
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENCODING THE LLM VOCABULARY BOTTLENECK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have simplified natural language processing
tasks by leveraging their ability to learn from massive volumes of data and gen-
eralise across a wide range of applications. However, as LLMs continue to scale
in size and complexity, optimizing their computational efficiency has become a
critical challenge. One of the major contributors to this complexity is the decision
layer (referred to as the Softmax layer), consisting of a fully connected network
matched with a Softmax activation function, which scales linearly with vocabulary
size resulting in high computational costs. In this work, we first propose a frame-
work based on Error Correcting Output Coding (ECOC), which enables the en-
coding of several decision boundary formulation techniques, including Softmax,
to be plugged in as the decision layer of an LLM. Using this framework, we anal-
yse the minimal design strategy for defining the simplest decision boundary with
optimal computation efficiency, and propose and explore extensions to this strat-
egy to study the accuracy-complexity trade-off compared to the Softmax-based
strategy using both fine-tuning and pretraining settings. We show it is possible to
maintain 90% of the Softmax accuracy when pretraining is an option, and retain
83.38% of the F1 score during fine-tuning, while using only 50% of the decision
layer parameter size in both cases. Further gains arise by extending codeword
length with random bits, and by increasing the intermediate hidden dimensions in
MTL-ECOC. Overall, this work establishes the viability of substantially reducing
the computational and architectural complexity of the output layer, while formal-
izing the integration of the ECOC framework within LLMs.

1 INTRODUCTION

Large language models (LLMs) have become the backbone of modern natural language processing
(NLP), enabling breakthroughs in machine translation, summarization, code generation, and multi-
turn reasoning. Their success stems from scaling transformer architectures and training on massive
corpora, allowing them to model complex, long-range linguistic dependencies (Wan et al., 2024;
Touvron et al., 2023). Yet, this progress comes at a steep computational and memory cost, and as
their adoption grows, the efficiency challenges of LLMs have become increasingly pronounced.

Two factors are key to this challenge: (i) sequence length: real-world applications, such as chain-
of-thought reasoning, increasingly require handling longer contexts, which expands the key–value
(KV) cache linearly, straining memory bandwidth during inference; (ii) less often acknowledged is
vocabulary expansion: supporting diverse scripts, transliterations, and multilingual use cases de-
mands vocabularies exceeding 100k tokens (Wu et al., 2020; Bapna et al., 2022). The decision layer,
implemented as a fully-connected projection with a Softmax activation, then scales linearly with vo-
cabulary size, turning every decoding step into a compute-bound operation. While advances such
as FlashAttention (Dao et al., 2022), KV-cache compression (Anagnostidis et al., 2024), Specula-
tive decoding (Leviathan et al., 2023), LoRA (Hu et al., 2021), quantization and pruning reduce the
backbone’s cost, they leave this component largely untouched. Thus, even highly optimized models
remain hindered by its inefficiency.

We tackle precisely this flaw: the vocabulary bottleneck of the Softmax decision layer. Our central
idea is to replace Softmax with a flexible and more general Error Correcting Output Coding (ECOC)
framework. Originating from information theory and multi-class learning, ECOC reframes multi-
class classification as a collection of binary subproblems defined by a code matrix (Zor et al., 2010;
2016; Pujol et al., 2006; Bautista Martin et al., 2018; Ángel Bautista et al., 2012). Our perspective

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

not only reveals Softmax as a special one-vs-all ECOC design but also enables the encoding of
alternative decision boundary formulation strategies. By adopting minimal ECOC designs, we use
the smallest number of binary subproblems to define a multi-class decision boundary. This reduces
the number of output nodes from V in Softmax to just ⌈log2 V ⌉. for a problem with vocabulary of
size V , thereby shrinking parameter counts. We further extend this with random-bit augmentations
and multi-task projections, yielding robustness and accuracy trade-offs under both pretraining and
fine-tuning. In brief, our contributions are:
• We introduce a principled framework that integrates ECOC as a decision layer in LLMs, with

Softmax appearing as a special case.
• We design and evaluate Minimal, MinRandom, and MTL-ECOC strategies, balancing compres-

sion, robustness, and accuracy.
• We provide a thorough experimental study across pretraining and fine-tuning regimes, quantifying

compression–accuracy trade-offs between parameter count, inference time, and performance.

2 BACKGROUND

Parameter optimization techniques for LLMs. Quantization and pruning form two of the most
active optimisation techniques addressing backbone parameter count. Quantisation initially focused
on post-training INT8 inference (Yao et al., 2022; Dettmers et al., 2021), later enabling weight
and activation compression down to 4–8 bits via smoothed calibration and activation-aware scal-
ing (Xiao et al., 2022; Lin et al., 2023). Recent pipelines such as QuaRot (Chen et al., 2024),
QServe (Zhang et al., 2025), and Atom (Li et al., 2024a) demonstrate that fully low-bit inference
(W4/A4/KV4) is possible with sub-point perplexity loss and significant throughput gains (Chen
et al., 2024; Zhang et al., 2025; Li et al., 2024a). In parallel, pruning techniques evolved from
static block removal (Wang et al., 2023b; Anil et al., 2023) to search-driven approaches like Dar-
winLM (Zhou et al., 2025), SlimGPT (Zhang et al., 2024), and EvoPress (Li et al., 2024b) that lever-
age importance scoring or second-order approximations to identify redundant substructures (Zhou
et al., 2025; Zhang et al., 2024; Li et al., 2024b). Despite their efficacy, both sub-fields largely
neglect the decision layer, continuing to treat the V ×d matrix as a dense, unstructured tensor.

Despite significant advances in compressing the backbone of transformer models, the decision layer
remains a key computational bottleneck. In decoder-only LLMs, a single forward pass over a se-
quence of S tokens with hidden dimension d and vocabulary size V incurs a total complexity of

O(LSd(d+ S)) + O(SdV)︸ ︷︷ ︸
decision layer

, (1)

where the first term captures the cost of self-attention and feedforward layers, and the second term
accounts for the output projection matrix mapping hidden states to logits over V classes. As models
scale to vocabularies of 100k or more tokens, the decision layer term alone can reach hundreds of
millions of parameters, often surpassing the size and latency cost of the rest of the model.

Token pruning and merging methods (Bogoychev et al., 2024; Ushio et al., 2024; Bauwens & De-
lobelle, 2024; Lee & Hong, 2024) reduce memory footprint and decoding latency by operating
directly on the input token stream, removing redundant tokens or merging similar ones, while keep-
ing the underlying model architecture unchanged. In contrast, embedding-space techniques such
as VQ-Logits (Shao et al., 2025) and CompresSAE (Kasalický et al., 2025) target the representa-
tion layer itself by compressing the vocabulary embeddings either by mapping tokens to a smaller
shared codebook (VQ-Logits) or by retaining all tokens but enforcing highly sparse embeddings
(CompresSAE). Importantly, both token pruning/merging and embedding-space compression meth-
ods still retain the standard dense decision layer over the vocabulary. While pruning and merging
reduce sequence length and embedding-space methods optimize representation capacity, neither in-
corporates efficient decision boundary analysis into the design of the decision layer itself.

Error Correcting Output Coding (ECOC). Given a vocabulary size of V , the Softmax layer pro-
duces V outcomes, each of which can be interpreted as V one-vs-all problems (see Section 3.1).
When this layer is interpreted as the combination of binary sub-problems, the literature offers sev-
eral options that yield better classification performance than one-vs-all (and therefore Softmax). A
classic alternative is the one-vs-one voting scheme, which trains V (V − 1)/2 pairwise classifiers
and aggregates their outputs at test time (Hsu & Lin, 2002). This is where Error Correcting Output

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Coding (ECOC) comes into play. ECOC offers a unified framework where the original problem can
be decomposed into binary classification problems in several ways, each capturing different class
groupings with their own decision boundaries.

Adopted from the communication theory by Dietterich & Bakiri (1995), ECOC is a multi-class
ensemble classification strategy that decomposes a V -class task into L binary sub-tasks governed
by a code matrix M ∈ {0, 1}V×L. Each column j in the code matrix partitions the examples into
a positive class, i.e. those whose class rows correspond to a 1 in that column, and a negative class,
i.e. those with 0. Since each column is simply a vector of {0, 1} entries, it is often referred to as
a ‘bit’, i.e., a binary decision unit corresponding to one node in the ensemble of classifiers; accord-
ingly, each bit defines a two-class classification problem for training the base classifier hj . Each
row Mi is the unique codeword for class ci, where the codeword closest to the binary classifier
outputs indicates the winning class. The encoding matrix can be designed according to the chosen
ECOC strategy, implementing one-vs-all or one-vs-one multi-class classification approaches, as de-
sired. For the 4-class and 5-column (i.e. 5 bit) formulation in Fig 1-(a), the five resulting binary
tasks are (+) {c1, c2} vs. (−) {c3, c4}, (+) {c1, c3} vs. (−) {c2, c4}, (+) {c1} vs. (−) {c2, c3, c4},
(+) {c2, c3} vs. (−) {c1, c4}, and (+) {c4} vs. (−) {c1, c2, c3}. Fig 1-(b) shows the corresponding
decision boundaries of the individual base classifiers h1,2,3,4.

At inference time, the ECOC ensemble produces a vector y = [y1, . . . , yL] from base classifier
outputs yi∈ (0, 1). Decoding refers to the process of comparing this prediction vector with the pre-
defined codewords to recover the most likely class. Formally, the predicted class is the one whose
codeword is closest to y: c⋆ = argmini∈{1,...,V } d(y,Mi). Here, decoding can be understood
as combining the set of binary decisions into a single multi-class decision, with the chosen dis-
tance metric d (e.g., Hamming, Manhattan, or Euclidean) determining how the binary outputs are
aggregated (Fig 1-(a)). The minimum Hamming distance between any two codewords in the formu-
lation given in Fig 1-(a) is 2, allowing an error in any one bit to keep the correct prediction without
triggering an assignment to an incorrect codeword.

Class 1

Class
2

Class 3

+

-

Decision Boundary 1

+
-D

ec
is

io
n

B
ou

nd
ar

y
3

+
- Decision Boundary 4

-
+

Decision
Boundary 5

Decision Boundary 2

+ -

Class
4

Class
1

Class
3

(a) (b)

h1 h2 h3 h4 h5
c1 1 1 1 0 0

c2 1 0 0 1 0

c3 0 1 0 1 0

c4 0 0 0 0 1

Figure 1: Example ECOC matrix and corresponding decision boundaries for a 4-class problem with
L = 5 binary classifiers.
By simplifying the classification task into a set of loosely coupled binary problems, ECOC improves
generalization, expands margins, and reduces the risk of overfitting, especially in high-cardinality
output spaces (Allwein et al., 2001; Bautista et al., 2010). Examples of prior work leveraging ECOC
for classification robustness for deep learning can be found in Ahmed et al. (2021); Verma & Swami
(2019); Song et al. (2021); Wang et al. (2023a); Jang et al. (2025); Yu et al. (2023).

3 ECOC FOR BOUNDARY ENCODING AND OPTIMIZATION

In this work, we propose using ECOC to formulate a framework which facilitates various encodings
of the decision layer, including those designed to minimize parameter count. Unlike prototype-tying
approaches like VQ-LOGITS, this framework provides distinct representations for every token while
still achieving up to logarithmic parameter scaling. The advantages obtained from optimal encodings
of the decision layer can be used in tandem with embedding sparsity or quantization techniques.

3.1 SOFTMAX AS A ONE-VS-ALL EXTENSION OF SIGMOID

The typical decision layer based on Softmax can be interpreted as a natural extension of the sigmoid
function to multi-class settings. It exponentiates each logit and normalizes by the sum of all expo-
nentiated logits to yield a probability distribution. This implicitly brings about a set of one-vs-all
comparisons where each class’s score is weighed against others, resulting in the selection of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

highest probability class. During training, back-propagation updates the model by computing the
cross-entropy loss for the winning class alone, reinforcing the margin between its logit and the ag-
gregated logits of the rest. In this way, Softmax realises a one-vs-all decision rule, and fits naturally
within the broader ECOC framework where one-vs-all is a special coding scheme of ECOC.

Formally, given a vector of logits z = [z1, z2, . . . , zV] for a V class problem, the probability assigned
to class i by Softmax is given by

pi =
ezi∑N
j=1 e

zj
=

ezi

ezi +
∑

j ̸=i e
zj

=
1

1 +
∑

j ̸=i e
zj

ezi

=
1

1 +
∑

j ̸=i e
zj−zi

= σ(∆i), (2)

where σ(x) = 1
1+e−x and the latter follows from isolating the contribution of class i in the

denominator and defining a logit margin term ∆i := zi − log
(∑

j ̸=i e
zj
)

. Hence pi =

σ
(
zi − log

∑
j ̸=i e

zj
)

can be interpreted as a ‘competition’ between the logit for class i, zi, and

the ‘the rest’ (i.e. one-vs-all), indicated by log
(∑

j ̸=i e
zj
)

. The bigger the gap ∆i, the closer pi is
to 1. This reveals that Softmax can be expressed as a sigmoid over the margin between class i’s logit
and the log-sum-exp of the remaining logits. Intuitively, Softmax is a soft one-vs-all decision rule:
each class is compared against a smoothed aggregate of all others to define a set of binary decisions.

3.2 INTEGRATING ECOC IN THE DECISION LAYER

Figure 2: Decision layer in an ECOC frame-
work. The hidden state X is mapped by
a linear layer into L classification scores
([y1, y2, . . . , yL]). Three codebooks are illus-
trated: identity codes implementing one-vs-all,
a Minimal ECOC design with log(V) bits and
a MinRandom design with log(V) +R bits.

We have shown in Section 3.1 that Softmax can be
framed as a one-vs-all strategy which consists of
V binary classifiers, each solving a class i-vs-the
rest problem using the standard logistic function
via sigmoid activation. This strategy can naturally
be expressed using an ECOC matrix defined as an
identity matrix, integrated into the decision layer
of the network as shown in Fig 2-(a): The decision
layer consists of a linear (fully-connected) layer
that receives the decoder’s hidden representation
(embedding vector) and projects it onto L out-
put nodes, each corresponding to the prediction
of a base classifier h1,...,L in the ECOC matrix.
These projections are passed through a sigmoid
activation, and a vector consisting of L probabil-
ity scores is obtained. During inference, this pre-
dicted score vector is compared to a predefined bi-
nary codebook (i.e. the ECOC matrix) using a dis-
tance metric and the closest codeword is selected
as the model’s output, effectively combining the
binary decision boundaries into a multi-class de-
cision boundary with the chosen distance guiding
the aggregation.

ECOC matrix is independent from the network backbone and can be used for formulating differ-
ent multi-class decision boundary encodings. This allows the decision layer to be expressed as a
modular component that maps the hidden states to an L-bit codeword where the choice of matrix
M ∈ {0, 1}V×L is determined by the ECOC strategy. Different strategies offer trade-offs between
compression, robustness, and predictive performance. In this study, we mainly focus on the minimal
ECOC design which employs the smallest possible set of binary classifiers to achieve maximum
compression. We then expand this strategy by i) adding randomly initialised binary bits to improve
robustness; and ii) assigning task-specific projection layers to each bit to enhance performance.

Minimal ECOC. The Minimal ECOC configuration aims to reduce the computational and memory
cost of the decision layer by proposing the most compact binary encoding scheme. For a classifi-
cation problem with V classes (i.e., a vocabulary of size V), the minimum number of bits required
is determined by the minimum number of distinct binary strings needed to uniquely represent each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

class, which is equal to ⌈log2 V ⌉. These binary strings collectively form the Minimal ECOC ma-
trix, where each row corresponds to the codeword of a class (Fig 2-(b)). This approach drastically
reduces the number of output nodes from V of Softmax (hence, one-vs-all ECOC) to ⌈log2 V ⌉,
thereby compressing the decision layer and improving inference efficiency. For example, a vocabu-
lary of 50,000 tokens would require only 16 output nodes (instead of 50,000) to represent all tokens
uniquely. The minimal code length ensures that each token receives a distinct representation while
introducing the smallest possible overhead.

MinRandom ECOC. The MinRandom ECOC extends the Minimal ECOC design by append-
ing R random bits to each codeword (Fig 2-(c)) thereby increasing its length from ⌈log2 V ⌉ to
⌈log2 V ⌉+R. This redundancy increases across-codeword distances leading to enhanced robustness
and resilience to bit-level errors from individual classifiers, especially in high density vocabularies.
The addition of random bits does not alter the fundamental training or decoding processes but in-
stead expands the capacity of the decision layer, where additional flexibility helps adapt to subtle
variations in the data. In our experiments (Section 4.2.2), we demonstrate that it is possible to keep
the number of additional bits minimal while still obtaining significant performance gains.

Figure 3: Relative to Minimal and
MinRandom decision layers, the shared
projection is replaced by lightweight,
bit-specific layers, where for each bit
h1, . . . , h⌈log2 V ⌉+R, the decoder repre-
sentation X passes through an indepen-
dent fully-connected layer and a single-
node unit to output that bit’s probability.

MTL-ECOC. The multi-task learning ECOC (MTL-
ECOC) decision layer builds on standard ECOC frame-
works (such as Minimal and MinRandom ECOC) by in-
troducing a task-specific transformation layer before each
bit prediction. As shown in Fig. 3, each binary clas-
sifier defined by ECOC is preceded by a specific fully-
connected layer, through which the embedding vector
passes, allowing it to specialize in solving that binary
task. This design allows each node to learn a special-
ized transformation, capturing finer contextual features
and improving discrimination between semantically simi-
lar tokens that differ in only a few codeword bits. The ad-
ditional representational capacity is advantageous in fine-
tuning scenarios, where task-specific patterns are criti-
cal. Overall, MTL-ECOC combines the compactness of
ECOC with the expressive power of multi-task learning,
yielding higher predictive accuracy under constrained set-
tings. We denote Minimal MTL and MinRandom MTL
as the respective extensions of Minimal and MinRandom
ECOC with this architecture.

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

To evaluate the proposed ECOC-based framework, we
adopt both fine-tuning and pretraining protocols with
decoder-only transformer models. For fine-tuning, we
use the OPT-1.3B model (Zhang et al., 2022), a pre-
trained decoder architecture that balances performance
and efficiency on mid-sized datasets. The ECOC deci-
sion layer is initialized with weights from U(−

√
k,

√
k),

where k = 1/in features. To enable parameter-efficient
adaptation, we inject trainable LoRA adapters into the
self-attention layers while keeping the backbone frozen, ensuring stability as the ECOC layer learns
task-specific decoding logic. Fine-tuning is performed on the Alpaca dataset (Taori et al., 2023),
a diverse instruction-following benchmark with both contextual and standalone tasks. This setup
reflects realistic deployment conditions where pretrained weights remain fixed and only lightweight
decision layers are trained. Hyperparameters are provided in Appendix A.1, and dataset and model
details in Appendix A.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

While practical, fine-tuning relies on representations learned during pre-training with a Softmax
layer, which can bias optimization and limit ECOC’s effectiveness. To isolate ECOC’s capabilities,
we also perform pretraining experiments, using a 15M-parameter GPT-2 (Radford et al., 2019) on
TinyStories (Eldan & Li, 2023) with a 1,000-token vocabulary. Multiple ECOC configurations are
tested in the decision layer to evaluate their effect on autoregressive next-token prediction. This
controlled dataset enables direct comparison of ECOC and Softmax under identical conditions. Full
hyperparameters and implementation details are in Appendices A.1 and A.2.

Evaluation metrics. Evaluation metrics are aligned with each setup. For fine-tuning, where pre-
trained contextual knowledge exists, we use BERTScore to measure semantic alignment between
generated outputs and ground-truth responses. Given reference x = (x1, x2, . . . , xn) and candidate
x̂ = (x̂1, x̂2, . . . , x̂m) sentences, BERTScore computes similarity by aligning their corresponding
contextual embeddings (specifically BERT) and computing cosine similarity between them:

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

cos(xi, x̂j), RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

cos(xi, x̂j), FBERT = 2
PBERT ·RBERT

PBERT +RBERT
,

where cos denotes the normalized cosine similarity and PBERT, RBERT and FBERT refer to precision,
recall and F-score, respectively. Unlike traditional evaluation metrics such as BLEU and ROUGE,
which rely heavily on exact word matches or n-gram overlap, this metric is particularly suitable
for instruction-tuned tasks requiring nuanced generation, such as paraphrasing or generalization.
For pretraining, where fluency is not yet established, we use top-k accuracy (with k = 5), which
captures the frequency with which the correct token appears among the top predictions, making it
well-suited to early-stage models. Together, these protocols enable us to assess both efficiency and
representational quality of ECOC decision layers under distinct training regimes.

4.2 ACCURACY COMPARISON OF SOFTMAX AND ECOC DESIGNS

We systematically evaluate ECOC designs with the traditional Softmax layer, emphasizing key
trade-offs between accuracy, inference time, and memory complexity. Specifically, our experiments
address three main questions: (1) During pretraining from scratch, how does Softmax, one-versus-
all ECOC and other ECOC decision layers compare with each other on top-5 accuracy? (2) In fine-
tuning, how does MTL-ECOC improve over ECOC baselines, and what steps contribute to these
gains? (3) How do different ECOC designs with a fixed backbone, including longer codewords
formed by adding random bits, trade off latency and memory? This analysis provides detailed in-
sights into optimal ECOC design choices for efficient and accurate large-scale language modeling.
Throughout this section, we use the notation (x, y) to denote the configuration of each decision layer,
where x is the codeword length (i.e., the number of base classifiers) and y is the intermediate hidden
dimension. For instance, Minimal ECOC (10,0) indicates the minimal encoding with 10 classifiers
and no MTL projection, whereas MinRandom MTL (500,128) refers to a MinRandom ECOC with
500 classifiers and an MTL projection layer of size 128.

4.2.1 PRETRAINING SETUP

Table 1 reports top-5 accuracy results for the next word prediction task obtained for Softmax and
several ECOC designs in the pretraining scenario using GPT2-15M (Radford et al., 2019) on the
TinyStories dataset (Eldan & Li, 2023). First, following the theoretical framework from Section 2,
we empirically show the link between one-vs-all ECOC and Softmax layers. The less than 0.2%
difference in accuracy empirically restates that one-vs-all ECOC can represent Softmax. We then
turn to the performance of the minimal design and the varying number of additional columns.

Table 1: Mean and standard deviation of
top-5 accuracy across holdout test sets for
different ECOC and Softmax decision lay-
ers pretrained on TinyStories using GPT2-
15M as backbone model. (x, y) next to
each decision layer denotes the codeword
length x (number of base classifiers) and
the intermediate hidden dimension y; y =
0 indicates no MTL projection was used.

Decision Layer Top-5 Accuracy (Mean ± Std)
Minimal ECOC (10, 0) 66.82± 0.49%
MinRandom ECOC (15, 0) 70.07± 0.76%
MinRandom ECOC (50, 0) 75.34± 0.68%
MinRandom ECOC (500, 0) 81.75± 0.53%
MinRandom ECOC (1000, 0) 82.67± 0.41%
One-vs-all 90.24± 0.02%
Softmax 90.56± 0.09%

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Minimal ECOC (10, 0), with the minimal number of bits required for representing the 1000 class
problem, achieves 66.82% top-5 accuracy which is about 75% of Softmax’s top-5 accuracy while
using only 10 output nodes, roughly 1% of the 1000 utilised by Softmax. When the minimal design
is complemented with additional extra columns consisting of random bits (Section 3.2) for increased
robustness, a clear upward trend in top-5 accuracy can be observed as the codeword length increases,
reaching 81.75% at 500 bits. Notably, this configuration achieves 90% of the Softmax’s top-5 ac-
curacy accuracy (90.56%) while using only half the Softmax decision layer size, demonstrating the
efficiency–performance trade-off enabled by ECOC. Increasing the codeword length to 1000 bits
offers only marginal gains (82.67%), confirming that performance saturates around 500 bits. Note
that while using the same number of bits (1000), the one-vs-all configuration performs better than
MinRandom, as distinguishing one class from the rest is generally an easier task than separating
randomly grouped sets of classes.

The results in this setup are obtained without MTL, as incorporating MTL in pretraining did not
yield further improvements. This suggests that the model is near its representational limit, leaving
little room for architectural enhancements unlike fine-tuning, which we examine in the next section.

4.2.2 FINE-TUNING SETUP

Fine-tuning experiments utilise a pretrained OPT-1.3B (Zhang et al., 2022) on the Alpaca
instruction-tuning dataset (Taori et al., 2023). The top section of Table 2 reports BERTScore metrics
for Softmax and several ECOC designs with Softmax achieving the strongest performance (F1 =
0.8316), given the fact model was pretrained with a Softmax layer. The goal here is to demonstrate
that when pretraining is infeasible due to time or resource constraints, it is still possible to adopt a
smaller decision layer design, this time by applying techniques such as additional randomisation or
MTL, which enhance the representational power of the minimal ECOC design.

As a starting point, the minimal ECOC design with 16 bits reaches 50% of the Softmax perfor-
mance with only 0.032% of the size (F1 = 0.4265). Aiding its design, we first expand the codebook
with randomly initialized bits which improves separability, enabling MinRandom ECOC (50, 0) to
achieve an F1 score of 0.4800. Second, additional representational power is obtained by introducing
base classifier-specific layers through the MTL-ECOC design; Minimal MTL (16, 1024) achieves
75% of the Softmax F1 while using 67% fewer parameters. Last, when MTL and additional ran-
domisation are combined, the gains are even greater; i.e. with MinRandom MTL (50, 1024) reaching
F1 = 0.7014. Notably, for a fixed codeword length, the MTL variants consistently outperform their
non-MTL counterparts. Therefore, we perform two focused ablations for this setup: the first varies
the codeword length to assess how additional bits affect accuracy and compactness, and the second
varies the intermediate projection dimension to measure how extra projection capacity influences
precision, recall, and F1.

Effect of codeword length. Ablations on codeword length under MTL-ECOC design clarify how
performance scales with the number of bits. As summarized in the mid section of Table 2, shorter
codewords benefit most from the shared projection. Minimal MTL (16, 512) attains about 72% of
the Softmax F1 while reducing the size of the decision layer by more than 80%. Increasing the bit
count continues to help precision and recall, but the F1 score plateaus beyond 50 bits at 0.6934.
This earlier saturation, compared with pretraining, aligns with the extra expressivity provided by the
shared projection, which enables fine-grained predictions even with fewer bits.

Effect of intermediate hidden dimension. Ablations on the intermediate hidden dimension in
the MTL-ECOC design clarify how performance scales with additional representation capacity.
As shown in the bottom section of Table 2, moving from a small to a moderate dimension yields
clear gains in precision, recall, and F1, while increasing the dimension further to 1024 brings only
marginal improvements, indicating diminishing returns beyond a particular point. At the same di-
mension, MinRandom MTL consistently outperforms Minimal MTL by roughly eight to ten points
in F1, with a larger lift in recall and a smaller but steady gain in precision. Further, these trends
point to a saturation point at a width of 512, reserving larger widths for cases where a small extra
gain justifies the additional parameters.

The above fine-tuning results describe a accuracy-complexity trade-off where complex decision lay-
ers with higher representational power result in better evaluation metrics as reported by Table 4 and
can also be visualized graphically in Fig. 4 in the Appendix. The baseline model with Softmax layer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Configuration Precision Recall F1 Score
Softmax and ECOC Baselines
Softmax — 0.8400 0.8235 0.8316
Minimal ECOC (16, 0) 0.4256 0.4275 0.4265
MinRandom ECOC (50, 0) 0.4726 0.4886 0.4800
Minimal MTL (16, 1024) 0.6023 0.6047 0.6034
MinRandom MTL (50, 1024) 0.6648 0.7439 0.7014

Codeword Length Ablation (MTL, size = 512)
Minimal MTL (16, 512) 0.5924 0.6126 0.6023
MinRandom MTL (25, 512) 0.6359 0.6583 0.6469
MinRandom MTL (50, 512) 0.6577 0.7348 0.6934
MinRandom MTL (75, 512) 0.6689 0.7278 0.6971
MinRandom MTL (100, 512) 0.6835 0.7551 0.7175

Intermediate Dimension Ablation (Codeword = 16 or 50)
Minimal MTL (16, 128) 0.5749 0.5925 0.5835
Minimal MTL (16, 512) 0.5924 0.6126 0.6023
Minimal MTL (16, 1024) 0.6023 0.6047 0.6034
MinRandom MTL (50, 128) 0.6256 0.7078 0.6641
MinRandom MTL (50, 512) 0.6577 0.7348 0.6934
MinRandom MTL (50, 1024) 0.6648 0.7439 0.7014

Table 2: BERT-Score metrics on the test set for Softmax and ECOC-based decision layers. The
table includes baseline results, codeword length ablation (with fixed intermediate size = 512), and
intermediate dimension ablation (with codeword length = 16 or 50).

achieves the highest F1 score (0.832), but at the cost of over 100M parameters. In contrast, Minimal
ECOC achieves extreme compression (33K parameters) but sacrifices accuracy (F1 = 0.427). No-
tably, MinRandom MTL offers a compelling middle ground, achieving competitive accuracy (F1 =
0.6934) with significantly fewer parameters (52M parameters). To complement these trends, we next
examine how these decision layer choices trade time and memory complexity during fine-tuning and
pretraining scenarios.

4.3 TIME AND MEMORY COMPLEXITY COMPARISON OF SOFTMAX AND ECOC DESIGNS

We compare different ECOC decision layers against a traditional Softmax baseline, evaluating them
on three key dimensions: parameter count, training and inference time. Table 3 reports per-step

Decision Layer No. of Param Acc. (%) Frozen Backbone Trainable Backbone
Fwd Loss Bwd Upd Fwd Loss Bwd Upd

Minimal ECOC(10,0) 3.2k 66.8 1.65 0.33 2.01 0.53 1.32 0.33 2016 36.6
Softmax 320k 90.6 13.2 3.39 74.0 1.14 12.2 2.19 2091 37.2
MinRandom ECOC(15,0) 4.8k 70.1 3.20 0.35 3.28 0.68 3.02 0.38 2070 34.7
MinRandom ECOC(50,0) 16k 75.3 5.37 0.56 4.79 0.74 3.80 0.53 2025 38.0
MinRandom ECOC(500,0) 160k 81.8 8.79 5.14 15.4 1.74 7.67 4.15 2091 37.2
MinRandom ECOC(1000,0) 320k 82.7 13.4 44.5 80.5 1.94 11.8 10.5 2067 36.0
One-vs-All 320k 90.2 13.0 44.4 75.5 1.92 12.0 10.5 2142 35.9

Table 3: Per-step times and accuracy for different decision layers during pretraining. All times are
reported in milliseconds. Left: backbone frozen; right: end-to-end training. Abbreviations—Fwd:
forward pass (through decision layer only when frozen; full model when trainable); Loss: loss
computation; Bwd: backpropagation; Upd: optimizer update step.

timings and accuracy for decision layers during pretraining. The table reports four key metrics: fwd
(forward pass time per batch), bwd (backward pass time per batch), loss (loss calculation time), and
upd (parameter update time). Together, these measurements demonstrate how ECOC compresses
the decision layer, reduces memory usage, and accelerates both training and inference compared
to softmax. With a frozen backbone, the time of forward pass, loss computation, and backprop-
agation grows with the number of decision layer nodes m, while update time remains negligible.
For example, loss computation time rises from 0.00033 seconds at m = 10 to 0.045 seconds at
m ≈ 1000, and backpropagation time from 0.0020 seconds to 0.081 seconds. This corresponds to
a 20–30× speedup for Minimal designs compared to Softmax or one-vs-all, with MinRandom vari-
ants interpolating smoothly as m increases. When the backbone is trainable, the backward pass of
the backbone itself dominates at about two seconds, so total step time differs by only 4–7% across

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

decision layers, even though forward pass and loss computation times still increase with m. Ac-
curacy results in Table 3 show that Minimal layers retain roughly 75% of Softmax accuracy at a
fraction of computation time, underscoring the accuracy-efficiency trade-off.

Decision Layer Number of Parameters Inference Time (in minutes) F1 Score
Softmax 102,957,056 12:50 0.8316
Minimal ECOC (16, 0) 32,768 01:05 0.4265
MinRandom ECOC (50, 0) 32,768 01:45 0.4800
Minimal MTL (16, 512) 16,785,408 07:00 0.6023
MinRandom MTL (50, 512) 52,454,400 08:10 0.6934

Table 4: Comparison of ECOC decision layers versus Softmax in terms of parameters, inference
time and F1 score for the fine-tuning scenario. Numbers in parentheses represent codeword length
and hidden-layer dimension, respectively.

Table 4 reports the inference time and the number of parameters for different decision layers in the
fine-tuning scenario. The Minimal ECOC decision layer reduces over 99.9% parameters from ap-
proximately 103M to 33K, and lowers inference latency from 12m 50s to 1m 05s, an improvement
of about 92%. Extending this design with multi-task learning, the Minimal MTL variant improves
predictive accuracy while requiring only 16.8M parameters (an 84% reduction relative to Softmax)
and an inference time of 7 minutes (a 44% reduction). The MinRandom MTL design further im-
proves robustness and accuracy, trading additional capacity for performance while remaining more
parameter-efficient than Softmax.

5 DISCUSSION AND CONCLUSIONS

In this work, we proposed a framework inspired by Error Correcting Output Codes (ECOC) that en-
ables flexible implementations of the decision layer in LLMs, with Softmax appearing as a special
case. Our focus was on the Minimal ECOC design and its variations, targeting computational com-
plexity and parameter efficiency, particularly valuable in settings with extremely large vocabular-
ies. Our experiments illustrate that ECOC-based decision layers can compress the original Softmax
layer to as little as 1% of its size while retaining roughly 73.7% of baseline performance during pre-
training, achieving a strong balance between efficiency and predictive accuracy. The performance
improves further when randomisations are added, making it possible to achieve 90.2% of Softmax
performance with 50% of the parameters. In fine-tuning, the benefits of minimal designs appear
when combining additional randomisation with an MTL formulation, making it possible to obtain
83.38% of F1 using 50% of the Softmax layer size. Taken together, these results underline the prac-
tical trade-offs of adopting ECOC in LLMs. Pretraining with long codewords yields the strongest
accuracy but comes with relatively higher computational cost, whereas fine-tuning frozen backbones
offers more memory- and time-efficient improvements. While longer codewords and larger hidden
dimensions further improve performance at the cost of time and memory, minimal ECOC designs
still surpass Softmax in both efficiency and scalability, making them a strong choice for LLMs with
large vocabularies.

Limitations and Future Work. Treating the LLM’s final layer as an ECOC strategy opens access
to the field’s well-established ECOC best practices. We identify several promising directions for
future work. A deeper understanding of the latency–complexity trade-offs, together with principled
methods for determining the optimal number of bits for saturation performance (James & Hastie,
1998), remains an important step. Another avenue is the exploration of learnable ECOC variants,
which can dynamically adapt coding schemes using data-driven partitioning methods. Integrating
token embeddings or contextual information directly into the binary code representation may further
improve semantic coherence and fine-grained predictive accuracy. Weight tying between the input
embedding layer and the output ECOC projection layer also holds promise for greater parameter
efficiency, stronger generalisation, and better empirical performance. At the systems level, scal-
ing to multi-node training by distributing subsets of ECOC bits or model partitions across compute
nodes could accelerate training through compartmentalisation. Finally, extending this architecture-
agnostic framework to multi-modal tasks could further broaden its applicability, pushing the bound-
aries of ECOC’s use to diverse problem domains and architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sara Atito Ali Ahmed, Cemre Zor, Muhammad Awais, Berrin Yanikoglu, and Josef Kittler. Deep
convolutional neural network ensembles using ecoc. IEEE Access, 9:86083–86095, 2021. doi:
10.1109/ACCESS.2021.3088717.

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: a uni-
fying approach for margin classifiers. J. Mach. Learn. Res., 1:113–141, September 2001.
ISSN 1532-4435. doi: 10.1162/15324430152733133. URL https://doi.org/10.1162/
15324430152733133.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers, 2024.
URL https://arxiv.org/abs/2305.15805.

Rohan Anil, Saad Rashid, and Shishir Soni. Lora-prune: Low-rank reparameterisation meets struc-
tured pruning, 2023.

Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Firat, Daan van Esch, Aditya Siddhant, Meng-
meng Niu, Pallavi Baljekar, Xavier Garcia, Wolfgang Macherey, Theresa Breiner, Vera Axelrod,
Jason Riesa, Yuan Cao, Mia Xu Chen, Klaus Macherey, Maxim Krikun, Pidong Wang, Alexan-
der Gutkin, Apurva Shah, Yanping Huang, Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
Building machine translation systems for the next thousand languages, 2022.

Miguel A Bautista, Xavier Baró, Oriol Pujol, Petia Radeva, Jordi Vitrià, and Sergio Escalera. Com-
pact evolutive design of error-correcting output codes. In Proceedings of the Supervised and Un-
supervised Methods and their Applications (SUEMA), European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases, 2010.

Miguel Angel Bautista Martin, Oriol Pujol, Fernando De la Torre, and Sergio Escalera. Error-
Correcting Factorization . IEEE Transactions on Pattern Analysis & Machine Intelligence, 40
(10):2388–2401, October 2018. ISSN 1939-3539. doi: 10.1109/TPAMI.2017.2763146. URL
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2763146.

Simon Bauwens and Pieter Delobelle. BPE-Knockout: Improving subword vocabularies by re-
moving redundant merges. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2024), pp. to appear, Bangkok, Thailand, 2024.

Nikolay Bogoychev, José Camacho-Collados, and Pontus Stenetorp. The ups and downs of LLM in-
ference with vocabulary trimming by language heuristics. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2024), pp. to appear, Singapore,
2024.

Mengzhao Chen, Tianshu Zhang, and Jie Liu. Quarot: Fully low-bit inference for transformer
models, 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Tim Dettmers, Mike Lewis, and Luke Zettlemoyer. 8-bit optimizers via block-wise quantization for
efficient gpt training. In Proceedings of the 38th International Conference on Machine Learning
(ICML 2021), pp. to appear, 2021.

Terry G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995. doi: 10.1613/jair.105.
URL https://doi.org/10.1613/jair.105.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13(2):415–425, 2002. doi: 10.1109/72.991427. URL
https://doi.org/10.1109/72.991427.

10

https://doi.org/10.1162/15324430152733133
https://doi.org/10.1162/15324430152733133
https://arxiv.org/abs/2305.15805
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2763146
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://doi.org/10.1613/jair.105
https://arxiv.org/abs/2305.07759
https://doi.org/10.1109/72.991427

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685,
2021. URL https://arxiv.org/abs/2106.09685.

Gareth James and Trevor Hastie. The error coding method and picts. Journal of Computational and
Graphical Statistics, 7(3):377–387, 1998. ISSN 10618600. URL http://www.jstor.org/
stable/1390710.

Wooram Jang, Woojin Hwang, Kezhong Jin, and Hosung Park. Bit flipping-based error correcting
output code construction for adversarial robustness of neural networks. ICT Express, 11(2):348–
353, 2025. ISSN 2405-9595. doi: https://doi.org/10.1016/j.icte.2025.02.002. URL https:
//www.sciencedirect.com/science/article/pii/S2405959525000128.

Jan Kasalický, Markus Müller, Michael Freitag, and Stefan Riezler. CompresSAE: Compressing
output embeddings with sparse auto-encoders. In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (ACL 2025), pp. to appear, Bangkok, Thailand, 2025.

Seungmin Lee and Seunghoon Hong. Dtem: Decoupled token embedding for differentiable merg-
ing, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Xiang Li, Patrick Ng, and Yanshu Feng. Atom: W4/a4/kv4 quantization without perplexity penalty,
2024a.

Zhen Li, Liyang Zhao, and Yiqun Xu. Evopress: Pressing redundant neurons with evolutionary
strategies, 2024b.

Zeqi Lin, Qingqing Cao, Wei Niu, Xiaodong Wang, and Yanzhi Wang. Awq: Activation-aware
weight quantization for efficient llm inference, 2023.

O. Pujol, P. Radeva, and J. Vitria. Discriminant ecoc: a heuristic method for application dependent
design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(6):1007–1012, 2006. doi: 10.1109/TPAMI.2006.116.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Technical report, OpenAI,
2019. URL https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Ruining Shao, Jiaxin Guo, Xiaoya Li, and Zhiyuan Liu. Vq-logits: Vector-quantised logits for
efficient language modelling, 2025. URL https://arxiv.org/abs/2503.01234.

Yang Song, Qiyu Kang, and Wee Peng Tay. Error-correcting output codes with ensemble diversity
for robust learning in neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Asahi Ushio, Xinyi Zhou, and José Camacho-Collados. Efficient multilingual LM compression
through vocabulary trimming. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2024), pp. to appear, Bangkok, Thailand, 2024.

11

https://arxiv.org/abs/2106.09685
http://www.jstor.org/stable/1390710
http://www.jstor.org/stable/1390710
https://www.sciencedirect.com/science/article/pii/S2405959525000128
https://www.sciencedirect.com/science/article/pii/S2405959525000128
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2503.01234
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gunjan Verma and Ananthram Swami. Error correcting output codes improve proba-
bility estimation and adversarial robustness of deep neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), volume 32. Curran Associates,
Inc., 2019. URL https://papers.nips.cc/paper_files/paper/2019/hash/
cd61a580392a70389e27b0bc2b439f49-Paper.pdf.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A
survey, 2024. URL https://arxiv.org/abs/2312.03863.

Li-Na Wang, Hongxu Wei, Yuchen Zheng, Junyu Dong, and Guoqiang Zhong. Deep error-correcting
output codes. Algorithms, 16(12), 2023a. ISSN 1999-4893. doi: 10.3390/a16120555. URL
https://www.mdpi.com/1999-4893/16/12/555.

Ying Wang, Yuhui Li, and Shuchang Liu. Llm-pruner: On-the-fly structured pruning for large
language models, 2023b.

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. Emerging cross-
lingual structure in pretrained language models, 2020. URL https://arxiv.org/abs/
1911.01464.

Zhen Xiao, Fang Meng, and Renrui Gong. Smoothquant: Accurate and efficient post-training quan-
tization for llms. In Advances in Neural Information Processing Systems 35 (NeurIPS 2022), pp.
to appear, 2022.

Angela Yao, Lu Liu, and Wei Zhang. Eightbit: Post-training int8 inference for large language
models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2022), pp. to appear, Abu Dhabi, UAE, 2022.

Anlan Yu, Ning Lyu, Jieming Yin, Zhiyuan Yan, and Wujie Wen. Cola: Orchestrating error coding
and learning for robust neural network inference against hardware defects. In Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 40277–40289. PMLR, 2023. URL https://proceedings.mlr.
press/v202/yu23a.html.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Yunfan Zhang, Wen Li, and Lin Chen. Slimgpt: Second-order guided pruning of large language
models, 2024.

Yuxuan Zhang, Jiapeng Wu, and Karan Patel. Qserve: Server-friendly 4-bit serving of large language
models, 2025.

Meng Zhou, Yujian He, and Shuai Wang. Darwinlm: Evolutionary search of sparse substructures in
gpt models, 2025.

Cemre Zor, Berrin Yanikoglu, Terry Windeatt, and Ethem Alpaydin. Flip-ecoc: A greedy optimiza-
tion of the ecoc matrix. In Erol Gelenbe, Ricardo Lent, Georgia Sakellari, Ahmet Sacan, Hakki
Toroslu, and Adnan Yazici (eds.), Computer and Information Sciences, pp. 149–154, Dordrecht,
2010. Springer Netherlands. ISBN 978-90-481-9794-1.

Cemre Zor, Berrin Yanikoglu, Erinc Merdivan, Terry Windeatt, Josef Kittler, and Ethem Alpaydin.
Beamecoc: A local search for the optimization of the ecoc matrix. In 2016 23rd International
Conference on Pattern Recognition (ICPR), pp. 198–203, 2016.

Miguel Ángel Bautista, Sergio Escalera, Xavier Baró, Petia Radeva, Jordi Vitriá, and Oriol Pujol.
Minimal design of error-correcting output codes. Pattern Recognition Letters, 33(6):693–702,
2012. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2011.09.023. URL https://
www.sciencedirect.com/science/article/pii/S0167865511002960.

12

https://papers.nips.cc/paper_files/paper/2019/hash/cd61a580392a70389e27b0bc2b439f49-Paper.pdf
https://papers.nips.cc/paper_files/paper/2019/hash/cd61a580392a70389e27b0bc2b439f49-Paper.pdf
https://arxiv.org/abs/2312.03863
https://www.mdpi.com/1999-4893/16/12/555
https://arxiv.org/abs/1911.01464
https://arxiv.org/abs/1911.01464
https://proceedings.mlr.press/v202/yu23a.html
https://proceedings.mlr.press/v202/yu23a.html
https://www.sciencedirect.com/science/article/pii/S0167865511002960
https://www.sciencedirect.com/science/article/pii/S0167865511002960

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 HYPERPARAMETERS

.

Parameter Value Parameter Value

Batch size 40 Epochs 3
Learning rate 2× 10−4 Gradient clipping 1.0
Optimizer AdamW Warm-up ratio 0.10
Weight decay 0.10 Mixed precision FALSE
Grad. accumulation steps 1 Group-by-length FALSE

Table 5: Hyper-parameters used for all fine-tuning experiments.

Parameter Value Parameter Value

Batch size 64 Total tokens 1000
Sequence length 2048 Optimiser AdamW
Learning rate 2× 10−3

Table 6: Pretraining hyper-parameters for GPT-2-15M on TinyStories.

A.2 MODELS & DATASETS

OPT Model: The OPT (Zhang et al., 2022) family of decoder-only language models, developed by
Meta AI, is designed to replicate the architecture and performance of OpenAI’s GPT-3. Ranging
from 125M to 175B parameters, OPT models are trained on large-scale open datasets and optimized
for next-token prediction. We use the OPT-1.3B variant in our experiments, as it offers a strong
trade-off between performance and memory efficiency, making it ideal for fine-tuning on mid-sized
datasets.

GPT-2 Model: The GPT-2 model (Radford et al., 2019), is a decoder-only transformer trained with
a causal language modeling objective, using next-token prediction on a large corpus of approxi-
mately 40GB of web pages filtered from Reddit links. It is available in multiple sizes: the smallest
version has 124M parameters and a 768-dimensional hidden state across 12 layers, while the full
model scales up to 1.5B parameters, 48 layers, and a 1600-dimensional representation. The model
employs Byte-Pair Encoding (BPE) with a vocabulary of roughly 50k tokens and supports context
windows up to 1024 tokens. GPT-2’s versatile performance ranging from text generation and zero-
shot translation and summarization made it a foundational language model and a practical choice
for evaluating decision layer modifications like ECOC across various model capacities.

Alpaca Dataset: The Stanford Alpaca dataset (Taori et al., 2023) comprises 52,000 instruction-
following examples generated via the Self-Instruct method using text-davinci-003. Each instance
includes an instruction, an optional input, and a response, covering a broad range of NLP tasks.
Around 40% of the examples involve contextual input, while the rest are standalone tasks such as
translation or text generation. The dataset ensures diversity across tasks and is split into 85% training
and 15% inference. We use Alpaca for its balanced size and task variety, enabling effective model
training without the need for large-scale compute. Its accessibility and early adoption make it a
strong benchmark for instruction tuning in LLMs.

TinyStories: The TinyStories dataset (Eldan & Li, 2023) consists of millions of synthetically
generated short stories crafted by GPT-3.5 and GPT-4, using a constrained vocabulary typical
of 3–4 year olds to ensure linguistic simplicity and coherence. Its primary purpose is to enable
training of small language models sometimes with fewer than 10 million parameters or a single
Transformer block that can still produce fluent, grammatically correct paragraphs and perform basic
reasoning. In our experiments, we use a 1,000 token vocabulary variant, which provides controlled
conditions for evaluating ECOC decision layers and reduces complexity during autoregressive
pretraining. TinyStories offers both efficiency and interpretability, allowing us to assess the impact
of compresseddecision layers on language modeling while keeping computational costs low.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ACCURACY-COMPLEXITY TRADEOFF

105 106 107 108

Number of Parameters in Last Layer (Log Scale)

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

F1
 S

co
re

Minimal ECOC (16, 0)
MinRandom ECOC (50, 0)

Minimal MTL ECOC (16, 512)

MinRandom MTL ECOC (50, 512)

Softmax
F1 Score vs Number of Parameters for Different Configurations

Figure 4: F1 Score vs Number of Parameters for Different ECOC decision layers and Softmax,
showing the accuracy-complexity trade-off in the fine-training scenario. The x-axis is a logarithmic
scale to accommodate the wide range of parameter sizes, while the y-axis represents the F1 score.

14

	Introduction
	Background
	ECOC for Boundary Encoding and Optimization
	Softmax as a One-vs-all Extension of Sigmoid
	Integrating ECOC in the Decision Layer

	Experimental Evaluation
	Experimental Setup
	Accuracy Comparison of Softmax and ECOC Designs
	Pretraining Setup
	Fine-tuning Setup

	Time and Memory Complexity Comparison of Softmax and ECOC Designs

	Discussion and Conclusions
	Appendix
	Hyperparameters
	Models & Datasets
	Accuracy-Complexity Tradeoff

