
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTRINSIC LORENTZ NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world data frequently exhibit latent hierarchical structures, which can be
naturally represented by hyperbolic geometry. Although recent hyperbolic neural
networks have demonstrated promising results, many existing architectures remain
partially intrinsic, mixing Euclidean operations with hyperbolic ones or relying
on extrinsic parameterizations. To address it, we propose the Intrinsic Lorentz
Neural Network (ILNN), a fully intrinsic hyperbolic architecture that conducts all
computations within the Lorentz model. At its core, the network introduces a novel
point-to-hyperplane fully connected layer (FC), replacing traditional Euclidean
affine logits with closed-form hyperbolic distances from features to learned Lorentz
hyperplanes, thereby ensuring that the resulting geometric decision functions re-
spect the inherent curvature. Around this fundamental layer, we design intrinsic
modules: GyroLBN, a Lorentz batch normalization that couples gyro-centering
with gyro-scaling, consistently outperforming both LBN and GyroBN while re-
ducing training time. We additionally proposed a gyro-additive bias for the FC
output, a Lorentz patch-concatenation operator that aligns the expected log-radius
across feature blocks via a digamma-based scale, and a Lorentz dropout layer.
Extensive experiments conducted on CIFAR-10/100 and two genomic benchmarks
(TEB and GUE) illustrate that ILNN achieves state-of-the-art performance and
computational cost among hyperbolic models and consistently surpasses strong
Euclidean baselines.

1 INTRODUCTION

Hierarchical structures exist across a wide range of machine learning applications, including computer
vision (Khrulkov et al., 2020; Ghadimi Atigh et al., 2022; Bdeir et al., 2024; Pal et al., 2025), natural
language processing (Ganea et al., 2018; Tifrea et al., 2019; Yang et al., 2024a), knowledge-graph
reasoning (Nickel & Kiela, 2017; Balazevic et al., 2019; Welz et al., 2025), graph learning (Chami
et al., 2019; Yang et al., 2022; Li et al., 2024), and genomics tasks (Khan et al., 2025; Zhou &
Sharpee, 2021; Yang et al., 2025). While Euclidean neural networks often incur high distortion or
require excessive dimensionality when embedding hierarchical or scale-free structures (Nickel &
Kiela, 2018), hyperbolic geometry, characterized by constant negative curvature, offers exponential
representational capacity and enables more compact embeddings (Ganea et al., 2018; Shimizu et al.,
2020). Consequently, hyperbolic neural networks (HNNs) have demonstrated notable success in
applications with hierarchical structure (Ganea et al., 2018; Chami et al., 2019; Shimizu et al., 2020;
Gulcehre et al., 2019; Li et al., 2024; Fan et al., 2024; Leng et al., 2024; Bdeir et al., 2024; Pal et al.,
2025; Chen et al., 2025a; Nguyen et al., 2025; He et al., 2025).

Early hyperbolic neural networks predominantly operated in the Poincaré model because its gyrovec-
tor formalism makes many neural primitives straightforward to define (Ganea et al., 2018; Shimizu
et al., 2020). However, the unit-ball constraint and boundary saturation render the Poincaré ball
more susceptible to numerical instabilities than the Lorentz model, motivating a recent shift toward
Lorentz neural networks (LNNs) that exhibit improved optimization stability (Bdeir et al., 2024).
Despite this trend leading to the emergence of excellent work (He et al., 2024; Fan et al., 2024; Liang
et al., 2024), recent advanced LNNs (Bdeir et al., 2024; Khan et al., 2025) architectures remain
only partially intrinsic: they mix Euclidean affine transformations with manifold operations or rely
on extrinsic parameterizations that compromise geometric consistency. For example, the Lorentz
fully connected layer (LFC) (Bdeir et al., 2024) that applies Euclidean mappings to Lorentz vector,
then extract the space part from mapping output and accordingly calculate the time part to form the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

output Lorentz vector. Normalization further illustrates this tension. Lorentz batch normalization
(LBN) (Bdeir et al., 2024) recenter features but either ignore gyro-variance, while GyroBN (Chen
et al., 2025a) offers gyrogroup-based control yet can still be computationally heavy due to depending
on Fréchet-type statistics. These compromises limit the representational power and efficiency of
Lorentz neural networks.

An effective way to mitigate partially intrinsic designs is the point-to-hyperplane formulation, which
has been verified on hyperbolic Poincaré (Shimizu et al., 2020) and matrix manifolds (Nguyen
et al., 2025; 2024). Inspired by this, we introduce ILNN, a fully intrinsic hyperbolic network in
which every operation, parameter, and update is defined inside the Lorentz model. At its core
is a Point-to-hyperplane Lorentz Fully Connected (PLFC) layer that replaces Euclidean affine
transformation with closed-form Lorentzian distances to learned hyperplanes, yielding curvature-
aware, margin-interpretable decision functions. Surrounding PLFC, we develop intrinsic components:
GyroLBN, a batch normalization that couples gyro-centering with variance-controlled gyro-scaling
and outperforms LBN and GyroBN while reducing wall-clock time. Furthermore, we introduced a
log-radius algin Lorentz patch-concatenation to build the stable CNN module, a gyro-additive bias,
and a Lorentz dropout layer to further improve its performance. By designing intrinsic geometric
operations, ILNN maintains mathematical consistency and geometric interpretability throughout the
network.

The main contributions of our work can be summarized as follows:

1. We propose an intrinsic hyperbolic neural network that eliminates reliance on extrinsic Euclidean
operations, thus fully harnessing hyperbolic geometry.

2. We introduce a novel point-to-hyperplane Lorentz fully connected layer(PLFC), which replaces
traditional affine transformations with intrinsic hyperbolic distances, significantly enhancing
representational fidelity.

3. We introduce a GyroLBN, a Lorentz batch normalization that combines gyro-centering with
gyro-scaling, consistently outperforming both LBN and GyroBN while reducing training time.

4. Extensive experiments demonstrate the effectiveness of ILNN, achieving state-of-the-art per-
formance on CIFAR-10/100 datasets and genomic benchmarks (TEB and GUE), consistently
outperforming Euclidean and existing hyperbolic counterparts.

2 RELATED WORK

Hyperbolic embeddings. A large body of work demonstrates that negatively curved representations
can efficiently encode hierarchical and scale-free structure across modalities. Foundational results
on hyperbolic embeddings (eg, Poincaré embeddings) show strong benefits for symbolic data with
latent trees (Nickel & Kiela, 2017), and early hyperbolic neural architectures extend core layers and
classifiers to the Poincaré model for language tasks (Ganea et al., 2018). On graphs, hyperbolic
GNNs capture hierarchical neighborhoods and outperform Euclidean counterparts on link prediction
and node classification (Chami et al., 2019); knowledge graphs likewise benefit from multi-relational
hyperbolic embeddings (Balazevic et al., 2019). In vision, hyperbolic image embeddings improve
retrieval and classification under class hierarchies (Khrulkov et al., 2020), and fully hyperbolic
CNNs (HCNN) generalize convolution, normalization, and MLR directly in the Lorentz model,
yielding strong encoder-side gains (Bdeir et al., 2024). Hyperbolic modeling has also been adapted to
genomics, where hyperbolic genome embeddings leverage evolutionary signal to surpass Euclidean
baselines across diverse benchmarks (Khan et al., 2025). In this paper, we target these two application
fronts, vision and genomics.

Hyperbolic neural networks. Designing fully hyperbolic neural networks means replacing every
Euclidean building block with operations that are intrinsic to a negatively curved manifold, without
shuttling features back and forth between Euclidean and hyperbolic spaces. Early work on the
Poincaré ball showed how to lift common layers and primitives (linear/FC maps, activations, concate-
nation, MLR) using gyrovector-space calculus and Möbius operations (Ganea et al., 2018; Shimizu
et al., 2020), while concurrent efforts formulated end-to-end hyperbolic models beyond simple
projection heads (Chen et al., 2022). Due to the Poincaré ball’s greater susceptibility to numerical
instability, subsequent work tried to generalize network components to the Lorentz model (Gulcehre
et al., 2019; Chami et al., 2019; Fan et al., 2023). Beyond classification heads, attention mecha-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

nisms (Gulcehre et al., 2019), graph convolutional layers (Chami et al., 2019), and fully hyperbolic
generative models (Qu & Zou, 2022) were also developed in this setting. A major advance came
with HCNN, which introduced Lorentz-native formulations of convolution, batch normalization, and
multinomial logistic regression, bringing vision encoders fully into the hyperbolic domain (Chen
et al., 2022; Bdeir et al., 2024; Yang et al., 2024b). But it still remains partially intrinsic, mixing
Euclidean operations with hyperbolic ones. Our work follows this intrinsic-first principle and departs
in key aspects: a point-to-hyperplane fully connected layer in the Lorentz model with closed-form
h-distances for logits and GyroLBN, a Lorentz batch normalization that couples gyro-centering with
gyro-scaling.

Normalization in HNNs. Normalization layers are central to stable and efficient training, yet
extending them to curved spaces remains challenging. A general Riemannian batch normalization
(RBN) based on the Fréchet mean was first made practical by differentiable solvers, enabling manifold-
aware centering and variance control; however, its iterative nature can be slow in practice (Lou et al.,
2020). Recently, Bdeir et al. (2024) introduced Lorentz Batch Normalization (LBN), which uses the
closed-form Lorentzian centroid (Law et al., 2019) for re-centering and a principled tangent-space
rescaling. Concurrently, Gyrogroup Batch Normalization (GyroBN) generalizes RBN to manifolds
with gyro-structure, performing gyro-centering and variance-controlled gyro-scaling that better
preserve distributional shape under gyro-operations (Chen et al., 2025a). While LBN provides
efficient Lorentzian re-centering and global rescaling, it does not explicitly align batch statistics
under gyro-operations; GyroBN performs such alignment but is computationally heavier because it
relies on Fréchet means. Motivated by these trade-offs, we propose GyroLBN, which aligns batch
statistics under gyro-operations within the Lorentz model while retaining the speed and practicality
of closed-form re-centering.

3 BACKGROUND

There are five isometric hyperbolic models that one can work with (Cannon et al., 1997). We adopt
the Lorentz (hyperboloid) model due to numerical stability (Mishne et al., 2023).

Figure 1: 2-dimensional Lorentz model
in the 3-dimensional Minkowski space.

Lorentz model. The Lorentz model embeds hyperbolic
space as the upper sheet of a two-sheeted hyperboloid in
(n+1)-dimensional Minkowski space. It is defined as

Ln
K =

{
x ∈ Rn+1

∣∣∣ ⟨x, x⟩L = 1
K , x0 > 0

}
.

where K < 0 denotes the constant sectional curvature,
and ⟨x, y⟩L := −x0y0 +

∑n
i=1 xiyi is the Lorentz inner

product. Following Ratcliffe (2006), we write x = (x0, xs)
with time coordinate x0 and space coordinates xs ∈ Rn.
The origin is o = (K−1/2, 0, . . . , 0). The closed-form
squared distance is given by d2L(x,y) = ||x − y||2L =
2
K − 2⟨x,y⟩L. Other Riemannian operators are presented
in Appendix B, such as exponential and logarithmic maps,
and parallel transport.

Gyrovector space. It forms the algebraic foundation for the hyperbolic space, as the vector
space for the Euclidean space (Ungar, 2022). A gyrovector space has gyroaddition and scalar
gyromultiplication, corresponding to the vector addition and scalar multiplication in Euclidean space.
Recently, Chen et al. (2025b) proposed the gyroaddition and gyromultiplication over the Lorentz
model:

x⊕ y = Expx (PT0→x (Log0(y))) , ∀x, y ∈ Ln
K , (1)

t⊙ x = Exp0 (tLog0(x)) , ∀t ∈ R,∀x ∈ Ln
K . (2)

Particularly, the inverse is ⊖x := (−1)⊙ x = [xt,−xs], which satisfies x⊕ (⊖x) = (⊖x)⊕ x = 0.
Eqs. 1 and 2 admit closed-form expressions, which are more efficient.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 INTRINSIC LORENTZ NEURAL NETWORK

We introduce the Intrinsic Lorentz Neural Network (ILNN), whose components are entirely defined
by the Lorentz geometry. Specifically, we propose (i) a point-to-hyperplane fully connected (FC)
layer, (ii) GyroLBN, a Lorentz batch normalization layer, and (iii) several other intrinsic modules,
including log-radius concatenation, Lorentz activations, and Lorentz dropout.

4.1 POINT-TO-HYPERPLANE LORENTZ FULLY-CONNECTED LAYER

FC layers perform an affine transformation defined by y = Ax− b, which can be element-wisely
expressed as yk = akx− bk, where x,ak ∈ Rn and bk ∈ R (Shimizu et al., 2020). Geometrically,
this transformation can be interpreted as mapping the input vector x to an output score yk, representing
either the coordinate value or the signed distance relative to a hyperplane passing through the origin
and orthogonal to the k-th coordinate axis in the output space Rm. Motivated by this geometric
interpretation, in this section, we first derive the Lorentz multinomial logistic regression (Lorentz
MLR) to obtain the signed distance, and subsequently present the formulation of the point-to-
hyperplane Lorentz fully connected (PLFC) layer.

Lorentz MLR. In Euclidean space, the multinomial logistic regression (MLR) for class c ∈
{1, . . . , C} can be formulated as the logits of the Euclidean MLR classifier using the distance from
instances to hyperplanes describing the class region (Lebanon & Lafferty, 2004), which can be written
as

p(y = c | x) ∝ exp(vc(x)), vc(x) = sign(⟨ac,x− pc⟩)||ac||d(x, Hac,pc
), ac ∈ Rn, (3)

where Hac,pc = {x ∈ R : ⟨ac,x− pc} is the Euclidean hyperplane of class c and d(·, ·) denotes
Euclidean distance. Once we have the Lorentz hyperplane and closed-form point-hyperplane distance,
we can extend Euclidean MLR to the Lorentz model.

In Lorentz model Ln
K , following Bdeir et al. (2024), for p ∈ Ln

K and w ∈ TpLn
K , the hyperplane

passing through p and perpendicular to w is given by Hw,p = {x ∈ Ln
K | ⟨w,x⟩L = 0}, where w

should satisfy the condition ⟨w,w⟩ > 0. To eliminate this condition, w ∈ TpLn
K is parameterized by

a vector z ∈ T0Ln
K = [0, az/||z||], where a ∈ R and z ∈ Rn. As w ∈ TpLn

K , z is parallel transport
to p, the Lorentz hyperplane defined by

H̃z,a = {x ∈ Ln
K | cosh

(√
−Ka

)
⟨z,xs⟩ − sinh

(√
−Ka

)
||z|| xt = 0}, (4)

where a and z represent the distance and orientation to the origin, respectively. Due to the z ∈ T0Ln
K

and the sign-preserving property of parallel transported, this construction naturally satisfies ⟨w,w⟩ >
0. Then for x ∈ Ln

K , the distance to a Lorentz hyperplane is given by

dL
(
x, H̃z,a

)
=

1√
−K

∣∣∣∣∣∣sinh−1
(√
−K

cosh
(√
−Ka

)
⟨z,xs⟩ − sinh

(√
−Ka

)
∥z∥2 xt√

∥ cosh
(√
−Ka

)
z∥22 −

(
sinh

(√
−Ka

)
∥z∥2

)2)
∣∣∣∣∣∣ , (5)

Substituting Eq. 4 and Eq. 5 into Eq. 3, we obtain that the Lorentz MLR’s output logit corresponding to class c
is given by

vzc,ac(x) =
1√
−K

sign(αc)βc

∣∣∣∣sinh−1

(√
−Kαc

βc

)∣∣∣∣ , (6)

αc = cosh
(√
−Ka

)
⟨z,xs⟩ − sinh

(√
−Ka

)
,

βc =

√
|| cosh

(√
−Ka

)
z||2 − (sinh

(√
−Ka

)
||z||)2.

Lorentz fully-connected layer (PLFC). Shimizu et al. (2020) interpreted the Euclidean FC layer as
an operation that transforms the input x via vk(x), treating the output yk as the signed distance from the
hyperplane He(k),0 passing through the origin and orthogonal to the k-th axis of the output space Rm, which
can be written as

d±
(
yk, He(k),0

)
= vk(x), k = 1, . . . ,m. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where d±(·, ·) denote the signed distance in Euclidean space. We now collect the above ingredients into an
intrinsic FC layer that maps an input x∈Ln

K to an output y=(y0,ys) ∈ Lm
K . Let {(zk, ak)}mk=1 be learnable

hyperplane parameters and define vk(x)=vzk,ak (x) as in Eq. 6. Matching each vk(x) to the signed h-distance
from y to the k-th coordinate hyperplane H̄e(k),0 = {x = (x0, x1, . . . , xm)T ∈ Lm

K | ⟨e(k), x⟩ = xk =

0, k = 1, 2 . . . ,m} fixes the spatial coordinates, while the time coordinate follows from the hyperboloid
constraint.
Theorem 1 (PLFC layer). Let x∈Ln

K , Z = {zk}mk=1⊂Rn and a = {ak}mk=1⊂R. The point–to–hyperplane
Lorentz fully connected layer PLFCK : Ln

K → Lm
K is

vk(x) = vzk,ak (x), k = 1, . . . ,m, (8a)

ys,k =
1√
−K

sinh
(√
−K vk(x)

)
, (8b)

y =

[√
(−K)−1 + ∥ys∥22,ys

]
, (8c)

where ys = (ys,1, . . . , ys,m)⊤. In the flat-space limit K→0, equation 8 reduces to the Euclidean affine map
y = Av + b with Ak = z⊤k and bias b = a.

It can be shown that the signed distance from y to each Lorentz hyperplane passing through the origin and
orthogonal to the k-th coordinate axis is given by vk(x), as detailed in the Appendix E.1, thereby fulfilling the
properties described above.

Gyro-bias. A learnable offset b∈Lm
K can be added intrinsically via the gyroaddition, y ← y ⊕ b, yielding

the final PLFC output.

Discussion. The previous Lorentz fully connected layer (LFC) used in HCNN was formed by

y =
[√
|ϕ(Wx,v)|2 − 1/K, ϕ(Wx,v)

]
,

where x ∈ Ln
K and Wx is a standard matrix–vector product in Rn. This Wx is defined using the ambient linear

structure of the Minkowski space, not any operation on the Lorentz manifold so itself only partially intrinsic.
The PLFC depends only on Lorentzian operations, avoids tangent-space linearisation, and enjoys closed-form
gradients, making it an efficient and curvature-consistent replacement for Euclidean FC layers in hyperbolic
networks. More detailed discussions are in Appendix D and a theoretical advantage of PLFC over LFC is shown
in Appendix E.2.

4.2 GYROGROUP LORENTZ BATCH NORMALIZATION (GYROLBN)

Batch Normalization (BN) facilitates training by normalizing batch statistics. Recently, Bdeir et al. (2024)
proposed LBN, which uses a Lorentzian centroid to efficiently compute the batch mean. However, their approach
fails to normalize sample statistics. Besides, Chen et al. (2025a;b) extended BN into manifolds based on
gyrogroup structures, referred to GyroBN (Chen et al., 2025a). Although it can normalize sample mean/variance
on Lorentz spaces, the involved Fréchet mean could be inefficient. Therefore, we propose GyroLBN to combine
the gyrogroup normalization with Lorentzian centroid & radius statistics, retaining GyroBN’s effectiveness
while eliminating computationally expensive Fréchet mean.

Batch centering and dispersion. Generally, the Fréchet mean must be solved iteratively, which signif-
icantly delays the training speed. Therefore, following Law et al. (2019); Bdeir et al. (2024), with xi ∈ Ln

K ,
νi ≥ 0,

∑m
i=1 νi > 0 and a batch of features B = {xi ∈ Ln

K}mi=1, is given by, we define the batch mean by
Lorentzian centroid which can be calculated efficiently in closed form (Law et al., 2019):

µB =

∑m
i=1 νixi√

−K
∣∣||∑m

i=1 νixi||L
∣∣ , (9)

which solves minµB∈Ln
K

∑m
i=1 νid

2
L(xi, µB). Moreover, the mean is not weighted, which gives νi = 1

m
.

As for dispersion, we adopt the Fréchet variance σ2 ∈ R+, defined as the expected squared Lorentzian distance
between a point xi and the mean µB , and given by σ2

B = 1
m

∑m
i=1 d

2
L(xi, µ) (Kobler et al., 2022).

Normalization map. Denote learned scale γ ∈ R>0 (per-channel) and learned bias β ∈ Ld
K ; For each

sample x, the GyroLBN output is

∀i ≤ N, x̃i ←
Biasing︷︸︸︷
β⊕


Scaling︷ ︸︸ ︷
γ√

σB + ϵ
⊙

 Centering︷ ︸︸ ︷
⊖µB ⊕ xi


 , ε > 0. (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ⊕ denotes left gyroaddition Eq. 1, ⊖ denotes gyro inverse, and ⊙ denotes gyro scalar product Eq. 2.
Unless otherwise stated, during inference, we maintain per-channel running statistics by updating the Lorentzian
centroid (mean) and dispersion (variance) with momentum and, at test time, substitute these for batch stats.

Discussion. GyroLBN unifies the gyrogroup normalization paradigm of GyroBN with the efficient Lorentz
statistics of LBN, differing from GyroBN only in the choice of statistics by replacing Fréchet-based batch
estimates with closed-form Lorentzian centroid and variance while retaining the same gyrogroup centering and
scaling scheme. Compared to Fréchet variance used in generic Riemannian BN (Lou et al., 2020; Chen et al.,
2022), the mean-radius statistic avoids iterative solvers and proved numerically stable in our vision/genomics
settings. It therefore (i) remains fully intrinsic, (ii) avoids iterative Fréchet solvers (important for large batches
and 2D convolutions), and (iii) integrates naturally with gyro-additive residual/bias layers used in our encoder.
Compared to LBN and Fréchet-based GyroBN (Lou et al., 2020), GyroLBN consistently reduced wall-clock
time while improving accuracy in our settings, as shown in Table 4.

4.3 OTHER LORENTZ MODULES

Log-radius concatenation. When concatenating N Lorentz patches, each with (1 + d) coordinates (one
time and d spatial), naively stacking theNd spatial components biases the resulting feature norm toward higher di-
mensions: the expected radius grows withNd, skewing subsequent layers. We introduce a log-radius–preserving
concatenation that makes the expected log spatial radius invariant to the number of concatenated blocks. Let
v ∈ Rni denote the spatial part of a block and assume its radius factorizes as ∥v∥ = σ

√
T with T ∼ χ2

ni
. Then

E[log ∥v∥] = log σ + 1
2

(
ψ
(
ni
2

)
+ log 2

)
,

where ψ is the digamma function. To keep E[log ∥v∥] constant across dimensions, we scale each block’s spatial
part by

s(n, ni) = exp

(
1

2

[
ψ
(n
2

)
− ψ
(ni

2

)])
,

with n = Nd the total post-concat spatial dimension and ni = d the per-block spatial dimension. Concretely,
given per-window tensors (t1, . . . , tN) (times) and (u1, . . . , uN) with ui ∈ Rd (spaces), we form the scaled
space ũi = s ui and recompute a single time coordinate that keeps the output on the hyperboloid:

t′ =

√√√√− 1
K

+ s2
N∑
i=1

(t2i +
1
K
) ,

where k > 0 sets the origin time via t0 =
√
k (in practice, with K = −1, k = 1). The final concatenated vector

is [t′, ũ1, . . . , ũN] ∈ R1+Nd. This log-radius alignment (i) is parameter-free, (ii) is robust to heavy-tailed radii
because it matches geometric means, (iii) preserves the Lorentz constraint by design, and (iv) avoids domination
by any single wide block, improving stability as kernel size or channel count grows.

Lorentz convolutional layer. We use channel-last feature map representations throughout HCNNs, and
add the Lorentz model’s time component as an additional channel dimension, following Bdeir et al. (2024). A
hyperbolic feature map can be define as an ordered set of n-dimensional hyperbolic vectors, where every spatial
position contains a vector that can be combined with its neighbors

The convolutional layer can be formulated as a matrix multiplication between a linearized kernel and the
concatenation of values within its receptive field (Shimizu et al., 2020). Then, we extend this definition by
replacing the Euclidean FC and concatenation with our PLFC and log-radius–preserving concatenation.

Let x = {xh,w ∈ Ln
K}H,W

h,w=1 be an input hyperbolic feature map and let H̃ × W̃ denotes the kernel size with

stride δ. For each spatial location (h,w) we gather the patch {xh+δh̃, w+δw̃}
H̃,W̃

h̃,w̃=1
⊂ Ln

K , pad with the origin

(
√

1/(−K), 0, . . . , 0) and concatenate these H̃W̃ vectors by the log-radius scheme introduced above. We
defined the Lorentz convolutional layer as

yh,w = PLFC(LogCat({xh′+δh̃,w′+δw̃ ∈ Ln
K}H̃,W̃

h̃,w̃=1
})), (11)

where h′ and w′ denote the starting position, and LogCat denotes our log-radius–preserving concatenation.

Lorentz dropout. To regularize features without leaving the manifold, we adopt a dropout operator that
acts on Lorentz coordinates and then reprojects to the hyperboloid. Concretely, during training, we apply an
elementwise Bernoulli mask to the current representation x ∈ Ln

K (probability p of zeroing each entry), yielding
x̃ in ambient Rn+1. Because naive masking can violate the hyperboloid constraint and the positivity of the time

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

component, we immediately map back via a projection projL(x̃) that restores ⟨x, x⟩L = −1/K and x0 > 0.
At evaluation, the operator is the identity. In practice, we observe that the “mask & project” scheme outperforms
the variant “log–exp” scheme that applies a log map to T0Ln

K , performs Euclidean dropout, and then returns
via the exponential map, because the nonlinearity of exp0 couples all coordinates so that masking any tangent
component perturbs the entire point after mapping back to the manifold. It is parameter-free, numerically stable,
and compatible with subsequent intrinsic layers (e.g., GyroLBN and PLFC), since its output again lies on Ln

K .

Lorentz activation. Following Bdeir et al. (2024), we define activations directly in the Lorentz model by
acting on the spatial coordinates only and then recomputing the time coordinate from the hyperboloid constraint.
For example, given x = (x0, xs) ∈ Ln

K and an elementwise nonlinearity activation function ReLU, Lorentz
ReLU can be defined as

L−ReLU(x) =
[√

1
−K

+ ∥ReLU(xs)∥22 , ReLU(xs)
]
.

5 EXPERIMENT

We evaluate ILNN on image classification dataset CIFAR-10/100 (Krizhevsky et al., 2009) and genomics
(TEB (Khan et al., 2025), GUE (Zhou et al., 2023)) and compare against Euclidean and multiple hyperbolic
baselines under matched training recipes. For fairness, each Euclidean backbone is translated to the hyperbolic
setting via one-to-one module replacement, keeping depth/width, parameter count, and schedule as close as
possible. All models are implemented in PyTorch (Paszke et al., 2019) with 32-bit precision. We fix curvature
to K = −1 and train with Riemannian optimizers from Geoopt (Kochurov et al., 2020): RiemannianSGD for
CIFAR and RiemannianAdam for genomics. Unless otherwise stated, results are averaged over five random
seeds and reported as mean ± std; classification uses accuracy on CIFAR-10/100, and MCC on genomics. All
experiments are conducted on NVIDIA A100 80GB GPUs. Additional configuration details (batch size, learning
rate) appear in Appendix F.

5.1 IMAGE CLASSIFICATION

Experimental setup. Following the evaluation setup of HCNN (Bdeir et al., 2024) and symmetric
space (Nguyen et al., 2025), we benchmark ILNN on CIFAR-10 and CIFAR-100. For each method, we
instantiate a ResNet-18 backbone (He et al., 2015) in the corresponding geometry: The original ResNet-18 with
BN and linear classifier (Euclidean); Euclidean encoder + hyperbolic head (Poincaré or Lorentz); all layers fully
to the target manifold (HCNN (Bdeir et al., 2024) and our ILNN). The relative distortion from input manifold
to classifier (Bdeir et al., 2024) is comparable across runs (δrel=0.26 for CIFAR-10; 0.23 for CIFAR-100).

Table 1: Classification accuracy (%) of ResNet-18 models. We estimate
the mean and standard deviation from five runs. The best performance
is highlighted in bold (higher is better).

CIFAR-10 CIFAR-100
(δrel = 0.26) (δrel = 0.23)

Euclidean (He et al., 2015) 95.14± 0.12 77.72± 0.15

Hybrid Poincaré (Guo et al., 2022) 95.04± 0.13 77.19± 0.50
Poincaré ResNet (Van Spengler et al., 2023) 94.51± 0.15 76.60± 0.32
Euclidean-Poincaré-H (Fan et al., 2023) 81.72± 7.84 44.35± 2.93
Euclidean-Poincaré-G (Ganea et al., 2018) 95.14± 0.11 77.78± 0.09
Euclidean-Poincaré-B (Nguyen et al., 2025) 95.23± 0.08 77.78± 0.15
Hybrid Lorentz (Bdeir et al., 2024) 94.98± 0.12 78.03± 0.21

HCNN Lorentz (Bdeir et al., 2024) 95.14± 0.08 78.07± 0.17
ILNN (ours) 95.36± 0.13 78.41± 0.23

Main results. Table 1
summarizes test accuracy
as mean±sd over five runs.
ILNN attains the highest
average accuracy on both
datasets, 95.36% on CIFAR-10
and 78.41% on CIFAR-100,
exceeding the Euclidean
ResNet-18 baseline by +0.22
and +0.69 percentage points
(pp), respectively. Relative to
the strongest prior hyperbolic
competitor (HCNN-Lorentz),
ILNN also improves by +0.22
pp on CIFAR-10 and +0.34
pp on CIFAR-100. Although
ILNN exhibits a slightly
larger standard deviation than
HCNN-Lorentz, on CIFAR-10, even the conservative lower bound of ILNN (95.23%) exceeds the upper bound
of HCNN (95.22%); on CIFAR-100, the lower bound of ILNN is specifically 78.24%, equal to the upper bound
of HCNN. These gains demonstrate that our intrinsic approach preserves the geometry of the Lorentz model
without distortion: by combining point-to-hyperplane FC and GyroBN within fully negative-curvature space,
ILNN leverages the native manifold structure more effectively than others.

Visualization. We visualize embeddings by mapping network outputs from the Lorentz model to the Poincaré
ball and, in parallel, applying the logarithmic map at the origin to view them in the tangent plane; colors indicate
output label prediction. In Figure 2 (CIFAR-10), the ILNN embeddings form ten compact clusters, whose areas

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

are visibly smaller than the corresponding clusters produced by HCNN. Only marginal colour bleeding occurs
at the boundaries, indicating that the decision margins learned by the point-to-hyperplane FC induce margins
aligned with the data geometry. The effect becomes even more pronounced on the harder CIFAR-100 task, as
shown in Figure 3. Despite packing 100 classes into the same 2D manifold, ILNN still yields dense colour
"islands" with clear gaps in between, whereas HCNN exhibits overlapping clouds and several mixed-colour
zones. These visual trends are consistent with the quantitative improvements in Table 1.

5.2 GENOMIC CLASSIFICATION

Experimental setup. We evaluate on the most challenging subsets of the TEB and GUE genomics bench-
marks, specifically those on which the published HCNN (Khan et al., 2025) does not surpass a Euclidean
convolutional baseline. For every dataset, we instantiate four models that share the same convolutional stem
and classifier width: In our comparisons, the Euclidean CNN uses standard convolutions, Euclidean BN, and
a linear classifier; HCNN-S employs Lorentz modules with a single global curvature K across the network;
HCNN-M uses Lorentz modules with layer-wise curvatures K; and ILNN is fully intrinsic, featuring GyroBN
and a point-to-hyperplane FC with gyro-bias, while fixing a global curvature K = −1. All hyperbolic models
are optimized with RiemannianAdam (lr 10−3); the Euclidean baseline uses Adam with an identical schedule.
We measure performance by the Matthews correlation coefficient (MCC).

Main results. Table 2 shows that ILNN achieves the best score on every task. On the two TEB pseudogene
sets, it improves over the Euclidean baseline by +9.6 and +13.0 pp, and still exceeds the stronger HCNN-S
by +2.0 and 8.8 pp, respectively, demonstrating clear gains where previous hyperbolic models were already
competitive. The advantage is even more striking on GUE. For Covid-variant classification, HCNN collapses
(MCC 36.7/14.8) much lower than the Euclidean model, whereas ILNN matches and slightly surpasses the
Euclidean score (64.8 vs. 63.6). On promoter-related tasks, ILNN consistently raises the bar: Tata core-promoter
detection jumps from 79.9 (best prior) to 83.9, and the most difficult “all” split goes from 67.2 to 70.7. Across
the board, ILNN tightens the worst-case gap between hyperbolic and Euclidean models and converts several
cases of HCNN under-performance into clear wins. These results confirm that fully intrinsic design choices,
point-to-hyperplane FC, GyroLBN, and other proposed components, translate into tangible accuracy gains on
real-world genomic data.

Table 2: Model performance (MCC) on all real-world genomics datasets, averaged over five random
seeds (mean ± standard deviation). The two highest-scoring models are in bold. * denotes that the
result was reproduced under the same setting.

Model
Benchmark Task Dataset Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

Hyperbolic
ILNN

T
E

B Pseudogenes processed 60.66±0.82 68.30±0.93 65.41±5.54 70.26±0.32

unprocessed 51.94±2.69 56.13±0.56 58.36±1.80 64.90±0.74

G
U

E

Covid Variant Classification Covid 63.62±1.34* 36.71±9.69 14.81±0.46 64.76±0.54

tata 78.26±2.85 79.54±1.61 79.87±2.50 83.90±0.53

Core Promoter Detection notata 66.60±1.07 66.52±0.28 65.95±0.51 72.59±0.69

all 66.47±0.74 65.26±1.11 67.16±0.55 70.89±0.43

tata 78.58±3.39 79.74±2.66 78.77±0.78 83.26±1.90

Promoter Detection notata 90.81±0.51 89.86±0.76 90.28±0.37 92.48±0.35

all 88.00±0.39 87.60±0.51 87.93±0.76 91.34±0.38

5.3 GRAPHS

Experimental setup. To further evaluate the effectiveness of our method, we extend it to three widely-
used graph datasets (AIRPORT, CORA and PUBMED), which exhibit intricate topological and hierarchical
relationships, making them an ideal testbed for evaluating the effectiveness of hyperbolic networks (e.g., HGNN,
HGCN, HGAT, HAN, HNN++ and Hypformer). We choose the Hypformer as baseline and replace the Linear
layer in Hypformer.

Main results. The quantitative results are summarized in Table 3. Overall, hyperbolic models consistently
outperform their Euclidean counterparts on all three benchmarks, confirming that negatively curved representa-
tions are well-suited for graphs with rich hierarchical structure. Among existing methods, HAN, HNN++, and
SGFormer constitute the strongest baselines, while Hypformer further improves their performance. Building on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Embedding visualization of CIFAR-10 dataset in Poincaré and Tangent Space. Colors
represent labels. HCNN (94.98, left) and ILNN (95.48, right).

Figure 3: Embedding visualization of CIFAR-100 dataset in Poincaré and Tangent Space. Colors
represent labels. HCNN (77.67, left) and ILNN (78.64, right).

this backbone, Hypformer+PLFC achieves the best results on all datasets, reaching 96.03%±0.34 on AIRPORT,
85.68%±0.19 on CORA, and 82.52%±0.33 on PUBMED. Compared with the original Hypformer, this corre-
sponds to absolute gains of +1.03, +0.68, and +1.22 percentage points, respectively. The standard deviations
remain small, and the confidence intervals of Hypformer+PLFC are largely separated from those of competing
methods on AIRPORT and PUBMED, indicating that the observed gains are statistically stable. These results
demonstrate that replacing the Euclidean linear classifier in Hypformer with our hyperbolic point-to-hyperplane
PLFC layer provides a simple yet effective way to enhance graph representation learning on graph benchmarks.

5.4 ABLATION STUDY

Table 3: Testing results (Accuracy) on AIRPORT, CORA and PUBMED.
The best results are in bold, respectively.

Models AIRPORT CORA PUBMED

GCN (Kipf & Welling, 2017) 81.4± 0.6 81.3± 0.3 78.1± 0.2
GAT (Veličković et al., 2017) 81.5± 0.3 83.0± 0.7 79.0± 0.3
SGC (Wu et al., 2019) 82.1± 0.5 80.1± 0.2 78.7± 0.1
HGNN (Liu et al., 2019) 84.7± 1.0 77.1± 0.8 78.3± 1.2
HGCN (Chami et al., 2019) 89.3± 1.2 76.5± 0.6 78.0± 1.0
HGAT (Chami et al., 2019) 89.6± 1.0 77.4± 0.7 78.3± 1.4
GraphFormer (Ying et al., 2021) 88.1± 1.2 60.0± 0.5 73.3± 0.7
GraphTrans (Wu et al., 2021) 94.3± 0.6 77.6± 0.8 77.5± 0.7
GraphGPS (Rampášek et al., 2022) 94.5± 0.9 73.0± 1.4 72.8± 1.4
FPS-T (Cho et al., 2023) 96.0± 0.6 82.3± 0.7 78.5± 0.6
HAN (Gulcehre et al., 2019) 92.9± 0.6 83.1± 0.5 79.0± 0.6
HNN++ (Shimizu et al., 2020) 92.3± 0.3 82.8± 0.6 79.9± 0.4
F-HNN (Chen et al., 2022) 93.0± 0.7 81.0± 0.7 77.5± 0.8
NodeFormer (Wu et al., 2022) 80.2± 0.6 82.2± 0.9 79.9± 1.0
SGFormer (Wu et al., 2023) 92.9± 0.5 83.2± 0.9 80.0± 0.8

Hypformer (Yang et al., 2024b) 95.0± 0.5 85.0± 0.3 81.3± 0.3
Hypformer+PLFC 96.0± 0.3 85.7± 0.2 82.5± 0.3

To better understand the con-
tributions of each architec-
tural component, we conduct
an ablation study on our two
main innovations: the point-
to-hyperplane fully connected
head (PLFC) and the Gy-
rogroup Lorentz Batch Nor-
malization (GyroLBN). We
compare them against their
Lorentz counterparts (LFC,
LBN) as well as GyroBN, mea-
suring both classification accu-
racy across CIFAR-10 and ge-
nomics tasks, and training ef-
ficiency to disentangle the ef-
fects of the classifier design
and the normalization strategy,
and to assess whether their
combination leads to comple-
mentary improvements.

PLFC vs. LFC. Holding
the normalizer fixed, replacing the Lorentz fully connected head with the point-to-hyperplane fully connected
head consistently improves accuracy. With GyroLBN, PLFC outperforms LFC on CIFAR-10 (95.36 vs. 95.19,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Ablation on PLFC and GyroLBN. Fit time denotes the training time of the CIFAR-10 dataset
per epoch.

Model
Benchmark Task Dataset LFC

LBN
LFC
GyroLBN

PLFC
GyroBN

PLFC
GyroLBN

CIFAR-10 95.14±0.08 95.19±0.15 95.28±0.17 95.36±0.13

G
U

E

tata 78.26±2.85 81.33±3.19 80.89±3.11 83.90±0.53
Core Promoter Detection notata 66.60±1.07 71.92±0.52 72.22±0.82 72.59±0.69

all 66.47±0.74 69.74±1.3 70.14±0.45 70.89±0.43

tata 78.58±3.39 80.46±0.99 81.16±1.99 83.26±1.90
Promoter Detection notata 90.81±0.51 91.88±1.01 91.67±0.49 92.48±0.35

all 88.00±0.39 90.28±1.04 91.02±0.56 91.34±0.38

Fit Time(s) 142 125 314 169

+0.17) and on all six genomics subsets, with gains of +2.57 on tata core-promoter detection (83.90 vs. 81.33),
+0.67 on notata (72.59 vs. 71.92), and +0.97 on the all split (70.89 vs. 69.74); for promoter detection, the
improvements are +2.80 (tata: 83.26 vs. 80.46), +0.60 (notata: 92.48 vs. 91.88), and +1.06 (all: 91.34 vs.
90.28). Although the PLFC variant with GyroBN also performs strongly, exceeding the LFC baseline by more
than +3 on all genomics subsets and matching or surpassing it on CIFAR-10 (95.28 vs. 95.14). These results
indicate that decision functions based on point-to-hyperplane distance provide a more effective inductive bias
than affine logits in both vision and genomics.

GyroLBN vs. LBN, GyroBN. Under the same FC, GyroLBN improves over LBN across all tasks. With
the LFC head, CIFAR-10 increases from 95.14 to 95.19; on genomics, the gains range from +1.07 to +5.32 (e.g.,
core-promoter notata: 71.92 vs. 66.60). With the PLFC head, GyroLBN is superior to GyroBN on every dataset,
including notata in core-promoter detection, where it reaches 72.59 versus 72.22. The improvements span +0.32
to +3.01 on genomics and +0.08 on CIFAR-10. Training time measurements show that GyroLBN attains these
gains with favorable efficiency, running faster than PLFC with GyroBN (169 s vs. 314 s) and even faster than
LBN for the comparison of LFC between GyroLBN and LBN (125 s vs. 142 s). Overall, GyroLBN offers a
better accuracy and efficiency trade-off than both LBN and GyroBN in our settings.

Furthermore, to ensure a fair comparison with GyroBN, we further vary the number of Fréchet mean iterations
used by the normalizers (1, 2, 5, 10, and a fixed-point solve denoted by∞; see Appendix G). Across all iteration
cases, PLFC+GyroLBN remains the best-performing configuration on CIFAR-10 and on every genomics split,
exhibiting the effectiveness of our GyroLBN again.

6 CONCLUSION

This study presented the Intrinsic Lorentz Neural Network, an architecture whose computations remain entirely
within the Lorentz model of hyperbolic space. We introduced a point-to-hyperplane fully connected layer
that converts signed hyperbolic distances into logits, together with GyroLBN and log-radius concatenation for
numerically stable normalization and feature aggregation. Integrated into a coherent network, these components
yield superior performance on CIFAR-10, CIFAR-100, and two challenging genomics benchmarks, surpassing
Euclidean, hybrid, and prior hyperbolic baselines while preserving competitive training cost. The results
underscore the value of keeping every layer intrinsic to the manifold and provide practical building blocks for
future work on representation learning in negatively curved geometries.

REPRODUCIBILITY STATEMENT

All theoretical results are established under explicit conditions. Experimental details are given in Appendix F.
The code will be released upon acceptance.

ETHICS STATEMENT

This work only uses publicly available datasets and does not involve human subjects or sensitive information.
We identify no specific ethical concerns.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embeddings. Advances
in neural information processing systems, 32, 2019.

Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural networks for
computer vision. In International Conference on Learning Representations (ICLR), 2024.

James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry. Hyperbolic geometry. In Silvio
Levy (ed.), Flavors of Geometry, volume 31 of MSRI Publications. Mathematical Sciences Research Institute,
1997.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural networks.
Advances in neural information processing systems, 32, 2019.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Fully
hyperbolic neural networks. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5672–5686, 2022.

Ziheng Chen, Yue Song, Xiao-Jun Wu, and Nicu Sebe. Gyrogroup batch normalization. In International Confer-
ence on Learning Representations (ICLR), 2025a. URL https://proceedings.iclr.cc/paper_
files/paper/2025/file/fb19caf91f4966e426026685028cb73a-Paper-Conference.
pdf.

Ziheng Chen, Xiao-Jun Wu, and Nicu Sebe. Riemannian batch normalization: A gyro approach. arXiv preprint
arXiv:2509.07115, 2025b.

Sungjun Cho, Seunghyuk Cho, Sungwoo Park, Hankook Lee, Honglak Lee, and Moontae Lee. Curve your
attention: Mixed-curvature transformers for graph representation learning. arXiv preprint arXiv:2309.04082,
2023.

Xiran Fan, Chun-Hao Yang, and Baba C. Vemuri. Horospherical decision boundaries for large margin classifica-
tion in hyperbolic space. arXiv preprint arXiv:2302.06807, 2023.

Xiran Fan, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Mahashweta Das, and Hao Yang. Enhancing hy-
perbolic knowledge graph embeddings via lorentz transformations. In Findings of the Association for
Computational Linguistics: ACL 2024, pp. 4575–4589, 2024. URL https://aclanthology.org/
2024.findings-acl.272.pdf.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in neural
information processing systems, 31, 2018.

Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne van Noord, and Pascal Mettes. Hyperbolic image
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4429–4439, 2022.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter
Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention networks. In ICLR, 2019.

Y. Guo, X. Wang, Y. Chen, and S. X. Yu. Clipped hyperbolic classifiers are super-hyperbolic classifiers. In
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–10, Los Alamitos,
CA, USA, jun 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.00010. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Neil He, Menglin Yang, and Rex Ying. Lorentzian residual neural networks. arXiv preprint arXiv:2412.14695,
2024. URL https://arxiv.org/abs/2412.14695.

Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang,
and Rex Ying. Helm: Hyperbolic large language models via mixture-of-curvature experts. arXiv preprint
arXiv:2505.24722, 2025.

Raiyan R Khan, Philippe Chlenski, and Itsik Pe’er. Hyperbolic genome embeddings. arXiv preprint
arXiv:2507.21648, 2025.

Andrei Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic
image embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6418–6428, 2020.

11

https://proceedings.iclr.cc/paper_files/paper/2025/file/fb19caf91f4966e426026685028cb73a-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/fb19caf91f4966e426026685028cb73a-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/fb19caf91f4966e426026685028cb73a-Paper-Conference.pdf
https://aclanthology.org/2024.findings-acl.272.pdf
https://aclanthology.org/2024.findings-acl.272.pdf
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00010
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00010
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2412.14695

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR,
2017.

Reinmar J. Kobler, Jun-ichiro Hirayama, and Motoaki Kawanabe. Controlling the fréchet variance improves
batch normalization on the symmetric positive definite manifold. In ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3863–3867, 2022. doi: 10.1109/
ICASSP43922.2022.9746629.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch. arXiv
preprint arXiv:2005.02819, 2020. URL https://arxiv.org/abs/2005.02819.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Marc T. Law, Renjie Liao, Jake Snell, and Richard S. Zemel. Lorentzian distance learning for hyperbolic
representations. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 3672–3681. PMLR, 2019. URL https://proceedings.
mlr.press/v97/law19a.html.

Guy Lebanon and John Lafferty. Hyperplane margin classifiers on the multinomial manifold. In Proceedings of
the twenty-first international conference on Machine learning, pp. 66, 2004.

Zhiying Leng, Tolga Birdal, Xiaohui Liang, and Federico Tombari. Hypersdfusion: Bridging hierarchical
structures in language and geometry for enhanced 3d text2shape generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024. URL https://openaccess.thecvf.
com/content/CVPR2024/papers/Leng_HyperSDFusion_Bridging_Hierarchical_
Structures_in_Language_and_Geometry_for_Enhanced_CVPR_2024_paper.pdf.

Yancong Li, Xiaoming Zhang, Ying Cui, and Shuai Ma. Hyperbolic graph neural network for temporal
knowledge graph completion. In Proceedings of the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp. 8474–8486, Torino, Italia, 2024.
ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.743/.

Qiuyu Liang, Weihua Wang, Feilong Bao, and Guanglai Gao. Fully hyperbolic rotation for knowledge graph
embedding. arXiv preprint arXiv:2411.03622, 2024. URL https://arxiv.org/abs/2411.03622.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In NeurIPS, pp. 8230–8241,
2019.

Aaron Lou, Nina Miolane, Tien-Minh Le, Xavier Pennec, Susan Holmes, and Quoc Gu. Differentiating
through the fréchet mean. In Proceedings of the 37th International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learning Research, pp. 6393–6403, 2020. URL https:
//proceedings.mlr.press/v119/lou20a.html.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic representation
learning. In International Conference on Machine Learning, pp. 24925–24949. PMLR, 2023.

Xuan Son Nguyen and Shuo Yang. Building neural networks on matrix manifolds: A gyrovector space approach.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research. PMLR, 2023.

Xuan Son Nguyen, Boris Muzellec, and Agnieszka Słowik. A gyrovector space approach for symmetric positive
semi-definite matrices. In Proceedings of the 17th European Conference on Computer Vision (ECCV).
Springer, 2022.

Xuan Son Nguyen, Shuo Yang, and Aymeric Histace. Matrix manifold neural networks++. arXiv preprint
arXiv:2405.19206, 2024.

Xuan Son Nguyen, Shuo Yang, and Aymeric Histace. Neural networks on symmetric spaces of noncompact
type. In The Thirteenth International Conference on Learning Representations, 2025.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In
Advances in Neural Information Processing Systems, volume 30, 2017.

Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic geom-
etry. In Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pp. 3776–3785. PMLR, 2018.

Avik Pal, Max van Spengler, Guido Maria D’Amely di Melendugno, Alessandro Flaborea, Fabio Galasso, and
Pascal Mettes. Compositional entailment learning for hyperbolic vision-language models. In The Thirteenth
International Conference on Learning Representations, 2025.

12

https://arxiv.org/abs/2005.02819
https://proceedings.mlr.press/v97/law19a.html
https://proceedings.mlr.press/v97/law19a.html
https://openaccess.thecvf.com/content/CVPR2024/papers/Leng_HyperSDFusion_Bridging_Hierarchical_Structures_in_Language_and_Geometry_for_Enhanced_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Leng_HyperSDFusion_Bridging_Hierarchical_Structures_in_Language_and_Geometry_for_Enhanced_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Leng_HyperSDFusion_Bridging_Hierarchical_Structures_in_Language_and_Geometry_for_Enhanced_CVPR_2024_paper.pdf
https://aclanthology.org/2024.lrec-main.743/
https://arxiv.org/abs/2411.03622
https://proceedings.mlr.press/v119/lou20a.html
https://proceedings.mlr.press/v119/lou20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), 2019. URL https://proceedings.neurips.
cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Eric Qu and Dongmian Zou. Lorentzian fully hyperbolic generative adversarial network. arXiv preprint
arXiv:2201.12825, 2022.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a general, powerful, scalable graph transformer. In NeurIPS, volume 35, pp. 14501–14515, 2022.

John G. Ratcliffe. Foundations of Hyperbolic Manifolds, volume 149 of Graduate Texts in Mathematics. Springer,
New York, 2 edition, 2006.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv preprint
arXiv:2006.08210, 2020.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoencoders. In
International Conference on Learning Representations, 2020.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic word embeddings.
arXiv preprint arXiv:1810.06546, 2019. URL https://arxiv.org/abs/1810.06546.

Abraham A. Ungar. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. World
Scientific, 2008.

Abraham Albert Ungar. Analytic Hyperbolic Geometry in N Dimensions: An Introduction. CRC Press, Boca
Raton, 2014.

Abraham Albert Ungar. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity
(Second Edition). World Scientific, 2022.

Max Van Spengler, Erwin Berkhout, and Pascal Mettes. Poincare resnet. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5419–5428, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

Simon Welz, Lucie Flek, and Akbar Karimi. Multi-hop reasoning for question answering with hyperbolic
representations. arXiv preprint arXiv:2507.03612, 2025.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In ICML, pp. 6861–6871. PMLR, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph structure
learning transformer for node classification. In NeurIPS, volume 35, pp. 27387–27401, 2022.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and Junchi Yan.
Simplifying and empowering transformers for large-graph representations. In NeurIPS, volume 36, 2023.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica. Representing
long-range context for graph neural networks with global attention. In NeurIPS, volume 34, pp. 13266–13279,
2021.

Jiaqi Yang, Wenting Chen, Xiaohan Xing, Sean He, Xiaoling Luo, Xinheng Lyu, Linlin Shen, and Guoping
Qiu. Hysurvpred: Multimodal hyperbolic embedding with angle-aware hierarchical contrastive learning and
uncertainty constraints for survival prediction. arXiv preprint arXiv:2503.13862, 2025.

Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, and Irwin King. Hyperbolic graph
neural networks: A review of methods and applications. arXiv preprint arXiv:2202.13852, 2022.

Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. Hyperbolic fine-tuning for large
language models. arXiv preprint arXiv:2410.04010, 2024a.

Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. Hypformer: Exploring
efficient transformer fully in hyperbolic space. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3770–3781, 2024b.

13

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/1810.06546

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu.
Do transformers really perform badly for graph representation? In NeurIPS, 2021.

Yuansheng Zhou and Tatyana O. Sharpee. Hyperbolic geometry of gene expression. iScience, 24(3):102225,
2021. doi: 10.1016/j.isci.2021.102225.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Efficient
foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Use of large language models 16

B Operations in the Lorentz model 16

C Gyrovector structures on the Lorentz model 17

C.1 Gyrogroups . 17

C.2 From gyrogroups to gyrovector spaces . 17

C.3 Gyrostructures induced by Riemannian geometry . 18

C.4 Constant curvature model and Möbius operations . 18

C.5 Induced gyrovector operations on the Lorentz model . 18

D Discussion about Intrinsic 19

E Proofs 19

E.1 Proof of Theorem 1 . 19

E.2 Proof of Theorem 2 . 20

F Implementation Details 22

F.1 Datasets . 22

F.2 Settings . 23

G More Ablation Studies 23

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

We use large language models to aid or polish writing.

B OPERATIONS IN THE LORENTZ MODEL

Setup and notation Fix a negative curvature K < 0. Let ⟨·, ·⟩L denote the Minkowski bilinear form with
signature (−,+, . . . ,+) on Rn+1, and write ∥ · ∥L =

√
⟨·, ·⟩L for the induced (Riemannian) norm on tangent

vectors. The n-dimensional hyperbolic space in the Lorentz (hyperboloid) model is

Ln
K :=

{
x ∈ Rn+1 : ⟨x,x⟩L = 1

K
, x0 > 0

}
,

and we use 0 :=
(

1√
−K

,0
)

as the pole (“origin”). When no confusion can arise, ∥ · ∥ denotes the Euclidean
norm in a tangent space.

Distance For x,y ∈ Ln
K , the geodesic distance inherited from Minkowski space is

DL(x,y) =
1√
−K

cosh−1(K ⟨x,y⟩L).
A useful identity for computations is the “Lorentzian chord” expression (squared distance)

d2L(x,y) = ∥x− y∥2L =
2

K
− 2 ⟨x,y⟩L.

Specializing to the pole 0,

DL(x,0) =
∥∥ logK0 (x)

∥∥, d2L(x,0) =
2

K
− 2 ⟨x,0⟩L =

2

K
+

2x0√
−K

,

and, equivalently,

DL(x,0) =
1√
−K

cosh−1(√−K x0
)
.

Tangent space The tangent space at x ∈ Ln
K is the Minkowski-orthogonal complement of x,

TxLn
K =

{
v ∈ Rn+1 : ⟨v,x⟩L = 0

}
.

Restricted to TxLn
K , the metric is positive definite and coincides with the Riemannian metric of Ln

K .

Exponential and logarithmic maps For z ∈ TxLn
K ,

expK
x (z) = cosh(α)x + sinh(α)

z

α
, α =

√
−K ∥z∥L.

The inverse map logKx : Ln
K → TxLn

K sends y ∈ Ln
K to

logKx (y) =
cosh−1(β)√
β2 − 1

(
y − β x

)
, β = K ⟨x,y⟩L.

At the pole 0 these simplify to

expK
0 (z) =

1√
−K

(
cosh

(√
−K ∥z∥

)
, sinh

(√
−K ∥z∥

) z

∥z∥

)
,

logK0 (y) =


0, y = 0,

cosh−1(β)√
β2 − 1

(
y − β 0

)
, otherwise,

β := K ⟨0,y⟩L.

with the convention z/∥z∥ = 0 when z = 0.

Parallel transport Transporting v ∈ TxLn
K along the geodesic from x to y yields

PTK
x→y (v) = v − ⟨log

K
x (y), v⟩L
dL(x,y)

(
logKx (y) + logKy (x)

)
= v +

⟨y,v⟩L
1

−K
− ⟨x,y⟩L

(x+ y).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lorentzian centroid and average pooling Given points x1, . . . ,xm ∈ Ln
K with nonnegative

weights νi (not all zero), the weighted Fréchet mean with respect to the squared Lorentzian distance,
minµ∈Ln

K

∑m
i=1 νi d

2
L(xi,µ), is obtained in closed form by

µ =

∑m
i=1 νi xi

√
−K

∣∣∣∥∑m
i=1 νi xi∥L

∣∣∣ .
In neural architectures, an “average pooling” over a hyperbolic receptive field can be implemented by taking this
Lorentzian centroid of the features in the field.

Lorentz transformations A matrix A ∈ R(n+1)×(n+1) is a Lorentz transformation if it preserves the
Minkowski product: ⟨Ax,Ay⟩L = ⟨x,y⟩L for all x,y. Such matrices form the Lorentz group O(1, n)
(equivalently, A⊤ηA = η for the Minkowski metric η). Restricting to transformations that map the upper sheet
to itself yields the time-orientation–preserving subgroup

O+(1, n) =
{
A ∈ O(1, n) : (Ax)0 > 0 for all x ∈ Ln

K

}
,

which acts by isometries on Ln
K .

Every A ∈ O+(1, n) admits a polar decomposition into a Lorentz rotation and a Lorentz boost, A = RB. The
rotation fixes the time axis and rotates spatial coordinates:

R =

[
1 0⊤

0 R̃

]
, R̃ ∈ SO(n).

A boost with velocity vector v ∈ Rn (∥v∥ < 1) has the block form

B =

 γ −γ v⊤

−γ v In +
γ2

1 + γ
vv⊤

 , γ =
1√

1− ∥v∥2
.

(Equivalently, the spatial block can be written In + γ−1
∥v∥2 vv

⊤ when v ̸= 0.)

C GYROVECTOR STRUCTURES ON THE LORENTZ MODEL

C.1 GYROGROUPS

We recall the algebraic notion of a gyrogroup, which extends the concept of a group to settings where associativity
is relaxed and corrected by gyrations (Ungar, 2008; 2014).

Definition 1 (Gyrogroup). Let G be a nonempty set endowed with a binary operation ⊕ : G×G→ G. The
pair (G,⊕) is a gyrogroup if, for all a, b, c ∈ G, the following axioms hold:

(G1) There exists an element e ∈ G such that e⊕ a = a (left identity).
(G2) For each a ∈ G there exists ⊖a ∈ G such that ⊖a⊕ a = e (left inverse).
(G3) There exists a map gyr[a, b] : G→ G (the gyration generated by a, b) such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c) (left gyroassociative law).

(G4) gyr[a, b] = gyr[a⊕ b, b] (left reduction law).

If in addition
a⊕ b = gyr[a, b](b⊕ a), ∀ a, b ∈ G,

then (G,⊕) is called gyrocommutative.

Gyrogroups generalize groups: when all gyrations are the identity map, (G,⊕) reduces to a usual group. The
lack of strict associativity is compensated by the gyration operators, which encode curvature induced nonlinearity.

C.2 FROM GYROGROUPS TO GYROVECTOR SPACES

To model both addition and scalar multiplication in curved geometries, gyrogroups can be enriched to gyrovector
spaces (Ungar, 2008; Nguyen et al., 2022).

Definition 2 (Gyrovector space). Let (G,⊕) be a gyrocommutative gyrogroup and let ⊙ : R×G→ G be a
map called scalar multiplication. The triple (G,⊕,⊙) is a gyrovector space if, for all a, b, c ∈ G and s, t ∈ R,

(V1) 1⊙ a = a, 0⊙ a = e, t⊙ e = e, and (−1)⊙ a = ⊖a.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(V2) (s+ t)⊙ a = s⊙ a⊕ t⊙ a.
(V3) (st)⊙ a = s⊙ (t⊙ a).
(V4) gyr[a, b](t⊙ c) = t⊙ gyr[a, b](c).
(V5) gyr[s⊙ a, t⊙ a] is the identity map on G.

These axioms mirror the familiar properties of vector spaces, with gyrations accounting for the deviation from
linearity. In particular, (V2) and (V3) play the role of distributivity and associativity for scalar multiplication,
while (V4)–(V5) guarantee a consistent interaction between gyrations and scaling.

C.3 GYROSTRUCTURES INDUCED BY RIEMANNIAN GEOMETRY

The above algebraic objects can be constructed on a Riemannian manifold from the exponential and logarithmic
maps at a distinguished origin. Following Nguyen et al. (2022); Nguyen & Yang (2023); Chen et al. (2025a),
let (M, g) be a complete Riemannian manifold with identity element E ∈M. Denote by Expx and Logx the
Riemannian exponential and logarithmic maps at x ∈M, and by PTx→y the parallel transport from TxM to
TyM. For P,Q,R ∈M and t ∈ R, define

P ⊕Q = ExpP

(
PTE→P (LogE Q)

)
, (12)

t⊙ P = ExpE

(
t LogE P

)
, (13)

⊖P = (−1)⊙ P = ExpE

(
−LogE P

)
, (14)

gyr[P,Q]R = (⊖(P ⊕Q))⊕
(
P ⊕ (Q⊕R)

)
. (15)

The induced gyro inner product, norm, and distance are
⟨P,Q⟩gr =

〈
LogE P,LogE Q

〉
TEM, (16)

∥P∥gr =
√
⟨P, P ⟩gr, (17)

dgr(P,Q) =
∥∥⊖P ⊕Q∥∥

gr
. (18)

Under mild regularity assumptions, (M,⊕,⊙) forms a gyrovector space and the gyrodistance dgr coincides
with the geodesic distance on a wide class of manifolds, including constant curvature spaces (Nguyen et al.,
2022; Chen et al., 2025a). In Euclidean space, these constructions reduce exactly to standard vector addition,
scalar multiplication, and the Euclidean metric.

C.4 CONSTANT CURVATURE MODEL AND MÖBIUS OPERATIONS

For hyperbolic geometry it is convenient to introduce the constant curvature model

MK =

{
Pn
K , K < 0,

Rn, K = 0,

where Pn
K is the Poincaré ball of curvature K < 0 and radius 1/

√
−K. On Pn

K the gyrostructures in Eqs. 12
and 13 admit closed form expressions known as Möbius addition and Möbius scalar multiplication (Ungar, 2008;
Ganea et al., 2018; Skopek et al., 2020).

Let x, y ∈ Pn
K and set c = −K > 0. The Möbius addition is

x⊕K y =

(
1 + 2c⟨x, y⟩+ c∥y∥2

)
x+

(
1− c∥x∥2

)
y

1 + 2c⟨x, y⟩+ c2∥x∥2∥y∥2 , (19)

and the Möbius scalar multiplication is

t⊗K x =


1√
c
tanh

(
t artanh(

√
c ∥x∥)

) x

∥x∥ , x ̸= 0,

0, x = 0.

(20)

Equipped with ⊕K and ⊗K , the ball Pn
K is a real gyrovector space whose gyrodistance coincides with the

hyperbolic geodesic distance.

C.5 INDUCED GYROVECTOR OPERATIONS ON THE LORENTZ MODEL

The Lorentz model Ln
K is isometric to the Poincaré ball Pn

K via a standard mapping. Let K < 0 and denote
r = 1/

√
−K. For x = (x0, xs) ∈ Ln

K with x0 > 0 and −x20 + ∥xs∥2 = 1/K, define

ψ : Ln
K → Pn

K , ψ(x) =
xs

x0 + r
, (21)

ψ−1 : Pn
K → Ln

K , ψ−1(u) =

(
1 + c∥u∥2

1− c∥u∥2 r,
2u

1− c∥u∥2

)
, (22)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where c = −K > 0. The map ψ is a Riemannian isometry between (Ln
K , gK) and (Pn

K , gK) (Ratcliffe, 2006;
Skopek et al., 2020).

We transfer the gyrovector structure from the ball to the hyperboloid by conjugation with ψ. For x, y ∈ Ln
K and

t ∈ R, define

x⊕L
K y = ψ−1(ψ(x)⊕K ψ(y)

)
, (23)

t⊗L
K x = ψ−1(t⊗K ψ(x)

)
. (24)

Substituting the explicit expressions Eqs. 19 and 20 and the coordinate maps Eqs. 21 and 22 yields closed form
formulas for x ⊕L

K y and t ⊗L
K x in Lorentz coordinates. By construction, (Ln

K ,⊕L
K ,⊗L

K) is a gyrovector
space that is isomorphic to (Pn

K ,⊕K ,⊗K). In particular, the gyrodistance induced by Eq. 23 agrees with the
hyperbolic geodesic distance on Ln

K , and the gyroaddition and gyro scalar multiplication act as hyperbolic
analogues of Euclidean vector addition and Euclidean scaling.

D DISCUSSION ABOUT INTRINSIC

In our paper, “intrinsic Lorentz” refers to using only operations that are well-defined on the Lorentz model itself,
rather than on its ambient Minkowski space. We define a layer (F : Ln

K → Lm
K) intrinsic if

1. its input, output, and all intermediate states lie on some Ld
K (they always satisfy ⟨z, z⟩L = −1/K, z0 > 0).

2. it is expressed entirely in terms of the Lorentzian geometry: ⟨·, ·⟩L, the induced distance dL, and operators
derived from them (exp/log maps, parallel transport, gyroaddition/gyroscaling, Lorentzian centroids, etc.),
without ever using arbitrary Euclidean linear maps on Lorentz vectors in the ambient space.

Under this definition, the previous Lorentz fully connected layer (LFC) used in HCNN is not intrinsic. Its update
has the form

y =
[√
|ϕ(Wx,v)|2 − 1/K, ϕ(Wx,v)

]
,

where x ∈ Ln
K , Wx is a standard matrix–vector product in Rn and the operation

ϕ(Wx,v) = λσ(vTx+ b′)
Wψ(x) + b

||Wψ(x) + b|| . (25)

This Wx is defined using the ambient linear structure of the Minkowski space, not any operation on the
Lorentz manifold itself. Because the core transformation is an ambient Minkowski multiplication rather than a
Lorentzian/geodesic operation, this layer is only partially intrinsic.

By contrast, our PLFC is constructed entirely from Lorentz-geometry primitives that have closed-form definitions
on Ln

K . Each logit is the signed Lorentzian distance from the input point to a learned Lorentz hyperplane, and
the output y is then recovered in closed form as the unique point on Lm

K whose signed distances to a set of
coordinate hyperplanes equal these logits. All steps (hyperplane parameterization, point-to-hyperplane distance,
reconstruction of y) are expressed only via the Lorentzian inner product and distance; no ambient Euclidean
affine map Wx+ b is ever applied. In this sense, PLFC is an intrinsic Lorentz FC layer.

E PROOFS

E.1 PROOF OF THEOREM 1

Proof. We work in the hyperboloid model Lm
K = {x = [xt,xs] ∈ R1+m : ⟨x,x⟩L = 1/K, xt > 0} with

K < 0 and Minkowski bilinear form ⟨[xt,xs], [yt,ys]⟩L = −xtyt + ⟨xs,ys⟩. Let 0 = [(−K)−1/2,0] be the
basepoint. Denote by e(k) ∈ Rm the k-th Euclidean basis vector in the spatial block and set e(k) = [0, e(k)].

Lorentz coordinate hyperplanes. The k-th spatial axis is the geodesic through 0 in the direction e(k).
The Lorentz coordinate hyperplane through 0, orthogonal to this axis, is given by

Definition 3. (Lorentz hyperplane containing 0 and orthogonal to the k-th axis)

H̄K
e(k),0 =

{
x = [xt,xs]

⊤ ∈ Lm
K

∣∣ ⟨e(k),x⟩L = ⟨e(k),xs⟩ = xs,k = 0
}
. (26)

This is the special case of the Lorentz hyperplane H̃z,a in Eq. 4 with a = 0 and z = e(k) (hence ∥z∥2 = 1),
for which cosh

(√
−Ka

)
= 1 and sinh

(√
−Ka

)
= 0, giving ⟨z,xs⟩ = xs,k = 0.

With Definition 3, the preparation for constructing y in Eq. 8 is complete.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Derivation of y. Let x ∈ Ln
K and y = [yt,ys]

⊤ ∈ Lm
K be the input and output of the PLFC layer,

respectively. As in Eq. 8a, for k = 1, . . . ,m we define the scores vk(x) = vzk,ak (x) via the Lorentz MLR
logits in Eq. 6.

To endow y with the desired property—that the signed hyperbolic distance from y to the k-th coordinate
hyperplane equals vk(x)—we impose the simultaneous system

d±L
(
y, H̄K

e(k),0

)
= vk(x), k = 1, . . . ,m. (27)

Using Eqs. 4 and 5 with a = 0 and z = e(k) (so that the denominator equals 1), the unsigned
point–to–hyperplane distance specializes to

dL
(
y, H̄K

e(k),0

)
=

1√
−K

∣∣sinh−1(√−K ys,k
)∣∣.

Orienting H̄K
e(k),0

by the unit normal e(k) and recalling the sign convention used in Eq. 6, the signed distance is
therefore

d±L
(
y, H̄K

e(k),0

)
=

1√
−K

sinh−1(√−K ys,k
)
. (28)

Substituting Eq. 28 into Eq. 27 yields, for each k,

1√
−K

sinh−1(√−K ys,k
)
= vk(x), (29)

and hence
ys,k =

1√
−K

sinh
(√
−K vk(x)

)
, k = 1, . . . ,m, (30)

which is exactly Eq. 8b. Collecting these coordinates gives ys = (ys,1, . . . , ys,m)⊤.

Finally, the time coordinate yt is fixed by the hyperboloid constraint ⟨y,y⟩L = 1/K, i.e.,

−y 2
t + ∥ys∥22 =

1

K
=⇒ yt =

√
(−K)−1 + ∥ys∥22, (31)

with the positive root chosen to remain on the top sheet, which is Eq. 8c. Thus Eq. 8 follows.

Confirmation of the existence of y. For any real scores vk(x), Eq. 30 yields real ys,k because sinh is
entire. Since −K > 0, we have (−K)−1 + ∥ys∥22 > 0, so yt in Eq. 31 is real and strictly positive. Therefore
y = [yt,ys] ∈ Lm

K always exists and lies on the correct sheet. Moreover, Eq. 29 guarantees that the signed
distance from y to each coordinate hyperplane H̄K

e(k),0
is exactly vk(x), as required.

Flat-space limit. As K → 0−, we have sinh
(√
−K v

)
=
√
−K v+O(K3/2), hence ys,k → vk(x) from

Eq. 30. Using Eq. 6 and the expansion cosh
(√
−Ka

)
= 1 + O(K), sinh

(√
−Ka

)
=
√
−K a+ O(K3/2),

one obtains vk(x)→ ⟨zk,xs⟩ − ak, so the spatial part reduces to the Euclidean affine map with row vectors
Ak = z⊤k and bias bk = ak, as stated below Theorem 1.

E.2 PROOF OF THEOREM 2

Theorem 2 (Margin preservation and contraction of PLFC and LFC). Fix a curvature K < 0. For any input x,
let the penultimate layer produce

u(x) = (u1(x), . . . , um(x)) ∈ Rm,

and let c denote the true class. Define the pre-logit margin

∆(x) := uc(x)−max
j ̸=c

uj(x).

Consider two Lorentz output-layer designs that use signed geodesic distances from the output point y(x) to the
coordinate hyperplanes as logits:

• PLFC head (intrinsic). The spatial coordinates are

yPLFC
s,k (x) =

1√
−K

sinh
(√
−K uk(x)

)
,

and the signed Lorentzian distance to the k-th coordinate hyperplane is

dPLFC
k (x) =

1√
−K

asinh
(√
−K yPLFC

s,k (x)
)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• LFC head (extrinsic / linear). The spatial coordinates are taken directly as

yLFC
s,k (x) = uk(x),

and the signed Lorentzian distance to the same hyperplane is

dLFC
k (x) =

1√
−K

asinh
(√
−K uk(x)

)
.

Define the distance-based margins

∆PLFC(x) := dPLFC
c (x)−max

j ̸=c
dPLFC
j (x), ∆LFC(x) := dLFC

c (x)−max
j ̸=c

dLFC
j (x).

Then, for every sample x:

1. (Margin preservation of PLFC)
∆PLFC(x) = ∆(x).

2. (Margin contraction of LFC) The LFC head preserves the sign of the margin and contracts its magnitude:

sign
(
∆LFC(x)

)
= sign

(
∆(x)

)
,

∣∣∆LFC(x)
∣∣ ≤ ∣∣∆(x)

∣∣,
with strict inequality

∣∣∆LFC(x)
∣∣ < ∣∣∆(x)

∣∣ whenever ∆(x) ̸= 0.

Proof. Define

h(t) :=
1√
−K

asinh
(√
−K t

)
, K < 0.

By the point–to–hyperplane distance formula in the Lorentz model, for any Lorentz point y = (y0, ys) the
signed distance to the k-th coordinate hyperplane is exactly h(ys,k).

(1) PLFC preserves the margin. For the PLFC head we have

yPLFC
s,k (x) =

1√
−K

sinh
(√
−K uk(x)

)
,

and thus

dPLFC
k (x) = h

(
yPLFC
s,k (x)

)
=

1√
−K

asinh
(√
−K· 1√

−K
sinh

(√
−K uk(x)

))
=

1√
−K

asinh
(
sinh

(√
−K uk(x)

))
.

Since sinh : R→ R is a bijection with inverse asinh, we have asinh(sinh z) = z for all z ∈ R, hence

dPLFC
k (x) = uk(x).

Consequently,

∆PLFC(x) = dPLFC
c (x)−max

j ̸=c
dPLFC
j (x) = uc(x)−max

j ̸=c
uj(x) = ∆(x),

which proves (1).

(2) LFC contracts the margin. For the LFC head we have yLFC
s,k (x) = uk(x), hence

dLFC
k (x) = h

(
uk(x)

)
.

We first record two basic properties of h. Differentiating,

h′(t) =
d

dt

[1√
−K

asinh
(√
−K t

)]
=

1√
−K

·
√
−K√

1 + (−K)t2
=

1√
1 + (−K)t2

,

so h′(t) > 0 for all t and h′(t) ≤ 1 with h′(t) = 1 if and only if t = 0. Therefore, h is strictly increasing and
1-Lipschitz.

Let j⋆ be any index of a maximizer of the competing pre-logits:

j⋆ ∈ argmax
j ̸=c

uj(x).

Since h is strictly increasing, the same index maximizes the distance-based logits:

max
j ̸=c

dLFC
j (x) = max

j ̸=c
h(uj(x)) = h

(
uj⋆(x)

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Hence
∆(x) = uc(x)− uj⋆(x), ∆LFC(x) = h

(
uc(x)

)
− h
(
uj⋆(x)

)
.

If ∆(x) = 0, then uc(x) = uj⋆(x) and consequently ∆LFC(x) = 0, so the conclusion holds trivially. Suppose
now ∆(x) ̸= 0 and, without loss of generality, set

a := uc(x), b := uj⋆(x), a ̸= b.

Assume a > b; the case a < b is analogous by symmetry. Using the fundamental theorem of calculus,

h(a)− h(b) =
∫ a

b

h′(t) dt.

Because h′(t) > 0 for all t, we have h(a)− h(b) > 0, so sign(h(a)− h(b)) = sign(a− b). Moreover, since
h′(t) ≤ 1 everywhere and h′(t) < 1 for all t ̸= 0, the integrand is strictly less than 1 on a subset of [b, a] with
positive measure whenever a ̸= b. Thus

0 < h(a)− h(b) =
∫ a

b

h′(t) dt <

∫ a

b

1 dt = a− b.

Taking absolute values yields ∣∣h(a)− h(b)∣∣ < |a− b|.
Substituting back a = uc(x) and b = uj⋆(x), we obtain

sign
(
∆LFC(x)

)
= sign

(
∆(x)

)
,

∣∣∆LFC(x)
∣∣ = ∣∣h(a)− h(b)∣∣ < |a− b| = ∣∣∆(x)

∣∣.
Combining with the ∆(x) = 0 case, this gives∣∣∆LFC(x)

∣∣ ≤ ∣∣∆(x)
∣∣,

with strict inequality whenever ∆(x) ̸= 0, which proves (2).

F IMPLEMENTATION DETAILS

F.1 DATASETS

All these datasets exhibit hierarchical class relations and high hyperbolicity (low δrel) as shown in Table 5,
making the use of hyperbolic models well-motivated.

Image Datasets For image classification, we adopt the standard benchmarks CIFAR-10 and CIFAR-
100(Krizhevsky et al., 2009). CIFAR-10 and CIFAR-100 each contain 60,000 32 × 32 color images drawn
from 10 and 100 classes, respectively. Following the PyTorch setup and (Bdeir et al., 2024), we use 50,000
images for training and 10,000 for testing. CIFAR-10 and CIFAR-100 are standard proxies for visual object
recognition whose categories naturally admit semantic hierarchies (e.g., animal → mammal → dog → specific
breed). In CIFAR-100, this is made explicit by grouping the 100 fine-grained classes into 20 coarse superclasses
in the original dataset design. This hierarchical structure has been extensively verified in prior hyperbolic vision
work Bdeir et al. (2024); Nguyen et al. (2025) on CIFAR-10/100

Gene Datasets For genomic sequence classification, we evaluate on the Transposable Elements Benchmark
(TEB) (Khan et al., 2025) and the Genome Understanding Evaluation (GUE) (Zhou et al., 2023) suite. TEB is a
curated, multi-species collection of binary classification tasks spanning seven transposable-element families
across retrotransposons, DNA transposons, and pseudogenes; we follow the authors’ released preprocessing
and data partitions. GUE aggregates 28 datasets covering seven biologically meaningful tasks—including
transcription-factor binding, epigenetic mark prediction, promoter and splice-site detection—with sequences
ranging roughly from 70 to 1000 base pairs originating from yeast, mouse, human, and viral genomes. Unless
otherwise noted, we adopt the official train/validation/test splits and report the Matthews correlation coefficient
(MCC) as our primary metric. The TEB and GUE suites are constructed directly from natural genomic sequences
and inherit the biological hierarchies of their domains. TEB tasks span multiple transposable-element families
across retrotransposons, DNA transposons, and pseudogenes, which themselves sit in a multi-level taxonomic
hierarchy (orders → superfamilies → families). GUE aggregates datasets for transcription-factor binding,
promoter and core-promoter detection, splice-site prediction, and COVID-variant classification across several
species. These tasks are all manifestations of hierarchical regulatory structure (e.g., motifs → modules →
promoters → gene expression).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Hyperbolicity values of the datasets used in our experiments (δrel).

Benchmark Task Dataset δrel

CIFAR Image classification CIFAR-10 0.26
CIFAR-100 0.23

T
E

B Pseudogenes processed 0.19
Pseudogenes unprocessed 0.16

G
U

E
Covid variant classification covid 0.42

Core Promoter detection
all 0.23

notata 0.21
tata 0.14

Promoter detection
all 0.26

notata 0.26
tata 0.14

F.2 SETTINGS

Table 6 summarizes the hyperparameters used to train the model. We additionally note a dataset-specific choice
regarding normalization statistics. On CIFAR-10/100 we enable running statistics: we maintain per-channel
running statistics by updating the Lorentzian centroid (mean) and dispersion (variance) with a momentum term
and, at test time, substitute these running estimates for the batch statistics. In contrast, on the TEB and GUE
genomic suites, we disable running statistics entirely, because enabling them consistently led to a collapse of
MCC after a few dozen epochs. For these genomic datasets, we therefore compute statistics on-the-fly from each
evaluation batch (i.e., no moving averages are used at test time). Compared with natural images, the genomic
tasks exhibit stronger distributional non-stationarity (heterogeneous sequence lengths and tasks) and higher
batch-to-batch variability. Under these conditions, momentum-based running estimates accumulate bias and
lag behind the true data distribution; in a Lorentzian normalization layer, a biased centroid and underestimated
dispersion can over- or under-normalize timelike features, shrinking margins and destabilizing optimization.

Table 6: Summary of hyperparameters used in different datasets.

Hyperparameter CIFAR-10&100 TEB GUE

Epochs 200 150 150
Batch size 128 256 256

Learning rate (LR) 1e-1 8e-4 9e-4
Drop LR epochs 60, 120, 160 100,130 100,130
Drop LR gamma 0.2 0.1 0.1

Weight decay 5e-4 6e-3 5e-3
Optimizer (Riemannian)SGD (Riemannian)Adam (Riemannian)Adam

Floating point precision 32 bit 32 bit 32 bit
GPU type RTX A100 RTX A100 RTX A100

Num. GPUs 1 1 1
Hyperbolic curvature K −1 −1 −1

Dropout rate 0.05 0.05 0.05

G MORE ABLATION STUDIES

Table 7 above expands the ablation to the number of Fréchet mean iterations used by each normalizer while
keeping all other components fixed. Across all GUE datasets and both tasks, PLFC+GyroLBN achieves the
best accuracy under every iteration budget, and the relative ordering of methods is unchanged as the budget
increases. Moving from 1 to 2 and 5 iterations yields modest but consistent gains, whereas 10 steps and the
fixed-point solution (cells with gray background, denoted by∞) offer only marginal improvements at a higher
computational cost. These trends indicate that the advantage of GyroLBN stems from the normalization rule
itself rather than from merely computing a tighter Fréchet mean. In practice, allocating a small budget of two to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

five iterations recovers nearly all of the attainable accuracy while preserving efficiency, making PLFC+GyroLBN
the most effective and economical choice in our setting.

Table 7: Ablation study on the number of Fréchet mean iterations. The symbol ∞ indicates that
iterations are performed until convergence, which is the setting used in our main ablation experiments.

Model
Benchmark Task Dataset Iteration LFC

LBN
LFC
GyroLBN

PLFC
GyroBN

PLFC
GyroLBN

G
U

E

tata

1
2
5

10
∞

78.26±2.85 81.33±3.19

80.09±1.90

81.38±2.74

79.47±2.21

81.27±1.75

80.89±3.11

83.90±0.53

Core Promoter Detection notata

1
2
5

10
∞

66.60±1.07 71.92±0.52

71.99±0.68

71.06±0.49

71.65±0.79

71.12±1.75

72.22±1.44

72.59±0.69

all

1
2
5

10
∞

66.47±0.74 69.74±1.3

70.47±0.85

70.42±0.49

70.75±0.45

69.81±0.67

70.14±0.45

70.89±0.43

tata

1
2
5

10
∞

78.58±3.39 80.46±0.99

81.71±1.80

80.19±1.90

81.69±3.90

79.79±1.91

81.16±1.99

83.26±1.90

Promoter Detection notata

1
2
5

10
∞

90.81±0.51 91.88±1.01

92.15±0.76

91.89±0.71

92.19±0.41

92.07±0.63

91.67±0.56

92.48±0.35

all

1
2
5

10
∞

88.00±0.39 90.28±1.04

90.45±0.72

91.01±0.99

90.80±0.73

91.18±0.83

91.02±0.56

91.34±0.38

24

	Introduction
	related work
	Background
	Intrinsic Lorentz neural network
	Point-to-hyperplane Lorentz fully‑connected layer
	Gyrogroup Lorentz Batch Normalization (GyroLBN)
	Other Lorentz modules

	experiment
	Image classification
	Genomic Classification
	Graphs
	Ablation Study

	Conclusion
	Use of large language models
	Operations in the Lorentz model
	 Gyrovector structures on the Lorentz model
	 Gyrogroups
	 From gyrogroups to gyrovector spaces
	 Gyrostructures induced by Riemannian geometry
	 Constant curvature model and Möbius operations
	 Induced gyrovector operations on the Lorentz model

	 Discussion about Intrinsic
	Proofs
	Proof of Theorem 1
	 Proof of Theorem 2

	Implementation Details
	 Datasets
	Settings

	More Ablation Studies

