the
performance of LLMs. Unlike the traditional focus on scaling model parameters during training, inference-time scaling
explores strategies to leverage additional compute during inference to enhance model outputs. One foundational approach in
inference-time scaling is best-of-N sampling, where multiple completions are generated for a given prompt, and the best
response is selected using a secondary mechanism, such as a reward model (Lightman et al., 2023). Recent studies have
sought to formalize the relationship between inference compute and performance, proposing scaling laws for inference-time
optimization (Snell et al., 2024; Wu et al., 2024; Chen et al., 2024a; Brown et al., 2024). These works show that carefully
allocating inference resources, such as by balancing the number of samples with selection quality, can yield significant gains
in model performance. Our proposed PGTS approach offers an efficient alternative to traditional inference-time scaling
methods. Rather than passively sampling multiple outputs, the policy actively and dynamically decides when and where to
allocate additional inference resources. This targeted approach enables more strategic exploration, focusing compute on the
most promising reasoning paths.

C. Evaluation Datasets
GSM8K GSM8K (Cobbe et al., 2021) is a benchmark dataset designed to assess mathematical reasoning skills in language
models. It comprises approximately 8,500 high-quality grade school math problems that require multi-step reasoning
to arrive at the correct solution. We adhere to the original train-test split and evaluate models in a 4-shot setting, using
in-context examples and a prompt template adapted from OpenCompass (Contributors, 2023), which provide representative
coverage of various problem types.

During generation, each reasoning step is defined as a single sentence. To manage computational complexity, we set the tree
breadth limit to 4, meaning each parent node can have up to 4 child nodes, and the depth limit to 16, which suffices to reach
terminal nodes for most questions in this dataset. Additionally, the PGTS policy is configured to allow a maximum of 64
reasoning steps, balancing efficiency with the ability to explore complex reasoning chains.

MATH500 MATH500 (Hendrycks et al., 2021; Lightman et al., 2023) is a subset of the MATH dataset, designed to evaluate
advanced mathematical problem-solving capabilities. It encompasses questions from high school and undergraduate-level
topics, including calculus, geometry, linear algebra, and number theory. We use the original training split to train our PGTS
policy and evaluate the framework in a 4-shot setting with in-context examples sourced from OpenCompass.

Each reasoning step is defined as a single sentence or a single line. To control computational complexity, we set the tree
breadth limit to 4, the depth limit to 64, and the maximum reasoning steps for PGTS to 256, ensuring sufficient capacity for
exploring complex mathematical reasoning chains.

AQUA AQUA (Ling et al., 2017) is a dataset comprising algebraic word problems and reasoning-based multiple-choice
questions. Its diverse question formats and logical reasoning challenges make it an effective benchmark for assessing
models’ general problem-solving abilities. We adhere to the original train-test split and evaluate our framework using a
10-shot setting, with in-context examples sourced from LLM-Reasoner (Hao et al., 2024), enabling the model to address
problems involving numerical reasoning and reasoning by elimination.

Each reasoning step is defined as a single sentence. To manage computational complexity, we set the tree breadth limit to 4,
the depth limit to 16, and the maximum reasoning steps for PGTS to 64, ensuring adequate exploration capacity for solving
the dataset’s challenges.

StrategyQA StrategyQA (Geva et al., 2021) is a commonsense reasoning dataset designed to evaluate models’ ability
to answer binary (yes/no) questions by applying implicit multi-step reasoning strategies. The dataset features diverse and
challenging questions where the intermediate reasoning steps are not explicitly provided. We randomly sample 1,000
examples for testing, with the remaining examples used to train the PGTS policy. Evaluation is conducted in a 5-shot setting,
leveraging examples from OpenCompass to emphasize the model’s capacity to infer and synthesize information across
multiple reasoning steps.

14

Policy Guided Tree Search for Enhanced LLM Reasoning

Each reasoning step is defined as a single sentence. To balance computational efficiency and exploration, we set the tree
breadth limit to 4, the depth limit to 16, and the maximum reasoning steps for PGTS to 64, ensuring sufficient capacity to
handle the dataset’s complexity.

PrOntoQA PrOntoQA (Saparov & He, 2022) is a benchmark designed to evaluate logical reasoning and deductive
inference. It consists of structured questions that require precise logical deductions based on predefined rules and premises.
We adopt the same dataset splits as used in RAP (Hao et al., 2023) and evaluate the model in a 5-shot setting to assess its
ability to perform deductive reasoning while adhering to strict logical constraints. This dataset serves as a valuable tool for
testing structured reasoning in a controlled environment.

Each reasoning step is defined as a single sentence. To balance computational efficiency and thorough exploration, we set
the tree breadth limit to 4, the depth limit to 16, and the maximum reasoning steps for PGTS to 64, ensuring sufficient
capacity to tackle the dataset’s logical challenges.

Blocksworld Blocksworld (Valmeekam et al., 2022) is a benchmark for evaluating real-world planning tasks, requiring
models to reason over sequences of actions to achieve specific goals in a simulated block environment. The dataset assesses
the ability to plan and execute multi-step strategies efficiently. We evaluate two versions that require 4 and 8 reasoning steps,
using the same dataset splits and prompt template as RAP (Hao et al., 2023). Specifically, split-v1 is used for training and
split-v2 for testing, with a 4-shot setup. In the easy setup, the in-context examples include the same number of reasoning
steps as the test problems.

Unlike RAP, which employs a world model to predict the state after each action, we directly generate entire action trajectories
without modeling intermediate states. Each reasoning step corresponds to one action described in a single sentence. We set
the breadth limit to 4 and the depth limit to match the required number of reasoning steps for each version. The maximum
reasoning steps for PGTS are capped at 32.

D. Baseline Methods
Chain-of-Thought CoT is a reasoning strategy that decomposes complex tasks into a sequence of intermediate steps,
allowing models to reason step-by-step towards a final answer. To enhance the robustness of CoT, we incorporate self-
consistency (SC) (Wang et al., 2022), where multiple reasoning chains are generated for the same input, and the outcomes
are aggregated via majority voting. This voting scheme helps mitigate errors by leveraging diverse reasoning paths.

Monte Carlo Tree Search MCTS has been employed to improve LLM reasoning (Xie et al., 2024a; Gao et al., 2024), and
our implementation closely follows RAP (Hao et al., 2023), with key modifications. Specifically, we omit the use of a world
model for predicting state changes and rely solely on the likelihood of each generated reasoning step as the intermediate
reward, instead of LLM-based self-evaluation. Additionally, we introduce an oracle setting for MCTS, granting access to
task rewards by comparing generated answers with ground truths during the search, providing an upper-bound performance
benchmark.

MCTS inherently explores multiple reasoning chains by expanding nodes during the search process. We evaluate two result
aggregation strategies: selecting the final answer from the chain with the highest trajectory reward and performing weighted
voting over final answers based on their respective rewards. To ensure computational efficiency, we limit the tree’s breadth
to 4, consistent with our PGTS approach.

E. PGTS Approach
The PGTS policy employs a Graph Neural Network (GNN) architecture to dynamically model the reasoning tree as the
search progresses. Specifically, we utilize GPS layers (Rampášek et al., 2022), which integrate local message passing
with global attention mechanisms. This design effectively captures both fine-grained structural relationships and broader
contextual information within the reasoning process. The policy network consists of two GPS layers for feature aggregation,
followed by a linear layer applied to the current node’s features to predict both actions and values. The action prediction is
modeled as a categorical distribution parameterized by the policy network, while the value prediction outputs a continuous
scalar.

The input to the policy network is the reasoning tree constructed up to the current step. Each node in the tree represents a

15

Policy Guided Tree Search for Enhanced LLM Reasoning

partial reasoning step, with its features initialized using the embedding of the corresponding reasoning text. Edge features
encode the immediate reward R(s, a), which captures the contribution of each reasoning step to the overall trajectory.

Training the policy leverages Proximal Policy Optimization (PPO) (Schulman et al., 2017), a reinforcement learning
algorithm designed to balance exploration and exploitation while maintaining stable updates. The training objective
maximizes the expected cumulative reward across reasoning paths, with constraints to ensure updates remain within a stable
region. Key PPO hyperparameters include:

• PPO Clip Range: 0.2

• Discount Factor (γ): 0.99

• GAE Lambda (λ): 0.95

During training, we use the current policy to simulate the reasoning trajectories and collect the partial reasoning trees. These
trajectories are collected and used to optimize the policy based on PPO objectives, iteratively improving the efficiency and
accuracy of reasoning over time.

F. Alternative Policy Implementations
SLM The Small Language Model (SLM) implementation substitutes the graph-based policy with a language-model-
driven approach. We employ distilbert-base-uncased, a lightweight transformer model, to process the reasoning
trajectory. The input to the model is the serialized reasoning chain corresponding to the current node. This serialized
trajectory is passed through the model, which generates both the predicted next action and the value estimation using a
linear output layer. During training, the backbone language model remains frozen, and only the output layer parameters are
optimized. The optimization follows the same PPO objectives as used in PGTS.

LLM Agent The LLM Agent represents an agentic approach where the same target LLM used for reasoning is also
leveraged to predict the next exploration action. At each step, the reasoning trajectory is provided as a prompt to the
LLM, along with instructions to suggest the next action. Please see Fig. 4 for the prompt template to select the exploration
action. This approach aligns conceptually with a collaborative multi-agent framework where the LLM functions as both
a generator to communicate with user and a planner to reason about the optimal action. However, the LLM Agent lacks
explicit structural modeling of the reasoning process and relies heavily on prompt engineering to guide its predictions. While
this approach demonstrates reasonable performance, it is limited by the inherent inefficiencies of treating the LLM as both
the reasoning environment and the policy, leading to increased computational costs and suboptimal exploration in complex
scenarios.

G. Examples
Figure 5, 6, 7, and 8 illustrate examples of the PGTS reasoning process applied to problems from GSM8K, MATH,
PrOntoQA, and StrategyQA, respectively. The left side displays the reasoning tree, while the right side outlines the detailed
reasoning steps.

16

Policy Guided Tree Search for Enhanced LLM Reasoning

You are an AI assistant designed to navigate through a reasoning graph to solve problems. At each node in the graph,
you can take one of these actions:

1. Expand: Dive deeper from current node to explore its subnodes
2. Branch: Explore alternative parallel paths by investigating sibling nodes
3. Backtrack: Return to a previous node to explore different possibilities
4. Terminate: End the reasoning process when you’ve reached a satisfactory answer

Important notes:
- Sibling nodes are generated dynamically when you choose to explore them
- Your goal is to find the most logical path to the correct answer
- Consider each step carefully before choosing an action
- Please choose only from the available actions list given below
- Choose ‘Branch’ when current node seem incorrect or inefficient towards a solution
- Choose ‘Backtrack’ to revise a previous node that may lead to incorrect or inefficient solution
- When ‘Backtrack’ to a previous node in the current path, specify its node id in the format ‘Node Id: NODE ID’
- Choose ‘Terminate‘ only when you’re confident in the complete solution

QUESTION:
Here is the problem to be solved:
{question}

CURRENT REASONING PATH:
Node IDs and reasoning steps:
{reasoning path}

AVAILABLE ACTIONS:
Due to graph constraints in depth and breadth, not all actions are available to choose at each step. The following
actions are currently available:
{available actions}

Instructions:
1. Analyze where you are in solving the problem
2. Review which actions are available to you
3. Decide your next action based on:

- Is the current path promising?
- Are there better approaches to try?
- Have you reached a complete solution?

4. You can only choose one action from the available actions above
5. Format your final action choice as: <answer>YOUR CHOSEN ACTION</answer> and optionally provide
your thinking process. ‘YOUR CHOSEN ACTION’ should be one of the available actions.

Figure 4. Prompt template to select the optimal exploration action for LLM Agent based policy.

17

Policy Guided Tree Search for Enhanced LLM Reasoning

Figure 5. An example of the PGTS reasoning process applied to a problem from the GSM8K dataset. At node 4, the policy decide to
branch to explore an alternative reasoning path.

18

Policy Guided Tree Search for Enhanced LLM Reasoning

Figure 6. An example of the PGTS reasoning process applied to a problem from the MATH dataset. At node 3, the policy backtracks 1
step to explore an alternative reasoning path.

19

Policy Guided Tree Search for Enhanced LLM Reasoning

Figure 7. An example of the PGTS reasoning process applied to a problem from the PrOntoQA dataset. At node 5, the policy backtracks 2
steps to explore an alternative reasoning path.

20

Policy Guided Tree Search for Enhanced LLM Reasoning

Figure 8. An example of the PGTS reasoning process applied to a problem from the StrategyQA dataset. Although node 4 has reached an
answer, the policy chooses to explore alternative reasoning paths to refine and rectify the answer.

21

