
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#9
ECCV

#9

Cell Segmentation in Images Without Structural
Fluorescent Reporters

Anonymous ECCV submission

Paper ID 9

Abstract. Computational methods for image-based profiling are under
active development, but their success depends on assays that can maxi-
mize the phenotypic information captured. Fluorescent protein (FP) tags
and other methods to fluorescently label proteins of interest provide a
range of tools to investigate virtually any cellular process under the mi-
croscope. However, fluorescence microscopy is limited in the number of
FPs that can be simultaneously imaged in the same cell. Cell segmenta-
tion methods often rely on the presence of morphological markers such
as nuclei and cytoplasm. Here, we present a generalist approach to over-
come the need for morphological reporters and that instead uses reporters
that contain biological information for the segmentation of the nucleus
and cytoplasm. Our method leverages state-of-the-art pre-trained seg-
mentation models to segment cytoplasm and nuclei on fluorescence mi-
croscopy images. For this, we propose to fine-tune generalist networks
for cell and nucleus segmentation for each individual fluorescent channel
and to aggregate the respective segmentation results together. We assess
our methodology performance and robustness across several fine-tuning
strategies and fusion methods across different cell lines and various re-
porter proteins of a specific cellular signaling pathway, and for different
acquisition methods. This approach will allow maximizing the extraction
of relevant biological information to characterize cellular processes.

Keywords: cell segmentation, cell biology, image-based cellular assays,
fluorescence microscopy

1 Introduction

Image-based cellular assays allow us to investigate cellular and population pheno-
types and thus to understand biological phenomena with high precision. Single-
cell sequencing computational analysis approaches have recently regained inter-
est [12] notably due to parallel advances in sequencing technologies and data
analysis techniques. Similarly, single-cell live bio-imaging analysis ideally com-
plements sequencing-based approaches by allowing to finely measure and detect
cell phenotypes and their evolution over time, both by detecting the activa-
tion of certain pathways as measured by the expression of specific fluorescent
reporters, and/or by using agnostic measurements of cell evolution in the phe-
notypic space [3]. Cell instance segmentation is a key part of such bio-imaging
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analysis pipelines as it allows us to study the cells at a single-cell level rather
than at the the population level.

Deep learning models for cell instance segmentation have recently reached
the quality of manual annotations [18,6,23], notably thanks to the emergence of
models like U-Net [17]. Cellpose [23] is a notable U-Net based approach, which
uses a multi-modal training dataset spanning several cell types and cell lines
imaged under a variety of different imaging methods. It also benefits from being
associated with a large community which incrementally increases the size and
diversity of the dataset as well as improve the performance of the model. Cellpose
approaches the problem of multiple instance segmentation by predicting spatial
gradient maps from the images, from which individual cell segmentations can be
inferred.

Although pre-trained models for Cellpose are available for both nucleic and
cytoplasmic segmentation, they are respectively mostly trained on fluorescence
microscopy images labeled with specific cellular compartments such as DAPI [9]
for nuclei labeling or a fluorescent protein tagged with a Nuclear Export Signal
(NES) [4] for cytoplasm labeling. Only about 15% of Cellpose training dataset
contained other types of fluorescent labels [23]. While such structure-specific
fluorescent reporters are generally integrated in assay designs, being able to
segment cells without using them allows to maximise the number of experiment-
specific reporters, freeing up the channels used for structural labeling marking.
Since the total number of available channels is subject to numerous limitations
– such as the bleed through effect [14] – and is typically limited to 4 the two
extra channels made available can lead to assays delivering richer information
about cellular processes.

In this paper we propose a new method to segment nuclei and cytoplasm
without the need for specific reporters for nucleus and cytoplasm which requires
very few annotations. It uses a pre-trained generalist deep learning segmenta-
tion base-model – here Cellpose – which is finetuned on each fluorescent reporter
with a small set of annotated images. It augments the fluorescent signal infor-
mation one can get from a single assay, similarly to multiplexing [21] without
the constraints and complexity of such methods. We note that our approach is
in line with a recent shift towards the “expertization” of generalist models like
Cellpose [22], encouraging the prediction of a wider range of cellular image types
and styles, with very small additional training from humans in the loop. How-
ever, while those recent approaches still only apply to cell images with structural
fluorescent reporter proteins, we hereby propose an extension to non-structural
fluorescent reporters, i.e. reporters not specifically optimized to highlight the
structures we want to segment.

2 Data

The context of our work is a very flexible experimental framework, where we
image different cell lines with different fluorescent markers reporting on a large
variety of cellular processes. For this reason, we require a segmentation method
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capable of handling any cell line observable through any set of fluorescent re-
porter proteins without specific or unique cellular localization.

Of note, experimental parameters such as temporal and spatial resolution can
be changed, as well as acquisition conditions. Such changes can affect the type
and level of noise in images and the appearance of cells. The method therefore
has to be both scalable and robust to this kind of changes.

2.1 Image data

We acquired data on two commonly used cancer cell lines, namely U2OS [14]
and A375 [1] each containing, respectively, 3 or 4 fluorescent reporter proteins
tagged with spectrally distinct fluorophores that label different proteins of a cel-
lular signaling pathway (see Table 1). Each of the proteins localize dynamically
to different cell compartments and is not labeling any particular cell compo-
nent. All the images were acquired using a Nikon A1R confocal microscope as
a live video microscopy imaging sequence. For each experimental condition, we
acquired images on 3 xy positions every 3 hours for 72 hours, with a resolution
of 512× 512 pixels.

FR-P Channel Number Cell Line

mCerulean-P1 1 U2OS, A375

Venus-P2 2 U2OS, A375

mCherry-P3 3 U2OS, A375

miRFP670-P4 4 A375

Table 1: Description of cell line components used in the assays - Fluorescent
Reporter Protein (FR-P), Channel Number, Cell Line. Fluorescent reporters are
tagged to different proteins (P) integrated in each of the cell lines.

2.2 Annotated dataset

We annotated the nuclei and cell boundary of 50 images for each cell line/reporter
combination. These were randomly selected from different experimental condi-
tions and evenly distributed over time in order to capture the dynamic local-
ization of certain proteins (e.g. due to experimental treatments) and possible
variations in population size caused by cell division or cell death. Each set of 50
images was then randomly split into three subsets: Training (size: 40), Validation
(5), and Test (5). The number of cells per image ranges from 20 cells to more of
a 100 in some images. With an average of 50 cells per images, we have about
250 cells per validation/test set and about 2000 individual cells in the training
set, an appropriate number for training and evaluation. Example images and
annotations are displayed in Figure 1.

Furthermore, to test for robustness of our method to changes in assay and
acquisition parameters, we also annotated 5 extra images of the U2OS cell line
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acquired with a different microscope (widefield) and higher temporal resolution,
resulting into noisier images. This dataset is used for evaluation purposes only.

All datasets are made public and can be found at https://figshare.com/
s/2685a87a4fd93b8393ac.

Fig. 1: Image samples from the different imaging assays showing individual chan-
nels as well as the RGB with segmentation annotations overlay.

3 Methods

3.1 Generalist Segmentation Model Backbone

Here, we use Cellpose [23] as a generalist segmentation model backbone, one
of the most popular and most powerful segmentation models today. We note
however, that our approach is model-agnostic and could therefore use alternative
backbones [18,6] as well. Cellpose segments images using a three-fold pipeline.

First, it resizes the images so that the average cell diameter conform to the
model training cells’ diameter.

https://figshare.com/s/2685a87a4fd93b8393ac
https://figshare.com/s/2685a87a4fd93b8393ac
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Fig. 2: Training and Inference workflow for the segmentation of cell organelles
without the use of structural fluorescent reporter proteins. (I) Training: (a)
Training set of multi-modal fluorescent images (3 channels represented as red
blue and green). (b) Training set annotations of the organelles segmentations.
(c) Out-of-the-box pre-trained Cellpose model. (d) Finetuned model for each
of the individual channels. (II) Inference: (a) Multi-modal fluorescent image (3
channels). (b) Models selected from the model zoo corresponding to the image’s
cell line and reporter channel combination. (c) Spatial flows and probability maps
outputted by the finetuned models for each of the channels. (d) Channel-wise
averaging of the maps. (e) Segmentation output.

Secondly, for a cell object o ∈ {nuclei, cyto}, a Cellpose model Mo maps
a rescaled image Î intrinsic intensity space to a flow and probability space
(FX , FY , P ). The flow maps FX , FY are the derivatives (along the X and Y
axes) of a spatial diffusion representation of individual cell pixels from the cell’s
center of mass to its extremities.

Lastly, Cellpose combines the (FX , FY , P ) flow and probability maps to pre-
dict instance segmentations So using flow analysis and thresholding on all three
maps combined. First, the flows FX and FY are interpolated and consolidated
where the pixel-wise probabilities P are above a pre-set threshold. The instance
masks are then generated by analysing the flows histogram from their peak.
Cellpose overall segmentation process is summarized in the following equation:

Mo(Î) → (FX , FY , P ) −−−−−−−−→
flow analysis

So, o ∈ {nuclei, cyto}. (1)

3.2 Segmentation Model Finetuning Approach

Although Cellpose is optimized on a very large and generalist dataset, the fluo-
rescence microscopy images used for training contain mostly structural reporter
proteins. The trained network thus does not perform optimally on images like
the ones presented in Section 2.2. It is therefore necessary to finetune Cellpose
on our annotated data, such that the network can adapt to the specificities of
our non-structural reporters, while still maintaining the general features learned
from the heterogeneous Cellpose dataset.

To finetune Cellpose we selected a Channel-Wise strategy, offering the most
accurate results as well as the highest level of versatility given the context of this
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research: for each combination (cl, Ri) of a cell line cl and a fluorescent reporter
protein Ri ∈ {Ri}Ki=1, K the number of channels in the image, we finetune
a Cellpose model to predict the cell segmentation. The different channel-wise
predictions are fused together at inference. This method requires one model
Mo,cl,Ri

for each combination (cl, Ri).

Mo,cl,Ri
(Îk) → (F k

X , F k
Y , P

k), k ∈ {1, ...,K} (2)

Alternative strategies include a Universal strategy, where one finetunes a sin-
gle model on all reporter channels, or a Greyscale strategy, where one trains a
single model on channel averages for each cell line. We favor the Channel-wise
strategy as it is more modular and adaptive. Indeed, in case a new reporter com-
bination is chosen, we can still use previously trained segmentation networks.
Also, combining channels before applying the segmentation network might lead
to suboptimal results, as we would not make best use of the complementary
information provided by different reporters.

3.3 Data Augmentation

Augmentation methods are used during training the Cellpose model to both
virtually increase the size of our dataset as well as offer better generalization.
They are performed iteratively from scratch on each image batch. For methods
involving random distributions, the parameters are uniformly sampled from a
pre-defined parameter range. Each augmentation has an application probability
paugment = 0.5, adding more variability across epochs and samples.

Classical augmentations include scaling with a distributed scaling factor
s ∈ [0.5, 1], rotation using a uniformly distributed rotation angle ϕ ∈ [−π

2 ,
π
2 ],

flipping along the X and Y axis given flipping probabilities pflipX = pflipY = 0.5.

Microscopy-related augmentations are also applied. Additive GaussianWhite
Noise (AGWN) mimics both the variation in the expression of the lit-up fluores-
cent pixels – the intensity of fluorescent expression – and random background
noise [2], and is generated with mean µ = 0 and standard deviation σ uniformly
sampled from [0, 0.1]. Poisson Noise addition emulates the noise generated by
the fluorescence microscope imaging and thus generalizes the trained model to
a larger variance in microscope noise conditions [10][26]. Salt and Pepper noise,
which randomly flips pixels to minimal or maximal brightness in the range of
the microscope sensibility, mimics variation in the location and expression of the
fluorescent reporters, by simulating activated or inhibited fluorescent proteins
[24]. It is computed by generating two random maps, Isalt and Ipepper over the
image I which follow a uniform distribution in the range [0, 1]. Finally, bright-
ness augmentation increases or decreases the overall brightness of the image, thus
mimicking the variance in microscope image acquisition as well as the variance in
fluorescence intensity, which may differ from cell to cell and from assay to assay



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#9
ECCV

#9

ECCV-22 submission ID 9 7

[13]. The brightness transformation is applied to the image as a clipped intensity
random shifting, with shift parameter ∆ selected from a uniform distribution as
∆ ∼ U(−0.1, 0.1).

3.4 Segmentation Model Finetuning Parameters

To finetune Cellpose, we train from the available generalist pre-trained model on
our dataset using the channel-wise approach detailed in Section 3.2. The model
training parameters are kept from the original Cellpose training with the fol-
lowing exceptions: firstly, as detailed in Section 3.3, we use non-deterministic
augmentations on each of our training samples; secondly, we stop the training
using early stopping on the validation set [25], with a patience of 20. Both addi-
tions are efficient regularization methods limiting over-fitting and contributing
to the overall robustness of the segmentation methods with respect to changes
in the imaging setting.

Furthermore, Cellpose is particularly sensitive to the cell object diameter
parameter. We carefully select this parameter by assessing both the distribu-
tion of cell diameters in our annotated dataset and the performance of Cellpose
models as a function of it. When using out-of-the-box Cellpose, we find that it
is best to use the mean plus one standard deviation of our annotated dataset
diameter distribution, overshooting the mean cell diameter and thus increasing
the relative share of cells within the U-Net’s receptive field. However, when us-
ing the diameter parameter in the case of our finetuned version of Cellpose, the
segmentation quality does not vary with the diameter parameter as long as the
parameter given between training and inference stays consistent. These findings
make sense given that this parameter mainly affects the dimension of the image
during the U-Net inference and therefore the scale of the cell within the U-Net’s
receptive field. It must therefore match the diameter of the training dataset to
perform best.

3.5 Segmentation Fusion

Once the segmentations are generated for each of the image’s channel using the
finetuned models, a final segmentation for the image is generated by fusing the
individual channel segmentation maps. We propose a method we name Flow
Fusion (FF) to do so. We also consider several state-of-the-art methods. Fusion
methods are described in Table 2.

The FF method uses Cellpose internal representations to aggregate the seg-
mentation maps. Cellpose’s 4-network averaging method allows to average for
different models with various augmentation and tiling in order to boost the seg-
mentation results. Similarly, FF averages the segmentation probability maps and
flow maps obtained by running Cellpose on each channel individually to obtain
a final aggregated segmentation map.

Given K channels in an image, our approach yields K segmentation maps
{(F k

X , F k
Y , P

k)}Kk=1 generated by the U-Net. From these representations we aver-
age the individual maps along the channel dimensions, yielding maps (F̄X , F̄Y , P̄ ).
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Method Description Reference

Flow Fusion (FF) (Ours)
Fusion of flow maps

followed by flow analysis
X

Selective and Iterative
Method for Performance

Level Estimation (SIMPLE)

Iterative majority voting
over propagated segmentations,

weighted by estimated performance
[11]

Simultaneous Truth and
Performance Level

Estimation (STAPLE)

Statistical fusion framework
using hierarchical models

of rater performance
[1]

Voting (V) Pixel-wise voting [16]

Majority Voting (MV) Majority label voting in images patches [7]

Table 2: Description of the Segmentation fusion methods considered to generate
aggregated segmentations from our channel-wise segmentations

These channel-wise mean representations are then transformed into instance seg-
mentation maps using Cellpose’s mask generation method.

In order to generate the best segmentations given a specific set of fluorescent
reporters using our finetuned model, we evaluate the aggregation methods over
the power-set of channel combinations and select the channel combinations which
yield the best score on our testing set.

3.6 General Workflow

In the previous sections, we described in some detail the core of our algorithm to
leverage non-structural fluorescent markers, which is also the major contribution
of the paper. For completeness, we briefly present here the complete pipeline in
which this strategy is embedded. This workflow includes the pre-proccessing,
segmentation (divided in inference and aggregation) and post-processing. The
general workflow is illustrated in Figure 2.

Preprocessing We present hereafter several pre-processing methods that we
apply on our data.

We apply a normalization by percentile, i.e. scale the images’ intensity for
each channel between the 1st and 99th percentile of the dataset’s intensity range.
It allows for scaling most of pixel intensity values between 0 and 1 while keeping
outliers outside of this range.

CIDRE [20] (Corrected Intensity Distributions using Regularized Energy
minimization) is an illumination correction method which corrects the image
by removing the background and balancing out the luminosity of objects in the
image space and without the need of reference images. CIDRE improved the
overall quality of segmentation on our dataset.
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For widefield imaging, we apply additional denoising steps involving classi-
cal operators such as flat field correction [19] and Contrast Limited Adaptive
Histogram Equalization (CLAHE) [15].

Segmentation At inference, we run a forward pass of the Cellpose finetuned
model for each channel and for each object. This way we obtain K segmentations
(given K reporter channels) for each organelle which are then aggregated using
one of the proposed fusion methods.

A subset of the K reporter channels segmentation are then selected to be
aggregated together using our fusion method. The set of reporter channels to
aggregate together are selected at training. Variation in the channels to aggre-
gate may arise if the image acquisition method changes, or if the assay param-
eter may alter the quality or reliability of a specific reporter channel. We have
built a pipeline which allows us to train new models for previously unseen cell-
line/reporter combination or select models and reporter channels to fuse when
they are available in our model zoo.

4 Results

4.1 Evaluation Metrics

We use as binary segmentation metric the Jaccard similarity [8], which mea-
sures the ratio of intersection-over-union (IoU) of object and background binary
segmentations. It varies between 0 for no overlap and 1 for perfect overlap.

For instance segmentation evaluation, we use the Precision, Recall and F1-
score. A predicted segmentation is considered as a true positive if the IoU be-
tween this segmentation and a ground truth segmentation is above a threshold
here set at 0.5. Intuitively, Precision represents the correctness of our predic-
tions, Recall represents their completeness and F1-score is the harmonic mean
of the two.

4.2 Evaluation

Segmentation Fusion Table 3 conveys the performance of the different seg-
mentation fusion methods tested in this work. The benchmarking is shown on
the aggregation of all channels for each image, on both nuclei and cytoplasm.
The results clearly indicate a better performance when using the Flow Fusion
(FF) method introduced in Section 3.5: FF always appears as the best fusion
method among the ones benchmarked here, in some cases with a large margin.
We believe that this result is owed to the fact that the diffusion maps are op-
timized representations combining information about the pixel-level probability
and about object-level shape properties. This makes them particularly useful
for fusion and conveys them an advantage over raw image fusion and fusion of
segmentation maps. We therefore set this method as the default fusion method,
and present our method’s evaluation using this method only in the remaining of
the paper.
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Cell Line Evaluation set FF (Ours) SIMPLE STAPLE V MV

U2OS
Cytoplasm,

Channels 1, 2, 3
0.8392 0.8178 0.7858 0.8182 0.8182

Nuclei,
Channels 1, 2, 3

0.9169 0.816 0.816 0.816 0.816

A375
Cytoplasm,

Channels 1, 2, 3, 4
0.8955 0.8587 0.83 0.814 0.8935

Nuclei,
Channels 1, 2, 3, 4

0.9542 0.9415 0.864 0.8601 0.8273

Table 3: Comparison of the performance of the different channel fusion methods
on the testing set images, assessed using the F1-score.

Cell Line Channel(s) Jaccard F1-Score Precision Recall

U2OS Cyto Vanilla Cellpose 0.7492 0.8120 0.8182 0.8114
Channel 1 0.7848 0.857 0.8568 0.8601
Channel 2 0.7475 0.7877 0.7867 0.7915
Channel 3 0.7673 0.8446 0.8381 0.8569

Channel 1, 2, 3 0.7729 0.8392 0.8301 0.8526
Channel 2, 3 0.766 0.8465 0.8735 0.8226

A375 Cyto Vanilla Cellpose 0.7482 0.7905 0.7908 0.8064
Channel 1 0.8244 0.8909 0.8918 0.9036
Channel 2 0.8425 0.8764 0.8854 0.8764
Channel 3 0.8364 0.8798 0.8804 0.8884
Channel 4 0.8167 0.8672 0.9014 0.8378

Channel 1, 2, 3, 4 0.8439 0.8955 0.9015 0.8982
Channel 1, 2 0.8388 0.8996 0.9025 0.9088
Channel 3, 4 0.8352 0.884 0.9048 0.869

U2OS Nuclei Vanilla Cellpose 0.0570 0.1236 0.2068 0.0910
Channel 1 0.6911 0.9388 0.9289 0.9506
Channel 2 0.4358 0.7089 0.8251 0.63
Channel 3 0.4774 0.7675 0.8315 0.7146

Channel 1, 2, 3 0.6406 0.9261 0.9272 0.9262
Channel 2, 3 0.5519 0.8516 0.8954 0.8146

A375 Nuclei Vanilla Cellpose 0.1637 0.289 0.3067 0.3125
Channel 1 0.743 0.9684 0.9627 0.9742
Channel 2 0.6396 0.9106 0.9107 0.9111
Channel 3 0.5502 0.8352 0.83 0.8468
Channel 4 0.4302 0.6911 0.8737 0.633

Channel 1, 2, 3, 4 0.6659 0.9542 0.9433 0.9661
Channel 2, 3, 4 0.6045 0.9266 0.9064 0.9496

Table 4: Evaluation scores for the cytoplasm and nuclei segmentation on U2OS
and A375 cell lines, assessing Vanilla Cellpose segmentations, individually fine-
tuned channels, all channels aggregated and the best channel combination (un-
derlined) as well as its complementary channel combination.
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Segmentation Table 4 displays the performance of our method through the
different evaluation metrics. In those tables we compare the score of individual
channels, aggregated channels, best scoring channel combination aggregation and
its complementary channel combination aggregation. We also include Vanilla
Cellpose results, generated using pre-trained Cellpose without fine-tuning on
each channel individually followed by aggregation by flow fusion (as detailed in
3.5). Our method consisting in fine-tuning and FF aggregation out-performs this
Vanilla Cellpose both for cytoplasm and nuclei segmentation.

The results of the segmentation using the Cellpose fine-tuning method con-
veyed in the tables show that fine-tuning is an essential step when dealing with
datasets which do not contain cytoplasmic and nucleic structural fluorescent
reporters. With fine-tuning, we obtain excellent results for both cell lines on
individual channels and even better in some instances with our channel fusion
approach. We show that combining the some of the different channel-wise seg-
mentations into an aggregated segmentation outperforms the individual channel
segmentations in some cases. It is also noticeable that complementary channel or
channel aggregations to the best performing one still significantly outperforms
vanilla Cellpose. Examples of our segmentation are displayed in Figure 3.

Fig. 3: Example of segmentations using the proposed method on the Testing set
images for both the A375 and U2OS cell lines.

Impact of microscopy-related data augmentation on model general-
ization We test the impact of the microscopy-related data augmentation in-
troduced in Section 3.3 on model generalization to other imaging acquisition
procedures. To do so, we compare the performances of two models trained on
U2OS cells with acquisition setup A1, resp. with and without augmentations,
when applied to 5 images of the same cell line acquired with a setup A2 leading
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to noisier images. A1 was acquired using a confocal microscope at a 512 × 512
resolution, whereas A2 was acquired at the same resolution but with a widefield
microscope and with a higher temporal resolution. Results are presented in table
5 and demonstrate that models trained with microscopy-related augmentations
generalize better to different experimental conditions and acquisition procedures.

Object Method Jaccard F1-score Precision Recall

Cytoplasm Vanilla Cellpose 0.3521 0.5029 0.9062 0.3493
Without augmentations

best channels(s) : 3
0.6157 0.7288 0.6858 0.7824

With augmentations
best channel(s) : 3

0.6955 0.797 0.8174 0.7797

Nuclei Vanilla Cellpose 0.0768 0.0867 0.2600 0.0526
Without augmentations

best channel(s) : (1,3)
0.4413 0.7134 0.9086 0.5882

With augmentations
best channel(s) : (1,3)

0.4548 0.7233 0.9276 0.5941

Table 5: Segmentation scores for a model trained with and without microscopy-
specific data augmentations on U2OS cells acquired with a confocal microscope
when evaluated on U2OS cells acquired with a widefield microscope (A2).

5 Discussion

Our work aimed at providing a reliable, re-usable and scalable method for the
segmentation of cell images without structural markers, with manageable an-
notation effort. Our results show that fine-tuning and aggregation of diffusion
maps outperform generalist models when evaluated on datasets with no struc-
tural fluorescent reporters. The channel-wise finetuning approach presented in
this paper leads to the development of a model to segment both nuclei and cyto-
plasm with very few annotated examples, benefiting largely from the generalist
pre-training of the Cellpose backbone model. As can be seen in the A375 cy-
toplasm segmentation results presented in Table 4, the aggregated channel-wise
approach benefits from the complementarity of the different reporter channels in
outlining individual cell objects albeit their non-structural roles. Each channel
covers incomplete - yet overlapping - areas of the individual cells, which can be
regrouped into integral individual cell using our method. Moreover, due to the
singular phenotypic nature of individual cells, over time the signaling pathways
or morphological characteristics highlighted by the non-structural reporters may
translocate and dynamically lit-up parts of the cell. Hence using several fluores-
cent reporters in concert allows our approach to segment cells across reporters,
some of which may not appear at all in some channels. Our approach therefore
allows to segment cells across reporters that may be complementary at the pixel
scale and at the cell instance scale.
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On that matter, we note that channel 1 is the dominant channel through-
out our segmentation evaluation. This is most certainly due to this fluorescent
protein reporter not changing localization from the cytoplasm and showing the
nuclei excluded from the cytoplasm, as can be seen in Figure 1. Channel 1’s re-
porter is hence a reliable reporter for segmentation, the individual use of which
is favored by our pipeline. Would that channel be removed from the cell lines in
favor of a new reporter with a dynamic or inconsistent localization, the fusion of
the remaining reporters channel would produce better segmentation than those
channel’s individual segmentation. Indeed, we observe in Table 4 that F1-scores
are consistently better for segmentation using fusion over channels 2, 3 (and 4
for the A375 cell line) over models using these channels separately.

It must however be noted that one must be careful with the use of non-
structural reporters when using the approach presented in this paper. Indeed,
some reporters under the influence of compound introduced in the assay reg-
imen, may differ in phenotypes from the images the models were pre-trained
with. Although it may be noted that this also holds for structural reporters, as
the performance of a generalist network in the presence of morphological phe-
notypes has not yet been investigated. We can for example imagine a compound
which would make a protein translocate from the cytoplasm to the nuclei, thus
making a finetuned model that learned nuclei as ”negatives” incompetent at
the segmentation task. Although our method encourages the creation of a pre-
trained model zoo for each cell line/reporter combination to be used on any
new assay answering to these characteristics, we recommend to wisely choose a
combination of channels to aggregate which takes into account the evolution of
the reporters with the introduced compound, and ideally to make sure that at
least one channel would be reliable and coherent with the behaviour of the train-
ing data, otherwise re-finetuning would be needed. It is also interesting to note,
that given the results presented in Table 4, often single channels perform best,
or at least satisfyingly well. It is therefore possible to use of the channel-wise
pre-trained model on any new assay as long as it has one channel in common
with a previous assay having undergone our finetuning method.

Our approach is limited by the same limitations as Cellpose. Although it
works as an “expertization” of generalist models, the same way [22] encourages
a specialization of generalist models, it is still constrained by the same limita-
tions. For example, it does not handle occluded or overlapping cells. It is also
susceptible to merging or splitting of individual cell instances which could only
be corrected with a robust post-processing step. It is also limited in terms of
building cell objects, as – like Cellpose – it detects nuclei and cytoplasm inde-
pendently, thus yielding standalone cytoplasm and nuclei.

In theory, some of those limitations can be avoided by using a different back-
bone than Cellpose, one which would handle such issues. Other notable recent
deep learning segmentation methods for cellular biology are StarDist [18] and
NucleAIzer [6] which make use of the U-Net architecture as well but with dif-
ferent representation for their images, Mask-RCNN [5] which segments ROIs in
Images with convolutional deep learning methods. We have made the choice of



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV
#9

ECCV
#9

14 ECCV-22 submission ID 9

using Cellpose in this paper as it yielded the best out-of-the-box results on our
data, and offered to be the most generalist with its community driven, ever-
expanding training dataset. However, it is possible to apply our methodology
with different Deep Learning architectures using our Channel-wise finetuning
approach, although changes to the fusion method would be required.

6 Conclusion

In this work, we have proposed a method to train and infer segmentations of
nuclei and cytoplasm on images without structural fluorescent reporters and
for a variety of cell line/reporter configurations. We demonstrated that our ap-
proach could be used for any assay while freeing up bandwidth space for two
experiment-specific reporter proteins, where the use of structural reporters take
space. We have shown that, in absence of the cytoplasmic and nucleic reporters,
state-of-the-art segmentation performance can be achieved and replicated on var-
ious assays from a single finetuned pre-trained model on any cell line/reporter
combination.

Our method is easily adaptable to fit a generalist image processing pipeline
to be applied on various assays by sharing a common segmentation model zoo
trained once on a cell line/reporter combination. Such a zoo of fine-tuned models
will greatly support microscopy based cellular assays, and High Content Screen-
ing.
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