
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND RANDOM MASKING: WHEN DROPOUT
MEETS GRAPH CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) have emerged as powerful tools for learn-
ing on graph-structured data, yet the behavior of dropout in these models re-
mains poorly understood. This paper presents a comprehensive theoretical anal-
ysis of dropout in GCNs, revealing its unique interactions with graph structure.
We demonstrate that dropout in GCNs creates dimension-specific stochastic sub-
graphs, leading to a form of structural regularization not present in standard neu-
ral networks. Our analysis shows that dropout effects are inherently degree-
dependent, resulting in adaptive regularization that considers the topological im-
portance of nodes. We provide new insights into dropout’s role in mitigating
oversmoothing and derive novel generalization bounds that account for graph-
specific dropout effects. Furthermore, we analyze the synergistic interaction be-
tween dropout and batch normalization in GCNs, uncovering a mechanism that
enhances overall regularization. Our theoretical findings are validated through ex-
tensive experiments on both node-level and graph-level tasks across 14 datasets.
Notably, GCN with dropout and batch normalization outperforms state-of-the-art
methods on several benchmarks. This work bridges a critical gap in the theoret-
ical understanding of regularization in GCNs and provides practical insights for
designing more effective graph learning algorithms.

1 INTRODUCTION

The remarkable success of deep neural networks across various domains has been accompanied
by the persistent challenge of overfitting, where models perform well on training data but fail to
generalize to unseen examples. This issue has spurred the development of numerous regularization
techniques, among which dropout has emerged as a particularly effective and widely adopted ap-
proach LeCun et al. (2015). Introduced by Srivastava et al. (2014), dropout addresses overfitting by
randomly ”dropping out” a proportion of neurons during training, effectively creating an ensemble
of subnetworks. This technique has proven highly successful in improving generalization and has
become a standard tool in the deep learning toolkit. The effectiveness of dropout has prompted
extensive theoretical analysis, with various perspectives offered to explain its regularization effects.

Some researchers have interpreted dropout as a form of model averaging (Baldi & Sadowski, 2013),
while others have analyzed it through the lens of information theory (Achille & Soatto, 2018). Wager
et al. (2013) provided insights into dropout’s adaptive regularization properties, and Gal & Ghahra-
mani (2016) established connections between dropout and Bayesian inference. These diverse the-
oretical frameworks have significantly enhanced our understanding of dropout’s role in mitigating
overfitting in traditional neural networks. However, as the field of deep learning has expanded to
encompass more complex data structures, particularly graphs, new questions have arisen regarding
the applicability and behavior of established techniques. Graph Neural Networks (GNNs), espe-
cially Graph Convolutional Networks (GCNs), have demonstrated remarkable performance on tasks
involving graph-structured data (Kipf & Welling, 2017). Naturally, researchers and practitioners
have applied dropout to GNNs, often observing beneficial effects on generalization (Hamilton et al.,
2017).

Despite the widespread adoption of dropout in Graph Convolutional Networks (GCNs), our prelim-
inary investigations have revealed intriguing discrepancies between its behavior in GCNs and its
well-understood effects in traditional neural networks. These observations prompt a fundamental
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question: How does dropout uniquely interact with the graph structure in GCNs? In this paper, we
present a comprehensive theoretical analysis of dropout in the context of GCNs. Our findings reveal
that dropout in GCNs interacts with the underlying graph structure in ways that are fundamentally
different from its operation in traditional neural networks. Specifically, we demonstrate that:

• Dropout in GCNs creates dimension-specific stochastic sub-graphs, leading to a unique
form of structural regularization not present in standard neural networks.

• The effects of dropout are inherently degree-dependent, with differential impacts on nodes
based on their connectivity, resulting in adaptive regularization that considers the topolog-
ical importance of nodes in the graph.

• Dropout plays a crucial role in mitigating the oversmoothing problem in GCNs, though its
effects are more nuanced than previously thought.

• The generalization bounds for GCNs with dropout exhibit a complex dependence on graph
properties, diverging from traditional dropout theory.

• There exists a significant interplay between dropout and batch normalization in GCNs,
revealing synergistic effects that enhance the overall regularization.

Our theoretical framework not only provides deeper insights into the mechanics of dropout in graph-
structured data but also yields practical implications for the design and training of GCNs. We vali-
date our theoretical findings through extensive experiments on both node-level and graph-level tasks,
demonstrating the practical relevance of our analysis. This work bridges a critical gap in the theoret-
ical understanding of regularization in GCNs and paves the way for more principled approaches to
leveraging dropout in graph representation learning. Furthermore, we validate our theoretical find-
ings through extensive experiments, demonstrating that GCNs incorporating our insights on dropout
and batch normalization outperform several state-of-the-art methods on benchmark datasets, in-
cluding Cora, CiteSeer, and PubMed. This practical success underscores the importance of our
theoretical contributions and their potential to advance the field of graph representation learning.

2 RELATED WORK

Dropout in Neural Networks. Overfitting can be reduced by using dropout Hinton et al. (2012)
to prevent complex co-adaptations on the training data. Since its inception, several variants have
been proposed to enhance its effectiveness. DropConnect (Wan et al., 2013) generalizes dropout
by randomly dropping connections rather than nodes. Gaussian dropout Srivastava et al. (2014)
replaces the Bernoulli distribution with a Gaussian one for smoother regularization. Curriculum
dropout (Morerio et al., 2017) adaptively adjusts the dropout rate during training. Theoretical inter-
pretations of dropout have provided insights into its success. The model averaging perspective (Baldi
& Sadowski, 2013) views dropout as an efficient way of approximately combining exponentially
many different neural networks. The adaptive regularization interpretation (Wager et al., 2013)
shows how dropout adjusts the regularization strength for each feature based on its importance. The
Bayesian approximation view (Gal & Ghahramani, 2016) connects dropout to variational inference
in Bayesian neural networks, providing a probabilistic framework for understanding its effects.

Regularization in Graph Neural Networks. Graph Neural Networks (GNNs), while powerful,
are prone to overfitting and over-smoothing (Li et al., 2018). Various regularization techniques
have been proposed to address these issues. DropEdge (Rong et al., 2020) randomly removes edges
from the input graph during training, reducing over-smoothing and improving generalization. Graph
diffusion-based methods (Gasteiger et al., 2019) incorporate higher-order neighborhood informa-
tion to enhance model robustness. Spectral-based approaches (Wu et al., 2019) leverage the graph
spectrum to design effective regularization strategies. Empirical studies have shown that traditional
dropout can be effective in GNNs (Hamilton et al., 2017), but its interaction with graph structure re-
mains poorly understood. Some works have proposed adaptive dropout strategies for GNNs (Gao &
Ji, 2019), but these are primarily heuristic approaches without comprehensive theoretical grounding.

Theoretical Frameworks for GNNs. Despite the empirical success of Graph Neural Networks
(GNNs), establishing theories to explain their behaviors is still an evolving field. Recent works have
made significant progress in understanding over-smoothing (Li et al., 2018; Zhao & Akoglu, 2019;
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Oono & Suzuki, 2019; Rong et al., 2020), interpretability (Ying et al., 2019; Luo et al., 2020; Vu
& Thai, 2020; Yuan et al., 2020; 2021), expressiveness (Xu et al., 2018; Chen et al., 2019; Maron
et al., 2018; Dehmamy et al., 2019; Feng et al., 2022), and generalization (Scarselli et al., 2018; Du
et al., 2019; Verma & Zhang, 2019; Garg et al., 2020; Zhang et al., 2020; Oono & Suzuki, 2019;
Lv, 2021; Liao et al., 2020; Esser et al., 2021; Cong et al., 2021). Our work aims to complement
these existing theoretical frameworks by focusing on the practical aspects of dropout in GNNs,
a widely used regularization technique that has not been thoroughly examined from a theoretical
perspective. Previous works have provided valuable insights using classical techniques such as
Vapnik-Chervonenkis dimension (Scarselli et al., 2018), Rademacher complexity (Lv, 2021; Garg
et al., 2020), and algorithm stability (Verma & Zhang, 2019). Recent efforts (Oono & Suzuki,
2019; Esser et al., 2021) have also made strides in incorporating the transductive learning schema of
GNNs into theoretical analyses. We bridge the gap between theoretical understanding and practical
implementation of GNNs, offering insights into how dropout affects generalization and performance
in graph-structured learning tasks.

3 THEORETICAL FRAMEWORK

In this section, we develop a rigorous mathematical framework to analyze the behavior of dropout
in Graph Convolutional Networks (GCNs). We begin by establishing notations and definitions, then
formalize the GCN model with dropout, and finally introduce key concepts that will be central to
our analysis.

3.1 NOTATIONS AND DEFINITIONS

Notations. Let G = (V, E ,X) be an undirected graph with n = |V| nodes and m = |E| edges,
where X ∈ Rn×d0 represents the node feature matrix with d0 input features per node. We denote by
A ∈ Rn×n the adjacency matrix of G, and by D = diag(deg1, . . . , degn) the degree matrix, where
degi =

∑
j Aij .

3.1.1 MATRIX DEFINITIONS AND GRAPH CONVOLUTIONAL NETWORKS (GCNS)

Definition 1 (Normalized Adjacency Matrix). The normalized adjacency matrix Ã is defined as:

Ã = D− 1
2AD− 1

2 . (1)

Let X ∈ Rn×d0 be the input feature matrix, where d0 is the number of input features per node.
Definition 2 (L-layer GCN). An L-layer GCN is defined as a sequence of L graph convolutional
layers, where the l-th layer (l = 1, . . . , L) performs the following transformation:

H(l) = σ(ÃH(l−1)W (l)), (2)

where H(l) ∈ Rn×dl is the feature matrix at layer l, W (l) ∈ Rdl−1×dl is the weight matrix for layer
l, σ(·) is a non-linear activation function, and H(0) = X .

Definition 3 (Feature Energy). The feature energy E(H(l)) of the node representations H(l) at
layer l is defined as:

E(H(l)) =
1

2|E|
∑

(i,j)∈E

∥h(l)
i − h

(l)
j ∥2,

where h
(l)
i denotes the i-th row of H(l) and the representation of node i in the l-layer.

3.1.2 DROPOUT IN GCNS

Definition 4 (Dropout Mask). For layer l, the dropout mask M (l) ∈ Rn×dl is a random matrix
where each element M (l)

ij is drawn independently from a Bernoulli distribution:

M
(l)
ij ∼ Bernoulli(1− p) (3)

where p ∈ [0, 1] is the dropout probability.

3
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We now formally define a GCN with dropout:
Definition 5 (GCN with Dropout). For an L-layer GCN with dropout, the forward pass at layer l is
defined as:

H(l) =
1

1− p
M (l) ⊙ σ(ÃH(l−1)W (l)), (4)

where ⊙ denotes element-wise multiplication, and the factor 1
1−p is used to scale the outputs during

training to match the expected value at inference time.

To elucidate the specific impact of dropout on embedding features, we introduce these concepts:
Definition 6 (Dimension-specific Sub-graph). For each feature dimension j at layer l and iteration
t, we define a stochastic sub-graph G(l,j)

t = (V, E(l,j)
t ), where:

E(l,j)
t = {(u, v) ∈ E | M (l,t)

uj ̸= 0 and M
(l,t)
vj ̸= 0},

Here, M (l,t) denotes the dropout mask for layer l at iteration t.
Definition 7 (Active Path). A path P = (v0, v1, . . . , vk) in G is considered active for feature j at
layer l and iteration t if and only if:

k−1∏
i=0

M
(l,t)
vij

M
(l,t)
vi+1j

̸= 0.

Definition 8 (Feature-Topology Coupling Matrix). For layer l at iteration t, we define the feature-
topology coupling matrix C

(l)
t ∈ Rn×n as:

C
(l)
t = Ã⊙ (M

(l)
t (M

(l)
t )T ),

where Ã is the normalized adjacency matrix, M (l)
t is the dropout mask for layer l at iteration t, and

⊙ denotes the Hadamard product.

This matrix C
(l)
t captures how dropout affects both feature propagation and graph structure simulta-

neously.

Definition 9 (Effective Degree). The effective degree deff
i (t) of node i at iteration t is defined as:

deff
i (t) =

∑
j

(C
(l)
t )ij ,

where C
(l)
t is the feature-topology coupling matrix defined earlier.

3.1.3 INTEGRATING BATCH NORMALIZATION (BN) AND DROPOUT IN GCNS

Definition 10 (GCN Layer with BN before activation). For a layer l, the output is defined as:

H(l) = σ(BN(ÃH(l−1)W (l))),

where σ is the activation function, such as ReLU, and BN is defined as:

BN(X) = γ ⊙ X − µB√
σ2
B + ϵ

+ β.

Here, µB and σ2
B are the batch mean and variance, γ and β are learnable parameters, and ϵ is a

small constant for numerical stability.

3.2 DIMENSION-SPECIFIC STOCHASTIC SUB-GRAPHS

Figure 1 shows how varying dropout rates impact the number of edges Et in stochastic sub-graphs
of a 2-layer GCN, defined by Equation 5, across the Cora and Citeseer datasets. We observe that
higher dropout rates correlate with fewer edges in these sub-graphs. This variation demonstrates
dropout’s role in GCNs as a form of structural regularization, where dimension-specific stochastic
sub-graphs are generated. Each feature dimension samples a different sub-graph from the original
graph at each iteration. This mechanism provides a rich set of structural variations during training,
potentially enhancing the model’s ability to capture diverse graph patterns.

4
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Figure 1: Sub-graph size. Figure 2: Active path on Cora. Figure 3: Active path on Citeseer.

Theorem 11 (Sub-graph Diversity). The expected number of distinct sub-graphs per iteration is:

E[|G(l,j)
t | j = 1, . . . , dl|] = dl(1− (1− p)2|E|),

where dl is the number of features at layer l, p is the dropout probability, and |E| is the number of
edges in the original graph (The complete proof is in the Appendix. A.1).

This theorem reveals that dropout in GCNs leads to a rich set of sub-graphs, providing a form
of structural data augmentation unique to graph-based models. The diversity of these sub-graphs
increases with both the dropout probability p and the number of features dl. This suggests that
higher-dimensional GCNs with moderate dropout rates can benefit from a wider range of struc-
tural variations during training, potentially leading to more robust and generalizable representations.
Moreover, this mechanism allows the GCN to implicitly explore different graph structures without
explicitly modifying the input graph. This could be particularly beneficial for tasks where the opti-
mal graph structure is uncertain or where multiple relevant sub-structures exist within the data.

Theorem 12 (Expected Active Features per Path). For a path P of length k, the expected number
of features for which it is active is:

E[#active features for P] = dl(1− p)k+1.

This theorem demonstrates that while individual long paths are unlikely to be active for any given
feature, the multi-dimensional nature of GCNs allows for effective long-range information flow
through the ensemble effect across features. Figures 2 & 3 illustrate the behavior of active features
along paths of length 1 and 2 within a 2-layer GCN equipped with 16 hidden dimensions, across
varying dropout rates. Notably, at a dropout rate of 0.6, the average number of active features
approaches zero. This characteristic also underscores the importance of multidimensional feature
spaces in ensuring robust information transmission under feature dropout.

3.3 DEGREE-DEPENDENT NATURE OF DROPOUT EFFECTS

The interaction between dropout and the graph structure leads to a form of degree-dependent regu-
larization in GCNs. This means that the effect of dropout varies based on the connectivity of each
node, creating an adaptive regularization scheme that considers the topological importance of nodes
in the graph.

Theorem 13 (Degree-Dependent Dropout Effect). The expected effective degree and its variance
are given by:

E[degeff
i (t)] = (1− p)2degi and Var[degeff

i (t)] = degi(1− p)2(1− (1− p)2), (5)

where degi is the original degree of node i and p is the dropout probability).

This theorem highlights that dropout affects nodes differentially depending on their degree. High-
degree nodes, typically more influential within the graph, exhibit less variation in their effective
degree due to dropout, potentially resulting in more stable representations for these important nodes.
This observation is empirically confirmed in the analysis of a 2-layer GCN presented in Figure 6.
Consequently, the degree-dependent nature of dropout in GCNs results in adaptive regularization,
where the regularization effect naturally adjusts to the local graph structure.

5
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Figure 4: Effective degree. Figure 5: Effective CV vs degree. Figure 6: Accuracy on Cora.

Corollary 14 (Relative Stability of High-Degree Nodes). The coefficient of variation of the effective

degree, defined as CV [degeff
i (t)] =

√
Var[degeff

i (t)]/E[degeff
i (t)], decreases with increasing node

degree:

CV [degeff
i (t)] =

√
1− (1− p)2√
degi(1− p)

.

This corollary further confirms that high-degree nodes experience relatively less variation in their
effective degree due to dropout. Figure 5 illustrates that the CV decreases as node degree increases.
This degree-dependent effect distinguishes dropout in GCNs from its application in standard neural
networks and suggests that the optimal dropout strategy for GCNs may need to consider the graph
structure explicitly.

3.4 ROLE OF DROPOUT IN OVERSMOOTHING

Oversmoothing is a well-known issue in GCNs, where node representations become indistinguish-
able as the number of layers increases. Our analysis reveals that dropout plays a crucial role in this
context, though its effects are more nuanced than previously thought.

Theorem 15 (Dropout and Feature Energy). For a GCN with dropout probability p, the expected
feature energy at layer l is bounded by:

E[E(H(l))] ≤ dmax

|E|
(

1

1− p
)l||Ã||2l2

l∏
i=1

||W (i)||22||X||2F (6)

where E(X) is the energy of the input features and W (i) are the weight matrices (The complete
proof is in the Appendix.A.2).

The derived bound demonstrates how dropout affects feature energy through the interplay of net-
work depth (l), graph structure (through dmax and Ã), and weight properties (||W (i)||2). Note that
this analysis only provides an upper bound; the absence of a lower bound in this derivation is due
to limitations in bounding certain terms. We will later show that when considering batch normaliza-
tion, we can establish the existence of a lower bound, providing a more complete characterization of
feature energy behavior. Additionally, we explored how dropout modulates the weight matrices in a
2-layer GCN, with a particular focus on its effects on the spectral norm, as detailed in Appendix A.5.
Building on this, we further analyze three key metrics to understand how dropout influences feature
representations, as depicted in Figure 9. From the left side of Figure 9, the Frobenius norm of fea-
tures remains relatively stable whether dropout is applied or not, suggesting that dropout’s effects
are not simply uniformly scaling all features. The middle of Figure 9 shows that dropout consis-
tently doubles the average pairwise distance between nodes, aiding in maintaining more distinctive
node representations. Most notably, the right side of Figure 9 demonstrates that dropout significantly
increases feature energy. The substantial rise in feature energy, compared to the moderate changes
in Frobenius norm and pairwise distances, provides strong evidence that dropout enhances discrim-
inative power between connected nodes, explaining its effectiveness in preventing oversmoothing.
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Figure 7: Feature energy vs dropout rates. Figure 8: BN feature energy vs dropout rates.

Figure 9: Effect of dropout on feature F-norm, average pair distance, and feature energy.

3.5 GENERALIZATION BOUNDS WITH GRAPH-SPECIFIC DROPOUT EFFECTS

The unique properties of dropout in GCNs, such as the creation of stochastic sub-graphs and degree-
dependent effects, influence how these models generalize to unseen data. Our analysis provides
novel generalization bounds that explicitly account for these graph-specific dropout effects, offer-
ing insights into how dropout interacts with graph structure to influence the model’s generalization
capabilities.

Theorem 16 (Generalization Bound for L-Layer GCN with Dropout). For an L-layer GCN F with
dropout probability p, with probability at least 1 − δ over the training examples, the following
generalization bound holds:

ED[L(F (x))]−ES [L(F (x))] ≤ O

(√
log(1/δ)

n

L∑
l=1

Lloss · Ll ·
√

p

1− p
∥σ(ÃH(l−1)W (l))∥F

)
,

(7)
where ED is the expectation over the data distribution. ES is the expectation over the training
samples. L is the loss function with Lipschitz constant Lloss. Ll =

∏L
i=l+1(∥W (i)∥ · ∥Ã∥) is the

Lipschitz constant from layer l to output. ∥W (i)∥ is the spectral norm (largest singular value) of
the weight matrix at layer i. ∥Ã∥ is the spectral norm of the normalized adjacency matrix. n is the
number of training samples. p is the dropout probability. The bound reflects how the network’s sta-
bility depends on the Lipschitz constant of the loss function Lloss, the layer-wise Lipschitz constants
Ll capturing weight and graph effects, the magnitude of feature activations ∥σ(ÃH(l−1)W (l))∥F ,
the dropout rate p through the term

√
p

1−p

This generalization bound reveals how dropout affects GCNs’ learning capabilities and presents
several practical insights: First, network depth plays a crucial role. As signals propagate through
layers, the effects of weights and graph structure accumulate multiplicatively. This suggests that
deeper GCNs might need more careful regularization, as small perturbations could amplify through
the network. Second, the graph structure naturally influences how information flows through the
network. The way we normalize our adjacency matrix (typically ensuring its norm is at most 1)
provides a built-in stabilizing effect. However, graphs with different connectivity patterns might
require different dropout strategies. Third, looking at each layer individually, we see that both net-
work weights and feature magnitudes matter. Some layers might process more important features

7
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than others, suggesting that a one-size-fits-all dropout rate might not be optimal. Instead, adapt-
ing dropout rates based on layer-specific characteristics could be more effective. Finally, there’s
an inherent trade-off in choosing dropout rates. Higher dropout rates provide stronger regulariza-
tion but also introduce more noise in the training process. Our bound helps explain this balance
mathematically, suggesting why moderate dropout rates often work best in practice.

3.6 INTERACTION OF DROPOUT AND BATCH NORMALIZATION IN GCNS

While dropout provides a powerful regularization mechanism for GCNs, its degree-dependent nature
can lead to uneven regularization across nodes. Batch Normalization (BN) offers a complementary
approach that can potentially address this issue and enhance the benefits of dropout. Our analysis
reveals how the combination of dropout and BN creates a synergistic regularization effect that is
sensitive to both graph structure and feature distributions.
Theorem 17 (Layer-wise Energy Lower Bound for GCN). For an L-layer Graph Convolutional
Network with dropout rate p, batch normalization parameters {β(l)

d , γ
(l)
d }dl

d=1 at each layer l, with
probability at least (1− δ)L, the expected feature energy at each layer l satisfies:

E(H(l)) ≥ pdmin

2|E|(1− p)

dl∑
d=1

Φ(β
(l)
d /γ

(l)
d ) · (β(l)

d )2

where l = 1, 2, ..., L indicates the layer, dmin is the minimum degree in the graph, |E| is the total
number of edges, Φ is the standard normal CDF and β

(l)
d , γ

(l)
d are the BN parameters for dimension

d at layer l.

Our theoretical bound reveals the synergistic interaction between dropout and batch normalization in
GCNs, establishing a refined form of regularization. The energy preservation term p

1−p from dropout

combines with the BN-induced bound
∑dl

d=1 Φ(β
(l)
d /γ

(l)
d )·(β(l)

d )2 to maintain non-vanishing feature
energy. This interaction is empirically validated in Figures 7 & 8, which demonstrate how batch
normalization effectively moderates the energy amplification caused by dropout. These findings
suggest that the joint application of dropout and batch normalization in GCNs creates a specialized
mechanism particularly suited for graph-structured data.

4 EXPERIMENTS

To validate our theoretical analysis, we conducted extensive experiments on a variety of datasets,
considering both node-level and graph-level tasks. We implemented dropout technique on sev-
eral popular GNN architectures: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), and GatedGCN (Bresson & Laurent, 2017). For each
model, we compared the performance with and without dropout. Our code is available at https:
//anonymous.4open.science/r/dropout-theory.

4.1 DATASETS AND SETUP

Datasets. For node-level tasks, we used 10 datasets: Cora, CiteSeer, PubMed (Sen et al., 2008),
ogbn-arxiv, ogbn-products (Hu et al., 2020), Amazon-Computer, Amazon-Photo, Coauthor-CS,
Coauthor-Physics (Shchur et al., 2018), and WikiCS (Mernyei & Cangea, 2020). Cora, CiteSeer,
and PubMed are citation networks, evaluated using the semi-supervised setting and data splits from
Kipf & Welling (2017). Computer and Photo (Shchur et al., 2018) are co-purchase networks. CS
and Physics (Shchur et al., 2018) are co-authorship networks. We used the standard 60%/20%/20%
training/validation/test splits and accuracy as the evaluation metric (Chen et al., 2022; Shirzad et al.,
2023; Deng et al., 2024). For WikiCS, we adopted the official splits and metrics (Mernyei & Cangea,
2020). For large-scale graphs, we included ogbn-arxiv and ogbn-products with 0.16M to 2.4M
nodes, using OGB’s standard evaluation settings (Hu et al., 2020).

For graph-level tasks, we used MNIST, CIFAR10 (Dwivedi et al., 2023), and two Peptides datasets
(functional and structural) (Dwivedi et al., 2022). MNIST and CIFAR10 are graph versions of their
image classification counterparts, constructed using 8-nearest neighbor graphs of SLIC superpixels.
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Table 1: Node classification results (%). The baseline results are taken from Deng et al. (2024); Wu
et al. (2023). The top 1st, 2nd and 3rd results are highlighted. ”dp” denotes dropout.

Cora CiteSeer PubMed Computer Photo CS Physics WikiCS ogbn-arxiv ogbn-products

# nodes 2,708 3,327 19,717 13,752 7,650 18,333 34,493 11,701 169,343 2,449,029
# edges 5,278 4,732 44,324 245,861 119,081 81,894 247,962 216,123 1,166,243 61,859,140
Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCNII 85.19 ± 0.26 73.20 ± 0.83 80.32 ± 0.44 91.04 ± 0.41 94.30 ± 0.20 92.22 ± 0.14 95.97 ± 0.11 78.68 ± 0.55 72.74 ± 0.31 79.42 ± 0.36

GPRGNN 83.17 ± 0.78 71.86 ± 0.67 79.75 ± 0.38 89.32 ± 0.29 94.49 ± 0.14 95.13 ± 0.09 96.85 ± 0.08 78.12 ± 0.23 71.10 ± 0.12 79.76 ± 0.59

APPNP 83.32 ± 0.55 71.78 ± 0.46 80.14 ± 0.22 90.18 ± 0.17 94.32 ± 0.14 94.49 ± 0.07 96.54 ± 0.07 78.87 ± 0.11 72.34 ± 0.24 78.84 ± 0.09

tGNN 82.97 ± 0.68 71.74 ± 0.49 80.67 ± 0.34 83.40 ± 1.33 89.92 ± 0.72 92.85 ± 0.48 96.24 ± 0.24 71.49 ± 1.05 72.88 ± 0.26 81.79 ± 0.54

GraphGPS 82.84 ± 1.03 72.73 ± 1.23 79.94 ± 0.26 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 97.12 ± 0.19 78.66 ± 0.49 70.97 ± 0.41 OOM
NAGphormer 82.12 ± 1.18 71.47 ± 1.30 79.73 ± 0.28 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03 77.16 ± 0.72 70.13 ± 0.55 73.55 ± 0.21

Exphormer 82.77 ± 1.38 71.63 ± 1.19 79.46 ± 0.35 91.47 ± 0.17 95.35 ± 0.22 94.93 ± 0.01 96.89 ± 0.09 78.54 ± 0.49 72.44 ± 0.28 OOM
GOAT 83.18 ± 1.27 71.99 ± 1.26 79.13 ± 0.38 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 96.24 ± 0.24 77.00 ± 0.77 72.41 ± 0.40 82.00 ± 0.43

NodeFormer 82.20 ± 0.90 72.50 ± 1.10 79.90 ± 1.00 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 96.45 ± 0.28 74.73 ± 0.94 59.90 ± 0.42 73.96 ± 0.30

SGFormer 84.50 ± 0.80 72.60 ± 0.20 80.30 ± 0.60 92.42 ± 0.66 95.58 ± 0.36 95.71 ± 0.24 96.75 ± 0.26 80.05 ± 0.46 72.63 ± 0.13 81.54 ± 0.43

Polynormer 83.25 ± 0.93 72.31 ± 0.78 79.24 ± 0.43 93.68 ± 0.21 96.46 ± 0.26 95.53 ± 0.16 97.27 ± 0.08 80.10 ± 0.67 73.46 ± 0.16 83.82 ± 0.11

GCN 85.22 ± 0.66 73.24 ± 0.63 81.08 ± 1.16 93.15 ± 0.34 95.03 ± 0.24 94.41 ± 0.13 97.07 ± 0.04 80.14 ± 0.52 73.13 ± 0.27 81.87 ± 0.41

Dirichlet energy 7.403 0.437 0.452 8.020 3.765 20.241 8.966 735.876 8.021 7.771

GCN w/o dp 83.18 ± 1.22 70.48 ± 0.45 79.40 ± 1.02 90.60 ± 0.84 94.10 ± 0.15 94.30 ± 0.22 96.92 ± 0.05 77.61 ± 1.34 72.05 ± 0.23 77.50 ± 0.37

Dirichlet energy 2.951 0.170 0.114 0.592 1.793 3.980 0.318 264.230 1.231 1.745

GCN w/o BN 84.97 ± 0.73 72.97 ± 0.86 80.94 ± 0.87 92.39 ± 0.18 94.38 ± 0.13 93.46 ± 0.24 96.76 ± 0.06 79.00 ± 0.48 71.93 ± 0.18 79.37 ± 0.42

SAGE 84.14 ± 0.63 71.62 ± 0.29 77.86 ± 0.79 92.65 ± 0.21 95.71 ± 0.20 95.90 ± 0.09 97.20 ± 0.10 80.29 ± 0.97 72.72 ± 0.13 82.69 ± 0.28

SAGE w/o dp 83.06 ± 0.80 69.68 ± 0.82 76.40 ± 1.48 90.17 ± 0.60 94.90 ± 0.17 95.80 ± 0.08 97.06 ± 0.06 78.84 ± 1.17 71.37 ± 0.31 79.82 ± 0.22

SAGE w/o BN 83.89 ± 0.67 71.39 ± 0.75 77.26 ± 1.02 92.54 ± 0.24 95.51 ± 0.23 94.87 ± 0.15 97.03 ± 0.03 79.50 ± 0.93 71.52 ± 0.17 80.91 ± 0.35

GAT 83.92 ± 1.29 72.00 ± 0.91 80.48 ± 0.99 93.47 ± 0.27 95.53 ± 0.16 94.49 ± 0.17 96.73 ± 0.10 80.21 ± 0.68 72.83 ± 0.19 80.05 ± 0.34

GAT w/o dp 82.58 ± 1.47 71.08 ± 0.42 79.28 ± 0.58 92.94 ± 0.30 93.88 ± 0.16 94.30 ± 0.14 96.42 ± 0.08 78.67 ± 0.40 71.52 ± 0.41 77.87 ± 0.25

GAT w/o BN 83.76 ± 1.32 71.82 ± 0.83 80.43 ± 1.03 92.16 ± 0.26 95.05 ± 0.49 93.33 ± 0.26 96.57 ± 0.20 79.49 ± 0.62 71.68 ± 0.36 78.21 ± 0.32

We follow all evaluation protocols suggested by Dwivedi et al. (2023). Peptides-func involves clas-
sifying graphs into 10 functional classes, while Peptides-struct regresses 11 structural properties.
All evaluations followed the protocols in (Dwivedi et al., 2022).

Baselines. Our main focus lies on the following prevalent GNNs and transformer models from
Polynormer (Deng et al., 2024): GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2017), GAT
Veličković et al. (2018), GCNII (Chen et al., 2020), (Veličković et al., 2018), APPNP (Gasteiger
et al., 2018), GPRGNN (Chien et al., 2020), SGFormer (Wu et al., 2023), Polynormer (Deng et al.,
2024), GOAT (Kong et al., 2023), NodeFormer (Wu et al., 2022), NAGphormer (Chen et al., 2022),
GTDwivedi & Bresson (2020), SAN Kreuzer et al. (2021), MGT Ngo et al. (2023), DRew Gutteridge
et al. (2023), Graph-MLPMixer He et al. (2023), GRIT Ma et al. (2023) , GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), CKGCN (Ma et al., 2024), GRED (Ding et al.,
2024), Graph Mamba Behrouz & Hashemi (2024). We report the performance results of baselines
primarily from (Deng et al., 2024), with the remaining obtained from their respective original papers
or official leaderboards whenever possible, as those results are obtained by well-tuned models.

Experimental Setup. We implemented all models using the PyTorch Geometric library (Fey &
Lenssen, 2019). The experiments are conducted on a single workstation with 8 RTX 3090 GPUs.
For node-level tasks, we adhered to the training protocols specified in (Deng et al., 2024), employing
BN and adjusting the dropout rate between 0.1 and 0.7. In graph-level tasks, we followed the
experimental settings established by Tönshoff et al. (2023), utilizing BN with a consistent dropout
rate of 0.2. All experiments were run with 5 different random seeds, and we report the mean accuracy
and standard deviation. To ensure generalizability, we used Dirichlet energy (Cai & Wang, 2020) as
an oversmoothing metric, which is proportional to our feature energy (see appendix).

4.2 NODE-LEVEL CLASSIFICATION RESULTS

The node-level classification results in Table 1 not only align with our theoretical predictions but
also showcase the remarkable effectiveness of dropout. Notably, GCN with dropout and batch nor-
malization outperforms state-of-the-art methods on several benchmarks, including Cora, CiteSeer,
and PubMed. This superior performance underscores the practical significance of our theoretical
insights. Consistently across all datasets, models employing dropout outperform their counterparts
without it, validating our analysis that dropout provides beneficial regularization in GNNs, distinct
from its effects in standard neural networks. The varying levels of improvement observed across
different datasets support our theory of degree-dependent dropout effects that adapt to the graph
structure. Furthermore, the consistent increase in Dirichlet energy when using dropout provides em-
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Table 2: Graph classification results on two pep-
tide datasets from LRGB (Dwivedi et al., 2022).

Model Peptides-func Peptides-struct

# graphs 15,535 15,535
Avg. # nodes 150.9 150.9
Avg. # edges 307.3 307.3
Metric AP ↑ MAE ↓
GT 0.6326 ± 0.0126 0.2529 ± 0.0016

SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012

GraphGPS 0.6535 ± 0.0041 0.2500 ± 0.0012

MGT+WavePE 0.6817 ± 0.0064 0.2453 ± 0.0025

DRew 0.7150 ± 0.0044 0.2536 ± 0.0015

Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007

Graph-MLPMixer 0.6970 ± 0.0080 0.2475 ± 0.0015

GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012

CKGCN 0.6952 ± 0.0068 0.2477 ± 0.0019

GRED 0.7085 ± 0.0027 0.2503 ± 0.0019

Graph Mamba 0.6972 ± 0.0100 0.2477 ± 0.0019

GCN 0.7015 ± 0.0021 0.2437 ± 0.0012

Dirichlet energy 9.649 6.121

GCN w/o dp 0.6484 ± 0.0034 0.2541 ± 0.0026

Dirichlet energy 6.488 3.725

Table 3: Graph classification results on two im-
age datasets from (Dwivedi et al., 2023).

Model MNIST CIFAR10

# graphs 70,000 60,000
Avg. # nodes 70.6 117.6
Avg. # edges 564.5 941.1
Metric Accuracy ↑ Accuracy ↑
GT 90.831 ± 0.161 59.753 ± 0.293

SAN+RWSE - -
GraphGPS 98.051 ± 0.126 72.298 ± 0.356

MGT+WavePE - -
DRew - -
Exphormer 98.550 ± 0.039 74.696 ± 0.125

Graph-MLPMixer 97.422 ± 0.110 73.961 ± 0.330

GRIT 98.108 ± 0.111 76.468 ± 0.881

CKGCN 98.423 ± 0.155 72.785 ± 0.436

GRED 98.383 ± 0.012 76.853 ± 0.185

Graph Mamba 98.392 ± 0.183 74.563 ± 0.379

GatedGCN 98.783 ± 0.122 78.231 ± 0.274

Dirichlet energy 20.920 25.121

GatedGCN w/o dp 98.235 ± 0.136 71.384 ± 0.397

Dirichlet energy 14.242 13.587

pirical evidence for our theoretical insight into dropout’s crucial role in mitigating oversmoothing in
GCNs, particularly evident in larger graphs. The complementary roles of dropout and batch normal-
ization are demonstrated by the performance drop when either is removed, supporting our analysis
of their synergistic interaction in GCNs.

4.3 GRAPH-LEVEL CLASSIFICATION RESULTS

Our graph-level classification results, presented in Tables 2 and 3, further validate the broad applica-
bility of our theoretical framework. First, compared to recent SOTA models, we observe that simply
tuning dropout enables GNNs to achieve SOTA performance on three datasets and is competitive
with the best single-model results on the remaining dataset. Second, the significant accuracy im-
provements on graph-level tasks such as Peptides-func and CIFAR10 highlight that our insights ex-
tend beyond node classification. The varying degrees of improvement across different graph datasets
are consistent with our theory that dropout provides adaptive regularization tailored to graph proper-
ties. Third, the consistent increase in Dirichlet energy when using dropout supports our theoretical
analysis of dropout’s role in preserving feature diversity.

These results robustly validate our theory, showing that dropout in GCNs produces dimension-
specific stochastic sub-graphs, has degree-dependent effects, mitigates oversmoothing, and offers
topology-aware regularization. Combined with batch normalization, dropout enhances GCN per-
formance on graph-level tasks, affirming the relevance and utility of our framework and suggesting
directions for improving GNN architectures.

5 CONCLUSIONS

Our comprehensive theoretical analysis of dropout in GCNs has unveiled complex interactions be-
tween regularization, graph structure, and model performance that challenge traditional understand-
ing. These insights not only deepen our understanding of how dropout functions in graph-structured
data but also open new avenues for research and development in graph representation learning. Our
findings suggest the need to reimagine regularization techniques for graph-based models, explore
adaptive and structure-aware dropout strategies, and carefully balance local and global information
in GCN architectures. Furthermore, the observed synergies between dropout and batch normaliza-
tion point towards more holistic approaches to regularization in GNNs. As we move forward, this
work lays a foundation for developing more robust and effective graph learning algorithms, with
potential applications in dynamic graphs, large-scale graph sampling, and adversarial robustness.
Ultimately, this research contributes to bridging the gap between the empirical success of GNNs and
their theoretical foundations, paving the way for designing graph learning models.
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Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural net-
works. arXiv preprint arXiv:2007.02901, 2020.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vittorio Murino. Curriculum
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A APPENDIX

A.1 PROOF OF THEOREM 11

Proof. Let’s approach this proof:

Step 1: For a single feature j, the probability that an edge is present in the sub-graph G
(l,j)
t is

(1− p)2, as both endpoints need to retain this feature.

Step 2: The probability that an edge is not present in G
(l,j)
t is 1− (1− p)2 = p(2− p).

Step 3: For a sub-graph to be identical to the original graph, all edges must be present. The proba-
bility of this is: ((1− p)2)|E| = (1− p)2|E|.

Step 4: Therefore, the probability that G(l,j)
t is different from the original graph (i.e., unique) is

1− (1− p)2|E|.

Step 5: Define an indicator random variable Xj for each feature j:

Xj =

{
1 if G(l,j)

t is unique
0 otherwise

.

Step 6: We have:

P (Xj = 1) = 1− (1− p)2|E|][P (Xj = 0) = (1− p)2|E|.

Step 7: The expected value of Xj is:

E[Xj ] = 1 · P (Xj = 1) + 0 · P (Xj = 0) = 1− (1− p)2|E|.

Step 8: The total number of unique sub-graphs is
∑dl

j=1 Xj . By the linearity of expectation:

E[|G(l,j)
t | j = 1, . . . , dl|] = E[

dl∑
j=1

Xj ] =

dl∑
j=1

E[Xj ] = dl(1− (1− p)2|E|).

This completes the proof.

A.2 PROOF OF THEOREM 15

Proof. We start with the definition of feature energy:

E(H(l)) =
1

2|E|
∑
i,j∈E

∥h(l)
i − h

(l)
j ∥22

Step 1: Taking the expectation:

E[E(H(l))] =
1

2|E|
∑
i,j∈E

E[∥h(l)
i − h

(l)
j ∥22].

.

Step 2: Since
∑

(i,j)∈E [∥hi∥2 + ∥hj∥2] = 2
∑

i di∥hi∥2:

1

2|E|
∑
i,j∈E

E[∥h(l)
i − h

(l)
j ∥22] =

1

2|E|
∑
i,j∈E

E[∥ 1

1− p
M

(l)
i ⊙ z

(l)
i − 1

1− p
M

(l)
j ⊙ z

(l)
j ∥22]

=
1

2|E|(1− p)2

∑
i,j∈E

E[∥M (l)
i ⊙ z

(l)
i −M

(l)
j ⊙ z

(l)
j ∥22]

=
1

2|E|(1− p)2

∑
i,j∈E

[(1− p)(∥z(l)
i ∥22 + ∥z(l)

j ∥22)− 2(1− p)2(z
(l)
i )Tz

(l)
j ]

=
1

1− p

1

|E|
∑
i

di∥z(l)
i ∥22 −

1

|E|
Tr(ZTAZ)

15
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where zi = σ(
∑

k Ãikh
(l−1)
k W (l)).

Step 3: Since di ≤ dmax for all i:
1

|E|
∑
i

di∥zi∥22 ≤ dmax

|E|
∑
i

∥zi∥22 =
dmax

|E|
∥Z∥2F .

Step 4: By ReLU non-negative homogeneity and submultiplicative property:

||Z(l)||2F ≤ ||ÃH(l−1)W (l)||2F ≤ ||W (l)||22||Ã||22||H(l−1)||2F

Step 5: By dropout scaling with probability p:

||H(l−1)||2F =
1

1− p
||Z(l−1)||2F

Step 6: By applying steps 4-5 recursively:

||Z(l)||2F ≤ (
1

1− p
)l−1||Ã||2l2

l∏
i=1

||W (i)||22||X||2F

Step 7: Combining all inequalities:

E[E(H(l))] ≤ dmax

|E|
(

1

1− p
)l||Ã||2l2

l∏
i=1

||W (i)||22||X||2F

A.3 PROOF OF THEOREM 16

Proof. The proof proceeds in several steps:

Step 1: Dropout Effect as Perturbation. Consider layer l with dropout probability pl. The effect
of dropout is a perturbation δ(l):

δ(l) =
1

1− pl
M (l) ⊙ σ(ÃH(l−1)W (l))− σ(ÃH(l−1)W (l)), (8)

where M (l) has elements drawn from Bernoulli(1− pl).

Step 2: Perturbation Propagation. Let Fl(x) denote the network output with dropout applied up
to layer l. Define:

Ll = (

L∏
i=l+1

∥W (i)∥ · ∥Ã∥) · (∥Ã∥l
l∏

i=1

∥W (i)∥) · ∥H(0)∥ (9)

By the properties of operator norms and composition:

∥Fl(x)− Fl−1(x)∥ ≤ Ll∥δ(l)∥ (10)

Step 3: Bounding Perturbation Magnitude. For the perturbation magnitude:

E[∥δ(l)∥2] = E[∥ 1

1− pl
M (l) ⊙ σ(ÃH(l−1)W (l))− σ(ÃH(l−1)W (l))∥2] (11)

=
pl

1− pl
∥σ(ÃH(l−1)W (l))∥2F (12)

where we use E[(M (l))2] = E[M (l)] = 1− pl.

Step 4: Loss Stability. By the Lipschitz property of the loss function:
E[|L(Fl(x))− L(Fl−1(x))|] ≤ Lloss · E[∥Fl(x)− Fl−1(x)∥] (13)

≤ Lloss · Ll · E[∥δ(l)∥] (14)

≤ Lloss · Ll ·
√

pl
1− pl

∥σ(ÃH(l−1)W (l))∥F (15)
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where we used Jensen’s inequality in the last step.

Step 5: Layer Aggregation. The total expected change in loss:

E[|L(F (x))− L(Fno dropout(x))|] ≤
L∑

l=1

Rl (16)

where

Rl = Lloss · Ll ·
√

pl
1− pl

∥σ(ÃH(l−1)W (l))∥F (17)

Step 6: Concentration Bound. Let f(S) = ED[L(F (x))]− ES [L(F (x))] where S is training set.

When changing one example in S to S′, the maximum change is:

∥f(S)− f(S′)∥ ≤ 2

n

L∑
l=1

Rl (18)

where

Rl = Lloss · Ll ·
√

p

1− p
∥σ(ÃH(l−1)W (l))∥F (19)

By McDiarmid’s inequality:

P (ED[L(F (x))]− ES [L(F (x))] > ϵ) ≤ exp

(
− 2nϵ2

4(
∑L

l=1 Rl)2

)
(20)

Set probability to δ:

exp

(
− 2nϵ2

4(
∑L

l=1 Rl)2

)
= δ (21)

Solve for ϵ:

− 2nϵ2

4(
∑L

l=1 Rl)2
= ln(δ) (22)

ϵ2 =
2(
∑L

l=1 Rl)
2 ln(1/δ)

n
(23)

ϵ = O

(√
ln(1/δ)

n

)
L∑

l=1

Rl (24)

Therefore, with probability at least 1− δ:

ED[L(F (x))]− ES [L(F (x))] ≤ O

(√
ln(1/δ)

n

)
L∑

l=1

Lloss · Ll ·
√

p

1− p
∥σ(ÃH(l−1)W (l))∥F

(25)

A.4 PROOF OF THEOREM 17

Proof. Step 1: Start with feature energy and node representation:

E(H(l)) =
1

2|E|
∑

(i,j)∈E

∥h(l)
i − h

(l)
j ∥2

h
(l)
i =

1

1− p
M

(l)
i ⊙ z

(l)
i
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where z
(l)
i ∈ Rdl and z

(l)
i = σ(BN(

∑
k Ãikh

(l−1)
k W (l)))

Step 2: For the BN output before ReLU at layer l, for each feature dimension d ∈ {1, ..., dl}:

(Y (l)):,d = BN((ÃH(l−1)W (l)):,d) = γ
(l)
d

(ÃH(l−1)W (l)):,d − µ
(l)
d√

(σ
(l)
d )2 + ϵ

+ β
(l)
d

Step 3: For ReLU activation z = max(0, y) at layer l, for each dimension d:

E[(z(l)d )2] ≥ Φ(β
(l)
d /γ

(l)
d ) · (β(l)

d )2

where Φ is the standard normal CDF.

Step 4: Using the BN-induced bound:

∥z(l)
i ∥2 =

dl∑
d=1

(z
(l)
i )2d

≥
dl∑

d=1

Φ(β
(l)
d /γ

(l)
d ) · (β(l)

d )2 > 0

Step 5: For feature energy with merged terms:

E(H(l)) =
1

2|E|
∑

(i,j)∈E

[
1

1− p
(∥z(l)

i ∥2 + ∥z(l)
j ∥2)− 2(z

(l)
i )Tz

(l)
j ]

≥ 1

2|E|
∑

(i,j)∈E

[
1

1− p
(∥z(l)

i ∥2 + ∥z(l)
j ∥2)− (∥z(l)

i ∥2 + ∥z(l)
j ∥2)]

=
1

2|E|
∑

(i,j)∈E

(
1

1− p
− 1)(∥z(l)

i ∥2 + ∥z(l)
j ∥2)

=
p

1− p

1

2|E|
∑

(i,j)∈E

(∥z(l)
i ∥2 + ∥z(l)

j ∥2)

=
p

1− p

1

2|E|
∑
i

di∥z(l)
i ∥2

≥ pdmin

1− p

1

2|E|
∥Z(l)∥2F

Then with BN bound:

E(H(l)) ≥ pdmin

1− p

1

2|E|

dl∑
d=1

Φ(β
(l)
d /γ

(l)
d ) · (β(l)

d )2

A.5 EFFECT OF DROPOUT ON MAX SINGULAR VALUES OF THE WEIGHT MATRICES

We analyze why dropout leads to larger weight matrices in terms of spectral norm ∥W ∥2. Consider
the gradient update for weights W 2 between layers:

∂L

∂W 2
= (ÃH1

drop)
⊤ × ∂L

∂H2
= (Ã(H1 ⊙M1)/(1− p))⊤ × ∂L

∂H2
(26)

where p is the dropout rate and M1 is the dropout mask. This leads to weight updates:

∆W 2 = −η(ÃH1
drop)

⊤ × ∂L

∂H2
= −η(Ã(H1 ⊙M1)/(1− p))⊤ × ∂L

∂H2
(27)
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The 1/(1 − p) scaling factor in dropout has two key effects: 1) For surviving features (where
M1

ij = 1), the gradient is amplified by 1/(1 − p). This leads to larger updates for these weights
during training. 2) During each iteration, different subsets of features survive, but their gradients are
consistently scaled up. Over many iterations, this accumulates to larger weight values despite the
unbiased expectation maintained by dropout. Specifically, with dropout rate p when p = 0.5, sur-
viving gradients are doubled. This amplification effect compounds over training iterations. While
dropout maintains unbiased expected values during forward propagation, the consistent gradient
scaling during backward propagation leads to systematically larger weight magnitudes. Empirically,
we observe that higher dropout rates correlate with larger spectral norms ∥W ∥22 (as shown in Fig-
ure 10), supporting this theoretical analysis. The increased weight magnitudes directly contribute to
higher Dirichlet energy E(H2) during inference, as:

E(H2) =
∑

(i,j)∈E

∥h2
i − h2

j∥22/2|E| (28)

where larger weights produce more distinctive features between connected nodes, helping mitigate
oversmoothing.

Figure 10: Effect of dropout on max singular values of the weight matrices.

A.6 ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSION ON DROPOUT VARIANTS

Different methods apply masks at various stages of graph neural network training:

DropNode (Feng et al., 2020):

Md = Ã((Mnode ⊙H(l−1))W (l))d

where Mnode is a node-wise mask applied to all dimensions.

DropEdge Rong et al. (2019):

Md = (Medge ⊙ Ã)(H(l−1)W (l))d

where Medge is a single mask for the adjacency matrix.

DropMessage Fang et al. (2023):

Md = Ã(Mmsgd ⊙ (H(l−1)W (l)))d

where Mmsgd is a dimension-specific message mask.

Dropout (Srivastava et al., 2014):

Md = Mfeatd ⊙ Ã(H(l−1)W (l))d

where Mfeatd is a dimension-specific feature mask.

Additionally, these methods exhibit different subgraph formation and degree-dependent effects:
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DropNode:

Gt = (V \ Vdropped, E \ {(i, j)|i ∈ Vdropped or j ∈ Vdropped}),Vdropped = {i|Mnodei = 0}

E[degeffi (t)] = degi
∏

j∈N (i)

(1− p)

DropEdge:
Gt = (V, E \ Edropped), Edropped = {(i, j)|Medgeij = 0}

E[degeffi (t)] = (1− p)degi

DropMessage:
Gd
t = (V, Ed

t ), Ed
t = {(i, j) ∈ E|Mmsgdij

̸= 0}

E[degeffi (t)] = (1− p)degi

Dropout:
Gd
t = (V, Ed

t ), Ed
t = {(i, j) ∈ E|Mfeatdi

̸= 0 and Mfeatdj
̸= 0}

E[degeffi (t)] = (1− p)2degi

Overall, dropout’s quadratic degree-dependent effect makes it particularly effective by providing
natural adaptive regularization at hub nodes, where over-mixing of features is most problematic.
While other methods also provide degree-dependent regularization, they either lack dimension-
specific patterns (DropNode, DropEdge) or do not provide sufficiently strong control at high-degree
nodes (DropMessage).

To further explore the practical impact of these different regularization techniques, we conducted
hyperparameter tuning for DropEdge, DropNode, and DropMessage on the Cora, Citeseer, and
Pubmed datasets. The results, summarized in Table 4, demonstrate that while these methods yield
comparable performance, traditional dropout generally performs best.

Table 4: Experimental results of different regularization methods on Cora, Citeseer, and PubMed.

Cora (GCN) CiteSeer (GCN) PubMed (GCN) Cora (SAGE) CiteSeer (SAGE) PubMed (SAGE) Cora (GAT) CiteSeer (GAT) PubMed (GAT)
GNN 83.18 ± 1.22 70.48 ± 0.45 79.40 ± 1.02 83.06 ± 0.80 69.68 ± 0.82 76.40 ± 1.48 82.58 ± 1.47 71.08 ± 0.42 79.28 ± 0.58
GNN+Dropout 85.22 ± 0.66 73.24 ± 0.63 81.08 ± 1.16 84.14 ± 0.63 71.62 ± 0.29 77.86 ± 0.79 83.92 ± 1.29 72.00 ± 0.91 80.48 ± 0.99
GNN+DropEdge 84.88 ± 0.68 72.96 ± 0.38 80.42 ± 1.15 83.10 ± 0.51 71.72 ± 0.92 77.88 ± 1.31 83.44 ± 0.78 71.60 ± 1.14 79.82 ± 0.68
GNN+DropNode 84.92 ± 0.52 73.08 ± 0.39 80.60 ± 0.49 83.42 ± 0.58 71.92 ± 0.65 78.06 ± 1.09 83.80 ± 0.97 71.30 ± 0.87 79.50 ± 0.68
GNN+DropMessage 84.78 ± 0.58 73.12 ± 1.19 80.92 ± 0.88 83.18 ± 0.62 71.22 ± 1.34 78.20 ± 0.80 83.46 ± 1.06 71.38 ± 1.12 79.36 ± 1.22
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