AdaVLN: Towards Visual Language Navigation in Continuous Indoor
Environments with Moving Humans

Navigation Agent

Isaac Sim Si

Y

Observations Image-Text Multimodal

Foundational Model

\

Observations: | see a human walking to
the right

Action: | will move to the left

Reasoning: If i go straight, the human will
intersect my path from the right. Hence, i
should curve around her via the left

Task Instructions

® | need to move past the sofas and
stop in front of the TV.

| must avoid colliding with furniture
and humans

- “turn_left” to the simulator

Send action command

Q Human Spawn Points <@ — = = Human Walking Path

Figure 1: AdaVLN: Given natural language instructions, the robot is tasked to navigate in a continuous indoor space while avoiding
collisions with moving humans. At each navigation step, the navigation agent receives an egocentric forward-facing RGB-D obser-
vation of its environment. Our baseline agent then sends the observations and task instructions to a large language model, which
reasons a set of actions and the actions are then sent to the robot to execute the next navigation step.

ABSTRACT

Visual Language Navigation (VLN) is a task that challenges robots
to navigate in realistic environments based on natural language in-
structions. While previous research has largely focused on static
settings, real-world navigation must often contend with dynamic
human obstacles. Hence, we propose an extension to the task,
termed Adaptive Visual Language Navigation (AdaVLN), which
seeks to narrow this gap. AdaVLN requires robots to navigate com-
plex 3D indoor environments populated with dynamically moving
human obstacles, increasing task complexity and realism. To sup-
port exploration of this task, we also present AdaVLN simulator
and AdaR2R datasets. The AdaVLN simulator enables easy inclu-
sion of fully animated human models directly into common datasets
like Matterport3D. We also introduce a “freeze-time” mechanism
for both the navigation task and simulator, which pauses world state
updates during agent inference, enabling fair comparisons and ex-
perimental reproducibility across different hardware. We bench-
mark several baseline models in simulation and real environments,
analyze the unique challenges of AdaVLN, and show its potential
to narrow the sim-to-real gap in VLN research.

Index Terms: Visual language navigation, embodied Al, agent,
dynamic obstacles

1 INTRODUCTION

Visual navigation in indoor environments, a key topic in Embodied
Al studies an agent’s ability to follow natural language instruc-
tions to reach a goal in unknown spaces. Solving this task requires
the agent to (1) perceive and remember its surroundings, (2) inter-
pret language instructions, and (3) plan actions that integrate spatial
memory and language understanding [45].

While the premise of this task is straightforward, different vari-
ants have been introduced over the years, which can be broadly

classified based on communication complexity (single/multi-turn
interaction), task objective (action/goal-directed), and action space
(discrete/continuous spaces) [45, 11, 5, 32]. Within this framework,
Visual Language Navigation (VLN) is typically single-turn and
action-directed, with discrete or continuous action spaces depend-
ing on the variant [5, 17]. VLN in continuous indoor environments
(VLN-CE) has gained attention for real-world uses such as home
robotics [17], yet its datasets and simulators remain largely static,
lacking moving obstacles and evolving layouts. In reality, humans
and other agents move within the same space, requiring robots to
predict dynamic obstacle motion and adjust routes—capabilities
critical in related tasks like SOON, HANNA, VLNA, and VDN
[46, 43, 22, 29, 36].

To narrow this gap, we introduce Adaptive Visual Language
Navigation (AdaVLN), an extension of VLN-CE that incorporates
moving human obstacles into Habitat-Matterport3D [31]. We fur-
ther introduce a freeze-time mechanism that pauses simulation dur-
ing agent inference, enabling fair evaluation across hardware with
different processing speeds. Specifically, we introduce the follow-
ing two tools to enable research in this topic:

e AdaSimulator: A simulator offering physics-based 3D envi-
ronments with dynamically moving obstacles like humans and
accurate mobile robot movements. AdaSimulator is based on
IsaacSim [20] and is built to be compatible with Matterport3D
environments [7] and supports easy customisation of human
spawn points, and pathing logic.

¢ AdaR2R: A sample variant of the R2R [5] and Matterport3D
datasets that includes spawn points and trajectories for dy-
namic obstacles, adding another layer of realism to the navi-
gation task.

Finally, we conduct experiments with several baseline models
to evaluate our new task, analyzing the impact of these additional
complexities on agent behavior and performance.

>

[
R
Figar

Figure 2: A robot navigates in a simulated dynamic environment with
moving human obstacles.

2 RELATED WORKS
2.1 Visual Language Navigation

Over the years, the VLN task has advanced to better bridge simula-
tion and real-world deployment. The original VLN task and Room-
to-Room (R2R) dataset [5] required an agent to follow a single
natural-language instruction to reach a goal in static 3D environ-
ments, using 360° RGB-D panoramas to select discrete neighbour-
ing nodes, and led to the creation the Matterport3D dataset and sim-
ulator [7]. This simulator later supported related static-environment
tasks such as SOON [46] and REVERIE [29]. Subsequent dataset
extensions, including R4R [15] and RxR [18], increased instruc-
tion diversity and difficulty, while tasks such as Embodied Question
Answering [43] and Vision-and-Language Navigation with Actions
(VLNA) [22] extended objectives beyond navigation to question
answering and action execution.

Building on these foundations, Habitat Sim [28, 35, 34] and the
Habitat-Matterport3D mesh datasets [31] enabled experiments in
physics-enabled 3D environments. Krantz et al. [17] extended
VLN to continuous action spaces (VLN-CE), where robots exe-
cute low-level movements , spurring RxR-Habitat competitions at
CVPR [10, 3] and follow-up research on world-state modelling
[2, 39, 42] and long-term planning [41, 38]. Hong et al. [13] fur-
ther revealed the complementary nature of discrete and continuous
variants. More recently, Li et al. [19] proposed the Human-Aware
MP3D (HA3D) simulator and Human-Aware R2R dataset, intro-
ducing perspective-specific animated humans and collision statis-
tics into evaluation, thereby increasing realism and safety consider-
ations for VLN.

2.2 Collision Avoidance during Navigation

Collision avoidance is a well-researched topic in robotics, where lo-
cal or offline path-planning is crucial for safe operation in unknown
environments. Effective planning requires anticipating how the sur-
rounding world will evolve along candidate trajectories to avoid ob-
stacles in advance. Classical approaches employ Velocity Obstacles
[9] and their multi-agent extension, Reciprocal Velocity Obstacles,
while motion cues from RGB-D sensing have also been explored
[12]. More recent work combines reinforcement learning with rep-
resentations of dynamic obstacles as variable-size ellipsoids and
incorporates agent-human interaction dynamics [37, 27, 6], often
supported by grid-, graph-, or 3D-based environment models for
richer spatial reasoning [8, 40, 14].

Concepts from these studies have been adopted in VLN to
enhance planning and obstacle prediction. DREAMWALKER
[38] employs mental simulations to forecast environments along

prospective paths; [2] introduces dynamic topological planning for
obstacle avoidance; and Jeong et al. [16] develop the VLN-CM
agent, which predicts occupancy maps from depth data to guide
navigation.

3 ADAPTIVE VISUAL LANGUAGE NAVIGATION

The existing VLN and VLN-CE tasks are largely focused on navi-
gation in static environments, and do not explicitly define scenarios
where dynamic obstacles like moving humans are present. To pro-
vide realistic, human-populated environments, we introduce Adap-
tive Visual Language Navigation (AdaVLN) (Figure 1), an exten-
sion to the VLN-CE task. In AdaVLN, we first propose the task
objectives and define the actions of robots. We further introduce a
freeze-time mechanism that pauses simulation during agent infer-
ence, enabling fair evaluation across hardware with different pro-
cessing speeds. To support exploration of this task, we also present
AdaVLN simulator and AdaR2R datasets. The AdaVLN simula-
tor offers physics-based 3D environments with dynamically mov-
ing obstacles like humans and accurate mobile robot movements.
The AdaR2R datasets includes spawn points and trajectories for dy-
namic obstacles, adding another layer of realism to the navigation
task.

3.1 Task Description

Building upon the VLN-CE task, AdaVLN sets robots in Matter-
port3D environments with continuous action spaces. Each episode
starts at time 7y = O with the robot initialized at position (Xo, 6p)
and tasked to navigate to a goal position X; by following natu-
ral language instructions provided at the start. A key addition in
AdaVLN is the inclusion of dynamic obstacles — in the form of
humans — and an emphasis on collision avoidance. The states of
these obstacles, denoted (X/, 6/), are continuously updated as they
move along NavMesh paths between pre-defined waypoints in the
AdaR2R dataset. Robots are required to avoid collision with both
static obstacles and the dynamic obstacles (Figure 2).

3.2 Observations/Actions of Robots

At each navigation step ¢, the robot observes an egocentric front-
facing view of its surroundings in the form of an RGB-D image
[19], as seen in Figure 3. Based on this observation and its current
state, the robot can selects one of four actions:

1. Turn left by 15 degrees at 30 degrees/s
2. Turn right by 15 degrees at 30 degrees/s
3. Move forward 0.25 meters at 0.5m/s

4. Stop

As action duration can influence navigation performance, the robot
was configured to move at 0.5 m/s and rotate at 30°/s, ensuring a
uniform execution time of approximately 2s per action.

The ’stop’ command indicates the end of an episode, upon which
the robot and simulation stops. The agent’s performance is then
evaluated based on its final state (X, 6y) and the path it took, rep-
resented as (X;, ;) for t € [0,Ty], where Ty is the final time step.
Each episode is capped at 50 steps, after which the simulation ter-
minates if the goal is not reached.

3.3 Freeze-Time

As dynamic obstacles are updated at every simulation tick, vari-
ations in hardware capability and inference latency may bias ex-
perimental outcomes. To achieve hardware-agnostic evaluation, an
optional "Freeze-Time” mode will be offered that suspends world-
state updates while the agent computes its next action; this option
can be disabled when the inference speed is intended to be part of
the evaluation.

Figure 3: Top: RGB observations, Bottom: Depth observations pro-
vided to agent. Note that the depth observations have been restricted
to a range between 0 and 10 in this image for clarity.

Figure 4: AdaSimulator’s GUI Extension in Isaac Sim

3.4 AdaSimulator

AdaSimulator is implemented as a standalone extension to Isaac-
Sim, leveraging its physics engine and RTX Renderer [25]. The
simulator automatically sets up all necessary environment compo-
nents when loading a scene:

* Sets up collider meshes for the static obstacles

* Spawns a Jetbot at (X, 6)

» Sets up camera render products for generating observations
* Loads environment lighting rigs

* Loads humans at (X}, 6}) and sets up their animation graphs

All simulation scenarios employ a two-wheeled NVIDIA Jet-
bot [24] driven by differential controllers for physics-based motion.
Egocentric observations are generated with IsaacSim’s Replicator
Core from the Jetbot-mounted camera. Dynamic human obstacles
are incorporated using a customized omni.anim.people exten-
sion [23]. An ROS 2 interface enables agents to access RGB-D
observations and issue control commands.

The simulator can be run in GUI mode for full visibility of the
navigation episodes and manual input of robot commands, or in
headless mode for optimal training speed (Figure 4).

3.5 AdaR2R (Sample)

AdaR2R (Sample) provides 9 navigation episodes across 3
HM3Dv2 scenes [30, 21], with representative snapshots shown in
Figure 5 [31]. It extends the original R2R format with specifica-
tions for human spawn points, path waypoints, and motion param-
eters. Each episode contains 1-2 moving humans whose waypoints
deliberately intersect critical straight-line connections in the refer-
ence path. These obstacles are transient: alternative detours exist or
the humans eventually vacate the obstructed areas.

The tasks are purposely made to be simple as the focus is on the
human obstacles, with an average geodesic distance for each navi-

O}
—] ¥~ Robot Start Position
H::t‘:n D' RobetStart Positl

Goal Point

Figure 5: The 9 navigation episodes were conducted in 3 HM3Dv2
scenes. Humans loop along the indicated paths infinitely throughtout
a navigation episode. Note that the paths have been deliberately
chosen to interfere with the optimal path the robot would take.

gation episode is 5.84 meters. As a sample, it serves as a reference
for future works to establish new task variants of existing room-
to-room datasets. The environment and robot both use triangular
collider meshes with default offset values determined by IsaacSim.

4 EXPERIMENTS
4.1 Evaluation Protocol

To demonstrate the task and simulator, we evaluate a baseline
agent’s ability to reach goals while avoiding humans and static ob-
stacles. While established VLN metrics primarily assess navigation
performance [4, 5, 44], our emphasis on a new simulation frame-
work leads us to focus on collision statistics. We report Navigation
Collisions (NC), the fraction of time the agent remains in contact
with any obstacle, further decomposed into Human Navigation Col-
lisions (HNC) and environmental collisions, and complement these
with qualitative analyses of agent observations and actions across
representative episodes. Given the shorter geodesic distances than
R2R and R2R-CE, each episode is limited to 50 navigation steps.
The NVIDIA Jetbots are configured with differential controllers us-
ing a wheel radius of 0.035 m and a wheel base of 0.1 m.

4.2 Baseline GPT Agent

We evaluate a simple agent built on the GPT-40-mini multi-modal
model [26]. At each navigation step, the robot summarizes seman-
tic observations from RGB inputs (down-scaled from 1280x720 to
640x360), formulates a long-term plan, reviews prior steps, and se-
lects the next action. Predictions are limited to 200 output tokens
per step. Implementation details are provided in the project reposi-
tory.

Tests are conducted zero-shot with no prior training of any sort
on our dataset. As seen in Figure 6 and Table 1, collision rates in
general are high, due to poor environmental parsing capabilities of

Episode 2 Episode 4

Y (meters)
—F—
>

Y (meters)
|

0 & 5 4 = 3 2
X (meters)

Episode 8

5
X (meters)

2 —— Robot Path
—— Character character_0
Character character_1
o Start Point
s+ Goal Point

Y (meters)
>

5 2 o
X (meters)

Figure 6: Top: Sample of paths (represented by lines) taken by robots
and humans during simulation. Coordinate origins are based on X-Y
provided in MP3D GLB files which have been scaled to 1 unit : 1
meter. In cases where the robot’s line moves back-and-forth around
a point, the robot has gotten stuck in collision with a wall.

our agent. In particular, we note that our agent frequently makes
hallucinating observations which include:

* Stating that paths ahead are clear even if they are facing a wall

 Stating that there are no humans or obstacles in front of them
even if there are

* Hallucinating the instruction’s objects in front of them

Because AdaSimulator models full robot and environment physics,
recovering from wall collisions is considerably harder than in Habi-
tatSim. Instead of sliding along walls, a robot may tip backward
when pushing against a wall or become unable to turn, as no re-
verse action is defined. Once immobilized, escape is effectively im-
possible, adding a realistic challenge absent in HabitatSim, which
permits wall sliding.

Although human collisions constitute a small proportion of the
total collisions, this is primarily because humans continue on their
paths and exit the collision zone after contact. As shown in 6, the
agent makes little effort to navigate around human obstacles. We
hypothesize that this behavior is due to the lack of realism in the
human 3D models, causing the foundational model to fail to recog-
nize them as obstacles.

4.3 Real-World Experiment Preparation

We also conducted experiments in real environments with a Turtle-
Bot3 Waffle robot [1] and a desktop workstation (host) running the
agent. Host-robot communication used ROS 2 (Foxy Fitzroy) with
Fast DDS over Wi-Fi. The robot base supports maximum linear
and angular speeds of 0.26 m/s and 1.82 rad/s. High-level compu-
tation ran on a Raspberry Pi 4 (2 GB RAM), while low-level motor
control and sensor I/O were handled by OpenCR controller [33].
Perception relied on a Stereolabs ZED 2 stereo camera using the
official ROS zed-ros2-wrapper, streaming synchronized 1280x720
RGB images per eye at 60 Hz. Our analyses only used raw RGB
frames. To match wireless bandwidth and latency, every 30th stereo
pair was published to the host.

4.4 Procedure & Sim-to-Real Analysis

We evaluated the system in a laboratory mock-up comprising two
static box-like obstacles, a target object (red balloon), and a ran-
domly appearing pedestrian to induce dynamic occlusions. Dur-
ing each trial, the onboard client captured 115° front-facing RGB

Figure 7: Third-person (left column) and onboard camera (right rol-
umn) views of the laboratory trial with barriers, target and moving
people. Top: robot and scene just before the Al agent issues the
command. Bottom: robot and view after the Al agent issues the
command.

Episode Environmental NC ~ Human NC Combined NC
1 0.77 0.01 0.78
2 0.69 0.01 0.70
3 0.91 0.01 0.91
4 0.93 0.00 0.93
5 0.86 0.00 0.86
6 0.76 0.00 0.76
7 0.00 0.00 0.00
8 0.71 0.08 0.78
9 0.00 0.00 0.00

Average 0.63 0.01 0.64

Table 1: Normalized Collision (NC) values across different episodes.
The combined navigation collision measures the total amount of
timesteps a robot spends in a navigation episode while in collision
with any object in the scene. Environmental and Human NC only
considers collisions with static obstacles (like furnitures/wall) or hu-
mans respectively.

images at 60 Hz and transmitted the latest frame with a struc-
tured prompt (task instruction, safety rules, and state/action sum-
mary) to the Al agent host at every 0.5s (2Hz). The host re-
turned a policy specifying one of five discrete actions and accom-
panying reasoning. Upon receiving an action, the robot executed
the corresponding motion primitive (e.g., move_forward— v = 0.1
m/s; turn_left/right— @ = £0.5 rad/s; stop— v = @ = 0) and re-
evaluated at 2 Hz, ensuring compliance with task objectives and
safety constraints. We conducted 20 trials with pedestrian randomly
moving in front of the robots and there was no collision detected.

Figure 7 shows a representative laboratory trial where the robot
is tasked to reach a red balloon. The left column shows third-person
views and the right column shows onboard camera images. The top
row shows photos captured before the Al agent issues a turn_left
command and the bottom row shows photos captured after the robot
executes the received instructions. In this episode, the robot suc-
cessfully avoids a moving pedestrian and a static barrier while ad-
vancing toward the target (a red balloon).

5 CONCLUSION AND FUTURE WORK

We presented AdaVLN, which extends the VLN-CE problem to-
wards agent/robot navigation in dynamic environments featuring
moving humans as dynamic obstacles. Alongside this, we intro-
duced AdaSimulator, an extension of IsaacSim that facilitates the
setup of fully physics-enabled simulations with realistic robots and
animated 3D humans. Our baseline experiments demonstrate that
the added complexity of our simulator enables more realistic eval-
uations and highlights the potential challenges of the new task. We
aim to expand on this work by refining the simulation environ-
ment, generalizing the task formalization to broader dynamic envi-
ronments, and developing agents capable of effectively navigating
these complex scenarios.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

R. Amsters and P. Slaets. Turtlebot3 as a robotics education platform.
In Robotics in Education, pp. 170-181. Springer International Pub-
lishing, 2019. doi: 10.1007/978-3-030-26945-6

164

D. An, H. Wang, W. Wang, Z. Wang, Y. Huang, K. He, and L. Wang.
Etpnav: Evolving topological planning for vision-language navigation
in continuous environments. 2024. 2

D. An, Z. Wang, Y. Li, Y. Wang, Y. Hong, Y. Huang, L. Wang, and
J. Shao. st place solutions for rxr-habitat vision-and-language navi-
gation competition (cvpr 2022). 2022. 2

P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and
A. R. Zamir. On evaluation of embodied navigation agents.
(arXiv:1807.06757), July 2018. arXiv:1807.06757 [cs]. 3

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf,
I. Reid, S. Gould, and A. v. d. Hengel. Vision-and-language naviga-
tion: Interpreting visually-grounded navigation instructions in real en-
vironments. (arXiv:1711.07280), Apr. 2018. arXiv:1711.07280 [cs].
1,2,3

M. Castillo-Lopez, S. A. Sajadi-Alamdari, J. L. Sanchez-Lopez, M. A.
Olivares-Mendez, and H. Voos. Model predictive control for aerial
collision avoidance in dynamic environments. In 2018 26th Mediter-
ranean Conference on Control and Automation (MED), p. 1-6. IEEE,
Zadar, Croatia, June 2018. doi: 10.1109/MED.2018.8442967 2

A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Nieiner, M. Savva,
S. Song, A. Zeng, and Y. Zhang. Matterport3d: learning from rgb-
d data in indoor environments. (arXiv:1709.06158), Sept. 2017.
arXiv:1709.06158 [cs]. 1,2

A. Elfes. Occupancy grids:
tion for active robot perception.
arXiv:1304.1098 [cs]. 2

P. Fiorini and Z. Shiller. ~ Motion planning in dynamic envi-
ronments using velocity obstacles. The International Journal

a stochastic spatial representa-
(arXiv:1304.1098), Mar. 2013.

of Robotics Research, 17(7):760-772, July 1998. doi: 10.1177/
027836499801700706 2
Google. Rxr habitat, 2024. Accessed: 2024-11-17,

https://ai.google.com/research/rxr/habitat. 2

J. Gu, E. Stefani, Q. Wu, J. Thomason, and X. E. Wang. Vision-and-
language navigation: a survey of tasks, methods, and future directions.
In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), p. 76067623,
2022. arXiv:2203.12667 [cs]. doi: 10.18653/v1/2022.acl-long.524 1
E. Herbst, X. Ren, and D. Fox. Rgb-d flow: Dense 3-d motion estima-
tion using color and depth. In 2013 IEEE International Conference on
Robotics and Automation, pp. 2276-2282, 2013. doi: 10.1109/ICRA.
2013.6630885 2

Y. Hong, Z. Wang, Q. Wu, and S. Gould. Bridging the gap be-
tween learning in discrete and continuous environments for vision-
and-language navigation. 2022. 2

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard. Octomap: an efficient probabilistic 3d mapping framework
based on octrees. Autonomous Robots, 34(3):189-206, Apr. 2013.
doi: 10.1007/s10514-012-9321-0 2

V. Jain, G. Magalhaes, A. Ku, A. Vaswani, E. Ie, and J. Baldridge.
Stay on the path: instruction fidelity in vision-and-language naviga-
tion. (arXiv:1905.12255), June 2019. arXiv:1905.12255 [cs]. 2

S. Jeong, G.-C. Kang, J. Kim, and B.-T. Zhang. Zero-shot vision-and-
language navigation with collision mitigation in continuous environ-
ment. (arXiv:2410.17267), Oct. 2024. arXiv:2410.17267 [cs]. 2

J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee. Beyond
the nav-graph: vision-and-language navigation in continuous environ-
ments. (arXiv:2004.02857), May 2020. arXiv:2004.02857 [cs]. 1,
2

A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge. Room-
across-room: multilingual vision-and-language navigation with
dense spatiotemporal grounding. (arXiv:2010.07954), Oct. 2020.
arXiv:2010.07954 [cs]. 2

H. Li, M. Li, Z.-Q. Cheng, Y. Dong, Y. Zhou, J.-Y. He, Q. Dai, T. Mi-

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

(33]

(34]

[35]

(36]

[37]

tamura, and A. G. Hauptmann. Human-aware vision-and-language
navigation: bridging simulation to reality with dynamic human inter-
actions. (arXiv:2406.19236), Nov. 2024. arXiv:2406.19236 [cs]. 2
V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State. Isaac
gym: High performance gpu-based physics simulation for robot learn-
ing. 2021. 1

Meta Al Habitat-matterport 3d dataset v2 (hm3dv2), 2023. Accessed:
2025-09-15, https://aihabitat.org/datasets/hm3d-v2/. 3

K. Nguyen, D. Dey, C. Brockett, and B. Dolan. Vision-based naviga-
tion with language-based assistance via imitation learning with indi-
rect intervention. (arXiv:1812.04155), Apr. 2019. arXiv:1812.04155
[cs, stat]. 1,2

NVIDIA. Omni.anim.people, 2024. Accessed: 2024-11-
17, https://docs.omniverse.nvidia.com/isaacsim/latest/features/
warehouse_logistics/ext_omni_anim_people.html. 3

NVIDIA Corporation. Jetbot: An open-source robot based on nvidia
jetson nano. https://github.com/NVIDIA-AI-IOT/jetbot. Ac-
cessed Sep. 14, 2025. 3

NVIDIA Corporation. Omniverse rtx renderer, 2025. Ac-
cessed: 2025-09-15, https://docs.omniverse.nvidia.com/materials-
and-rendering/latest/rtx-renderer.html. 3

OpenAlL Gpt-40 mini: advancing cost-efficient intelligence,
2024. Accessed: 2024-11-17, https://openai.com/index/gpt-40-mini-
advancing-cost-efficient-intelligence/. 3

M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Sieg-
wart, and J. Nieto. Reinforced imitation: Sample efficient deep
reinforcement learning for map-less navigation by leveraging prior
demonstrations. (arXiv:1805.07095), Aug. 2018. arXiv:1805.07095
[cs]. 2

X. Puig, E. Undersander, A. Szot, M. D. Cote, R. Partsey, J. Yang,
R. Desai, A. W. Clegg, M. Hlavac, T. Min, T. Gervet, V. Vondrus, V.-P.
Berges, J. Turner, O. Maksymets, Z. Kira, M. Kalakrishnan, J. Malik,
D. S. Chaplot, U. Jain, D. Batra, A. Rai, and R. Mottaghi. Habitat 3.0:
A co-habitat for humans, avatars and robots. 2023. 2

Y. Qi, Q. Wu, P. Anderson, X. Wang, W. Y. Wang, C. Shen, and
A. v. d. Hengel. Reverie: remote embodied visual referring expres-
sion in real indoor environments. (arXiv:1904.10151), Jan. 2020.
arXiv:1904.10151 [cs]. 1,2

S. K. Ramakrishnan, A. Gokaslan, A. Clegg, E. Undersander,
A. Galindo, A. X. Chang, M. Savva, and D. Batra. Habitat-matterport
3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai.
In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 12876-12884, 2021. 3

S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets,
A. Clegg, J. Turner, E. Undersander, W. Galuba, A. Westbury, A. X.
Chang, M. Savva, Y. Zhao, and D. Batra. Habitat-matterport 3d
dataset (hm3d): 1000 large-scale 3d environments for embodied ai.
(arXiv:2109.08238), Sept. 2021. arXiv:2109.08238 [cs]. 1, 2, 3

S. Raychaudhuri, D. Ta, K. Ashton, A. X. Chang, J. Wang, and
B. Bucher. NI-slam for oc-vIn: Natural language grounded slam for
object-centric vIn. (arXiv:2411.07848), Nov. 2024. arXiv:2411.07848
[cs]. 1

ROBOTIS. OpenCRI1.0 (Open-source Control Module for ROS) e-
Manual, 2025. Accessed: 2025-09-15. 4

M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habi-
tat: A Platform for Embodied Al Research. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV),
2019. 2

A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan,
V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra. Habitat 2.0: Training
home assistants to rearrange their habitat. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2021. 2

J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer.
Vision-and-dialog navigation. (arXiv:1907.04957), Oct. 2019.
arXiv:1907.04957 [cs]. doi: 10.48550/arXiv.1907.04957 1

X.-T. Truong and T. D. Ngo. Toward socially aware robot naviga-

https://github.com/NVIDIA-AI-IOT/jetbot

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

tion in dynamic and crowded environments: A proactive social motion
model. [EEE Transactions on Automation Science and Engineering,
14(4):1743-1760, Oct. 2017. doi: 10.1109/TASE.2017.2731371 2
H. Wang, W. Liang, L. Van Gool, and W. Wang. Dreamwalker:
Mental planning for continuous vision-language navigation.
(arXiv:2308.07498), Aug. 2023. arXiv:2308.07498 [cs]. 2

T. Wang, Z. Wu, FE. Yao, and D. Wang. Graph based environment
representation for vision-and-language navigation in continuous envi-
ronments. 2023. 2

T. Wang, Z. Wu, F. Yao, and D. Wang. Graph based environment
representation for vision-and-language navigation in continuous en-
vironments. (arXiv:2301.04352), Jan. 2023. arXiv:2301.04352 [cs].
2

Z. Wang, X. Li, J. Yang, Y. Liu, J. Hu, M. Jiang, and S. Jiang. Looka-
head exploration with neural radiance representation for continuous
vision-language navigation. 2024. 2

Z. Wang, X. Li, J. Yang, Y. Liu, and S. Jiang. Gridmm: Grid memory
map for vision-and-language navigation. 2023. 2

E. Wijmans, S. Datta, O. Maksymets, A. Das, G. Gkioxari, S. Lee,
I. Essa, D. Parikh, and D. Batra. Embodied question answer-
ing in photorealistic environments with point cloud perception.
(arXiv:1904.03461), Apr. 2019. arXiv:1904.03461 [cs]. 1, 2

L. Yue, D. Zhou, L. Xie, F. Zhang, Y. Yan, and E. Yin. Safe-vIn: Col-
lision avoidance for vision-and-language navigation of autonomous
robots operating in continuous environments. (arXiv:2311.02817),
Apr. 2024. arXiv:2311.02817 [cs]. 3

Y. Zhang, Z. Ma, J. Li, Y. Qiao, Z. Wang, J. Chai, Q. Wu,
M. Bansal, and P. Kordjamshidi. Vision-and-language navigation
today and tomorrow: a survey in the era of foundation models.
(arXiv:2407.07035), July 2024. arXiv:2407.07035 [cs]. 1

F. Zhu, X. Liang, Y. Zhu, X. Chang, and X. Liang. Soon:
scenario oriented object navigation with graph-based exploration.
(arXiv:2103.17138), Oct. 2021. arXiv:2103.17138 [cs]. 1,2

	Introduction
	Related Works
	Visual Language Navigation
	Collision Avoidance during Navigation

	Adaptive Visual Language Navigation
	Task Description
	Observations/Actions of Robots
	Freeze-Time
	AdaSimulator
	AdaR2R (Sample)

	Experiments
	Evaluation Protocol
	Baseline GPT Agent
	Real-World Experiment Preparation
	Procedure & Sim-to-Real Analysis

	Conclusion and Future Work

