
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND RANDOM MASKING: WHEN DROPOUT
MEETS GRAPH CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) have emerged as powerful tools for learn-
ing on graph-structured data, yet the behavior of dropout in these models re-
mains poorly understood. This paper presents a comprehensive theoretical anal-
ysis of dropout in GCNs, revealing its unique interactions with graph structure.
We demonstrate that dropout in GCNs creates dimension-specific stochastic sub-
graphs, leading to a form of structural regularization not present in standard neu-
ral networks. Our analysis shows that dropout effects are inherently degree-
dependent, resulting in adaptive regularization that considers the topological im-
portance of nodes. We provide new insights into dropout’s role in mitigating
oversmoothing and derive novel generalization bounds that account for graph-
specific dropout effects. Furthermore, we analyze the synergistic interaction be-
tween dropout and batch normalization in GCNs, uncovering a mechanism that
enhances overall regularization. Our theoretical findings are validated through ex-
tensive experiments on both node-level and graph-level tasks across 14 datasets.
Notably, GCN with dropout and batch normalization outperforms state-of-the-art
methods on several benchmarks. This work bridges a critical gap in the theoret-
ical understanding of regularization in GCNs and provides practical insights for
designing more effective graph learning algorithms.

1 INTRODUCTION

The remarkable success of deep neural networks across various domains has been accompanied
by the persistent challenge of overfitting, where models perform well on training data but fail to
generalize to unseen examples. This issue has spurred the development of numerous regularization
techniques, among which dropout has emerged as a particularly effective and widely adopted ap-
proach LeCun et al. (2015). Introduced by Srivastava et al. (2014), dropout addresses overfitting by
randomly ”dropping out” a proportion of neurons during training, effectively creating an ensemble
of subnetworks. This technique has proven highly successful in improving generalization and has
become a standard tool in the deep learning toolkit. The effectiveness of dropout has prompted
extensive theoretical analysis, with various perspectives offered to explain its regularization effects.

Some researchers have interpreted dropout as a form of model averaging (Baldi & Sadowski, 2013),
while others have analyzed it through the lens of information theory (Achille & Soatto, 2018). Wager
et al. (2013) provided insights into dropout’s adaptive regularization properties, and Gal & Ghahra-
mani (2016) established connections between dropout and Bayesian inference. These diverse the-
oretical frameworks have significantly enhanced our understanding of dropout’s role in mitigating
overfitting in traditional neural networks. However, as the field of deep learning has expanded to
encompass more complex data structures, particularly graphs, new questions have arisen regarding
the applicability and behavior of established techniques. Graph Neural Networks (GNNs), espe-
cially Graph Convolutional Networks (GCNs), have demonstrated remarkable performance on tasks
involving graph-structured data (Kipf & Welling, 2017). Naturally, researchers and practitioners
have applied dropout to GNNs, often observing beneficial effects on generalization (Hamilton et al.,
2017).

Despite the widespread adoption of dropout in Graph Convolutional Networks (GCNs), our prelim-
inary investigations have revealed intriguing discrepancies between its behavior in GCNs and its
well-understood effects in traditional neural networks. These observations prompt a fundamental

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

question: How does dropout uniquely interact with the graph structure in GCNs? In this paper, we
present a comprehensive theoretical analysis of dropout in the context of GCNs. Our findings reveal
that dropout in GCNs interacts with the underlying graph structure in ways that are fundamentally
different from its operation in traditional neural networks. Specifically, we demonstrate that:

• Dropout in GCNs creates dimension-specific stochastic sub-graphs, leading to a unique
form of structural regularization not present in standard neural networks.

• The effects of dropout are inherently degree-dependent, with differential impacts on nodes
based on their connectivity, resulting in adaptive regularization that considers the topolog-
ical importance of nodes in the graph.

• Dropout plays a crucial role in mitigating the oversmoothing problem in GCNs, though its
effects are more nuanced than previously thought.

• The generalization bounds for GCNs with dropout exhibit a complex dependence on graph
properties, diverging from traditional dropout theory.

• There exists a significant interplay between dropout and batch normalization in GCNs,
revealing synergistic effects that enhance the overall regularization.

Our theoretical framework not only provides deeper insights into the mechanics of dropout in graph-
structured data but also yields practical implications for the design and training of GCNs. We vali-
date our theoretical findings through extensive experiments on both node-level and graph-level tasks,
demonstrating the practical relevance of our analysis. This work bridges a critical gap in the theoret-
ical understanding of regularization in GCNs and paves the way for more principled approaches to
leveraging dropout in graph representation learning. Furthermore, we validate our theoretical find-
ings through extensive experiments, demonstrating that GCNs incorporating our insights on dropout
and batch normalization outperform several state-of-the-art methods on benchmark datasets, in-
cluding Cora, CiteSeer, and PubMed. This practical success underscores the importance of our
theoretical contributions and their potential to advance the field of graph representation learning.

2 RELATED WORK

Dropout in Neural Networks. Overfitting can be reduced by using dropout Hinton et al. (2012)
to prevent complex co-adaptations on the training data. Since its inception, several variants have
been proposed to enhance its effectiveness. DropConnect (Wan et al., 2013) generalizes dropout
by randomly dropping connections rather than nodes. Gaussian dropout Srivastava et al. (2014)
replaces the Bernoulli distribution with a Gaussian one for smoother regularization. Curriculum
dropout (Morerio et al., 2017) adaptively adjusts the dropout rate during training. Theoretical inter-
pretations of dropout have provided insights into its success. The model averaging perspective (Baldi
& Sadowski, 2013) views dropout as an efficient way of approximately combining exponentially
many different neural networks. The adaptive regularization interpretation (Wager et al., 2013)
shows how dropout adjusts the regularization strength for each feature based on its importance. The
Bayesian approximation view (Gal & Ghahramani, 2016) connects dropout to variational inference
in Bayesian neural networks, providing a probabilistic framework for understanding its effects.

Regularization in Graph Neural Networks. Graph Neural Networks (GNNs), while powerful,
are prone to overfitting and over-smoothing (Li et al., 2018). Various regularization techniques
have been proposed to address these issues. DropEdge (Rong et al., 2020) randomly removes edges
from the input graph during training, reducing over-smoothing and improving generalization. Graph
diffusion-based methods (Gasteiger et al., 2019) incorporate higher-order neighborhood informa-
tion to enhance model robustness. Spectral-based approaches (Wu et al., 2019) leverage the graph
spectrum to design effective regularization strategies. Empirical studies have shown that traditional
dropout can be effective in GNNs (Hamilton et al., 2017), but its interaction with graph structure re-
mains poorly understood. Some works have proposed adaptive dropout strategies for GNNs (Gao &
Ji, 2019), but these are primarily heuristic approaches without comprehensive theoretical grounding.

Theoretical Frameworks for GNNs. Despite the empirical success of Graph Neural Networks
(GNNs), establishing theories to explain their behaviors is still an evolving field. Recent works have
made significant progress in understanding over-smoothing (Li et al., 2018; Zhao & Akoglu, 2019;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Oono & Suzuki, 2019; Rong et al., 2020), interpretability (Ying et al., 2019; Luo et al., 2020; Vu
& Thai, 2020; Yuan et al., 2020; 2021), expressiveness (Xu et al., 2018; Chen et al., 2019; Maron
et al., 2018; Dehmamy et al., 2019; Feng et al., 2022), and generalization (Scarselli et al., 2018; Du
et al., 2019; Verma & Zhang, 2019; Garg et al., 2020; Zhang et al., 2020; Oono & Suzuki, 2019;
Lv, 2021; Liao et al., 2020; Esser et al., 2021; Cong et al., 2021). Our work aims to complement
these existing theoretical frameworks by focusing on the practical aspects of dropout in GNNs,
a widely used regularization technique that has not been thoroughly examined from a theoretical
perspective. Previous works have provided valuable insights using classical techniques such as
Vapnik-Chervonenkis dimension (Scarselli et al., 2018), Rademacher complexity (Lv, 2021; Garg
et al., 2020), and algorithm stability (Verma & Zhang, 2019). Recent efforts (Oono & Suzuki,
2019; Esser et al., 2021) have also made strides in incorporating the transductive learning schema of
GNNs into theoretical analyses. We bridge the gap between theoretical understanding and practical
implementation of GNNs, offering insights into how dropout affects generalization and performance
in graph-structured learning tasks.

3 THEORETICAL FRAMEWORK

In this section, we develop a rigorous mathematical framework to analyze the behavior of dropout
in Graph Convolutional Networks (GCNs). We begin by establishing notations and definitions, then
formalize the GCN model with dropout, and finally introduce key concepts that will be central to
our analysis.

3.1 NOTATIONS AND DEFINITIONS

Notations. Let G = (V, E ,X) be an undirected graph with n = |V| nodes and m = |E| edges,
where X ∈ Rn×d0 represents the node feature matrix with d0 input features per node. We denote by
A ∈ Rn×n the adjacency matrix of G, and by D = diag(deg1, . . . , degn) the degree matrix, where
degi =

∑
j Aij .

3.1.1 MATRIX DEFINITIONS AND GRAPH CONVOLUTIONAL NETWORKS (GCNS)

Definition 1 (Normalized Adjacency Matrix). The normalized adjacency matrix Ã is defined as:

Ã = D− 1
2AD− 1

2 . (1)

Let X ∈ Rn×d0 be the input feature matrix, where d0 is the number of input features per node.
Definition 2 (L-layer GCN). An L-layer GCN is defined as a sequence of L graph convolutional
layers, where the l-th layer (l = 1, . . . , L) performs the following transformation:

H(l) = σ(ÃH(l−1)W (l)), (2)

where H(l) ∈ Rn×dl is the feature matrix at layer l, W (l) ∈ Rdl−1×dl is the weight matrix for layer
l, σ(·) is a non-linear activation function, and H(0) = X .

Definition 3 (Feature Energy). The feature energy E(H(l)) of the node representations H(l) at
layer l is defined as:

E(H(l)) =
1

2|E|
∑

(i,j)∈E

∥h(l)
i − h

(l)
j ∥2,

where h
(l)
i denotes the i-th row of H(l) and the representation of node i in the l-layer.

3.1.2 DROPOUT IN GCNS

Definition 4 (Dropout Mask). For layer l, the dropout mask M (l) ∈ Rn×dl is a random matrix
where each element M (l)

ij is drawn independently from a Bernoulli distribution:

M
(l)
ij ∼ Bernoulli(1− p) (3)

where p ∈ [0, 1] is the dropout probability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We now formally define a GCN with dropout:
Definition 5 (GCN with Dropout). For an L-layer GCN with dropout, the forward pass at layer l is
defined as:

H(l) =
1

1− p
M (l) ⊙ σ(ÃH(l−1)W (l)), (4)

where ⊙ denotes element-wise multiplication, and the factor 1
1−p is used to scale the outputs during

training to match the expected value at inference time.

To elucidate the specific impact of dropout on embedding features, we introduce these concepts:
Definition 6 (Dimension-specific Sub-graph). For each feature dimension j at layer l and iteration
t, we define a stochastic sub-graph G(l,j)

t = (V, E(l,j)
t), where:

E(l,j)
t = {(u, v) ∈ E | M (l,t)

uj ̸= 0 and M
(l,t)
vj ̸= 0},

Here, M (l,t) denotes the dropout mask for layer l at iteration t.
Definition 7 (Active Path). A path P = (v0, v1, . . . , vk) in G is considered active for feature j at
layer l and iteration t if and only if:

k−1∏
i=0

M
(l,t)
vij

M
(l,t)
vi+1j

̸= 0.

Definition 8 (Feature-Topology Coupling Matrix). For layer l at iteration t, we define the feature-
topology coupling matrix C

(l)
t ∈ Rn×n as:

C
(l)
t = Ã⊙ (M

(l)
t (M

(l)
t)T),

where Ã is the normalized adjacency matrix, M (l)
t is the dropout mask for layer l at iteration t, and

⊙ denotes the Hadamard product.

This matrix C
(l)
t captures how dropout affects both feature propagation and graph structure simulta-

neously.

Definition 9 (Effective Degree). The effective degree deff
i (t) of node i at iteration t is defined as:

deff
i (t) =

∑
j

(C
(l)
t)ij ,

where C
(l)
t is the feature-topology coupling matrix defined earlier.

3.1.3 INTEGRATING BATCH NORMALIZATION (BN) AND DROPOUT IN GCNS

Definition 10 (GCN Layer with BN before activation). For a layer l, the output is defined as:

H(l) = σ(BN(ÃH(l−1)W (l))),

where σ is the activation function, such as ReLU, and BN is defined as:

BN(X) = γ ⊙ X − µB√
σ2
B + ϵ

+ β.

Here, µB and σ2
B are the batch mean and variance, γ and β are learnable parameters, and ϵ is a

small constant for numerical stability.

3.2 DIMENSION-SPECIFIC STOCHASTIC SUB-GRAPHS

Figure 1 shows how varying dropout rates impact the number of edges Et in stochastic sub-graphs
of a 2-layer GCN, defined by Equation 5, across the Cora and Citeseer datasets. We observe that
higher dropout rates correlate with fewer edges in these sub-graphs. This variation demonstrates
dropout’s role in GCNs as a form of structural regularization, where dimension-specific stochastic
sub-graphs are generated. Each feature dimension samples a different sub-graph from the original
graph at each iteration. This mechanism provides a rich set of structural variations during training,
potentially enhancing the model’s ability to capture diverse graph patterns.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Sub-graph size. Figure 2: Active path on Cora. Figure 3: Active path on Citeseer.

Theorem 11 (Sub-graph Diversity). The expected number of distinct sub-graphs per iteration is:

E[|G(l,j)
t | j = 1, . . . , dl|] = dl(1− (1− p)2|E|),

where dl is the number of features at layer l, p is the dropout probability, and |E| is the number of
edges in the original graph (The complete proof is in the Appendix. A.1).

This theorem reveals that dropout in GCNs leads to a rich set of sub-graphs, providing a form
of structural data augmentation unique to graph-based models. The diversity of these sub-graphs
increases with both the dropout probability p and the number of features dl. This suggests that
higher-dimensional GCNs with moderate dropout rates can benefit from a wider range of struc-
tural variations during training, potentially leading to more robust and generalizable representations.
Moreover, this mechanism allows the GCN to implicitly explore different graph structures without
explicitly modifying the input graph. This could be particularly beneficial for tasks where the opti-
mal graph structure is uncertain or where multiple relevant sub-structures exist within the data.

Theorem 12 (Expected Active Features per Path). For a path P of length k, the expected number
of features for which it is active is:

E[#active features for P] = dl(1− p)k+1.

This theorem demonstrates that while individual long paths are unlikely to be active for any given
feature, the multi-dimensional nature of GCNs allows for effective long-range information flow
through the ensemble effect across features. Figures 2 & 3 illustrate the behavior of active features
along paths of length 1 and 2 within a 2-layer GCN equipped with 16 hidden dimensions, across
varying dropout rates. Notably, at a dropout rate of 0.6, the average number of active features
approaches zero. This characteristic also underscores the importance of multidimensional feature
spaces in ensuring robust information transmission under feature dropout.

3.3 DEGREE-DEPENDENT NATURE OF DROPOUT EFFECTS

The interaction between dropout and the graph structure leads to a form of degree-dependent regu-
larization in GCNs. This means that the effect of dropout varies based on the connectivity of each
node, creating an adaptive regularization scheme that considers the topological importance of nodes
in the graph.

Theorem 13 (Degree-Dependent Dropout Effect). The expected effective degree and its variance
are given by:

E[degeff
i (t)] = (1− p)2degi and Var[degeff

i (t)] = degi(1− p)2(1− (1− p)2), (5)

where degi is the original degree of node i and p is the dropout probability).

This theorem highlights that dropout affects nodes differentially depending on their degree. High-
degree nodes, typically more influential within the graph, exhibit less variation in their effective
degree due to dropout, potentially resulting in more stable representations for these important nodes.
This observation is empirically confirmed in the analysis of a 2-layer GCN presented in Figure 6.
Consequently, the degree-dependent nature of dropout in GCNs results in adaptive regularization,
where the regularization effect naturally adjusts to the local graph structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Effective degree. Figure 5: Effective CV vs degree. Figure 6: Accuracy on Cora.

Corollary 14 (Relative Stability of High-Degree Nodes). The coefficient of variation of the effective

degree, defined as CV [degeff
i (t)] =

√
Var[degeff

i (t)]/E[degeff
i (t)], decreases with increasing node

degree:

CV [degeff
i (t)] =

√
1− (1− p)2√
degi(1− p)

.

This corollary further confirms that high-degree nodes experience relatively less variation in their
effective degree due to dropout. Figure 5 illustrates that the CV decreases as node degree increases.
This degree-dependent effect distinguishes dropout in GCNs from its application in standard neural
networks and suggests that the optimal dropout strategy for GCNs may need to consider the graph
structure explicitly.

3.4 ROLE OF DROPOUT IN OVERSMOOTHING

Oversmoothing is a well-known issue in GCNs, where node representations become indistinguish-
able as the number of layers increases. Our analysis reveals that dropout plays a crucial role in this
context, though its effects are more nuanced than previously thought.

Theorem 15 (Dropout and Feature Energy). For a GCN with dropout probability p, the expected
feature energy at layer l is bounded by:

E[E(H(l))] ≤ dmax

|E|
(

1

1− p
)l||Ã||2l2

l∏
i=1

||W (i)||22||X||2F (6)

where E(X) is the energy of the input features and W (i) are the weight matrices (The complete
proof is in the Appendix.A.2).

The derived bound demonstrates how dropout affects feature energy through the interplay of net-
work depth (l), graph structure (through dmax and Ã), and weight properties (||W (i)||2). Note that
this analysis only provides an upper bound; the absence of a lower bound in this derivation is due
to limitations in bounding certain terms. We will later show that when considering batch normaliza-
tion, we can establish the existence of a lower bound, providing a more complete characterization of
feature energy behavior. Additionally, we explored how dropout modulates the weight matrices in a
2-layer GCN, with a particular focus on its effects on the spectral norm, as detailed in Appendix A.5.
Building on this, we further analyze three key metrics to understand how dropout influences feature
representations, as depicted in Figure 9. From the left side of Figure 9, the Frobenius norm of fea-
tures remains relatively stable whether dropout is applied or not, suggesting that dropout’s effects
are not simply uniformly scaling all features. The middle of Figure 9 shows that dropout consis-
tently doubles the average pairwise distance between nodes, aiding in maintaining more distinctive
node representations. Most notably, the right side of Figure 9 demonstrates that dropout significantly
increases feature energy. The substantial rise in feature energy, compared to the moderate changes
in Frobenius norm and pairwise distances, provides strong evidence that dropout enhances discrim-
inative power between connected nodes, explaining its effectiveness in preventing oversmoothing.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Feature energy vs dropout rates. Figure 8: BN feature energy vs dropout rates.

Figure 9: Effect of dropout on feature F-norm, average pair distance, and feature energy.

3.5 GENERALIZATION BOUNDS WITH GRAPH-SPECIFIC DROPOUT EFFECTS

The unique properties of dropout in GCNs, such as the creation of stochastic sub-graphs and degree-
dependent effects, influence how these models generalize to unseen data. Our analysis provides
novel generalization bounds that explicitly account for these graph-specific dropout effects, offer-
ing insights into how dropout interacts with graph structure to influence the model’s generalization
capabilities.

Theorem 16 (Generalization Bound for L-Layer GCN with Dropout). For an L-layer GCN F with
dropout probability p, with probability at least 1 − δ over the training examples, the following
generalization bound holds:

ED[L(F (x))]−ES [L(F (x))] ≤ O

(√
log(1/δ)

n

L∑
l=1

Lloss · Ll ·
√

p

1− p
∥σ(ÃH(l−1)W (l))∥F

)
,

(7)
where ED is the expectation over the data distribution. ES is the expectation over the training
samples. L is the loss function with Lipschitz constant Lloss. Ll =

∏L
i=l+1(∥W (i)∥ · ∥Ã∥) is the

Lipschitz constant from layer l to output. ∥W (i)∥ is the spectral norm (largest singular value) of
the weight matrix at layer i. ∥Ã∥ is the spectral norm of the normalized adjacency matrix. n is the
number of training samples. p is the dropout probability. The bound reflects how the network’s sta-
bility depends on the Lipschitz constant of the loss function Lloss, the layer-wise Lipschitz constants
Ll capturing weight and graph effects, the magnitude of feature activations ∥σ(ÃH(l−1)W (l))∥F ,
the dropout rate p through the term

√
p

1−p

This generalization bound reveals how dropout affects GCNs’ learning capabilities and presents
several practical insights: First, network depth plays a crucial role. As signals propagate through
layers, the effects of weights and graph structure accumulate multiplicatively. This suggests that
deeper GCNs might need more careful regularization, as small perturbations could amplify through
the network. Second, the graph structure naturally influences how information flows through the
network. The way we normalize our adjacency matrix (typically ensuring its norm is at most 1)
provides a built-in stabilizing effect. However, graphs with different connectivity patterns might
require different dropout strategies. Third, looking at each layer individually, we see that both net-
work weights and feature magnitudes matter. Some layers might process more important features

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

than others, suggesting that a one-size-fits-all dropout rate might not be optimal. Instead, adapt-
ing dropout rates based on layer-specific characteristics could be more effective. Finally, there’s
an inherent trade-off in choosing dropout rates. Higher dropout rates provide stronger regulariza-
tion but also introduce more noise in the training process. Our bound helps explain this balance
mathematically, suggesting why moderate dropout rates often work best in practice.

3.6 INTERACTION OF DROPOUT AND BATCH NORMALIZATION IN GCNS

While dropout provides a powerful regularization mechanism for GCNs, its degree-dependent nature
can lead to uneven regularization across nodes. Batch Normalization (BN) offers a complementary
approach that can potentially address this issue and enhance the benefits of dropout. Our analysis
reveals how the combination of dropout and BN creates a synergistic regularization effect that is
sensitive to both graph structure and feature distributions.
Theorem 17 (Layer-wise Energy Lower Bound for GCN). For an L-layer Graph Convolutional
Network with dropout rate p, batch normalization parameters {β(l)

d , γ
(l)
d }dl

d=1 at each layer l, with
probability at least (1− δ)L, the expected feature energy at each layer l satisfies:

E(H(l)) ≥ pdmin

2|E|(1− p)

dl∑
d=1

Φ(β
(l)
d /γ

(l)
d) · (β(l)

d)2

where l = 1, 2, ..., L indicates the layer, dmin is the minimum degree in the graph, |E| is the total
number of edges, Φ is the standard normal CDF and β

(l)
d , γ

(l)
d are the BN parameters for dimension

d at layer l.

Our theoretical bound reveals the synergistic interaction between dropout and batch normalization in
GCNs, establishing a refined form of regularization. The energy preservation term p

1−p from dropout

combines with the BN-induced bound
∑dl

d=1 Φ(β
(l)
d /γ

(l)
d)·(β(l)

d)2 to maintain non-vanishing feature
energy. This interaction is empirically validated in Figures 7 & 8, which demonstrate how batch
normalization effectively moderates the energy amplification caused by dropout. These findings
suggest that the joint application of dropout and batch normalization in GCNs creates a specialized
mechanism particularly suited for graph-structured data.

4 EXPERIMENTS

To validate our theoretical analysis, we conducted extensive experiments on a variety of datasets,
considering both node-level and graph-level tasks. We implemented dropout technique on sev-
eral popular GNN architectures: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), and GatedGCN (Bresson & Laurent, 2017). For each
model, we compared the performance with and without dropout. Our code is available at https:
//anonymous.4open.science/r/dropout-theory.

4.1 DATASETS AND SETUP

Datasets. For node-level tasks, we used 10 datasets: Cora, CiteSeer, PubMed (Sen et al., 2008),
ogbn-arxiv, ogbn-products (Hu et al., 2020), Amazon-Computer, Amazon-Photo, Coauthor-CS,
Coauthor-Physics (Shchur et al., 2018), and WikiCS (Mernyei & Cangea, 2020). Cora, CiteSeer,
and PubMed are citation networks, evaluated using the semi-supervised setting and data splits from
Kipf & Welling (2017). Computer and Photo (Shchur et al., 2018) are co-purchase networks. CS
and Physics (Shchur et al., 2018) are co-authorship networks. We used the standard 60%/20%/20%
training/validation/test splits and accuracy as the evaluation metric (Chen et al., 2022; Shirzad et al.,
2023; Deng et al., 2024). For WikiCS, we adopted the official splits and metrics (Mernyei & Cangea,
2020). For large-scale graphs, we included ogbn-arxiv and ogbn-products with 0.16M to 2.4M
nodes, using OGB’s standard evaluation settings (Hu et al., 2020).

For graph-level tasks, we used MNIST, CIFAR10 (Dwivedi et al., 2023), and two Peptides datasets
(functional and structural) (Dwivedi et al., 2022). MNIST and CIFAR10 are graph versions of their
image classification counterparts, constructed using 8-nearest neighbor graphs of SLIC superpixels.

8

https://anonymous.4open.science/r/dropout-theory
https://anonymous.4open.science/r/dropout-theory

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Node classification results (%). The baseline results are taken from Deng et al. (2024); Wu
et al. (2023). The top 1st, 2nd and 3rd results are highlighted. ”dp” denotes dropout.

Cora CiteSeer PubMed Computer Photo CS Physics WikiCS ogbn-arxiv ogbn-products

nodes 2,708 3,327 19,717 13,752 7,650 18,333 34,493 11,701 169,343 2,449,029
edges 5,278 4,732 44,324 245,861 119,081 81,894 247,962 216,123 1,166,243 61,859,140
Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCNII 85.19 ± 0.26 73.20 ± 0.83 80.32 ± 0.44 91.04 ± 0.41 94.30 ± 0.20 92.22 ± 0.14 95.97 ± 0.11 78.68 ± 0.55 72.74 ± 0.31 79.42 ± 0.36

GPRGNN 83.17 ± 0.78 71.86 ± 0.67 79.75 ± 0.38 89.32 ± 0.29 94.49 ± 0.14 95.13 ± 0.09 96.85 ± 0.08 78.12 ± 0.23 71.10 ± 0.12 79.76 ± 0.59

APPNP 83.32 ± 0.55 71.78 ± 0.46 80.14 ± 0.22 90.18 ± 0.17 94.32 ± 0.14 94.49 ± 0.07 96.54 ± 0.07 78.87 ± 0.11 72.34 ± 0.24 78.84 ± 0.09

tGNN 82.97 ± 0.68 71.74 ± 0.49 80.67 ± 0.34 83.40 ± 1.33 89.92 ± 0.72 92.85 ± 0.48 96.24 ± 0.24 71.49 ± 1.05 72.88 ± 0.26 81.79 ± 0.54

GraphGPS 82.84 ± 1.03 72.73 ± 1.23 79.94 ± 0.26 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 97.12 ± 0.19 78.66 ± 0.49 70.97 ± 0.41 OOM
NAGphormer 82.12 ± 1.18 71.47 ± 1.30 79.73 ± 0.28 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03 77.16 ± 0.72 70.13 ± 0.55 73.55 ± 0.21

Exphormer 82.77 ± 1.38 71.63 ± 1.19 79.46 ± 0.35 91.47 ± 0.17 95.35 ± 0.22 94.93 ± 0.01 96.89 ± 0.09 78.54 ± 0.49 72.44 ± 0.28 OOM
GOAT 83.18 ± 1.27 71.99 ± 1.26 79.13 ± 0.38 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 96.24 ± 0.24 77.00 ± 0.77 72.41 ± 0.40 82.00 ± 0.43

NodeFormer 82.20 ± 0.90 72.50 ± 1.10 79.90 ± 1.00 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 96.45 ± 0.28 74.73 ± 0.94 59.90 ± 0.42 73.96 ± 0.30

SGFormer 84.50 ± 0.80 72.60 ± 0.20 80.30 ± 0.60 92.42 ± 0.66 95.58 ± 0.36 95.71 ± 0.24 96.75 ± 0.26 80.05 ± 0.46 72.63 ± 0.13 81.54 ± 0.43

Polynormer 83.25 ± 0.93 72.31 ± 0.78 79.24 ± 0.43 93.68 ± 0.21 96.46 ± 0.26 95.53 ± 0.16 97.27 ± 0.08 80.10 ± 0.67 73.46 ± 0.16 83.82 ± 0.11

GCN 85.22 ± 0.66 73.24 ± 0.63 81.08 ± 1.16 93.15 ± 0.34 95.03 ± 0.24 94.41 ± 0.13 97.07 ± 0.04 80.14 ± 0.52 73.13 ± 0.27 81.87 ± 0.41

Dirichlet energy 7.403 0.437 0.452 8.020 3.765 20.241 8.966 735.876 8.021 7.771

GCN w/o dp 83.18 ± 1.22 70.48 ± 0.45 79.40 ± 1.02 90.60 ± 0.84 94.10 ± 0.15 94.30 ± 0.22 96.92 ± 0.05 77.61 ± 1.34 72.05 ± 0.23 77.50 ± 0.37

Dirichlet energy 2.951 0.170 0.114 0.592 1.793 3.980 0.318 264.230 1.231 1.745

GCN w/o BN 84.97 ± 0.73 72.97 ± 0.86 80.94 ± 0.87 92.39 ± 0.18 94.38 ± 0.13 93.46 ± 0.24 96.76 ± 0.06 79.00 ± 0.48 71.93 ± 0.18 79.37 ± 0.42

SAGE 84.14 ± 0.63 71.62 ± 0.29 77.86 ± 0.79 92.65 ± 0.21 95.71 ± 0.20 95.90 ± 0.09 97.20 ± 0.10 80.29 ± 0.97 72.72 ± 0.13 82.69 ± 0.28

SAGE w/o dp 83.06 ± 0.80 69.68 ± 0.82 76.40 ± 1.48 90.17 ± 0.60 94.90 ± 0.17 95.80 ± 0.08 97.06 ± 0.06 78.84 ± 1.17 71.37 ± 0.31 79.82 ± 0.22

SAGE w/o BN 83.89 ± 0.67 71.39 ± 0.75 77.26 ± 1.02 92.54 ± 0.24 95.51 ± 0.23 94.87 ± 0.15 97.03 ± 0.03 79.50 ± 0.93 71.52 ± 0.17 80.91 ± 0.35

GAT 83.92 ± 1.29 72.00 ± 0.91 80.48 ± 0.99 93.47 ± 0.27 95.53 ± 0.16 94.49 ± 0.17 96.73 ± 0.10 80.21 ± 0.68 72.83 ± 0.19 80.05 ± 0.34

GAT w/o dp 82.58 ± 1.47 71.08 ± 0.42 79.28 ± 0.58 92.94 ± 0.30 93.88 ± 0.16 94.30 ± 0.14 96.42 ± 0.08 78.67 ± 0.40 71.52 ± 0.41 77.87 ± 0.25

GAT w/o BN 83.76 ± 1.32 71.82 ± 0.83 80.43 ± 1.03 92.16 ± 0.26 95.05 ± 0.49 93.33 ± 0.26 96.57 ± 0.20 79.49 ± 0.62 71.68 ± 0.36 78.21 ± 0.32

We follow all evaluation protocols suggested by Dwivedi et al. (2023). Peptides-func involves clas-
sifying graphs into 10 functional classes, while Peptides-struct regresses 11 structural properties.
All evaluations followed the protocols in (Dwivedi et al., 2022).

Baselines. Our main focus lies on the following prevalent GNNs and transformer models from
Polynormer (Deng et al., 2024): GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2017), GAT
Veličković et al. (2018), GCNII (Chen et al., 2020), (Veličković et al., 2018), APPNP (Gasteiger
et al., 2018), GPRGNN (Chien et al., 2020), SGFormer (Wu et al., 2023), Polynormer (Deng et al.,
2024), GOAT (Kong et al., 2023), NodeFormer (Wu et al., 2022), NAGphormer (Chen et al., 2022),
GTDwivedi & Bresson (2020), SAN Kreuzer et al. (2021), MGT Ngo et al. (2023), DRew Gutteridge
et al. (2023), Graph-MLPMixer He et al. (2023), GRIT Ma et al. (2023) , GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), CKGCN (Ma et al., 2024), GRED (Ding et al.,
2024), Graph Mamba Behrouz & Hashemi (2024). We report the performance results of baselines
primarily from (Deng et al., 2024), with the remaining obtained from their respective original papers
or official leaderboards whenever possible, as those results are obtained by well-tuned models.

Experimental Setup. We implemented all models using the PyTorch Geometric library (Fey &
Lenssen, 2019). The experiments are conducted on a single workstation with 8 RTX 3090 GPUs.
For node-level tasks, we adhered to the training protocols specified in (Deng et al., 2024), employing
BN and adjusting the dropout rate between 0.1 and 0.7. In graph-level tasks, we followed the
experimental settings established by Tönshoff et al. (2023), utilizing BN with a consistent dropout
rate of 0.2. All experiments were run with 5 different random seeds, and we report the mean accuracy
and standard deviation. To ensure generalizability, we used Dirichlet energy (Cai & Wang, 2020) as
an oversmoothing metric, which is proportional to our feature energy (see appendix).

4.2 NODE-LEVEL CLASSIFICATION RESULTS

The node-level classification results in Table 1 not only align with our theoretical predictions but
also showcase the remarkable effectiveness of dropout. Notably, GCN with dropout and batch nor-
malization outperforms state-of-the-art methods on several benchmarks, including Cora, CiteSeer,
and PubMed. This superior performance underscores the practical significance of our theoretical
insights. Consistently across all datasets, models employing dropout outperform their counterparts
without it, validating our analysis that dropout provides beneficial regularization in GNNs, distinct
from its effects in standard neural networks. The varying levels of improvement observed across
different datasets support our theory of degree-dependent dropout effects that adapt to the graph
structure. Furthermore, the consistent increase in Dirichlet energy when using dropout provides em-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Graph classification results on two pep-
tide datasets from LRGB (Dwivedi et al., 2022).

Model Peptides-func Peptides-struct

graphs 15,535 15,535
Avg. # nodes 150.9 150.9
Avg. # edges 307.3 307.3
Metric AP ↑ MAE ↓
GT 0.6326 ± 0.0126 0.2529 ± 0.0016

SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012

GraphGPS 0.6535 ± 0.0041 0.2500 ± 0.0012

MGT+WavePE 0.6817 ± 0.0064 0.2453 ± 0.0025

DRew 0.7150 ± 0.0044 0.2536 ± 0.0015

Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007

Graph-MLPMixer 0.6970 ± 0.0080 0.2475 ± 0.0015

GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012

CKGCN 0.6952 ± 0.0068 0.2477 ± 0.0019

GRED 0.7085 ± 0.0027 0.2503 ± 0.0019

Graph Mamba 0.6972 ± 0.0100 0.2477 ± 0.0019

GCN 0.7015 ± 0.0021 0.2437 ± 0.0012

Dirichlet energy 9.649 6.121

GCN w/o dp 0.6484 ± 0.0034 0.2541 ± 0.0026

Dirichlet energy 6.488 3.725

Table 3: Graph classification results on two im-
age datasets from (Dwivedi et al., 2023).

Model MNIST CIFAR10

graphs 70,000 60,000
Avg. # nodes 70.6 117.6
Avg. # edges 564.5 941.1
Metric Accuracy ↑ Accuracy ↑
GT 90.831 ± 0.161 59.753 ± 0.293

SAN+RWSE - -
GraphGPS 98.051 ± 0.126 72.298 ± 0.356

MGT+WavePE - -
DRew - -
Exphormer 98.550 ± 0.039 74.696 ± 0.125

Graph-MLPMixer 97.422 ± 0.110 73.961 ± 0.330

GRIT 98.108 ± 0.111 76.468 ± 0.881

CKGCN 98.423 ± 0.155 72.785 ± 0.436

GRED 98.383 ± 0.012 76.853 ± 0.185

Graph Mamba 98.392 ± 0.183 74.563 ± 0.379

GatedGCN 98.783 ± 0.122 78.231 ± 0.274

Dirichlet energy 20.920 25.121

GatedGCN w/o dp 98.235 ± 0.136 71.384 ± 0.397

Dirichlet energy 14.242 13.587

pirical evidence for our theoretical insight into dropout’s crucial role in mitigating oversmoothing in
GCNs, particularly evident in larger graphs. The complementary roles of dropout and batch normal-
ization are demonstrated by the performance drop when either is removed, supporting our analysis
of their synergistic interaction in GCNs.

4.3 GRAPH-LEVEL CLASSIFICATION RESULTS

Our graph-level classification results, presented in Tables 2 and 3, further validate the broad applica-
bility of our theoretical framework. First, compared to recent SOTA models, we observe that simply
tuning dropout enables GNNs to achieve SOTA performance on three datasets and is competitive
with the best single-model results on the remaining dataset. Second, the significant accuracy im-
provements on graph-level tasks such as Peptides-func and CIFAR10 highlight that our insights ex-
tend beyond node classification. The varying degrees of improvement across different graph datasets
are consistent with our theory that dropout provides adaptive regularization tailored to graph proper-
ties. Third, the consistent increase in Dirichlet energy when using dropout supports our theoretical
analysis of dropout’s role in preserving feature diversity.

These results robustly validate our theory, showing that dropout in GCNs produces dimension-
specific stochastic sub-graphs, has degree-dependent effects, mitigates oversmoothing, and offers
topology-aware regularization. Combined with batch normalization, dropout enhances GCN per-
formance on graph-level tasks, affirming the relevance and utility of our framework and suggesting
directions for improving GNN architectures.

5 CONCLUSIONS

Our comprehensive theoretical analysis of dropout in GCNs has unveiled complex interactions be-
tween regularization, graph structure, and model performance that challenge traditional understand-
ing. These insights not only deepen our understanding of how dropout functions in graph-structured
data but also open new avenues for research and development in graph representation learning. Our
findings suggest the need to reimagine regularization techniques for graph-based models, explore
adaptive and structure-aware dropout strategies, and carefully balance local and global information
in GCN architectures. Furthermore, the observed synergies between dropout and batch normaliza-
tion point towards more holistic approaches to regularization in GNNs. As we move forward, this
work lays a foundation for developing more robust and effective graph learning algorithms, with
potential applications in dynamic graphs, large-scale graph sampling, and adversarial robustness.
Ultimately, this research contributes to bridging the gap between the empirical success of GNNs and
their theoretical foundations, paving the way for designing graph learning models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE transactions on pattern analysis and machine intelligence, 40
(12):2897–2905, 2018.

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information pro-
cessing systems, 26, 2013.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 119–130, 2024.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2020.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34:9936–
9949, 2021.

Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of
graph neural networks in learning graph topology. Advances in Neural Information Processing
Systems, 32, 2019.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph trans-
former in linear time. arXiv preprint arXiv:2403.01232, 2024.

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for
graph representation learning. In Forty-first International Conference on Machine Learning,
2024.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. arXiv preprint arXiv:2206.08164, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. Advances in Neural Information
Processing Systems, 34:27043–27056, 2021.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmes-
sage: Unifying random dropping for graph neural networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 37, pp. 4267–4275, 2023.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems, 35:
4776–4790, 2022.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092–22103, 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pp. 2083–2092. PMLR, 2019.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pp. 3419–3430.
PMLR, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252–12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp.
12724–12745. PMLR, 2023.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arxiv 2012. arXiv
preprint arXiv:1207.0580, 2012.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Gold-
stein. GOAT: A global transformer on large-scale graphs. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pp. 17375–17390. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/kong23a.html.

12

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.mlr.press/v202/kong23a.html
https://proceedings.mlr.press/v202/kong23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information pro-
cessing systems, 33:19620–19631, 2020.

Shaogao Lv. Generalization bounds for graph convolutional neural networks via rademacher com-
plexity. arXiv preprint arXiv:2102.10234, 2021.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
arXiv preprint arXiv:2305.17589, 2023.

Liheng Ma, Soumyasundar Pal, Yitian Zhang, Jiaming Zhou, Yingxue Zhang, and Mark Coates.
Ckgconv: General graph convolution with continuous kernels. arXiv preprint arXiv:2404.13604,
2024.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural net-
works. arXiv preprint arXiv:2007.02901, 2020.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vittorio Murino. Curriculum
dropout. In Proceedings of the IEEE International Conference on Computer Vision, pp. 3544–
3552, 2017.

Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution graph transformers and wavelet
positional encoding for learning long-range and hierarchical structures. The Journal of Chemical
Physics, 159(3), 2023.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. arXiv preprint
arXiv:2205.12454, 2022.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=Hkx1qkrKPr.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

13

https://openreview.net/forum?id=Hkx1qkrKPr

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. arXiv preprint arXiv:2303.06147, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural net-
works. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 1539–1548, 2019.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. Advances in neural information processing systems, 33:12225–12235, 2020.

Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. Advances
in neural information processing systems, 26, 2013.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International conference on machine learning, pp. 1058–1066.
PMLR, 2013.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=R4xpvDTWkV.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Fast learning of graph neural
networks with guaranteed generalizability: one-hidden-layer case. In International Conference
on Machine Learning, pp. 11268–11277. PMLR, 2020.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

14

https://openreview.net/forum?id=R4xpvDTWkV
https://openreview.net/forum?id=R4xpvDTWkV

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOF OF THEOREM 11

Proof. Let’s approach this proof:

Step 1: For a single feature j, the probability that an edge is present in the sub-graph G
(l,j)
t is

(1− p)2, as both endpoints need to retain this feature.

Step 2: The probability that an edge is not present in G
(l,j)
t is 1− (1− p)2 = p(2− p).

Step 3: For a sub-graph to be identical to the original graph, all edges must be present. The proba-
bility of this is: ((1− p)2)|E| = (1− p)2|E|.

Step 4: Therefore, the probability that G(l,j)
t is different from the original graph (i.e., unique) is

1− (1− p)2|E|.

Step 5: Define an indicator random variable Xj for each feature j:

Xj =

{
1 if G(l,j)

t is unique
0 otherwise

.

Step 6: We have:

P (Xj = 1) = 1− (1− p)2|E|][P (Xj = 0) = (1− p)2|E|.

Step 7: The expected value of Xj is:

E[Xj] = 1 · P (Xj = 1) + 0 · P (Xj = 0) = 1− (1− p)2|E|.

Step 8: The total number of unique sub-graphs is
∑dl

j=1 Xj . By the linearity of expectation:

E[|G(l,j)
t | j = 1, . . . , dl|] = E[

dl∑
j=1

Xj] =

dl∑
j=1

E[Xj] = dl(1− (1− p)2|E|).

This completes the proof.

A.2 PROOF OF THEOREM 15

Proof. We start with the definition of feature energy:

E(H(l)) =
1

2|E|
∑
i,j∈E

∥h(l)
i − h

(l)
j ∥22

Step 1: Taking the expectation:

E[E(H(l))] =
1

2|E|
∑
i,j∈E

E[∥h(l)
i − h

(l)
j ∥22].

.

Step 2: Since
∑

(i,j)∈E [∥hi∥2 + ∥hj∥2] = 2
∑

i di∥hi∥2:

1

2|E|
∑
i,j∈E

E[∥h(l)
i − h

(l)
j ∥22] =

1

2|E|
∑
i,j∈E

E[∥ 1

1− p
M

(l)
i ⊙ z

(l)
i − 1

1− p
M

(l)
j ⊙ z

(l)
j ∥22]

=
1

2|E|(1− p)2

∑
i,j∈E

E[∥M (l)
i ⊙ z

(l)
i −M

(l)
j ⊙ z

(l)
j ∥22]

=
1

2|E|(1− p)2

∑
i,j∈E

[(1− p)(∥z(l)
i ∥22 + ∥z(l)

j ∥22)− 2(1− p)2(z
(l)
i)Tz

(l)
j]

=
1

1− p

1

|E|
∑
i

di∥z(l)
i ∥22 −

1

|E|
Tr(ZTAZ)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where zi = σ(
∑

k Ãikh
(l−1)
k W (l)).

Step 3: Since di ≤ dmax for all i:
1

|E|
∑
i

di∥zi∥22 ≤ dmax

|E|
∑
i

∥zi∥22 =
dmax

|E|
∥Z∥2F .

Step 4: By ReLU non-negative homogeneity and submultiplicative property:

||Z(l)||2F ≤ ||ÃH(l−1)W (l)||2F ≤ ||W (l)||22||Ã||22||H(l−1)||2F

Step 5: By dropout scaling with probability p:

||H(l−1)||2F =
1

1− p
||Z(l−1)||2F

Step 6: By applying steps 4-5 recursively:

||Z(l)||2F ≤ (
1

1− p
)l−1||Ã||2l2

l∏
i=1

||W (i)||22||X||2F

Step 7: Combining all inequalities:

E[E(H(l))] ≤ dmax

|E|
(

1

1− p
)l||Ã||2l2

l∏
i=1

||W (i)||22||X||2F

A.3 PROOF OF THEOREM 16

Proof. The proof proceeds in several steps:

Step 1: Dropout Effect as Perturbation. Consider layer l with dropout probability pl. The effect
of dropout is a perturbation δ(l):

δ(l) =
1

1− pl
M (l) ⊙ σ(ÃH(l−1)W (l))− σ(ÃH(l−1)W (l)), (8)

where M (l) has elements drawn from Bernoulli(1− pl).

Step 2: Perturbation Propagation. Let Fl(x) denote the network output with dropout applied up
to layer l. Define:

Ll = (

L∏
i=l+1

∥W (i)∥ · ∥Ã∥) · (∥Ã∥l
l∏

i=1

∥W (i)∥) · ∥H(0)∥ (9)

By the properties of operator norms and composition:

∥Fl(x)− Fl−1(x)∥ ≤ Ll∥δ(l)∥ (10)

Step 3: Bounding Perturbation Magnitude. For the perturbation magnitude:

E[∥δ(l)∥2] = E[∥ 1

1− pl
M (l) ⊙ σ(ÃH(l−1)W (l))− σ(ÃH(l−1)W (l))∥2] (11)

=
pl

1− pl
∥σ(ÃH(l−1)W (l))∥2F (12)

where we use E[(M (l))2] = E[M (l)] = 1− pl.

Step 4: Loss Stability. By the Lipschitz property of the loss function:
E[|L(Fl(x))− L(Fl−1(x))|] ≤ Lloss · E[∥Fl(x)− Fl−1(x)∥] (13)

≤ Lloss · Ll · E[∥δ(l)∥] (14)

≤ Lloss · Ll ·
√

pl
1− pl

∥σ(ÃH(l−1)W (l))∥F (15)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where we used Jensen’s inequality in the last step.

Step 5: Layer Aggregation. The total expected change in loss:

E[|L(F (x))− L(Fno dropout(x))|] ≤
L∑

l=1

Rl (16)

where

Rl = Lloss · Ll ·
√

pl
1− pl

∥σ(ÃH(l−1)W (l))∥F (17)

Step 6: Concentration Bound. Let f(S) = ED[L(F (x))]− ES [L(F (x))] where S is training set.

When changing one example in S to S′, the maximum change is:

∥f(S)− f(S′)∥ ≤ 2

n

L∑
l=1

Rl (18)

where

Rl = Lloss · Ll ·
√

p

1− p
∥σ(ÃH(l−1)W (l))∥F (19)

By McDiarmid’s inequality:

P (ED[L(F (x))]− ES [L(F (x))] > ϵ) ≤ exp

(
− 2nϵ2

4(
∑L

l=1 Rl)2

)
(20)

Set probability to δ:

exp

(
− 2nϵ2

4(
∑L

l=1 Rl)2

)
= δ (21)

Solve for ϵ:

− 2nϵ2

4(
∑L

l=1 Rl)2
= ln(δ) (22)

ϵ2 =
2(
∑L

l=1 Rl)
2 ln(1/δ)

n
(23)

ϵ = O

(√
ln(1/δ)

n

)
L∑

l=1

Rl (24)

Therefore, with probability at least 1− δ:

ED[L(F (x))]− ES [L(F (x))] ≤ O

(√
ln(1/δ)

n

)
L∑

l=1

Lloss · Ll ·
√

p

1− p
∥σ(ÃH(l−1)W (l))∥F

(25)

A.4 PROOF OF THEOREM 17

Proof. Step 1: Start with feature energy and node representation:

E(H(l)) =
1

2|E|
∑

(i,j)∈E

∥h(l)
i − h

(l)
j ∥2

h
(l)
i =

1

1− p
M

(l)
i ⊙ z

(l)
i

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where z
(l)
i ∈ Rdl and z

(l)
i = σ(BN(

∑
k Ãikh

(l−1)
k W (l)))

Step 2: For the BN output before ReLU at layer l, for each feature dimension d ∈ {1, ..., dl}:

(Y (l)):,d = BN((ÃH(l−1)W (l)):,d) = γ
(l)
d

(ÃH(l−1)W (l)):,d − µ
(l)
d√

(σ
(l)
d)2 + ϵ

+ β
(l)
d

Step 3: For ReLU activation z = max(0, y) at layer l, for each dimension d:

E[(z(l)d)2] ≥ Φ(β
(l)
d /γ

(l)
d) · (β(l)

d)2

where Φ is the standard normal CDF.

Step 4: Using the BN-induced bound:

∥z(l)
i ∥2 =

dl∑
d=1

(z
(l)
i)2d

≥
dl∑

d=1

Φ(β
(l)
d /γ

(l)
d) · (β(l)

d)2 > 0

Step 5: For feature energy with merged terms:

E(H(l)) =
1

2|E|
∑

(i,j)∈E

[
1

1− p
(∥z(l)

i ∥2 + ∥z(l)
j ∥2)− 2(z

(l)
i)Tz

(l)
j]

≥ 1

2|E|
∑

(i,j)∈E

[
1

1− p
(∥z(l)

i ∥2 + ∥z(l)
j ∥2)− (∥z(l)

i ∥2 + ∥z(l)
j ∥2)]

=
1

2|E|
∑

(i,j)∈E

(
1

1− p
− 1)(∥z(l)

i ∥2 + ∥z(l)
j ∥2)

=
p

1− p

1

2|E|
∑

(i,j)∈E

(∥z(l)
i ∥2 + ∥z(l)

j ∥2)

=
p

1− p

1

2|E|
∑
i

di∥z(l)
i ∥2

≥ pdmin

1− p

1

2|E|
∥Z(l)∥2F

Then with BN bound:

E(H(l)) ≥ pdmin

1− p

1

2|E|

dl∑
d=1

Φ(β
(l)
d /γ

(l)
d) · (β(l)

d)2

A.5 EFFECT OF DROPOUT ON MAX SINGULAR VALUES OF THE WEIGHT MATRICES

We analyze why dropout leads to larger weight matrices in terms of spectral norm ∥W ∥2. Consider
the gradient update for weights W 2 between layers:

∂L

∂W 2
= (ÃH1

drop)
⊤ × ∂L

∂H2
= (Ã(H1 ⊙M1)/(1− p))⊤ × ∂L

∂H2
(26)

where p is the dropout rate and M1 is the dropout mask. This leads to weight updates:

∆W 2 = −η(ÃH1
drop)

⊤ × ∂L

∂H2
= −η(Ã(H1 ⊙M1)/(1− p))⊤ × ∂L

∂H2
(27)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The 1/(1 − p) scaling factor in dropout has two key effects: 1) For surviving features (where
M1

ij = 1), the gradient is amplified by 1/(1 − p). This leads to larger updates for these weights
during training. 2) During each iteration, different subsets of features survive, but their gradients are
consistently scaled up. Over many iterations, this accumulates to larger weight values despite the
unbiased expectation maintained by dropout. Specifically, with dropout rate p when p = 0.5, sur-
viving gradients are doubled. This amplification effect compounds over training iterations. While
dropout maintains unbiased expected values during forward propagation, the consistent gradient
scaling during backward propagation leads to systematically larger weight magnitudes. Empirically,
we observe that higher dropout rates correlate with larger spectral norms ∥W ∥22 (as shown in Fig-
ure 10), supporting this theoretical analysis. The increased weight magnitudes directly contribute to
higher Dirichlet energy E(H2) during inference, as:

E(H2) =
∑

(i,j)∈E

∥h2
i − h2

j∥22/2|E| (28)

where larger weights produce more distinctive features between connected nodes, helping mitigate
oversmoothing.

Figure 10: Effect of dropout on max singular values of the weight matrices.

A.6 ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSION ON DROPOUT VARIANTS

Different methods apply masks at various stages of graph neural network training:

DropNode (Feng et al., 2020):

Md = Ã((Mnode ⊙H(l−1))W (l))d

where Mnode is a node-wise mask applied to all dimensions.

DropEdge Rong et al. (2019):

Md = (Medge ⊙ Ã)(H(l−1)W (l))d

where Medge is a single mask for the adjacency matrix.

DropMessage Fang et al. (2023):

Md = Ã(Mmsgd ⊙ (H(l−1)W (l)))d

where Mmsgd is a dimension-specific message mask.

Dropout (Srivastava et al., 2014):

Md = Mfeatd ⊙ Ã(H(l−1)W (l))d

where Mfeatd is a dimension-specific feature mask.

Additionally, these methods exhibit different subgraph formation and degree-dependent effects:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

DropNode:

Gt = (V \ Vdropped, E \ {(i, j)|i ∈ Vdropped or j ∈ Vdropped}),Vdropped = {i|Mnodei = 0}

E[degeffi (t)] = degi
∏

j∈N (i)

(1− p)

DropEdge:
Gt = (V, E \ Edropped), Edropped = {(i, j)|Medgeij = 0}

E[degeffi (t)] = (1− p)degi

DropMessage:
Gd
t = (V, Ed

t), Ed
t = {(i, j) ∈ E|Mmsgdij

̸= 0}

E[degeffi (t)] = (1− p)degi

Dropout:
Gd
t = (V, Ed

t), Ed
t = {(i, j) ∈ E|Mfeatdi

̸= 0 and Mfeatdj
̸= 0}

E[degeffi (t)] = (1− p)2degi

Overall, dropout’s quadratic degree-dependent effect makes it particularly effective by providing
natural adaptive regularization at hub nodes, where over-mixing of features is most problematic.
While other methods also provide degree-dependent regularization, they either lack dimension-
specific patterns (DropNode, DropEdge) or do not provide sufficiently strong control at high-degree
nodes (DropMessage).

To further explore the practical impact of these different regularization techniques, we conducted
hyperparameter tuning for DropEdge, DropNode, and DropMessage on the Cora, Citeseer, and
Pubmed datasets. The results, summarized in Table 4, demonstrate that while these methods yield
comparable performance, traditional dropout generally performs best.

Table 4: Experimental results of different regularization methods on Cora, Citeseer, and PubMed.

Cora (GCN) CiteSeer (GCN) PubMed (GCN) Cora (SAGE) CiteSeer (SAGE) PubMed (SAGE) Cora (GAT) CiteSeer (GAT) PubMed (GAT)
GNN 83.18 ± 1.22 70.48 ± 0.45 79.40 ± 1.02 83.06 ± 0.80 69.68 ± 0.82 76.40 ± 1.48 82.58 ± 1.47 71.08 ± 0.42 79.28 ± 0.58
GNN+Dropout 85.22 ± 0.66 73.24 ± 0.63 81.08 ± 1.16 84.14 ± 0.63 71.62 ± 0.29 77.86 ± 0.79 83.92 ± 1.29 72.00 ± 0.91 80.48 ± 0.99
GNN+DropEdge 84.88 ± 0.68 72.96 ± 0.38 80.42 ± 1.15 83.10 ± 0.51 71.72 ± 0.92 77.88 ± 1.31 83.44 ± 0.78 71.60 ± 1.14 79.82 ± 0.68
GNN+DropNode 84.92 ± 0.52 73.08 ± 0.39 80.60 ± 0.49 83.42 ± 0.58 71.92 ± 0.65 78.06 ± 1.09 83.80 ± 0.97 71.30 ± 0.87 79.50 ± 0.68
GNN+DropMessage 84.78 ± 0.58 73.12 ± 1.19 80.92 ± 0.88 83.18 ± 0.62 71.22 ± 1.34 78.20 ± 0.80 83.46 ± 1.06 71.38 ± 1.12 79.36 ± 1.22

20

	Introduction
	Related Work
	Theoretical Framework
	Notations and Definitions
	Matrix Definitions and Graph Convolutional Networks (GCNs)
	Dropout in GCNs
	Integrating Batch Normalization (BN) and Dropout in GCNs

	Dimension-Specific Stochastic Sub-graphs
	Degree-Dependent Nature of Dropout Effects
	Role of Dropout in Oversmoothing
	Generalization Bounds with Graph-Specific Dropout Effects
	Interaction of Dropout and Batch Normalization in GCNs

	Experiments
	Datasets and Setup
	Node-level Classification Results
	Graph-level Classification Results

	Conclusions
	Appendix
	Proof of Theorem 11
	Proof of Theorem 15
	proof of Theorem 16
	Proof of Theorem 17
	Effect of Dropout on Max Singular Values of the Weight Matrices
	Additional Experimental Results and Discussion on Dropout Variants

