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ABSTRACT

Real-world data frequently exhibit latent hierarchical structures, which can be
naturally represented by hyperbolic geometry. Although recent hyperbolic neural
networks have demonstrated promising results, many existing architectures remain
partially intrinsic, mixing Euclidean operations with hyperbolic ones or relying
on extrinsic parameterizations. To address it, we propose the Intrinsic Lorentz
Neural Network (ILNN), a fully intrinsic hyperbolic architecture that conducts all
computations within the Lorentz model. At its core, the network introduces a novel
point-to-hyperplane fully connected layer (FC), replacing traditional Euclidean
affine logits with closed-form hyperbolic distances from features to learned Lorentz
hyperplanes, thereby ensuring that the resulting geometric decision functions re-
spect the inherent curvature. Around this fundamental layer, we design intrinsic
modules: GyroLBN, a Lorentz batch normalization that couples gyro-centering
with gyro-scaling, consistently outperforming both LBN and GyroBN while re-
ducing training time. We additionally proposed a gyro-additive bias for the FC
output, a Lorentz patch-concatenation operator that aligns the expected log-radius
across feature blocks via a digamma-based scale, and a Lorentz dropout layer.
Extensive experiments conducted on CIFAR-10/100 and two genomic benchmarks
(TEB and GUE) illustrate that ILNN achieves state-of-the-art performance and
computational cost among hyperbolic models and consistently surpasses strong
Euclidean baselines.

1 INTRODUCTION

Hierarchical structures exist across a wide range of machine learning applications, including computer

vision ( s ; , ; s ; s ), natural
language processing ( , ; , ; , ), knowledge-graph
reasoning ( , ; ; , ), graph learning (

) ; , ; , ), and genomlcs tasks ( ,
; , ). While Euclidean neural networks often incur high dlstortlon or
requ1re excessive dimensionality when embedding hierarchical or scale-free structures (
, ), hyperbolic geometry, characterized by constant negative curvature, offers exponentlal
representational capacity and enables more compact embeddings ( ,
). Consequently, hyperbolic neural networks (HNNs) have demonstrated notable success in
applications with hlerarchlcal structure ( , ; , ; s ;

; , ; ) ; ; ).
Early hyperbolic neural networks predominantly operated in the Poincaré model because its gyrovec—
tor formalism makes many neural primitives straightforward to define (

s ). However, the unit-ball constraint and boundary saturation render the Pomcare ball
more susceptible to numerical instabilities than the Lorentz model, motivating a recent shift toward

Lorentz neural networks (LNNs) that exhibit improved optimization stablhty ( s ).
Despite this trend leading to the emergence of excellent Work ( , ; ;
, ), recent advanced LNNs ( , ) archltectures remain

only partially intrinsic: they mix Euclidean affine transformatlons with manifold operations or rely
on extrinsic parameterizations that compromise geometric consistency. For example, the Lorentz
fully connected layer (LFC) ( , ) that applies Euclidean mappings to Lorentz vector,
then extract the space part from mapping output and accordingly calculate the time part to form the
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output Lorentz vector. Normalization further illustrates this tension. Lorentz batch normalization
(LBN) ( , ) recenter features but either ignore gyro-variance, while GyroBN (

, ) offers gyrogroup-based control yet can still be computationally heavy due to depending
on Fréchet-type statistics. These compromises limit the representational power and efficiency of
Lorentz neural networks.

An effective way to mitigate partially intrinsic designs is the point-to-hyperplane formulation, which
has been verified on hyperbolic Poincaré ( , ) and matrix manifolds (

, ; ). Inspired by this, we introduce ILNN, a fully intrinsic hyperbolic network in
which every operation, parameter, and update is defined inside the Lorentz model. At its core
is a Point-to-hyperplane Lorentz Fully Connected (PLFC) layer that replaces Euclidean affine
transformation with closed-form Lorentzian distances to learned hyperplanes, yielding curvature-
aware, margin-interpretable decision functions. Surrounding PLFC, we develop intrinsic components:
GyroLBN, a batch normalization that couples gyro-centering with variance-controlled gyro-scaling
and outperforms LBN and GyroBN while reducing wall-clock time. Furthermore, we introduced a
log-radius algin Lorentz patch-concatenation to build the stable CNN module, a gyro-additive bias,
and a Lorentz dropout layer to further improve its performance. By designing intrinsic geometric
operations, ILNN maintains mathematical consistency and geometric interpretability throughout the
network.

The main contributions of our work can be summarized as follows:

1. We propose an intrinsic hyperbolic neural network that eliminates reliance on extrinsic Euclidean
operations, thus fully harnessing hyperbolic geometry.

2. We introduce a novel point-to-hyperplane Lorentz fully connected layer(PLFC), which replaces
traditional affine transformations with intrinsic hyperbolic distances, significantly enhancing
representational fidelity.

3. We introduce a GyroLBN, a Lorentz batch normalization that combines gyro-centering with
gyro-scaling, consistently outperforming both LBN and GyroBN while reducing training time.

4. Extensive experiments demonstrate the effectiveness of ILNN, achieving state-of-the-art per-
formance on CIFAR-10/100 datasets and genomic benchmarks (TEB and GUE), consistently
outperforming Euclidean and existing hyperbolic counterparts.

2 RELATED WORK

Hyperbolic embeddings. A large body of work demonstrates that negatively curved representations
can efficiently encode hierarchical and scale-free structure across modalities. Foundational results
on hyperbolic embeddings (eg, Poincaré embeddings) show strong benefits for symbolic data with
latent trees ( , ), and early hyperbolic neural architectures extend core layers and
classifiers to the Poincaré model for language tasks ( , ). On graphs, hyperbolic
GNNss capture hierarchical neighborhoods and outperform Euclidean counterparts on link prediction
and node classification ( , ); knowledge graphs likewise benefit from multi-relational
hyperbolic embeddings ( , ). In vision, hyperbolic image embeddings improve
retrieval and classification under class hierarchies ( , ), and fully hyperbolic
CNNs (HCNN) generalize convolution, normalization, and MLR directly in the Lorentz model,
yielding strong encoder-side gains ( , ). Hyperbolic modeling has also been adapted to
genomics, where hyperbolic genome embeddings leverage evolutionary signal to surpass Euclidean
baselines across diverse benchmarks ( , ). In this paper, we target these two application
fronts, vision and genomics.

Hyperbolic neural networks. Designing fully hyperbolic neural networks means replacing every
Euclidean building block with operations that are intrinsic to a negatively curved manifold, without
shuttling features back and forth between Euclidean and hyperbolic spaces. Early work on the
Poincaré ball showed how to lift common layers and primitives (linear/FC maps, activations, concate-
nation, MLR) using gyrovector-space calculus and Mobius operations (

, ), while concurrent efforts formulated end-to-end hyperbolic models beyond simple
projection heads ( , ). Due to the Poincaré ball’s greater susceptibility to numerical
instability, subsequent work tried to generalize network components to the Lorentz model (

s ; s ; , ). Beyond classification heads, attention mecha-
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nisms ( , ), graph convolutional layers ( , ), and fully hyperbolic
generative models ( , ) were also developed in this setting. A major advance came
with HCNN, which introduced Lorentz-native formulations of convolution, batch normalization, and
mult1nom1al logistic regressmn bringing vision encoders fully into the hyperbolic domain (

, ). But it still remains partially intrinsic, mixing
Euchdean 0perat10ns w1th hyperbohc ones. Our work follows this intrinsic-first principle and departs
in key aspects: a point-to-hyperplane fully connected layer in the Lorentz model with closed-form
h-distances for logits and GyroLBN, a Lorentz batch normalization that couples gyro-centering with
gyro-scaling.

Normalization in HNNs. Normalization layers are central to stable and efficient training, yet
extending them to curved spaces remains challenging. A general Riemannian batch normalization
(RBN) based on the Fréchet mean was first made practical by differentiable solvers, enabling manifold-
aware centering and variance control; however, its iterative nature can be slow in practice ( s

). Recently, ( ) introduced Lorentz Batch Normalization (LBN), which uses the
closed-form Lorentzian centroid ( , ) for re-centering and a principled tangent-space
rescaling. Concurrently, Gyrogroup Batch Normalization (GyroBN) generalizes RBN to manifolds
with gyro-structure, performing gyro-centering and variance-controlled gyro-scaling that better
preserve distributional shape under gyro-operations ( , ). While LBN provides
efficient Lorentzian re-centering and global rescaling, it does not explicitly align batch statistics
under gyro-operations; GyroBN performs such alignment but is computationally heavier because it
relies on Fréchet means. Motivated by these trade-offs, we propose GyroLBN, which aligns batch
statistics under gyro-operations within the Lorentz model while retaining the speed and practicality
of closed-form re-centering.

3 BACKGROUND

There are five isometric hyperbolic models that one can work with ( , ). We adopt
the Lorentz (hyperboloid) model due to numerical stability ( s ).

Lorentz model. The Lorentz model embeds hyperbolic
space as the upper sheet of a two-sheeted hyperboloid in
(n+1)-dimensional Minkowski space. It is defined as z

Li

L% = {zeR"+1 ‘ (z,2)p = %, 2o >O}.

where K < 0 denotes the constant sectional curvature,

and (z,y)r := —ToyYo + Y4y Ty is the Lorentz inner o
product. Following ( ), we write © = (x, Z5)
with time coordinate x(y and space coordinates x5 € R”.

The origin is 0 = (K~/2,0,...,0). The closed-form

squared distance is given by d%(z,y) = ||z — y||2 = Figure 1: 2-dimensional Lorentz model
% — 2(x, y) . Other Riemannian operators are presented in the 3-dimensional Minkowski space.
in Appendix B, such as exponential and logarithmic maps,

and parallel transport.

Gyrovector space. It forms the algebraic foundation for the hyperbolic space, as the vector
space for the Euclidean space ( , ). A gyrovector space has gyroaddition and scalar
gyromultiplication, corresponding to the vector addition and scalar multiplication in Euclidean space.
Recently, ( ) proposed the gyroaddition and gyromultiplication over the Lorentz
model:

z @y =Exp, (PTg_,, (Logg(y))), Va,y €Lk, (N
t ® x = Expg (tLogg(z)), VteR,Va e L. )

Particularly, the inverse is ©x := (—1) ® & = [z, —x 4], which satisfies z @ (Sz) = (6x) Dz = 0.
Egs. 1 and 2 admit closed-form expressions, which are more efficient.
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4 INTRINSIC LORENTZ NEURAL NETWORK

We introduce the Intrinsic Lorentz Neural Network (ILNN), whose components are entirely defined
by the Lorentz geometry. Specifically, we propose (i) a point-to-hyperplane fully connected (FC)
layer, (ii) GyroLBN, a Lorentz batch normalization layer, and (iii) several other intrinsic modules,
including log-radius concatenation, Lorentz activations, and Lorentz dropout.

4.1 POINT-TO-HYPERPLANE LORENTZ FULLY-CONNECTED LAYER

FC layers perform an affine transformation defined by y = Aa — b, which can be element-wisely
expressed as yr = apx — by, where ¢, a; € R™ and b, € R ( R ). Geometrically,
this transformation can be interpreted as mapping the input vector  to an output score yy, representing
either the coordinate value or the signed distance relative to a hyperplane passing through the origin
and orthogonal to the k-th coordinate axis in the output space R™. Motivated by this geometric
interpretation, in this section, we first derive the Lorentz multinomial logistic regression (Lorentz
MLR) to obtain the signed distance, and subsequently present the formulation of the point-to-
hyperplane Lorentz fully connected (PLFC) layer.

Lorentz MLR. In Euclidean space, the multinomial logistic regression (MLR) for class ¢ €

{1,...,C?} can be formulated as the logits of the Euclidean MLR classifier using the distance from
instances to hyperplanes describing the class region ( , ), which can be written
as

p(y = c|x) x exp(ve(x)), ve(x) = sign({ac,  — pe))||ac||d(x, Ha, p.), ac<€R™, (3)

where Hq, . = {x € R: (a.,z — p.} is the Euclidean hyperplane of class ¢ and d(-, -) denotes
Euclidean distance. Once we have the Lorentz hyperplane and closed-form point-hyperplane distance,
we can extend Euclidean MLR to the Lorentz model.

In Lorentz model L%, following ( ), for p € L% and w € TpLLY%, the hyperplane
passing through p and perpendicular to w is given by Hy, p = {x € L | (w, x), = 0}, where w
should satisfy the condition (w, w) > 0. To eliminate this condition, w € T,L% is parameterized by
avector Z € TgL% = [0,az/||z||], where « € Rand z € R™. Asw € TpL%, Z is parallel transport
to p, the Lorentz hyperplane defined by

ﬁz,a ={x el | cosh(V—Ka) (z,xs) — sinh(\/ —Ka) ||z|| & = 0}, “4)

where a and z represent the distance and orientation to the origin, respectively. Due to the z € TglL}%
and the sign-preserving property of parallel transported, this construction naturally satisfies (w, w) >
0. Then for x € L, the distance to a Lorentz hyperplane is given by

cosh(v/—Ka)(z, @) — sinh(vV—Ka) |22 z: )
Vllcosh(V=FKa)z[3 - (sinh(vV—Ka) | z])’

Substituting Eq. 4 and Eq. 5 into Eq. 3, we obtain that the Lorentz MLR’s output logit corresponding to class ¢
is given by

~ 1
dﬁ(w7Hz,a) = \/j

sinh_l(\/—K (5)

Uz, a0 () = \/iT< sign (o) Be |sinh ! (V—K%) , 6)
Qe = cosh(\/ —Ka) (z,xs) — sinh(x/ —Ka) ,
Be = \/|| cosh(\/—Ka>z| 2 — (sinh(\/—Ka) I12]])2.
Lorentz fully-connected layer (PLFC). ( ) interpreted the Euclidean FC layer as

an operation that transforms the input @ via vy (x), treating the output yj, as the signed distance from the
hyperplane H ) , passing through the origin and orthogonal to the k-th axis of the output space R, which
can be written as

d(yr, Homy ) = vnlx),  k=1,...,m. (7)
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where di(~7 -) denote the signed distance in Euclidean space. We now collect the above ingredients into an
intrinsic FC layer that maps an input & € L to an output y = (yo, ys) € L%. Let {(zk, ar) }1=, be learnable
hyperplane parameters and define v () = vz, o, (x) as in Eq. 6. Matching each vy (x) to the signed h-distance

from y to the k-th coordinate hyperplane Heu‘-)?0 ={z = (x0,21,...,2m)" € LY | (e®™ z) = @), =
0,k = 1,2...,m} fixes the spatial coordinates, while the time coordinate follows from the hyperboloid
constraint.

Theorem 1 (PLFC layer). Let x €LY, Z = {zi};-y CR" and a = {ax } =1 CR. The point—to-hyperplane
Lorentz fully connected layer PLFCx : L'y — L% is

vp(x) = vz a(x), k=1,...,m, (8a)
1
sk = ——= sinh(v—K v (x)), 8b
v = [VER T ). (50)
where Ys = (Ys,1,. - . ,ys,m)-r. In the flat-space limit K — 0, equation 8 reduces to the Euclidean affine map

yzAv+bwithAk:z;';andbiasbza.

It can be shown that the signed distance from y to each Lorentz hyperplane passing through the origin and
orthogonal to the k-th coordinate axis is given by vy (), as detailed in the Appendix E.1, thereby fulfilling the
properties described above.

Gyro-bias. A learnable offset b€ L% can be added intrinsically via the gyroaddition, y +— y @ b, yielding
the final PLFC output.

Discussion. The previous Lorentz fully connected layer (LFC) used in HCNN was formed by

y = WVIeWx, V)2 = 1/K, ¢(Wx,v)] ,
where x € L% and Wx is a standard matrix—vector product in R". This WWx is defined using the ambient linear
structure of the Minkowski space, not any operation on the Lorentz manifold so itself only partially intrinsic.
The PLFC depends only on Lorentzian operations, avoids tangent-space linearisation, and enjoys closed-form
gradients, making it an efficient and curvature-consistent replacement for Euclidean FC layers in hyperbolic
networks. More detailed discussions are in Appendix D and a theoretical advantage of PLFC over LFC is shown
in Appendix E.2.

4.2 GYROGROUP LORENTZ BATCH NORMALIZATION (GYROLBN)

Batch Normalization (BN) facilitates training by normalizing batch statistics. Recently, ( )
proposed LBN, which uses a Lorentzian centroid to efficiently compute the batch mean. However, their approach
fails to normalize sample statistics. Besides, ( ;b) extended BN into manifolds based on
gyrogroup structures, referred to GyroBN ( , ). Although it can normalize sample mean/variance
on Lorentz spaces, the involved Fréchet mean could be inefficient. Therefore, we propose GyroLBN to combine
the gyrogroup normalization with Lorentzian centroid & radius statistics, retaining GyroBN’s effectiveness
while eliminating computationally expensive Fréchet mean.

Batch centering and dispersion. Generally, the Fréchet mean must be solved iteratively, which signif-

icantly delays the training speed. Therefore, following ( ); ( ), with &; € Lk,
v; > 0, Z e Vi >0 and a batch of features B = {z; € L'k }i~,, is given by, we define the batch mean by
Lorentzian centroid which can be calculated efficiently in closed form ( s ):
. Vix;
2y ©)

B = ™ s
7T VRIS, vl

. . m 2 . . . . 1
which solves min, y e 377" vidz (@i, f15). Moreover, the mean is not weighted, which gives v; = -

As for dispersion, we adopt the Fréchet variance o> € R, defined as the expected squared Lorentzian distance
between a point «; and the mean 1, and given by o = L > | dZ (@i, ) ( , ).

Normalization map. Denote learned scale v € Rso (per-channel) and learned bias 8 € L%; For each
sample x, the GyroLBN output is

Scaling

Biasing Centering
Vi< N, i@+ B® | ——o [Cuson ||, >0 (10)
\VoB + €
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where @ denotes left gyroaddition Eq. 1, © denotes gyro inverse, and ® denotes gyro scalar product Eq. 2.
Unless otherwise stated, during inference, we maintain per-channel running statistics by updating the Lorentzian
centroid (mean) and dispersion (variance) with momentum and, at test time, substitute these for batch stats.

Discussion. GyroLBN unifies the gyrogroup normalization paradigm of GyroBN with the efficient Lorentz
statistics of LBN, differing from GyroBN only in the choice of statistics by replacing Fréchet-based batch
estimates with closed-form Lorentzian centroid and variance while retaining the same gyrogroup centermg and
scaling scheme. Compared to Fréchet variance used in generic Riemannian BN ( ,

), the mean-radius statistic avoids iterative solvers and proved numerically stable in our vmon/genomlcs
settings. It therefore (i) remains fully intrinsic, (ii) avoids iterative Fréchet solvers (important for large batches
and 2D convolutions), and (iii) integrates naturally with gyro-additive residual/bias layers used in our encoder.
Compared to LBN and Fréchet-based GyroBN ( R ), GyroLBN consistently reduced wall-clock
time while improving accuracy in our settings, as shown in Table 4.

4.3 OTHER LORENTZ MODULES

Log-radius concatenation. When concatenating N Lorentz patches, each with (1 + d) coordinates (one
time and d spatial), naively stacking the N d spatial components biases the resulting feature norm toward higher di-
mensions: the expected radius grows with N d, skewing subsequent layers. We introduce a log-radius—preserving
concatenation that makes the expected log spatial radius invariant to the number of concatenated blocks. Let
v € R™ denote the spatial part of a block and assume its radius factorizes as ||v|| = o/T with T~ x7.. Then

Eflog [[v]]] = logo + 5 (v (%) + log2),

where ) is the digamma function. To keep E[log ||v||] constant across dimensions, we scale each block’s spatial

part by
o) = esn 36(5) - /()]

with n = Nd the total post-concat spatial dimension and n; = d the per-block spatial dimension. Concretely,
given per-window tensors (¢1,...,tx) (times) and (u1, ..., un) with u; € R? (spaces), we form the scaled
space u; = s u,; and recompute a single time coordinate that keeps the output on the hyperboloid:

N
N R )
=1

where k& > 0 sets the origin time via to = v/k (in practice, with K = —1, k = 1). The final concatenated vector
is [/, 1, .., 4n ] € RN This log-radius alignment (i) is parameter-free, (ii) is robust to heavy-tailed radii
because it matches geometric means, (iii) preserves the Lorentz constraint by design, and (iv) avoids domination
by any single wide block, improving stability as kernel size or channel count grows.

Lorentz convolutional layer. We use channel-last feature map representations throughout HCNNs, and
add the Lorentz model’s time component as an additional channel dimension, following ( ). A
hyperbolic feature map can be define as an ordered set of n-dimensional hyperbolic vectors, where every spatial
position contains a vector that can be combined with its neighbors

The convolutional layer can be formulated as a matrix multiplication between a linearized kernel and the
concatenation of values within its receptive field ( s ). Then, we extend this definition by
replacing the Euclidean FC and concatenation with our PLFC and log-radius—preserving concatenation.

Letx = {@h, € L%} hH ’“‘f‘;l be an input hyperbolic feature map and let H x W denotes the kernel size with

stride &. For each spatial location (h, w) we gather the patch {x,, SR, wt 5w} C L%, pad with the origin

h,b=1
(v/1/(-K),o0,. ) and concatenate these HW vectors by the log-radius scheme introduced above. We
defined the Lorentz convolutlonal layer as

Yhow = PLFC(LOgcat({mh’+6h w! 45w € L }h ~71})) (11)

where h’ and w’ denote the starting position, and LogCat denotes our log-radius—preserving concatenation.

Lorentz dropout. To regularize features without leaving the manifold, we adopt a dropout operator that
acts on Lorentz coordinates and then reprojects to the hyperboloid. Concretely, during training, we apply an
elementwise Bernoulli mask to the current representation x € L% (probability p of zeroing each entry), yielding
% in ambient R, Because naive masking can violate the hyperboloid constraint and the positivity of the time
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component, we immediately map back via a projection proj - (Z) that restores (z,z);, = —1/K and 2o > 0.
At evaluation, the operator is the identity. In practice, we observe that the “mask & project” scheme outperforms
the variant “log—exp” scheme that applies a log map to 7oL, performs Euclidean dropout, and then returns
via the exponential map, because the nonlinearity of exp,, couples all coordinates so that masking any tangent
component perturbs the entire point after mapping back to the manifold. It is parameter-free, numerically stable,
and compatible with subsequent intrinsic layers (e.g., GyroLBN and PLFC), since its output again lies on L' .

Lorentz activation. Following ( ), we define activations directly in the Lorentz model by
acting on the spatial coordinates only and then recomputing the time coordinate from the hyperboloid constraint.
For example, given © = (2o, zs) € L% and an elementwise nonlinearity activation function ReLU, Lorentz
ReLU can be defined as

L—ReLU(z) = [\/§+ IReLU(20)|12 , ReLU(xS)].

5 EXPERIMENT

We evaluate ILNN on image classification dataset CIFAR-10/100 ( , ) and genomics
(TEB ( N ), GUE ( R )) and compare against Euclidean and multiple hyperbolic
baselines under matched training recipes. For fairness, each Euclidean backbone is translated to the hyperbolic
setting via one-to-one module replacement, keeping depth/width, parameter count, and schedule as close as
possible. All models are implemented in PyTorch ( s ) with 32-bit precision. We fix curvature
to K = —1 and train with Riemannian optimizers from Geoopt ( s ): RiemannianSGD for
CIFAR and RiemannianAdam for genomics. Unless otherwise stated, results are averaged over five random
seeds and reported as mean = std; classification uses accuracy on CIFAR-10/100, and MCC on genomics. All
experiments are conducted on NVIDIA A100 80GB GPUs. Additional configuration details (batch size, learning
rate) appear in Appendix F.

5.1 IMAGE CLASSIFICATION

Experimental setup. Following the evaluation setup of HCNN ( , ) and symmetric
space ( s ), we benchmark ILNN on CIFAR-10 and CIFAR-100. For each method, we
instantiate a ResNet-18 backbone ( , ) in the corresponding geometry: The original ResNet-18 with
BN and linear classifier (Euclidean); Euclidean encoder + hyperbolic head (Poincaré or Lorentz); all layers fully
to the target manifold (HCNN ( s ) and our ILNN). The relative distortion from input manifold
to classifier ( s ) is comparable across runs (6;;=0.26 for CIFAR-10; 0.23 for CIFAR-100).

Main ) results. Table 1 Table I: Classification accuracy (%) of ResNet-18 models. We estimate
summarizes test accuracy the mean and standard deviation from five runs. The best performance

as meandsd over five runs. ¢ hiohlighted in bold (higher is better).

ILNN attains the highest
average accuracy on both

datasets, 95.36% on CIFAR-10 CIFAR-10 — CIFAR-100
and 78.41% on CIFAR-100, (Ore1 = 0.26)  (brer = 0.23)
exceeding the Euclidean  Euclidean ( 95.14 £ 0.12 77.72 £0.15
ResNet-18 baseline by +0.22 Hybrid Poincaré ( 95.04 £0.13  77.19+0.50
and +0.69 percentage points  paincarg ResNet ( 94.51+0.15  76.60 % 0.32
(pp), respectively. Relative to gyclidean-Poincaré-H ( 81.72+7.84  44.35+2.93
the strongest prior hyperbolic  Euclidean-Poincaré-G ( 95.14+0.11  77.78 +0.09
competitor (HCNN-Lorentz),  Euclidean-Poincaré-B ( 95.234+0.08  77.78 £ 0.15
ILNN also improves by +0.22 ~ Hybrid Lorentz ( 9498 +£0.12  78.03+0.21
pp on CIFAR-10 and +0.34 "y eNNT orentz ( 9514 £0.08  78.07 +0.17

pp on CIFAR-100. Although 1 NN (ours)
ILNN exhibits a slightly
larger standard deviation than
HCNN-Lorentz, on CIFAR-10, even the conservative lower bound of ILNN (95.23%) exceeds the upper bound
of HCNN (95.22%); on CIFAR-100, the lower bound of ILNN is specifically 78.24%, equal to the upper bound
of HCNN. These gains demonstrate that our intrinsic approach preserves the geometry of the Lorentz model
without distortion: by combining point-to-hyperplane FC and GyroBN within fully negative-curvature space,
ILNN leverages the native manifold structure more effectively than others.

95.36 £0.13 78.41+0.23

Visualization. We visualize embeddings by mapping network outputs from the Lorentz model to the Poincaré
ball and, in parallel, applying the logarithmic map at the origin to view them in the tangent plane; colors indicate
output label prediction. In Figure 2 (CIFAR-10), the ILNN embeddings form ten compact clusters, whose areas
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are visibly smaller than the corresponding clusters produced by HCNN. Only marginal colour bleeding occurs
at the boundaries, indicating that the decision margins learned by the point-to-hyperplane FC induce margins
aligned with the data geometry. The effect becomes even more pronounced on the harder CIFAR-100 task, as
shown in Figure 3. Despite packing 100 classes into the same 2D manifold, ILNN still yields dense colour
"islands" with clear gaps in between, whereas HCNN exhibits overlapping clouds and several mixed-colour
zones. These visual trends are consistent with the quantitative improvements in Table 1.

5.2 GENOMIC CLASSIFICATION

Experimental setup. We evaluate on the most challenging subsets of the TEB and GUE genomics bench-
marks, specifically those on which the published HCNN ( s ) does not surpass a Euclidean
convolutional baseline. For every dataset, we instantiate four models that share the same convolutional stem
and classifier width: In our comparisons, the Euclidean CNN uses standard convolutions, Euclidean BN, and
a linear classifier; HCNN-S employs Lorentz modules with a single global curvature K across the network;
HCNN-M uses Lorentz modules with layer-wise curvatures K'; and ILNN is fully intrinsic, featuring GyroBN
and a point-to-hyperplane FC with gyro-bias, while fixing a global curvature K = —1. All hyperbolic models
are optimized with RiemannianAdam (Ir 1073); the Euclidean baseline uses Adam with an identical schedule.
‘We measure performance by the Matthews correlation coefficient (MCC).

Main results. Table 2 shows that ILNN achieves the best score on every task. On the two TEB pseudogene
sets, it improves over the Euclidean baseline by +9.6 and +13.0 pp, and still exceeds the stronger HCNN-S
by +2.0 and 8.8 pp, respectively, demonstrating clear gains where previous hyperbolic models were already
competitive. The advantage is even more striking on GUE. For Covid-variant classification, HCNN collapses
(MCC 36.7/14.8) much lower than the Euclidean model, whereas ILNN matches and slightly surpasses the
Euclidean score (64.8 vs. 63.6). On promoter-related tasks, ILNN consistently raises the bar: Tata core-promoter
detection jumps from 79.9 (best prior) to 83.9, and the most difficult “all” split goes from 67.2 to 70.7. Across
the board, ILNN tightens the worst-case gap between hyperbolic and Euclidean models and converts several
cases of HCNN under-performance into clear wins. These results confirm that fully intrinsic design choices,
point-to-hyperplane FC, GyroLBN, and other proposed components, translate into tangible accuracy gains on
real-world genomic data.

Table 2: Model performance (MCC) on all real-world genomics datasets, averaged over five random
seeds (mean =+ standard deviation). The two highest-scoring models are in bold. * denotes that the
result was reproduced under the same setting.

Model
Benchmark Task Dataset Euclidean  Hyperbolic Hyperbolic ~Hyperbolic
CNN HCNN-S HCNN-M  ILNN
Es Pseudogenes processed 60.66:082  68.30+0.93 65.4145.54 70.26+0.32
= & unprocessed 51.94:2269  56.13:0.56 58.36+1.80 64.90:0.74
Covid Variant Classification Covid \ 63.62+1.34%  36.7129.69 14.81+0.46 64.76:0.54
tata 78.26+2.85 79.54+1.61 79.87+2.50 83.90:0.53
m Core Promoter Detection notata 66.60=+1.07 66.52+0.28 65.95+0.51 72.59:+0.69
8 all 66.47+0.74 65.26+1.11 67.16+0.55 70.89+0.43
tata 78.58+339  79.7412.66 78.77x0.78 83.26+1.90
Promoter Detection notata 90.81x0.51 89.86+0.76 90.28+0.37 92.48+0.35
all 88.00:0.39 87.60:0.51 87.93+0.76 91.34+0.38

5.3 GRAPHS

Experimental setup. To further evaluate the effectiveness of our method, we extend it to three widely-
used graph datasets (AIRPORT, CORA and PUBMED), which exhibit intricate topological and hierarchical
relationships, making them an ideal testbed for evaluating the effectiveness of hyperbolic networks (e.g., HGNN,
HGCN, HGAT, HAN, HNN++ and Hypformer). We choose the Hypformer as baseline and replace the Linear
layer in Hypformer.

Main results. The quantitative results are summarized in Table 3. Overall, hyperbolic models consistently
outperform their Euclidean counterparts on all three benchmarks, confirming that negatively curved representa-
tions are well-suited for graphs with rich hierarchical structure. Among existing methods, HAN, HNN++, and
SGFormer constitute the strongest baselines, while Hypformer further improves their performance. Building on
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Figure 2: Embedding visualization of CIFAR-10 dataset in Poincaré and Tangent Space. Colors
represent labels. HCNN (94.98, left) and ILNN (95.48, right).
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Figure 3: Embedding visualization of CIFAR-100 dataset in Poincaré and Tangent Space. Colors
represent labels. HCNN (77.67, left) and ILNN (78.64, right).

this backbone, Hypformer+PLFC achieves the best results on all datasets, reaching 96.03%+-0.34 on AIRPORT,
85.68%+0.19 on CORA, and 82.52% +0.33 on PUBMED. Compared with the original Hypformer, this corre-
sponds to absolute gains of +1.03, +-0.68, and +1.22 percentage points, respectively. The standard deviations
remain small, and the confidence intervals of Hypformer+PLFC are largely separated from those of competing
methods on AIRPORT and PUBMED, indicating that the observed gains are statistically stable. These results
demonstrate that replacing the Euclidean linear classifier in Hypformer with our hyperbolic point-to-hyperplane
PLFC layer provides a simple yet effective way to enhance graph representation learning on graph benchmarks.

5.4 ABLATION STUDY

To better understand the con- Table 3: Testing results (Accuracy) on AIRPORT, CORA and PUBMED.
tributions of each architec- The best results are in bold, respectively.

tural component, we conduct
an ablation study on our two

S . . Models | AIRPORT | CORA | PUBMED
main innovations: the point-
to-hyperplane fully connected GCN (Kipf & Welling, 2017) 81.4+0.6 | 81.3+£0.3 | 78.1+0.2
head (PLFC) and the Gy-  GAT (Velickovic et al, 2017) 81.5+£0.3 | 83.0£0.7 | 79.0+0.3
rogroup Lorentz Batch Nor-  SGC (Wu et al, 2019) 82.1+£0.5 | 80.14£0.2 | 78.7+0.1
compare them against their HGCN (Chami et al., 2019) 89.3+£1.2 | 76.5£0.6 | 78.0£1.0
Lorentz counterparts (LFC, HGAT (Chami et al., 2019) 89.6+1.0 | 774+£0.7 | 783+ 1.4
> GraphFormer (Ying ct al., 2021) 88.1+£1.2 | 60.0£0.5 | 73.34+0.7
i‘lﬁﬁ?g asoifglzzs?g;;’fﬂ soee™ GraphTrans (Wu et al., 2021) 943406 | 77.6+0.8 | 77.5+0.7
GraphGPS (Rampiick et al, 2022) | 94.5+£0.9 | 73.0£1.4 | 728 +£1.4
racy across CIFAR-10and ge-  ppq 1 (g o 41, 2023) 96.0£ 0.6 | 82.3+£0.7 | 78.5+0.6
nomics tasks, and training ef- AN (Gulcehre et al, 2019) 92.9+0.6 | 83.1+0.5 | 79.0 £ 0.6
ficiency to disentangle the ef-  FNN4+ (Shimizu et al., 2020) 92.34+0.3 | 82.8+£0.6 | 79.94+0.4
fects of the classifier design  F-HNN (Chen et al., 2022) 93.0+0.7 | 81.0+0.7 | 77.5+0.8
and the normalization strategy, ~ NodeFormer (Wu et al., 2022) 80.24+0.6 | 82.24+0.9 | 79.9+ 1.0
and to assess whether their SGFormer (Wu et al., 2023) 92.9+0.5 | 83.2+0.9 | 80.0+0.8
combination leads to comple-  “p e ST 004n) 95.0£0.5 | 85.0+0.3 | 81.3+0.3
mentary improvements. Hypformer+PLFC 96.0 £ 0.3 | 857402 | 825+0.3

PLFC vs. LFC. Holding

the normalizer fixed, replacing the Lorentz fully connected head with the point-to-hyperplane fully connected

head consistently improves accuracy. With GyroLBN, PLFC outperforms LFC on CIFAR-10 (95.36 vs. 95.19,
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Table 4: Ablation on PLFC and GyroLBN. Fit time denotes the training time of the CIFAR-10 dataset
per epoch.

Model
Benchmark Task Dataset LFC LFC PLFC PLFC

LBN GyroLBN  GyroBN  GyroLBN
CIFAR-10 | 95.142008 95.19x015 9528:017  95.36:0.13
tata 78.26+285 81.33+3.19  80.89:3.11  83.90x0.53
Core Promoter Detection  notata 66.60+1.07  71.92:052 72.22:082 72.59+0.69
m all 66.47+074  69.74+13  70.14:045 70.89+0.43
8 tata 78.58+339  80.46+099 81.16£199  83.26+1.90
Promoter Detection notata 90.81:051  91.88+1.01  91.67:049  92.48+0.35
all 88.00+039  90.28+1.04 91.02:056 91.34+0.38

Fit Time(s) \ 142 125 314 169

+0.17) and on all six genomics subsets, with gains of +2.57 on tata core-promoter detection (83.90 vs. 81.33),
+0.67 on notata (72.59 vs. 71.92), and +0.97 on the all split (70.89 vs. 69.74); for promoter detection, the
improvements are +2.80 (fata: 83.26 vs. 80.46), +0.60 (notata: 92.48 vs. 91.88), and +1.06 (all: 91.34 vs.
90.28). Although the PLFC variant with GyroBN also performs strongly, exceeding the LFC baseline by more
than +3 on all genomics subsets and matching or surpassing it on CIFAR-10 (95.28 vs. 95.14). These results
indicate that decision functions based on point-to-hyperplane distance provide a more effective inductive bias
than affine logits in both vision and genomics.

GyroLBN vs. LBN, GyroBN. Under the same FC, GyroLBN improves over LBN across all tasks. With
the LFC head, CIFAR-10 increases from 95.14 to 95.19; on genomics, the gains range from +1.07 to +5.32 (e.g.,
core-promoter notata: 71.92 vs. 66.60). With the PLFC head, GyroLBN is superior to GyroBN on every dataset,
including notata in core-promoter detection, where it reaches 72.59 versus 72.22. The improvements span +0.32
to +3.01 on genomics and +0.08 on CIFAR-10. Training time measurements show that GyroLBN attains these
gains with favorable efficiency, running faster than PLFC with GyroBN (169 s vs. 314 s) and even faster than
LBN for the comparison of LFC between GyroLBN and LBN (125 s vs. 142 s). Overall, GyroLBN offers a
better accuracy and efficiency trade-off than both LBN and GyroBN in our settings.

Furthermore, to ensure a fair comparison with GyroBN, we further vary the number of Fréchet mean iterations
used by the normalizers (1, 2, 5, 10, and a fixed-point solve denoted by oco; see Appendix G). Across all iteration
cases, PLFC+GyroLBN remains the best-performing configuration on CIFAR-10 and on every genomics split,
exhibiting the effectiveness of our GyroLBN again.

6 CONCLUSION

This study presented the Intrinsic Lorentz Neural Network, an architecture whose computations remain entirely
within the Lorentz model of hyperbolic space. We introduced a point-to-hyperplane fully connected layer
that converts signed hyperbolic distances into logits, together with GyroLBN and log-radius concatenation for
numerically stable normalization and feature aggregation. Integrated into a coherent network, these components
yield superior performance on CIFAR-10, CIFAR-100, and two challenging genomics benchmarks, surpassing
Euclidean, hybrid, and prior hyperbolic baselines while preserving competitive training cost. The results
underscore the value of keeping every layer intrinsic to the manifold and provide practical building blocks for
future work on representation learning in negatively curved geometries.

REPRODUCIBILITY STATEMENT

All theoretical results are established under explicit conditions. Experimental details are given in Appendix F.
The code will be released upon acceptance.
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A USE OF LARGE LANGUAGE MODELS

We use large language models to aid or polish writing.

B OPERATIONS IN THE LORENTZ MODEL

Setup and notation Fix a negative curvature K < 0. Let (-, -) o denote the Minkowski bilinear form with

signature (—, +,...,+) on R**!, and write || - ||z = /(-, )z for the induced (Riemannian) norm on tangent
vectors. The n-dimensional hyperbolic space in the Lorentz (hyperboloid) model is

?(;:{xeRnJrl : (x,x>£:%, :If0>0},

and we use 0 := (\/%7, 0) as the pole (“origin”). When no confusion can arise, || - || denotes the Euclidean

norm in a tangent space.

Distance For x,y € L%, the geodesic distance inherited from Minkowski space is

D.(x,y) = coshfl(K (x,¥)c)-

EH

A useful identity for computations is the “Lorentzian chord” expression (squared distance)

2

K
Specializing to the pole 0,
_ K 2 —_ 2 — 2 2 o
D, (x,0) = Hloga (X)H, dﬁ(x,0)2}72(x,0>5:?+ ey d

and, equivalently,

D, (x,0) = \/i? cosh™ (V=K ).

Tangent space The tangent space at x € L% is the Minkowski-orthogonal complement of x,
Tuli = {veR"™ : (v,x), =0}.

Restricted to TxL%, the metric is positive definite and coincides with the Riemannian metric of L.

Exponential and logarithmic maps Forz € 7.L%,

, a=vV-K]|z|c.

expf (z) = cosh(a) x + sinh(a) 2

The inverse map logX : L% — TxLL% sendsy € L% to

cosh™(8)

1 (y-8x), B=K({xy)c.

logy: (y) =

At the pole O these simplify to

K —71 Ccos — Z sin — Z Z
exvt (2) = A ((cosh (V2R ) sinh (VK [2l) 27 ).
o, yzﬁv
logg (¥) = | cosh™}(8) Bi=K(@©,y)c.

(y — B0), otherwise,
Vo1

with the convention z/||z|| = 0 when z = 0.

Parallel transport Transporting v € TxLY% along the geodesic from x to y yields

K _ (logx (y), v) K K _ (y,v)
PTyoy (V) =V — Wy)ﬁ (logx (y) + log, (X)) =v+ m (x+y)-
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Lorentzian centroid and average pooling Given points xi,...,x,, € L% with nonnegative
weights v; (not all zero), the weighted Fréchet mean with respect to the squared Lorentzian distance,
mingerr >0 v d% (xi, u), is obtained in closed form by

Doy ViXi
V=K1 vixille

In neural architectures, an “average pooling” over a hyperbolic receptive field can be implemented by taking this
Lorentzian centroid of the features in the field.

Lorentz transformations A matrix A € R™*VX(+1 j5 4 Lorentz transformation if it preserves the
Minkowski product: (Ax,Ay)s = (x,y)c for all x,y. Such matrices form the Lorentz group O(1,n)
(equivalently, ATy A = 7 for the Minkowski metric 7). Restricting to transformations that map the upper sheet
to itself yields the time-orientation—preserving subgroup

O*(1,n) = {A € O(1,n) : (Ax)o > 0forallx € L },
which acts by isometries on L.

Every A € O™ (1,n) admits a polar decomposition into a Lorentz rotation and a Lorentz boost, A = RB. The
rotation fixes the time axis and rotates spatial coordinates:

1 of -
Rz[ ~:|, R € SO(n).
0 R

A boost with velocity vector v € R” (||v|| < 1) has the block form
T
Y v 1

2 _
; V=
—v 1n+117va VI=VIP

. . . y—1 T
) n+ 1o .
(Equivalently, the spatial block can be written I,, + ~EVY when v # 0.)

B=

C GYROVECTOR STRUCTURES ON THE LORENTZ MODEL

C.1 GYROGROUPS
We recall the algebraic notion of a gyrogroup, which extends the concept of a group to settings where associativity
is relaxed and corrected by gyrations (Ungar, 2008; 2014).

Definition 1 (Gyrogroup). Let G be a nonempty set endowed with a binary operation &: G X G — G. The
pair (G, ®) is a gyrogroup if, for all a,b, c € G, the following axioms hold:

(G1) There exists an element e € G such that e & a = a (left identity).
(G2) For each a € G there exists ©Sa € G such that Sa & a = e (left inverse).
(G3) There exists a map gyr|a,b]: G — G (the gyration generated by a, b) such that

a® (b®dc)=(a®b) ®gyrla,bl(c) (left gyroassociative law).
(G4) gyr[a,b] = gyr[a @ b, b] (left reduction law).

If in addition
a®b=gyr[a,b](bd a), Va,b e G,

then (G, @) is called gyrocommutative.

Gyrogroups generalize groups: when all gyrations are the identity map, (G, @) reduces to a usual group. The
lack of strict associativity is compensated by the gyration operators, which encode curvature induced nonlinearity.

C.2 FROM GYROGROUPS TO GYROVECTOR SPACES

To model both addition and scalar multiplication in curved geometries, gyrogroups can be enriched to gyrovector
spaces (Ungar, 2008; Nguyen et al., 2022).

Definition 2 (Gyrovector space). Let (G, ®) be a gyrocommutative gyrogroup and let ®: R x G — G be a
map called scalar multiplication. The triple (G, ®, ®) is a gyrovector space if, for all a,b,c € G and s,t € R,

(V) 10a=a,00a=¢t@e=¢ and (—1) ®a = Sa.
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(V2) (s+t)Qa=s0adtOa.

(V3) (st) ®a=s0 (t®a).

(V4) gyr[a,b](t © ¢) =t ® gyr[a, b](c).

(V5) gyr[s ® a,t ® a] is the identity map on G.

These axioms mirror the familiar properties of vector spaces, with gyrations accounting for the deviation from
linearity. In particular, (V2) and (V3) play the role of distributivity and associativity for scalar multiplication,
while (V4)—(V5) guarantee a consistent interaction between gyrations and scaling.

C.3 GYROSTRUCTURES INDUCED BY RIEMANNIAN GEOMETRY

The above algebraic objects can be constructed on a Riemannian manifold from the exponential and logarithmic
maps at a distinguished origin. Following Nguyen et al. (2022); Nguyen & Yang (2023); Chen et al. (2025a),
let (M, g) be a complete Riemannian manifold with identity element £ € M. Denote by Exp,, and Log, the
Riemannian exponential and logarithmic maps at x € M, and by PT,_,, the parallel transport from 73, M to
TyM.For P,Q,R € Mandt € R, define

P& Q =Expp(PTe-p(Logg Q)), (12)
t©® P = Expg(t Logy P), (13)
OP = (—1) ® P = Expg(— Logg P), (14)
gyr[P, QIR = (e(PeQ))® (P& (Q®R)). (15)
The induced gyro inner product, norm, and distance are
(P,Q)er = <L0gE P,Logg Q>TEM, (16)
[Pllgr = v/ (P, P)ex, (17
de:(P,Q) = [[6P ® Q|| ,- (18)

Under mild regularity assumptions, (M, @, ®) forms a gyrovector space and the gyrodistance dg, coincides
with the geodesic distance on a wide class of manifolds, including constant curvature spaces (Nguyen et al.,
2022; Chen et al., 2025a). In Euclidean space, these constructions reduce exactly to standard vector addition,
scalar multiplication, and the Euclidean metric.

C.4 CONSTANT CURVATURE MODEL AND MOBIUS OPERATIONS

For hyperbolic geometry it is convenient to introduce the constant curvature model
%, K <0
K
Mg = n’ '
R", K =0,

where P is the Poincaré ball of curvature K < 0 and radius 1/v/— K. On P’ the gyrostructures in Egs. 12
and 13 admit closed form expressions known as Mobius addition and Mobius scalar multiplication (Ungar, 2008;
Ganea et al., 2018; Skopek et al., 2020).
Let z,y € Pk and set c = —K > 0. The M&bius addition is

(1 + 2¢(z, y) + cllyl*)a + (1 - cll=*)y

TP = , 19
“ I+ 26{z,y) + Al ol "
and the Mobius scalar multiplication is
1
— tanh(t artanh(v/c||z])) ——-, @ #0,
t@xz={ V¢ ]| (20)
0, z =0.

Equipped with @k and ®, the ball P% is a real gyrovector space whose gyrodistance coincides with the
hyperbolic geodesic distance.

C.5 INDUCED GYROVECTOR OPERATIONS ON THE LORENTZ MODEL

The Lorentz model L% is isometric to the Poincaré ball P via a standard mapping. Let K < 0 and denote
r=1/v/—=K.Forz = (z0,zs) € L% with o > 0 and —xf + ||zs||* = 1/K, define
Ts

: L% Pk = 21

7/1 K —7 Ik, w(m) 0 +7”7 ( )
-1, pn n -1 _ 1+CHU’H2 2u

1/’ P — LK? 1/} (U) - (1 _ CHUH2 r, 1— C||U||2 ’ (22)
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where ¢ = —K > 0. The map ¢ is a Riemannian isometry between (L%, gx ) and (P&, gx) (Ratcliffe, 2006;
Skopek et al., 2020).

We transfer the gyrovector structure from the ball to the hyperboloid by conjugation with . For z,y € L% and
t € R, define

zeRy=v""(Y() Bk P(y)), (23)
t®f<x:1/fl(t XK ¢($)) 24

Substituting the explicit expressions Egs. 19 and 20 and the coordinate maps Eqgs. 21 and 22 Lyields closed form
formulas for z @% v and ¢ ®% « in Lorentz coordinates. By construction, (L%, %, ® %) is a gyrovector
space that is isomorphic to (P%, @k, ® ). In particular, the gyrodistance induced by Eq. 23 agrees with the
hyperbolic geodesic distance on L, and the gyroaddition and gyro scalar multiplication act as hyperbolic
analogues of Euclidean vector addition and Euclidean scaling.

D DISCUSSION ABOUT INTRINSIC

In our paper, “intrinsic Lorentz” refers to using only operations that are well-defined on the Lorentz model itself,
rather than on its ambient Minkowski space. We define a layer (I : L% — L%) intrinsic if

1. its input, output, and all intermediate states lie on some L% (they always satisfy (z, z), = —1/K, z > 0).

2. itis expressed entirely in terms of the Lorentzian geometry: (-, -) ., the induced distance dr,, and operators
derived from them (exp/log maps, parallel transport, gyroaddition/gyroscaling, Lorentzian centroids, etc.),
without ever using arbitrary Euclidean linear maps on Lorentz vectors in the ambient space.

Under this definition, the previous Lorentz fully connected layer (LFC) used in HCNN is not intrinsic. Its update
has the form

y = VIeWx, V)2 = 1/K, ¢(Wx,v)] ,
where x € L%, Wx is a standard matrix—vector product in R” and the operation
Wi(x) + b
IWe () + b]|
This Wx is defined using the ambient linear structure of the Minkowski space, not any operation on the

Lorentz manifold itself. Because the core transformation is an ambient Minkowski multiplication rather than a
Lorentzian/geodesic operation, this layer is only partially intrinsic.

p(Wx,v) = Ao(v @+ b) (25)

By contrast, our PLFC is constructed entirely from Lorentz-geometry primitives that have closed-form definitions

on L%. Each logit is the signed Lorentzian distance from the input point to a learned Lorentz hyperplane, and
m

the output y is then recovered in closed form as the unique point on L% whose signed distances to a set of
coordinate hyperplanes equal these logits. All steps (hyperplane parameterization, point-to-hyperplane distance,
reconstruction of y) are expressed only via the Lorentzian inner product and distance; no ambient Euclidean
affine map Wx + b is ever applied. In this sense, PLFC is an intrinsic Lorentz FC layer.

E PROOFS

E.1 PROOF OF THEOREM 1

Proof. We work in the hyperboloid model L} = {z = [z, zs] € R™ : (x,2); = 1/K, x, > 0} with
K < 0 and Minkowski bilinear form [z, 2], [ye, ¥s]) e = —z+y: + (s, ys). Let 0 = [(—K) '/, 0] be the
basepoint. Denote by e® ¢ R™ the k-th Euclidean basis vector in the spatial block and set e® = [0, e(k)].

Lorentz coordinate hyperplanes. The k-th spatial axis is the geodesic through 0 in the direction e*).
The Lorentz coordinate hyperplane through 0, orthogonal to this axis, is given by

Definition 3. (Lorentz hyperplane containing 0 and orthogonal to the k-th axis)
Hﬁm,o ={z= [z, 2] € L2 | (e® m), = (™ ) =z = 0}. (26)
This is the special case of the Lorentz hyperplane H , in Eq. 4 with @ = 0 and z = e®) (hence ||z|2 = 1),

for which cosh(v/—Ka) = 1 and sinh(v/—Ka) = 0, giving (z, zs) = 25 = 0.

With Definition 3, the preparation for constructing y in Eq. 8 is complete.
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Derivation of y. Letxz € L% and y = [y:,ys]' € L be the input and output of the PLFC layer,
respectively. As in Eq. 8a, for k = 1,..., m we define the scores vy (x) = vz, 4, (x) via the Lorentz MLR
logits in Eq. 6.

To endow y with the desired property—that the signed hyperbolic distance from y to the k-th coordinate
hyperplane equals vy (2)—we impose the simultaneous system
d%(y, Hﬁ’c),o) = vi(x), k=1,...,m. 27

Using Eqgs. 4 and 5 with ¢ = 0 and z = e® (so that the denominator equals 1), the unsigned
point—to—hyperplane distance specializes to

dely, 1L ) = <= [sinh (V=R ).

Orienting H f( k) o DY the unit normal e and recalling the sign convention used in Eq. 6, the signed distance is
therefore

(. K 1 .y
dﬁ(y7 He(k),O) = ﬁ sinh ( —-K ys,k)- (28)
Substituting Eq. 28 into Eq. 27 yields, for each k,
1 .,
sinh —Kuysk) = vi(x), 29
— (V=Kysx) = v(a) 29)
and hence 1
Ys, b = = sinh(\/—K vk(m)), k=1,...,m, (30)
which is exactly Eq. 8b. Collecting these coordinates gives Ys = (Ys.1, .-, Ysm)

Finally, the time coordinate y; is fixed by the hyperboloid constraint (y,y). = 1/K, i.e.,

1
—utlysli =5 = we=y (K7 sl (31

with the positive root chosen to remain on the top sheet, which is Eq. 8c. Thus Eq. 8 follows.

Confirmation of the existence of y. For any real scores vy (x), Eq. 30 yields real ys x, because sinh is
entire. Since —K > 0, we have (—K) ™' + ||ys||3 > 0, so y: in Eq. 31 is real and strictly positive. Therefore
Yy = [yt,ys] € L always exists and lies on the correct sheet. Moreover, Eq. 29 guarantees that the signed
distance from y to each coordinate hyperplane H g .0 is exactly vi (), as required.

Flat-space limit. As K — 0, we have sinh(v—K v) = V=K v+ O(K®/?), hence y . — vi(z) from
Eq. 30. Using Eq. 6 and the expansion cosh(v—Ka) = 1 + O(K), sinh(v=Ka) = V=K a + O(K*/?),
one obtains vg () — (2, €s) — ax, so the spatial part reduces to the Euclidean affine map with row vectors
A = z—,cr and bias by = ax, as stated below Theorem 1. O

E.2 PROOF OF THEOREM 2

Theorem 2 (Margin preservation and contraction of PLFC and LFC). Fix a curvature K < 0. For any input x,
let the penultimate layer produce

u(z) = (ui(z), ..., um(z)) € R™,
and let ¢ denote the true class. Define the pre-logit margin

A(z) = uc(z) — max u; (z).

Consider two Lorentz output-layer designs that use signed geodesic distances from the output point y(x) to the
coordinate hyperplanes as logits:

e PLFC head (intrinsic). The spatial coordinates are

= \/17 sinh (V—K ux(z)),

C
Yor < (x)

and the signed Lorentzian distance to the k-th coordinate hyperplane is

asinh (vV—-K yEI,;FC ().

A () =

1
vV—K
2

0
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e LFC head (extrinsic / linear). The spatial coordinates are taken directly as

vk (@) = ui(x),

and the signed Lorentzian distance to the same hyperplane is

d¥C () = \/i? asinh (vV—K ux(z)).
Define the distance-based margins
APLFC(Z’) — dCPLFC( ) m;ZX dPLFC( )7 ALFC (.’,t) — dI;FC (.T) _ mjx d?Fc(ﬂj)
JFc JFc

Then, for every sample x:

1. (Margin preservation of PLFC)
APEFC (1) = A(x).

2. (Margin contraction of LFC) The LFC head preserves the sign of the margin and contracts its magnitude:

sign (A"F9(2)) =sign (A(z)),  |AMC(z)| < |A(@)],
with strict inequality |A"FC ()| < | A(z)| whenever A(z) # 0.
Proof. Define
h(t) := \/iiKasinh(\/jt), K <O0.

By the point-to—hyperplane distance formula in the Lorentz model, for any Lorentz point y = (yo, ys) the
signed distance to the k-th coordinate hyperplane is exactly h(ys k).

(1) PLFC preserves the margin. For the PLFC head we have

ysli%Fc(x) = \/i? s.inh(\/juk(ﬂ’f))7
and thus
dELFC( ) = h(yzLFC( )) _ \/iiKasinhG/j.\/iiKsinh(\/jwc(x))) = \/i? asinh(sinh(\/juk(x))).

Since sinh : R — R is a bijection with inverse asinh, we have asinh(sinh z) = z for all z € R, hence
diC (@) = un(@).
Consequently,

APV () = df*F () — max df € (2) = we(z) — maxus (@) = Ala),

which proves (1).
(2) LFC contracts the margin. For the LFC head we have y}5° (z) = uy (), hence
di"C(z) = h(uk(z)).

We first record two basic properties of h. Differentiating,

, d 1 1 V=K B 1
B (t) = & [\/7 asmh(\/it)] W o e

so h/(t) > 0 forall t and h'(t) < 1 with h/(¢) = 1 if and only if ¢ = 0. Therefore, h is strictly increasing and
1-Lipschitz.

Let j* be any index of a maximizer of the competing pre-logits:
Jj*© € argmaxu;(x).
j#c
Since h is strictly increasing, the same index maximizes the distance-based logits:
max dy"% (z) = max h(u;j(z)) = h(uj+(x)).
i#e e
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Hence
A(z) = uc(x) — ujx (), ALFC(JJ) = h(uc(z)) — h('LLj* (x))

If A(z) = 0, then u.(z) = u;+ (x) and consequently A“FC(z) = 0, so the conclusion holds trivially. Suppose
now A(z) # 0 and, without loss of generality, set

a = uc(x), b= uj(x), a #b.

Assume a > b; the case a < b is analogous by symmetry. Using the fundamental theorem of calculus,
a
h(a) — h(b) = / B'(t)dt.
b

Because h/(t) > 0 for all ¢, we have h(a) — h(b) > 0, so sign(h(a) — h(b)) = sign(a — b). Moreover, since
1'(t) < 1 everywhere and h'(t) < 1 for all ¢ # 0, the integrand is strictly less than 1 on a subset of [b, a] with
positive measure whenever a # b. Thus

0<h(a)—h(b):/ah'(t)dt</aldt:a—b.

Taking absolute values yields
|h(a) = h(b)| < |a—b|.

Substituting back a = u.(x) and b = u;= (x), we obtain
sign (A (2)) = sign (A(x)), |AYC(@)| = |h(a) — h(b)] < |a —b] = |A(2)].
Combining with the A(z) = 0 case, this gives
AFC()] < A,

with strict inequality whenever A(z) # 0, which proves (2). O

F IMPLEMENTATION DETAILS

F.1 DATASETS

All these datasets exhibit hierarchical class relations and high hyperbolicity (low d,.;) as shown in Table 5,
making the use of hyperbolic models well-motivated.

Image Datasets For image classification, we adopt the standard benchmarks CIFAR-10 and CIFAR-
100(Krizhevsky et al., 2009). CIFAR-10 and CIFAR-100 each contain 60,000 32 x 32 color images drawn
from 10 and 100 classes, respectively. Following the PyTorch setup and (Bdeir et al., 2024), we use 50,000
images for training and 10,000 for testing. CIFAR-10 and CIFAR-100 are standard proxies for visual object
recognition whose categories naturally admit semantic hierarchies (e.g., animal — mammal — dog — specific
breed). In CIFAR-100, this is made explicit by grouping the 100 fine-grained classes into 20 coarse superclasses
in the original dataset design. This hierarchical structure has been extensively verified in prior hyperbolic vision
work Bdeir et al. (2024); Nguyen et al. (2025) on CIFAR-10/100

Gene Datasets For genomic sequence classification, we evaluate on the Transposable Elements Benchmark
(TEB) (Khan et al., 2025) and the Genome Understanding Evaluation (GUE) (Zhou et al., 2023) suite. TEB is a
curated, multi-species collection of binary classification tasks spanning seven transposable-element families
across retrotransposons, DNA transposons, and pseudogenes; we follow the authors’ released preprocessing
and data partitions. GUE aggregates 28 datasets covering seven biologically meaningful tasks—including
transcription-factor binding, epigenetic mark prediction, promoter and splice-site detection—with sequences
ranging roughly from 70 to 1000 base pairs originating from yeast, mouse, human, and viral genomes. Unless
otherwise noted, we adopt the official train/validation/test splits and report the Matthews correlation coefficient
(MCQC) as our primary metric. The TEB and GUE suites are constructed directly from natural genomic sequences
and inherit the biological hierarchies of their domains. TEB tasks span multiple transposable-element families
across retrotransposons, DNA transposons, and pseudogenes, which themselves sit in a multi-level taxonomic
hierarchy (orders — superfamilies — families). GUE aggregates datasets for transcription-factor binding,
promoter and core-promoter detection, splice-site prediction, and COVID-variant classification across several
species. These tasks are all manifestations of hierarchical regulatory structure (e.g., motifs — modules —
promoters — gene expression).
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Table 5: Hyperbolicity values of the datasets used in our experiments ( dyc)-

Benchmark Task Dataset Orel
. . CIFAR-10 0.26

CIFAR Image classification CIFAR-100  0.23
M Pseudogenes processed  0.19

E Pseudogenes unprocessed  0.16
Covid variant classification covid 0.42

all 0.23

m Core Promoter detection notata 0.21

8 tata 0.14
all 0.26

Promoter detection notata 0.26

tata 0.14

F.2 SETTINGS

Table 6 summarizes the hyperparameters used to train the model. We additionally note a dataset-specific choice
regarding normalization statistics. On CIFAR-10/100 we enable running statistics: we maintain per-channel
running statistics by updating the Lorentzian centroid (mean) and dispersion (variance) with a momentum term
and, at test time, substitute these running estimates for the batch statistics. In contrast, on the TEB and GUE
genomic suites, we disable running statistics entirely, because enabling them consistently led to a collapse of
MCC after a few dozen epochs. For these genomic datasets, we therefore compute statistics on-the-fly from each
evaluation batch (i.e., no moving averages are used at test time). Compared with natural images, the genomic
tasks exhibit stronger distributional non-stationarity (heterogeneous sequence lengths and tasks) and higher
batch-to-batch variability. Under these conditions, momentum-based running estimates accumulate bias and
lag behind the true data distribution; in a Lorentzian normalization layer, a biased centroid and underestimated
dispersion can over- or under-normalize timelike features, shrinking margins and destabilizing optimization.

Table 6: Summary of hyperparameters used in different datasets.

Hyperparameter | CIFAR-10&100 TEB GUE
Epochs 200 150 150
Batch size 128 256 256
Learning rate (LR) le-1 8e-4 9e-4
Drop LR epochs 60, 120, 160 100,130 100,130
Drop LR gamma 0.2 0.1 0.1
Weight decay Se-4 6e-3 5e-3
Optimizer (Riemannian)SGD  (Riemannian)Adam (Riemannian)Adam
Floating point precision 32 bit 32 bit 32 bit
GPU type RTX A100 RTX A100 RTX A100
Num. GPUs 1 1 1
Hyperbolic curvature K -1 -1 -1
Dropout rate 0.05 0.05 0.05

G MORE ABLATION STUDIES

Table 7 above expands the ablation to the number of Fréchet mean iterations used by each normalizer while
keeping all other components fixed. Across all GUE datasets and both tasks, PLFC+GyroLBN achieves the
best accuracy under every iteration budget, and the relative ordering of methods is unchanged as the budget
increases. Moving from 1 to 2 and 5 iterations yields modest but consistent gains, whereas 10 steps and the
fixed-point solution (cells with gray background, denoted by co) offer only marginal improvements at a higher
computational cost. These trends indicate that the advantage of GyroLBN stems from the normalization rule
itself rather than from merely computing a tighter Fréchet mean. In practice, allocating a small budget of two to
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five iterations recovers nearly all of the attainable accuracy while preserving efficiency, making PLFC+GyroLBN
the most effective and economical choice in our setting.

Table 7: Ablation study on the number of Fréchet mean iterations. The symbol oo indicates that
iterations are performed until convergence, which is the setting used in our main ablation experiments.

Model
Benchmark Task Dataset Iteration LFC LFC PLFC PLFC
LBN GyroLBN | GyroBN | GyroLBN
1 80.09+1.90
2 81.38+2.74
tata 5 78.26+2.85 | 81.33:3.19 | 79.47+221 | 83.90:0.53
10 81.27+1.75
o0 80.89+3.11
1 71.99+0.68
71.06=0.49
Core Promoter Detection  notata 5 66.60+1.07 | 71.92:052 | 71.6520.79 | 72.59+0.69
10 71.12+1.75
00 72.22+1.44
1 70.47+0.85
70.42+0.49
all 5 66.47+074 | 69.74+13 | 70.75:045 | 70.89+0.43
10 69.810.67
m 00 70.14+0.45
2 1 81.71150
2 80.19+1.90
tata 5 78.58+339 | 80.46:099 | 81.69+3.90 | 83.26:1.90
10 79.79+1.91
00 81.16+1.99
1 92.15+0.76
91.89+0.71
Promoter Detection notata 5 90.81x051 | 91.88+1.01 | 92.19+041 | 92.48+0.35
10 92.07x0.63
00 91.67:0.56
1 90.45+0.72
91.01x0.99
all 5 88.00+039 | 90.28+1.04 | 90.80:0.73 | 91.34:0.38
10 91.18=0.83
o0 91.02+0.56
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