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ABSTRACT

Reliable decision making pipelines powered by machine learning models require
uncertainty quantification (UQ) methods that come with explicit safety guaran-
tees. Conformal prediction provides such UQ by wrapping ML predictions into
prediction sets, and recent work by Kiyani et al. (2025) established that these sets
can be translated into optimal risk-averse decision policies—yet only inheriting
marginal safety guarantees. We generalize and strengthen their results by (i) in-
troducing action-conditional conformal prediction, which yields safety guarantees
conditioned explicitly on each action taken by the decision maker, (ii) showing that
action-conditional prediction sets serve as a proxy for the feasible decision space
for risk-averse decision makers aiming to optimize action-conditional value-at-risk,
and (iii) proposing a principled finite-sample algorithm based on pinball-loss mini-
mization, connecting the framework of Gibbs et al. (2025) to action-conditional
guarantees. Experiments on two real-world datasets confirm that our approach
significantly improves action-conditional performance over several conformal base-
lines.

1 INTRODUCTION

In many high-stakes scenarios—such as clinical medicine, finance, or autonomous systems—machine
learning models are increasingly deployed to assist in decision making. Consider a healthcare
application, where a predictive model is suggesting a serious condition based on a patient data.
Underestimating the model’s predictive uncertainty could lead to recommending a high-risk treatment
that results in catastrophic outcomes. Overestimating the uncertainty, on the other hand, could lead
to overly conservative decisions that forgo potentially life-saving interventions. This illustrates a
fundamental trade-off in practice: balancing safety, by guarding against low-utility outcomes, with
utility, by leveraging predictive information to maximize gains.

Conformal prediction (CP) has emerged as a central framework for uncertainty quantification in
supervised learning, offering distribution-free, model-agnostic guarantees with efficient post-hoc
implementations. In the standard setup, let (X,Y ) ∼ D be a random pair with feature X ∈ X and
label Y ∈ Y . CP constructs prediction sets C(X) ⊆ Y that satisfy a marginal coverage guarantee:
P(Y ∈ C(X)) ≥ 1− α. Despite its desirable statistical properties, it remains less clear how such
sets should guide principled downstream decision making. Recent progress by Kiyani et al. (2025)
has advanced this connection by studying risk-averse decision makers—agents who, upon observing
X but not Y , must choose an action a ∈ A to maximize a utility function u : A× Y → R, while
ensuring that low-utility outcomes occur with probability at most α. Specifically, given an action
policy a : X → A and a utility certificate ν : X → R, they consider the problem of maximizing the
expected certificate E[ν(X)] subject to the safety constraint,

P(u(a(X), Y ) ≥ ν(X)) ≥ 1− α. (1)

This is a marginal safety guarantee, meaning the agent is safe on average over the distribution
of covariates—for example, on average across patients in a medical setting. Kiyani et al. (2025)
show that the optimal solution to this problem is achieved by first constructing a prediction set
C(X) with valid coverage, and then acting according to the max-min decision rule: a(X) =
argmaxa∈A miny∈C(X) u(a, y). This result establishes that conformal prediction sets are a sufficient
representation of uncertainty for risk-averse agents seeking a marginal notion of safety (1).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While marginal safety offers a useful baseline, it fails to guarantee that any particular decision is
safe—it only ensures that, on average across the population, the agent avoids low-utility outcomes.
In safety-critical settings, this average guarantee can be dangerously misleading: a high-risk action
might appear acceptable because its risks are averaged out by safer decisions elsewhere. From the
perspective of a downstream decision maker, what matters is not marginal safety, but whether each
potential action carries a reliable safety guarantee. For instance, in medical treatment planning, a
decision policy may appear safe on average but fail to provide safety when high-risk actions like
surgery are chosen, making action-conditional guarantees essential. This motivates the need for
action-conditional safety: a stronger requirement that ensures the decided action will lead to high
utility with high probability, conditioned on that action being taken. The action-conditional guarantees
are practically meaningful and essential for safe deployment in domains such as healthcare, where
decisions must be justified not globally, but per-action.

Formally, for an action policy a : X → A, a utility function u : A× Y → R, and a utility certificate
ν : X → R, we introduce the action-conditional safety constraint:

P(u(a(X), Y ) ≥ ν(X) | a(X) = a) ≥ 1− α, for all a ∈ A. (2)

This constraint ensures that each action the agent may take leads, with high probability, to utility
exceeding the certificate ν(X) (larger certificates are desirable). It also draws a conceptual par-
allel to the multi-calibration literature Foster & Vohra (1997); Zhao et al. (2021); Noarov et al.
(2023)—particularly decision calibration—which calibrates forecasts conditioned on the actions of
downstream agents. However, such frameworks are tailored to risk-neutral decision makers who
aim to maximize expected utility, for whom calibrated probability estimates are the correct notion
of uncertainty quantification Foster & Vohra (1997); Zhao et al. (2021); Noarov et al. (2023). In
contrast, the risk-averse agents we seek to avoid low-utility outcomes by optimizing quantiles of
their utility distribution, and thus require high-probability guarantees. Our work can be viewed as an
analogous foundation to decision calibration, adapted to the risk-averse setting.

In this work, we study such risk-averse agents who aim to maximize their average utility certificate
E[ν(X)], subject to satisfying the action-conditional safety guarantee in (2). This corresponds
to agents optimizing their action-conditional value-at-risk—a formulation that captures the need
for reliable utility under each possible decision. We will show that this objective admits a sharp
characterization: the optimal decision policy can be implemented via conformal prediction sets that
satisfy an action-conditional validity property:

P
(
Y ∈ C(X) | argmax

a∈A
min

y∈C(x)
u(a, y) = a

)
≥ 1− α, ∀a ∈ A. (3)

That is, prediction sets with the right conditional coverage structure serve as surrogates for action-
conditional risk-averse decision making. Building on this line of thinking, we now detail our
contributions to both sides of the story: decision making and conformal prediction.

On the decision making side. We prove that prediction sets with the right conditional coverage
structure serve as surrogates for action-conditional risk-averse decision making. We establish a
one-sided correspondence: optimizing action-conditional prediction sets yields feasible risk-averse
policies. This strengthens the results of Kiyani et al. (2025) and further solidifies the role of conformal
prediction as a principled uncertainty quantification tool—even when conditional safety guarantees
are required in downstream decisions. Moreover, we explicitly derive the optimal prediction sets that
achieve the best population-level performance under action-conditional constraints.

On the conformal prediction side. To translate this population-level characterization into a practical
algorithm, we develop a novel finite-sample debiasing method that ensures distribution-free action-
conditional coverage guarantees—marking the first such result in the literature. Our calibration
procedure builds on and extends the methodology of Gibbs et al. (2025), by defining the novel notion
of action specific non-conformity score. We also establish both distribution-free lower and upper
bounds for the action-conditional coverage of our method.

Experimental Validation. We empirically evaluate AC-RAC on real-world tasks such as medical
diagnosis. Across all settings, AC-RAC achieves significantly lower miscoverage for each action
class compared to baseline methods, while maintaining competitive utility. These results highlight
the practical relevance of action-conditional safety in decision-sensitive environments.
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1.1 RELATED WORK

The formal framework of conformal prediction (CP) was introduced by Vovk et al. (1999); Saunders
et al. (1999); Vovk et al. (2005). CP has since become a widely adopted method for constructing
prediction sets with finite-sample marginal validity guarantees (for instance look at Shafer & Vovk
(2008); Angelopoulos et al. (2023)). A large body of work has sought to strengthen the marginal
guarantees of CP. These include group-conditional coverage Barber et al. (2023); Cauchois et al.
(2021); Gibbs et al. (2025); Jung et al. (2022); Vovk et al. (2005), localized guarantees Guan (2023);
Hore & Barber (2023), label-conditional coverage Ding et al. (2023); Vovk et al. (2005), selection-
conditional coverage Bao et al. (2024); Jin & Ren (2025); Gazin et al. (2025); Jin & Candès (2023),
and approaches for CP under treatment-based selection in counterfactual inference Lei & Candès
(2021); Yin et al. (2024); Jin et al. (2023).

Our work introduces a new notion: action-conditional coverage, which is fundamentally distinct.
While action-conditional guarantees share similarities with group-conditional CP—specifically, in
that they target coverage over groups shaped by the action policy—the key difference is that these
groups are not predefined. They emerge dynamically from the decision policy, which itself depends
on the prediction sets. This interdependence creates a feedback loop that breaks the usual predefine-
then-calibrate pipeline and necessitates new algorithmic tools to ensure valid coverage across all
actions. Similarly, selection-conditional methods address inference after a selection event in test time
(e.g., coverage conditioned on the test points with small set size). However, our setting is richer: we
require simultaneous coverage across all actions, not just for selected instances. Even in the binary
action case (e.g., select vs. not-select), selection-conditional methods typically provide guarantees
only for selected points, whereas we demand coverage for both selected and non-selected cases.
Also beyond our contribution to conditional methods for debiasing sets, we also show that action-
conditional prediction sets act as surrogates for risk-averse agents optimizing action-conditional value
at risk, linking conditional CP with finer grained safety guarantees for decision making. For further
discussion on related works, particularly on the risk averse decision making side of our contributions
please see Appendix A.

2 ACTION-CONDITIONAL CONFORMAL RISK AVERSE DECISION MAKING

In this section, we will formulate the problem of risk-averse decision-making with action-conditional
guarantees. We are given a space of features X , a set of labels Y , and a set of possible actions A.
We assume that (x, y) ∈ X × Y is drawn from an unknown joint distribution D. After observing a
feature x, the decision maker selects an action a. Note that the decision maker does not observe the
true label y. However, the utility of the decision maker will depend on both the chosen action a and
the label y, and is captured by a given utility function u : A× Y → R.

The core principle behind risk-averse optimization is to prioritize reliability over average performance.
That is, rather than selecting actions that maximize expected utility, the agent prefers actions that
avoid catastrophic low-utility outcomes with high probability. This is particularly important in
safety-critical settings such as healthcare or finance, where occasional failures can be unacceptable.
In the classical risk-averse setting, the agent aims to guarantee that the utility u(a, Y ) is high with
probability at least 1− α. For a pre-specified risk tolerance level α ∈ (0, 1), the α-level quantile of
the utility for each action a ∈ A is defined as

να(a;x) = quantileα (u(a, Y ) | X = x) .

A risk-averse decision maker then selects the action that maximizes this guaranteed utility level—that
is, the action whose worst-case performance, up to level 1− α, is as high as possible. This leads to
conservative decisions that avoid low-utility outcomes with high confidence.

This formulation requires full knowledge of the conditional distribution p(y | x), which is typically
inaccessible. To address this, Kiyani et al. (2025) introduce a marginal relaxation called RA-DPO
(Risk-Averse Decision Policy Optimization), where the quantile constraint is enforced over the entire
data distribution:

max
a(·),ν(·)

EX [ν(X)],

s.t. P(u(a(X), Y ) ≥ ν(X)) ≥ 1− α,
(4)

where a : X → A is the policy and ν : X → R is the associated utility certificate. This marginal
formulation provides a statistically feasible proxy for pointwise quantile guarantees.

3
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In this paper, we propose a stronger notion of risk-aversion: one that is action-conditional. That is,
the utility guarantee must hold within each subpopulation of the data defined by the action taken.
This is essential in applications where actions have distinct operational meanings (e.g., treatment
decisions), and fairness or reliability must be certified at the level of each action.

Formally, we impose the requirement that for each action a ∈ A, the agent achieves a high-utility
outcome with probability at least 1−α conditional on selecting that action. This leads to the following
optimization problem, termed as Action-Conditional Decision Policy Optimization (AC-DPO):

max
a(·),ν(·)

EX [ν(X)],

s.t. P(u(a(X), Y ) ≥ ν(X) | a(X) = a) ≥ 1− α, ∀a ∈ A.
(5)

Here, recall that u denotes the utility function, a : X → A is the decision policy, ν : X → R is the
quantile function, and α is the risk tolerance level. This formulation strengthens the guarantee in (4)
by ensuring calibrated performance across all decision branches, not only in aggregate. We refer to
(5) as the action-conditional counterpart to RA-DPO.

2.1 CONSTRUCTING ACTION-CONDITIONAL POLICIES FROM PREDICTION SETS

Prediction sets have emerged as a central tool in uncertainty quantification due to their ability to
provide distribution-free, model-agnostic coverage guarantees. Recent work by Kiyani et al. (2025)
has established a fundamental connection between prediction sets and risk-averse decision making.
In particular, it is shown that that any optimal decision policy under marginal safety constraints can
be equivalently realized through a max-min decision rule over appropriately constructed prediction
sets. Formally, it is shown that RA-DPO (4) is equivalent to the solution of a prediction-set-based
optimization problem called Risk-Averse Conformal Prediction Optimization (RA-CPO),

max
C(·)

EX

[
max
a∈A

min
y∈C(X)

u(a, y)

]
s.t. P(Y ∈ C(X)) ≥ 1− α.

Using an optimal solution C(x) of this problem, we can find the optimal policy for (4) as

aCRA(x) = argmax
a∈A

min
y∈C(x)

u(a, y), νCRA(x) = max
a∈A

min
y∈C(x)

u(a, y). (6)

This equivalence shows that prediction sets communicate uncertainty effectively and serve as a
complete representation for optimizing risk-averse utility under marginal coverage constraints.

We now generalize this result to the action-conditional setting, where safety must hold conditionally
on each action being taken. Specifically, we consider the Action-Conditional Risk-Averse Conformal
Prediction Optimization (AC-CPO):

max
C(·)

EX

[
max
a∈A

min
y∈C(X)

u(a, y)

]
s.t. P

(
Y ∈ C(X) | aCRA(X) = a

)
≥ 1− α, ∀a ∈ A.

(7)

We next show that this action-conditional generalization leads to a feasible policy optimization
formulation (defined in (5)). That is, prediction sets constitute a relaxed representation for risk-averse
decision making when conditioning on individual actions.

Theorem 1 (From AC-CPO to AC-DPO) From any optimal solution C∗ to (7), we can construct a
feasible solution (aC

∗

RA(x), ν
C∗

RA(x)) for (5) such that it follows the action-conditional constraints and

EX

[
νC

∗

RA(X)
]
= EX

[
max
a∈A

min
y∈C∗(X)

u(a, y)

]
.

We refer the reader to Appendix C.1 for the proof. In contrast to the two-way equivalence shown
by Kiyani et al. (2025), our action-conditional setting yields only a one-directional guarantee: an
optimal AC-CPO solution induces a feasible AC-DPO policy with equal value, whereas the converse

4
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need not hold. This asymmetry arises because, under action-conditional constraints, the conditioning
event in AC-CPO {aCRA(X) = a} is endogenous to the prediction sets but the event in AC-DPO
{a(X) = a} is free. Despite this relaxation, our experiments (Section 5) show that the resulting
policies preserve high utility while delivering valid action-conditional safety. Accordingly, we use
AC-CPO as a principled surrogate that preserves conditional guarantees and provides a constructive
route to implementable policies.

3 REPARAMETERIZED CONSTRUCTION OF PREDICTION SETS

In this section, we study the population-level conformal prediction problem with action-conditional
guarantees, as defined in (7). Our goal is to characterize the prediction set function C(x) that
maximizes risk-averse utility while satisfying per-action coverage constraints. To this end, we
introduce a reparameterization and derive a dual formulation using tools from convex duality. See
Theorem 3 for the final characterization. The principles developed here will serve as the foundation
for designing a finite-sample method in the next section. All technical proofs are deferred to
Appendix C.2. We begin by defining two quantities that encapsulate the risk-averse utility structure:

θ(x, t) = max
a∈A

quantile1−t [u(a, Y ) | X = x] , a(x, t) = argmax
a∈A

quantile1−t [u(a, Y ) | X = x] .

(8)
Here, θ(x, t) denotes the maximum achievable risk-averse utility at coverage level t ∈ (0, 1), and
a(x, t) denotes the action that attains this utility. Intuitively, we aim to assign a feature-dependent cov-
erage threshold t(x) ∈ [0, 1], such that the resulting prediction set C(x) satisfies action-conditional
coverage and induces high utility. To this end, we reparameterize the prediction set problem (7) in
terms of the pointwise coverage function t(x) = P(Y ∈ C(X) | X = x). We show that (7) can be
relaxed to the following optimization problem over coverage functions:

max
t:X→[0,1]

EX [θ(X, t(X))] ,

s.t. E [t(X) | a(X, t(X)) = a] ≥ 1− α, ∀a ∈ A.
(9)

The next proposition makes this relaxation precise and gives a closed-form expression for the
prediction sets:
Proposition 2 (Set Characterization) From any optimal solution t∗(x) to (9), we obtain a feasible
coverage function C∗(x) for (7) such that

EX

[
max
a∈A

min
y∈C∗(X)

u(a, y)

]
= EX [θ(X, t∗(X))] .

The prediction set and decision policy are given by:

C∗(x) = {y ∈ Y : u(a(x, t∗(x)), y) ≥ θ(x, t∗(x))} , a∗(x) = a(x, t∗(x)). (10)

Moreover, this prediction set satisfies t∗(x) = P(Y ∈ C∗(X) | X = x).

This reparameterization serves as a conceptual bridge between the prediction set formulation and
the risk-averse decision policy. Once the optimal function t∗(x) is obtained, we can construct
both the feasible prediction sets and the associated actions via (10). We now turn to solving (9).
Unlike the marginal setting in Kiyani et al. (2025), where the coverage constraint is convex and
decoupled from the decision rule, the action-conditional formulation introduces new complexity: the
conditioning event a(X, t(X)) = a depends nonlinearly on the decision variable t. This dependence
breaks convexity and prevents direct application of previous techniques. We begin by rewriting the
action-conditional constraint in (9) using the identity

EX [t(X)1a(X, t(X))] ≥ (1− α)P(a(X, t(X)) = a),

where 1a(x, t) = 1[a(x, t) = a] denotes the indicator that action a is selected under threshold t.
This reformulation casts both sides of the constraint as expectations, enabling a more linear treatment
of the dependence on t and the decision rule a(x, t).

A key challenge, however, is that the indicator function 1a(x, t) introduces a discontinuous depen-
dence on t, leading to nonconvexity of the problem. We handle this difficulty by developing new
techniques detailed in Appendix C.2.2, drawing on tools from duality theory. To proceed, we define
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the threshold function t∗(x,λ) using a family of parameters λ = (λa)a∈A ∈ R|A|
≥0 , one for each

action

t∗(x,λ) = argmax
t∈[0,1]

{
θ(x, t) +

∑
a∈A

λa(t− (1− α))1a(x, t)

}
. (11)

This expression captures the tradeoff between utility and action-conditional coverage through a
tunable vector of |A|-dimensional parameters λ. The next theorem proves that this formulation can
fully describe the optimal solution to the problem (9).

Theorem 3 (Strong Duality) Assume the marginal distribution PX is continuous. Then strong
duality holds for the reparameterized problem (9). In particular, there exists λ∗ ∈ R|A|

≥0 such that

topt(x) = t∗(x,λ∗)

is the optimal solution to (9). Moreover, the dual minimizer is given by:

λ∗ = argmin
λ∈R|A|

≥0

Ψ(λ), where Ψ(λ) = EX

[
max
t∈[0,1]

{
θ(X, t) +

∑
a∈A

λa(t− (1− α))1a(X, t)

}]
.

This result provides a tractable characterization of problem (9) with action-dependent constraints.

4 ACTION-CONDITIONAL RISK AVERSE CALIBRATION

In this section, we consider the risk-averse optimization problem in the finite-sample setting. Suppose
that we have access to a set of calibration samples {(xi, yi)}i∈[n] and a predictive model f : X →
∆(Y), which assigns each x ∈ X to a probability vector in ∆(Y). We denote the output of x as
fx, which is an approximation of the distribution of the label y given the input x. In practice, f is
the (softmax) output of a pre-trained model that predicts label y from x. In this section, we aim to
develop a finite sample algorithm that connects predictions to actions that can exploit any black-box
pre-trained predictive model. We present all the technical proofs in Appendix C.3.

Given the model f , we estimate functions θ and a defined in (8), via replacing the true conditional
probabilities with their estimated counterparts obtained by f . In more detail, we obtain θ̂ and â via

θ̂(x, t) = max
a∈A

quantile1−t

[
u(a, Y ) | Y ∼ fx

]
, â(x, t) = argmax

a∈A
quantile1−t

[
u(a, Y ) | Y ∼ fx

]
.

(12)
For any λ ∈ R|A|

≥0 , define the optimal assignment function

t̂(x,λ) = argmax
t

(
θ̂(x, t) +

∑
a

λa(t− (1− α))1â(x,t)=a

)
. (13)

and the conformal prediction set Ĉ(x,λ) = {y ∈ Y : u(â(x, t̂(x,λ)), y) ≥ θ̂(x, t̂(x,λ))}.
We note that all the functions can be easily computed because they are parametrized by λ. From
Theorem 3 we know that there exists a λ∗ such that the optimal prediction sets is derived using the
function t̂(x,λ∗) and Ĉ(x,λ∗). Thus, the next question is now to select a feasible λ∗ that satisfies the
action-conditional coverage constraints. To do this, we first reparametrize the event {Y ∈ Ĉ(x,λ)}
by a closed-form of λ. In more detail, we note that Ĉ is determined by the assignment function t̂,
which can be decoupled by its one-dimensional counterpart. For any a ∈ A, define t̂(x, λa) as

t̂(x, λa) = argmax
t∈[0,1]

(
θ̂(x, t) + λa(t− (1− α))

)
,

then t̂(x, λa) is only parametrized by the scalar λa. We further define the action specific nonconfor-
mity score λ∗

a for any (x, y) as follows

λ∗
a(x, y) = inf

{
λa ≥ 0 : y ∈ QuantileSet1−t̂(x,λa)

[u(a, Y ) | Y ∼ fx]
}
.

where the quantile set is defined as
QuantileSet1−t[u(a, Y ) | Y ∼ fx] = {y ∈ Y : PY∼fx(u(a, Y ) ≤ u(a, y)) ≤ 1− t} .

Intuitively, the larger the value of λ∗
a(x, y), the more conservative it is to select action a at input x

when facing outcome y. This quantifies how atypical y is for x, if we want to play action a. The
lemma below, under mild tie-breaking assumptions, describes an important property of these scores.
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Lemma 4 Conditioning on the event {â(x, t̂(x,λ)) = a}, the following events are equivalent

{Y ∈ Ĉ(x,λ)} = {λa ≥ λ∗
a(x, Y )}.

Lemma 4 implies membership in the set Ĉ(x,λ) reduces to the scalar threshold test {λa ≥ λ∗
a(x, Y )}

conditioned on picking action a. In other words, for each (x, y), the action specific nonconformity
score λ∗

a(x, y), is the value such that y lies in the prediction set exactly when λa ≥ λ∗
a(x, y).

To calibrate the |A|-dimensional vector λ, we propose a novel formulation based on pinball loss
minimization using action specific nonconformity scores. Specifically, we include an imputed test
pair (xtest, y) alongside the n calibration samples {(xi, yi)}ni=1, resulting in n+ 1 total points. For
each sample i = 1, . . . , n and the test point, we define the loss:

Fy(λ) =
1

n+ 1

n∑
i=1

ℓα

(∑
a

λa 1{â(xi,t̂(xi,λ))=a},
∑
a

λ∗
a(xi, yi)1{â(xi,t̂(xi,λ))=a}

)

+
1

n+ 1
ℓα

(∑
a

λa 1{â(xtest,t̂(xtest,λ))=a},
∑
a

λ∗
a(xtest, y)1{â(xtest,t̂(xtest,λ))=a}

)
,

where the pinball loss is defined as ℓα(u, v) = (v−u) (1u≤v − α). Minimizing Fy(λ) over λ ∈ R|A|
≥0

thus yields a set of parameters that encode action-specific thresholds, leading to finite-sample coverage
guarantees. We can now present our main finite sample algorithm in 1.

Algorithm 1 Action-Conditional Risk Averse Calibration (AC-RAC)
Input: Miscoverage level α, calibration samples {(xi, yi)}ni=1, test covariate xtest

for each y ∈ Y do
λ̂y = argmin

λ∈R|A|
≥0

Fy(λ).

Output: Cfinal(xtest) = {y ∈ Y | y ∈ Ĉ(xtest, λ̂y)}

Remark 5 To solve the optimization problem of Fy(λ), we can apply a gradient descent algorithm.
To do so, one-can derive a sub-gradient Fy(λ). We present the full algorithmic details in Algorithm 2,
and provide a rigorous derivation of the sub-gradient step and convergence analysis in Appendix C.4.
Next, we show that AC-RAC outputs prediction sets with distribution free guarantees at test time.

Theorem 6 (Finite-Sample Action-Conditional Validity) Let (x1, y1), . . . , (xn, yn), (xtest, ytest)
be exchangeable samples. Then for every a ∈ A,

P
(
ytest ∈ Cfinal(xtest)

∣∣ aCfinal

RA (xtest) = a
)
≥ 1− α.

If (xi, yi) are i.i.d. and the score λ∗
a(X,Y ) has a continuous distribution for all a, then

P
(
ytest ∈ Cfinal(xtest)

∣∣ aCfinal

RA (xtest) = a
)
≤ 1−α+ |A|

(n+ 1) · P(aCfinal

RA (xtest) = a)
for each a ∈ A.

Theorem 6 guarantees that the proposed method achieves valid action-conditional coverage with
finite samples and the coverage error is tightly controlled and decays at a rate of 1/n. The i.i.d.
and continuity condition is purely a tie-breaking device: it guarantees that, with probability 1, at
most one calibration point per action lands exactly on the set boundary, which we need to bound the
slack term in the upper–tail inequality. Such tie-breaking assumptions are standard in finite-sample
conformal-prediction bounds and can always be enforced in practice by adding an arbitrarily small
random jitter to the conformity scores, without affecting coverage or utility. We remark that our proof
steps are inspired by Gibbs et al. (2025) and the results are analogous (see Theorem 3 in Gibbs et al.
(2025)).

Corollary 7 Assume that (x1, y1), . . . , (xn, yn), (xtest, ytest) are exchangeable. We then have

P
(
u
(
aCfinal

RA (xtest), ytest

)
≥ νCfinal

RA (xtest)
∣∣ aCfinal

RA (xtest) = a
)
≥ 1− α, ∀a ∈ A.

Corollary 7 ensures that the max-min decision policy applied to the final prediction set Cfinal yields a
distribution-free, action-conditional safety guarantee. Specifically, the utility achieved by the selected
action exceeds the certified risk-averse threshold with probability at least 1− α, conditional on the
action taken. Combined with Theorem 1, this result confirms that the output of our finite-sample
algorithm satisfies the original action-conditional risk-averse objective in (7), thereby closing the
loop between population-level theory and implementable practice.
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5 NUMERICAL EXPERIMENTS

In this section, we empirically evaluate the performance of the proposed action-conditional algorithm
(denoted by AC-RAC) on two experimental setups. We begin by describing the competing baselines,
followed by the evaluation metrics. We compare AC-RAC against two families of methods, each
instantiated with the same pre-trained probabilistic model f : (x, y) 7→ fx(y), where fx(y) is the
assigned probability of the input-label pair (x, y).

Baseline 1: Conformal Prediction with Max-Min Decision Rule. We benchmark our method
against established conformal inference techniques by generating (1 − α)-valid prediction sets
C(x) using split conformal prediction. Among these, we include the RAC method of Kiyani
et al. (2025), which represents the state-of-the-art approach for risk-averse decision making un-
der marginal safety guarantees. RAC employs a risk-sensitive scoring function to construct prediction
sets independent of the action space, followed by a max-min decision rule that ensures robust per-
formance against worst-case outcomes. In addition to RAC, we include two action-independent
conformal baselines. score-1 (Sadinle et al., 2019): inverse probability score, defined as 1−fx(y);
score-2 (Romano et al., 2020): cumulative tail mass,

∑
y′:fx(y′)>fx(y)

fx(y
′). All methods

yield a prediction set C(x), which is subsequently paired with a max-min utility decision rule:
aCRA(x) = argmaxa∈A miny∈C(x) u(a, y), selecting the safest action that maximizes worst-case
utility across the set.

Baseline 2: Calibrated Best-Response. We also evaluate against a calibration-based decision-
making baseline. This approach applies the decision calibration procedure of Noarov et al. (2023) to
adjust the predictive model on a held-out calibration set, ensuring improved reliability through swap
regret bounds introduced in Zhao et al. (2021). Once the calibrated forecast fx(y) is obtained, actions
are selected to maximize expected utility: aBR(x) = argmaxa∈A Ey∼fx [u(a, y)]. This standard
risk-neutral method performs well on average utility but lacks coverage guarantees and is vulnerable
to high-risk errors under underestimated uncertainty.

Evaluation Metrics. For methods in Baseline 1, we evaluate performance using the following
two metrics. Action-specific miscoverage: the empirical miscoverage rate conditioned on each
selected action, assessing conditional reliability; Worst-case utility: the average realized utility under
the max-min rule, E[maxa miny∈C(x) u(a, y)], capturing conservative performance. In addition, to
compare all methods (include Calibrated Best-Response) we report Critical error rate, which is the
fraction of samples where the selected action leads to a highly adverse utility outcome, indicating the
frequency of catastrophic decisions. Additional evaluations, including average utility and sweeps
over multiple α values for action-specific miscoverage, are presented in Appendix D.
5.1 MEDICAL DIAGNOSIS

We evaluate AC-RAC in the context of risk-sensitive medical diagnosis and treatment planning. Our
dataset is the COVID-19 Radiography Database (Chowdhury et al., 2020; Rahman et al., 2021),
comprising chest X-ray images labeled as Normal, Pneumonia, COVID-19, or Lung Opacity. Images
are partitioned at random into training (70%), calibration (10%), and test (20%) subsets.

For feature extraction, we use Inception-v3 (Szegedy et al., 2015; 2016) pretrained on ImageNet,
fine-tuned from the second inception block. Clinical trade-offs are encoded via a utility matrix
(Table 1) mapping each diagnosis to a set of actions. While we report results using this matrix, our
framework supports alternative specifications (see Appendix B of Kiyani et al. (2025)). All baselines
are calibrated to ensure consistent mapping of model outputs to the four actions.

Figure 1 (top row) presents the results of the medical diagnosis task at a nominal miscoverage level of
α = 0.05. The left panel shows that AC-RAC is the only method achieving valid conditional coverage
across all actions, while RAC, score-1, and score-2 systematically over- or under-cover. The
middle panel reports the average realized max-min utility across α ∈ {0.01, 0.02, 0.03, 0.05, 0.1},
revealing that AC-RAC achieves higher worst-case utility than score-1 and score-2, and slightly
lower utility than RAC. This gap is expected, as RAC is optimized for marginal coverage, while AC-
RAC imposes stricter action-conditional guarantees, which introduces a modest trade-off in utility.
The right panel shows the rate of critical errors, where a high-risk action is selected for a vulnerable
patient group. Here, AC-RAC reduces harmful decisions by a significant margin, highlighting its
advantage in safety-critical settings like clinical decision-making. We remark that the left plot only
contains action 0,1,3 instead of action 2 because score-1,score-2 and RAC never select action 2.
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Figure 1: Comparison of methods under action-conditional constraints at nominal level α = 0.05.
Each row shows (left) mean miscoverage across actions, (center) average realized max-min utility,
and (right) critical decision error rate. The first row is the result of medical diagnosis and second row
is recommender system. All the error bars are averaged over 40 random seeds.

5.2 RECOMMENDER SYSTEMS

We next evaluate AC-RAC in the context of recommendation systems, where the goal is to decide
about whether to suggest a movie to a user. Each feature corresponds to a user–item pair x = (u,m),
where u and m are feature vectors representing the user and the movie, respectively. The associated
label y ∈ {1, 2, 3, 4, 5} denotes the rating assigned by the user. The action space is binary: A =
{No-Rec, Rec}, where Rec indicates recommending the movie. We partition the dataset into three
splits: 80% for training the predictive model, 10% for calibration, and 10% for evaluation.

At decision time, utility of each action depends on the true rating (specified in Table 2). Recommend-
ing a movie with rating y yields utility u(Rec, y) = y − 3, encouraging recommendations only when
the rating is above average. The no-recommendation action has utility u(No-Rec, y) = 0, reflecting
a conservative fallback. This setup captures the trade-off between opportunity and risk: aggressive
recommendations can yield high returns but carry greater downside under uncertainty.

Figure 1 (bottom row) summarizes the performance of each method on a recommendation task under
α = 0.05. The left panel confirms that AC-RAC uniquely achieves calibrated action-conditional
coverage, whereas the other methods suffer from miscalibration. This misalignment between coverage
and decision type leads to reliability gaps. The middle panel shows that AC-RAC achieves worst-case
utility comparable to RAC, while offering significantly better action-conditional coverage. The right
panel reveals that AC-RAC substantially reduces the rate of critical recommendation errors.

6 CONCLUSION AND DISCUSSION

We introduced CP sets with action-conditional guarantees, and then showed these sets provide a
feasible policy for risk averse decision makers seeking action conditional safety guarantees. Building
upon that we construct finite-sample CP sets with provable action-conditional validity. While this
work provides new avenues for principled uncertainty quantification in safety-critical domains, it will
be interesting to explore other notions of safety beyond quantiles (such as CVaR).
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