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Abstract
This paper introduces the SOAR framework for
imitation learning. SOAR is an algorithmic tem-
plate that learns a policy from expert demonstra-
tions with a primal dual style algorithm that alter-
nates cost and policy updates. Within the policy
updates, the SOAR framework uses an actor critic
method with multiple critics to estimate the critic
uncertainty and build an optimistic critic funda-
mental to drive exploration.

When instantiated in the tabular setting, we get a
provable algorithm with guarantees that matches
the best known results in the desired accuracy
parameter ϵ.

Practically, the SOAR template can boost the
performance of any imitation learning algorithm
based on Soft Actror Critic (SAC). As an exam-
ple, we show that SOAR can boost consistently
the performance of the following SAC-based imi-
tation learning algorithms: f -IRL, ML-IRL and
CSIL. Overall, thanks to SOAR, the required num-
ber of episodes to achieve the same performance
is reduced by half.1

1. Introduction
Several recent state of the art imitation learning (IL) algo-
rithms (Ni et al., 2021; Zeng et al., 2022; Garg et al., 2021;
Watson et al., 2023; Viano et al., 2022b) are built on Soft
Actor Critic (SAC) (Haarnoja et al., 2018) to perform the
policy updates. SAC uses entropy regularized policy up-
dates to maintain a strictly positive probability of taking
each action. However, this is known to be an inefficient
exploration strategy if deployed alone (Cesa-Bianchi et al.,
2017).
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Indeed, several recent theoretical imitation learning achieve
performance guarantees by adding exploration bonuses on
top of the regularized policy updates, which encourage the
learner to visit state-action pairs that have not been visited
previously. Unfortunately, such works are only available
in the tabular setting (Shani et al., 2021; Xu et al., 2023)
and in the linear setting (Viano et al., 2024). The design
of the exploration bonuses in these works is strictly tight
to the tabular or linear structure of the transition dynamics,
therefore, these analyses offer little insight on how to design
an efficient exploration mechanism using neural network
function approximation.

There is, therefore, a lack of a technique that satisfies the
following two requirements.

• It is statistically and computationally efficient in the
tabular setting.

• It can be implemented easily in continuous states and
actions problems requiring neural networks function
approximation.

In this paper, we present a general template, dubbed Soft
Optimistic Actor cRitic Imitation Learning (SOAR-IL) sat-
isfying these requirements.

The main idea is to act according to an optimistic critic
within the SAC block on which many IL algorithms rely.
Here, optimism means appropriately underestimating the
expected cumulative cost incurred by playing a policy in the
environment. This principle known as optimism in the face
of uncertainty has led to several successful algorithms in the
bandits community.

While optimism is often achieved using the structure of
the problem (tabular, linear, etc.), in this work, we build
optimistic estimators using an ensemble technique. That is,
multiple estimators for the same quantity are maintained and
aggregated to obtain an optimistic estimator. This technique
scales well with deep imitation learning. To summarize, we
have the following contributions.

Theoretical contribution We show that there exists a
computationally efficient algorithm that uses an ensemble
based exploration technique that gives access to O(ϵ−2)
expert trajectories andO(ϵ−2) interactions in a tabular MDP
outputs a policy such that its cumulative expected cost is at
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Figure 1: Summary of experimental results. Each plot compares the average normalized return across 4 MuJoCo environments with
16 expert trajectories for a base algorithm and its SOAR-enhanced version. SOAR replaces the single critic in SAC-based methods
with multiple critics to compute an optimistic estimate. Across all algorithms, incorporating SOAR consistently improves performance.
ML-IRL (SA) stands for ML-IRL (Zeng et al., 2022) from expert state-action demonstrations.

most ϵ higher than the expert cumulative expected cost with
high probability.

Practical Contribution We apply an ensemble-based ex-
ploration technique, SOAR, to boost the performance of
deep imitation learning algorithms built on SAC, demon-
strating its effectiveness on MuJoCo environments. Specifi-
cally, we show that incorporating SOAR consistently boosts
the performance of base methods such as Coherent Soft
Imitation Learning (CSIL)(Watson et al., 2023), Maximum
Likelihood IRL (ML-IRL)(Zeng et al., 2022) and RKL (Ni
et al., 2021). As shown in Figure 1, our approach consis-
tently outperforms the base algorithms across all MuJoCo
environments. Notably, SOAR achieves the best perfor-
mance of the baselines requiring only approximately half
the number of learning episodes.

2. Preliminaries and Notation
The environment is abstracted as Markov Decision Pro-
cess (MDP) (Puterman, 1994) which consists of a tuple
(S,A, P, c,ν0, γ) where S is the state space, A is the ac-
tion space, P : S ×A → ∆S is the transition kernel, that is,
P (s′|s, a) denotes the probability of landing in state s′ after
choosing action a in state s. Moreover, ν0 is a distribution
over states from which the initial state is sampled. Finally,
c : S × A → [0, 1] is the cost function, and γ ∈ [0, 1) is
called the discount factor.

Value functions and occupancy measures We
define the state value function at state s ∈ S
for the policy π under the cost function c as
V πc (s) ≜ E

[∑∞
h=0 γ

hc(sh, ah)|s1 = s
]
. The expec-

tation over both the randomness of the transition dynamics
and the one of the learner’s policy. Another convenient
quantity is the occupancy measure of a policy π denoted

as dπ ∈ ∆S×A and defined as follows dπ(s, a) ≜ (1 −
γ)
∑∞
h=0 γ

hP [s, a is visited after h steps acting with π].
We can also define the state occupancy measure as dπ(s) ≜
(1− γ)

∑∞
h=0 γ

hP [s is visited after h steps acting with π].

Imitation Learning In imitation learning, the learner is
given a dataset DπE of expert trajectories collected by an
unknown expert policy πE.2 By trajectory τ k, we mean
the sequence of states and actions sampled rolling out
the policy πk for a number of steps sampled from the
distribution Geometric(1 − γ). Given DπE , the learner
adopts an algorithm A to learn a policy πout such that〈
ν0, V

π̂k

ctrue − V
πE
ctrue

〉
≤ ϵ with high probability.

We use the notation es to denote a vector in R|S| zero ev-
erywhere but in the coordinate corresponding to the state s
( for an arbitrary ordering of the states). Analogously, we
use es,a to denote a vector in R|S||A| zero everywhere but
in the (s, a)th entry which equals one.

3. The Algorithm
In this Section, we describe Algorithm 1. A meta-algorithm
that encompasses several existing imitation learning algo-
rithms. Inside each iteration of the main for loop, the learner
collects a new trajectory sampling actions from the policy
πk (Line 4 in Algorithm 1) and then performs the following
steps.

• The Cost update. At Line 6 of Algorithm 1, the learner
updates an estimate of the true unknown cost function

2In order, to accommodate state-only and state-action with a
unified analysis we overload the notation for the expert dataset.
DπE denotes a collection of samples from the expert state occu-
pancy measure in the former case and a collection of state-actions
sampled from the state-action occupancy measure in the latter case.
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Algorithm 1 SOAR-Imitation Learning

Require: Reward step size α, Expert datasetDπE , Discount
factor γ, Policy step size η.

1: Initialize π1 as uniform distribution over A.
2: Initialize empty replay buffer,i.e. D0 = {}
3: for k = 1 to K do
4: τk ← COLLECTTRAJECTORY(πk)
5: Add τk to replay buffer,i.e. Dk = Dk−1 ∪ τk.
6: ck ← UPDATECOST(ck−1,DπE ,Dk, α)
7: for ℓ = 1 to L do
8: Compute estimator Qkℓ .
9: end for

10: Qk = OPTIMISTICQ(
{
Qkℓ
}L
ℓ=1

).
11: πk(a|s) = POLICYUPDATE(η, {Qτ (s, a)}kτ=1)
12: end for

with the algorithm-dependent routine UPDATECOST.
For instance, Generative Adversarial Imitation Learn-
ing (GAIL), Adversarial Inverse Reinforcement Learn-
ing (AIRL), and Discriminator Actor Critic (DAC) (Ho
& Ermon, 2016; Fu et al., 2018; Kostrikov et al., 2019)
use a reward derived from a discriminator neural net-
work trained to distinguish state-action pairs visited by
the expert from those visited by the learner.

Using a fixed cost function obtained from a behavioral
cloning warm up is, instead, the approach taken in
CSIL (Watson et al., 2023). Moreover, updating the re-
ward to minimize an information theoretic divergence
between expert and learner state occupancy measure
is the approach taken in RKL (Ni et al., 2021). Fi-
nally, (Zeng et al., 2022) updates the cost using online
gradient descent (OGD) (Zinkevich, 2003).

• The state-action value function update. In the for
loop at Lines 7-9 of Algorithm 1, the learner updates
L different critics trained on different subsets of the
data sampled from the replay buffer Dk denoted as{
Dkℓ
}L
ℓ=1

. For a fixed state-action pair each dataset
contains independent samples from P (·|s, a). This
allows creating L jointly independent random variables{
Qkℓ
}L
ℓ=1

that estimate the ideal value iteration update
(i.e. ck+γPV k) which cannot be implemented exactly
due to the lack of knowledge on P .

In Section 3.1, we provide an explicit way to compute
L slightly optimistic estimates for the tabular setting.
Moreover, in the deep imitation learning experiments,
we train L different critics via temporal difference, as it
is commonly done in Soft Actor Critic implementation
( see (Haarnoja et al., 2018) ).

Finally, in Line 10 of Algorithm 1, the L critics are ag-
gregated to generate an estimate Qk+1 which is, with
high probability, optimistic i.e. Qk+1 ≤ ck + γPV k.

In other words, it underestimates the update that could
have been performed by value iteration if the transi-
tion matrix P was known to the learner. We provide
aggregation routines that satisfy this requirement if L
is large enough.

• The policy update As the last step of each inner loop,
the learner updates the policy using the optimistic
state-action value function estimate. In the tabular
case, we will instantiate the update using an online
mirror descent (OMD) step (Beck & Teboulle, 2003;
Nemirovskij & Yudin, 1983) (also known as the multi-
plicative weights update (Warmuth et al., 1997; Auer
et al., 1995)). As it will be evident from Section 4, this
update we can ensure that the KL divergence between
consecutive policies is upper bounded in terms of the
policy step size η. For the continuous state-action ex-
periments, the online mirror descent is approximated
via a gradient descent step on the SAC loss.

Remark 3.1. Notice that only one pair of critics is used in
the implementation of SAC (L = 1) that serves as base RL
algorithm for several commonly used IL algorithms ( GAIL
(Ho & Ermon, 2016), AIRL (Fu et al., 2018), IQ-Learn
(Garg et al., 2021), PPIL (Viano et al., 2022b), RKL (Ni
et al., 2021) and ML-IRL (Zeng et al., 2022)). As proven in
Corollary 4.11, L = 1 is not enough to ensure optimism, not
even in the tabular case. In our experiments, we show that
a value of L larger than 1 is beneficial in all the MuJoCo
environments we tested on.

3.1. Algorithm with guarantees in the tabular case

We consider an instance of Algorithm 1 in the tabular case
for which we will prove theoretical sample efficiency guar-
antees. We present the pseudocode in Algorithm 2.

For what concerns the analysis, the first step is to extract the
policy achieving the sample complexity guarantees above
via an online-to-batch conversion. That is, the output pol-
icy is sampled uniformly from a collection of K policies{
πk
}K
k=1

. The sample complexity result follows from prov-

ing that the policies
{
πk
}K
k=1

produced by Algorithm 2 is
a sequence with sublinear regret in high probability. More
formally, we define the regret as follows.

Definition 3.2. Regret The regret is defined as follows

Regret(K) ≜
1

1− γ

K∑
k=1

〈
ctrue, d

πk

− dπE

〉
Remark 3.3. Notice that the regret defined in this way sat-
isfies Regret(K) =

∑K
k=1

〈
ν0, V

πk

ctrue − V
πE
ctrue

〉
. For this

reason, we require the factor (1− γ)−1 in the definition.

Omitting dependencies on the horizon and the state action
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spaces cardinality, we will guarantee that

Regret(K) ≤ O(K1/2 +K |DπE |
−1/2

),

with high probability. Notice that this bound is sublinear
in K, for |DπE | = O(K). To obtain such bound, we adopt
the following decomposition for (1−γ)Regret(K) adapted
from (Shani et al., 2021) to accommodate the infinite hori-
zon setting.

K∑
k=1

〈
ck, dπ

k

− dπE

〉
︸ ︷︷ ︸
:=(1−γ)Regretπ(K,πE)

+

K∑
k=1

〈
ctrue − ck, dπ

k

− dπE

〉
︸ ︷︷ ︸

:=(1−γ)Regretc(K,ctrue)

(1)

Algorithm 2 Tabular SOAR-IL

Require: Step size η, Expert dataset DπE , Discount factor
γ, Reward step size α,N0(s, a) = 0 for all s, a, number
of estimators L = 36 log (|S| |A|K/δ).

1: Initialize π1 as uniform distribution over A
2: for k = 1 to K do
3: Sample trajectory length Lk ∼ Geometric(1− γ).
4: τk =

{
(skt , a

k
t )
}Lk

t=1
rolling out πk for Lk steps.

5: Update counts for all skt , a
k
t ∈ τk:

Nk(skt , a
k
t ) = Nk−1(skt , a

k
t ) + 1.

6: Add skt , a
k
t , s

k
t+1 to the datasets with index

ℓ = Nk(skt , a
k
t ) mod L,

Dkℓ = Dk−1
ℓ ∪

{
skt , a

k
t

}
,

Rkℓ = Rk−1
ℓ ∪

{
skt , a

k
t , s

k
t+1

}
.

7: ck = COSTUPDATETABULAR(ck−1, τk,DπE).
8: for ℓ = 1 to L do
9: Nk

ℓ (s, a, s
′) =

∑
s̄,ā,s̄′∈Rk

ℓ
1{s̄,ā,s̄′=s,a,s′}.

10: Nk
ℓ (s, a) =

∑
s̄,ā∈Dk

ℓ
1{s̄,ā=s,a}.

11: P̂ kℓ (·|s, a) =
Nk

ℓ (s,a,·)
Nk

ℓ (s,a)+2

12: end for
13: Qk+1 = OPTQTAB(V k,

{
P̂ kℓ

}L
ℓ=1

, ck).

14: πk+1(a|s) ∝ πk(a|s) exp
(
−ηQk+1(s, a)

)
15: V k+1(s) =

〈
πk+1(·|s), Qk+1(s, ·)

〉
16: end for
17: Return The mixture policy π̂K .

The algorithmic design for the tabular setting aims at up-
dating the cost variable so that the term Regretc grows
sublinearly (see Line 7 in Algorithm 2).

We consider both cases of imitation from state-action ex-
pert data (Lines 4-6 of COSTUPDATETABULAR ) and state-
only expert data (Lines 2-3 of COSTUPDATETABULAR).

These cases differ only in the stochastic loss for the cost
update. Notice that we overload the notation to address
both state-only and state-action imitation learning with a
unified analysis. In particular, d̂πk is an unbiased estimate
of the learner occupancy measure. For state-only imita-
tion learning we use d̂πk = esk

Lk
and estimated expert

occupancy measure equals to d̂πE = |DπE |
−1∑

s∈DπE
es

while for state-action imitation learning d̂πk = esk
Lk ,a

k

Lk

and d̂πE = |DπE |
−1∑

s,a∈DπE
es,a. The formal bound on

Regretc is given in Theorem 4.3. The rest of the algorithm

Algorithm 3 COSTUPDATETABULAR

Require: Current cost vector ck−1, trajectory τk, expert
dataset DπE .

1: if STATE-ONLY = TRUE then
2: d̂πk = esk

Lk
.

3: d̂πE = |DπE |
−1∑

s∈DπE
es

4: else
5: d̂πk = esk

Lk ,a
k

Lk
.

6: d̂πE = |DπE |
−1∑

s,a∈DπE
es,a

7: end if
8: Return: ck ← ΠC

[
ck−1 − α(d̂πE − d̂πk)

]

aims to provide a sublinear bound on Regretπ . In particular,

the updates for the estimated transition kernels
{
P̂ kℓ

}L
ℓ=1

in Lines 8-12 of Algorithm 2 serves to build L slightly
optimistic 3 estimate of the ideal value function update.

In the routine OPTIMISTICQTABULAR, we propose two
aggregation rules to generate the optimisticQ value estimate
to be used in the policy update step. The first one, takes
the minimum of the L estimators as in Equation (Min),
while the second option Equation (Mean-Std) considers the
mean of the L estimators minus a factor proportional to the
empirical standard deviation. By Samuelson’s inequality
(Samuelson, 1968), we prove that the second option is more
optimistic.

Finally, an iteration of the tabular case algorithm is con-
cluded by the policy update implemented via OMD.

Having described our main techniques we are in the position
of stating our main theoretical results hereafter.

Theorem 3.4. Main Result For any MDP, let us consider
either the update Equation (Min) or Equation (Mean-Std), it
holds that with probability 1− 5δ that Regret(K)

K of Tabular

3The optimism is achieved by adding 2 in the denominator of
the estimated transition kernels.
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Algorithm 4 OPTIMISTICQTABULAR ( OPTQTAB)

Require: current state value function estimate V k, ensem-

ble of estimated transitions
{
P̂ kℓ

}L
ℓ=1

, cost ck.
1: // Option 1

return Qk+1 = ck + γ min
ℓ∈[L]

P̂ kℓ V
k (Min)

2: // Option 2

return Qk+1 = ck + γmax

[
1

L

L∑
ℓ=1

P̂ kℓ V
k − σk, 0

]
(Mean-Std)

3: with σk =

√∑L
ℓ=1

(
P̂ kℓ V

k − 1
L

∑L
ℓ′=1 P̂

k
ℓ′V

k
)2
.

SOAR-IL (Algorithm 2) is upper bounded by

Õ

√ |S|4 |A| log(1/δ)
(1− γ)5K


+

√
|S|2 |A| log (|S| |A| /δ) (log(|S|) + 2)2

(1− γ)2 |DπE |
.

Therefore, choosing K = Õ
(

|S|4|A| log(1/δ)
(1−γ)5ϵ2

)
and |DπE | =

|S|2|A| log(|S||A|/δ)(log(|S|)+2)2

ϵ2(1−γ)2 it holds that the mixture pol-

icy π̂K satisfies
〈
ν0, V

π̂k

ctrue
− V πE

ctrue

〉
≤ ϵ with probability

at least 1− 5δ.

Remark 3.5. The bound on |DπE | is the bound on the num-
ber of either state-only or state-action expert trajectories
depending on the setting considered.
Remark 3.6. The gurantees are stated for the mixture pol-
icy π̂K , i.e. the policy which has an occupancy measure
equal to the average occupancy measure of the policies
in the no-regret sequence. That is, it holds that dπ̂

K

=

K−1
∑K
k=1 d

πk

. The policy π̂K cannot be computed with-
out knowledge of P but sampling a trajectory from it can be
done by choosing an index k ∼ Unif([K]) at the beginning
of each new episode and continuing rolling out the policy
πk for a number of steps sampled from Geom(1− γ).
Remark 3.7. In the case of state-only expert dataset the
provided upper bounds for K and |DπE | are optimal up to
log factors in the precision parameters ϵ. Indeed, these upper
bounds match the lower bounds in (Moulin et al., 2025).

4. Theoretical analysis
We need to start with an important remark on the structure
of the MDP considered in the proof.
Remark 4.1. For technical reasons, in particular for the

proof of Corollary 4.11, we consider as intermediate step
in the proof MDPs where from each state action pairs is
possible to observe a transition to only two other possible
states. While this restriction on the dynamics appears to
be limiting any MDP can be cast into this form at the cost
of a quadratic blow up in the number of states, from |S| to
|S|2. To see this, for a general MDP where from a given
state action pair a transition to all possible |S| states can
be observed is equivalent to a binarized MDP where this
one layer transition is represented with a tree of depth at
most log2 (|S|) with binary transitions only. Moreover, the
discount factor in the binarized MDP should be set to γbin =
γ− log2|S| to maintain the return unchanged. We consider in
this section a binarized MDP with |S| states in this section
and we squared the number of states in stating Theorem 3.4
which holds for general MDPs. Moreover, in stating the
result for general MDP we also inflated the effective horizon
by a factor log2 |S| as shown in Lemma C.6.

As mentioned, the proof is decomposed into two main parts:
(i) bounding the policy regret Regretπ and (ii) bounding the
cost updates regret Regretc. In particular, we can prove the
two following results.
Theorem 4.2. Policy Regret In a binarized MDP with |S|
states and discount factor γ, it holds that with probability
1−3δ, for any policy π⋆, Regretπ(K,π

⋆) is upper bounded
by

log |A|
η(1− γ)

+
ηK

(1− γ)4
+ Õ


√
K |S|2 |A| log(1/δ)

(1− γ)2


and for η =

√
log|A|(1−γ)3

K it holds that using the update
in (Min) or in (Mean-Std) it holds that Regret(K,π⋆) is

upper bounded by Õ
(√

K|S|2|A| log(1/δ)
(1−γ)5

)
.

Theorem 4.3. Cost Regret In a binarized MDP with |S|
states and discount factor γ, it holds that with probability
1− 2δ, (1− γ)Regretc(K; ctrue) is upper bounded by

4
√
K log(1/δ) +K

√
|S| |A| log (|S| |A| /δ)

2 |DπE |

Remark 4.4. Once Theorems 4.2 and 4.3 are proven the
bound on Theorem 3.4 follows trivially by a union bound
and bounding Regretπ and Regretc with Theorem 4.2
and Theorem 4.3 respectively and dividing everything
by K (because in Theorem 3.4 we consider the quantity
Regret(K)/K). Finally, we also divide by 1− γ, to match
the definition of Regret(K) in Definition 3.2.

4.1. Proof Sketch of Theorem 4.2

The regret decomposition towards the proof of Theorem 4.2
leverages the following Lemma.
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Lemma 4.5. Consider the MDP M = (S,A, P, c,ν0, γ)
and two policies π, π′ : S → ∆A. Then consider for
any Q̂ ∈ R|S||A| and V̂ π(s) =

〈
π(·|s), Q̂(s, ·)

〉
and

Qπ
′
, V π

′
be respectively the state-action and state value

function of the policy π in MDP M . Then, it holds that
(1− γ)

〈
ν0, V̂

π − V π′
〉

equals〈
dπ

′
, Q̂− c− γP V̂ π

〉
+Es∼dπ′

[〈
Q̂(s, ·, π(·|s)− π′(·|s)

〉]
.

Remark 4.6. This Lemma is a generalization of the well-
known performance difference Lemma (Kakade, 2001) to
the case of inexact value functions. Indeed, notice that if
Q̂ = Qπ, then the first term in the decomposition equals
zero and the result boils down to the standard performance
difference Lemma. For arbitrary Q̂, the first term is a tem-
poral difference error averaged by the occupancy measure
dπ

′
.

We can apply two times Lemma 4.5 on each of the sum-
mands of the sum from k = 1 to K, to obtain a convenient
decomposition of Regretπ . Denoting δk(s, a) ≜ ck(s, a)+
γPV k(s, a) − Qk+1(s, a) and gk(s, a) ≜ Qk+1(s, a) −
Qk(s, a), we have that

(1− γ)Regretπ(K;π⋆) =

(1− γ)
K∑
k=1

〈
ν0, V

πk

ck − V
k + V k − V π

⋆

ck

〉
=

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(BTRL)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
(Optimism)

+
K∑
k=1

E
s,a∼dπk

[
gk(s, a)

]
−

K∑
k=1

Es,a∼dπ⋆

[
gk(s, a)

]
(Shift)

Next, we bound each of these terms individually. Starting
from the first term, the next Lemma shows that our policy
update (Line 14 of Algorithm 2) can be seen as an instance
of Be the regularized leader (BTRL) ( see e.g. (Orabona,
2023) ). Therefore, it guarantees that for any sequence{
Qk
}K
k=1

, the term (BTRL) is bounded as follows.

Lemma 4.7. Let us consider the sequence of policies{
πk
}K
k=1

generated by Algorithm 2 for all η > 0 then

it holds that (BTRL) ≤ log|A|
η .

Next, we show that thanks to the multiplicative weights
update for the policy the KL divergence between consecu-
tive policies is upper bounded by the policy step size η, i.e.

DKL(π
k+1(·|s), πk(·|s)) ≤ O(η) for all s ∈ S. Thanks

to this slow changing property, we can prove the following
bound on (Shift).

Lemma 4.8. For the sequence of policies
{
πk
}K
k=1

gener-
ated by Algorithm 2, for all η > 0, it holds that (Shift) ≤
ηK

(1−γ)3 .

Remark 4.9. The step size choice for η in Theorem 4.2
is made to trade off optimally the bounds in Lemmas 4.7
and 4.8.

Finally, the most technical part of the proof aims at bounding
the term (Optimism).

Lemma 4.10. Let us consider an MDP where
maxs,a∈S×A supp(P (·|s, a)) = 2. For each k ∈ [K], if
the Qk+1 in Algorithm 2, are updated according to (Min)
or (Mean-Std), the iterates produced by Algorithm 2 satisfy
with probability 1− 3δ that

(Optimism) ≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

Proof sketch of Lemma 4.10 The proof of this Lemma,
leverages that the temporal difference errors δk(s, a) pro-
duced by Algorithm 2 are positive with high probability as
shown by the next result4.

Corollary 4.11. Consider an MDP where
maxs,a∈S×A supp(P (·|s, a)) = 2, then for

L ≥ 36 log
(

|S||A|K
δ

)
it holds that with probability

at least 1− δ

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤ PV k(s, a) ∀ s, a ∈ S×A, ∀ k ∈ [K].

Corollary 4.11 implies that −
〈
dπ

⋆

, δk
〉
≤ 0 for all k ∈ [K]

and therefore that (Optimism) ≤
∑K
k=1

〈
dπ

k

, δk
〉

.

Remark 4.12. The above inequality, it is crucial for obtain-
ing the result. Indeed, it upper bounds (Optimism) with
the on-policy temporal difference errors 5 which are small
enough to ensure sublinear regret. To see this (informally)
consider two cases. First, let us assume that dπ

k

is rela-
tively large for some action pair. Then, that action pair is
expected to be visited often in the rollouts and therefore
δk is expected to be small. Vice versa, if δk for a certain
state-action pair is large, this means that for that state-action
pair dπ

k

is relatively small. Overall, we always expect the
product

〈
dπ

k

, δk
〉

to be a small quantity. Notice that the

4In the main text, we present the proof for the update in (Min).
The case of update as in (Mean-Std) is deferred to the Appendix.

5That is the temporal difference errors δk averaged by the
learner occupancy measures dπ

k

6
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same arguments could not have been carried out replacing
dπ

k

with dπ
⋆

because the rollouts used in Algorithm 2 are
not sampled with π⋆.

To formalize the above intuition, we upper bound the tempo-
ral difference errors with the inverse of the number of times
each state-action pair is visited.

Lemma 4.13. (Simplified Version of Lemma B.5 ) Let
us consider a binarized MDP with |S| states and discount
factor γ. With probability 1− δ, it holds that for all s, a ∈
S ×A and for all k ∈ [K],

δk(s, a) ≤ Õ

(√
L |S| log(1/δ)

(Nk(s, a) + 1)(1− γ)2

)
.

Therefore, by concentration inequalities and noticing that
skLk , a

k
Lk ∼ dπ

k

, it holds that with high probability

K∑
k=1

〈
dπ

k

, δk
〉
= Õ

(
K∑
k=1

δk(skLk , a
k
Lk)

)

≤ Õ

(
K∑
k=1

√
L |S| log(1/δ)

(Nk(sk
Lk , a

k
Lk) + 1)(1− γ)2

)

≤ Õ


√√√√K

K∑
k=1

L |S| log(1/δ)
(Nk(sk

Lk , a
k
Lk) + 1)(1− γ)2

 .

At this point, the proof is concluded by bounding the last
sum over K with a standard numerical sequences argument
(see Lemma C.2).

Optimal choice of the number of critics network L It
is important to notice that Corollary 4.11 and Lemma 4.13
creates a tradeoff for what concerns the optimal choice of
the number of critics. In particular, from Corollary 4.11,
L should be chosen large enough to ensure that optimism
holds with high enough probability. On the other hand, one
can notice that Lemma 4.13 upper bounds the expected on
policy temporal difference error asO(L) therefore a smaller
number of critics ensures a tighter bound. All in all, the
best choice is the smallest L that ensures optimism with
probability at least 1 − δ, that is L = 36 log

(
|S||A|K

δ

)
.

The tradeoff with respect to the number of critics is also
observed in a practical ablation study (see Figures 5 and 4) .

4.2. Proof Sketch of Theorem 4.3

The proof of this term is considerably easier than the bound
of the regret for the policy player because we have exact
knowledge of the decision variables domain 6. The first step

6C is taken to be the ℓ∞-ball of radius 1

in the proof is to decompose (1− γ)Regretc as follows

K∑
k=1

〈
ctrue − ck, d̂πk − d̂πE

〉
+

K∑
k=1

〈
ctrue − ck, dπ

k

− d̂πk
〉

+

K∑
k=1

〈
ctrue − ck, d̂πE − dπE

〉
.

The first term in the decomposition is upper bounded by
O(
√
K) via a standard online gradient descent analysis

(Zinkevich, 2003). Since d̂πk is an unbiased estimate of
the learner occupancy measure, the second term in the de-
composition is the sum of a martingale difference sequence.
Therefore, an application of the Azuma-Hoeffding inequal-
ity ensures that this term grows as Õ

(
log(1/δ)

√
K
)

with
probability at least 1− δ.

Finally, the last term is bounded as
Õ
(
K log(1/δ) |DπE |

−1/2
)

with probability at least
1− δ. This is done, proving that for the empirical average
estimators for the expert occupancy measure it holds
that

∥∥∥dπE − d̂πE

∥∥∥
1
≤ |DπE |

−1/2
log(1/δ) with probability

at least 1 − δ. A union bound concludes the proof of
Theorem 4.3. The formal proof is deferred to the Appendix.

5. SOAR for continuous state and actions
problems.

In this section, we explain how Algorithm 1 is instantiated
in imitation learning problems with continuous states and
action spaces, which therefore requires neural networks to
approximate the value function and policy updates. Since
in our analysis for the tabular case, we need to use multi-
plicative weights/softmax updates, we decided to use SAC,
which is an approximation of such updates in the continuous
state-action setting.

However, the standard SAC keeps only one network, often
called the critic network, to estimate the Q values. On the
other hand, we use a pair of them to avoid the excessive
overestimation noticed in Double DQN (van Hasselt et al.,
2015). Since it uses only one pair of critics, SAC cannot
achieve optimism reliably with high probability.

To fix this issue, we consider multiple critics and we used
as an optimistic estimate the mean minus the standard de-
viation of the ensemble as explained in Algorithm 5. In
addition, the standard deviation needs to be truncated at
a threshold, as was done in the tabular analysis, to avoid
the value function estimators growing out of the attainable
range. For any state s, the estimated value functions are

7
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truncated in the interval
[
0, (1− γ)−1

]
. Each of the esti-

Algorithm 5 OPTIMISTICQ-NN

Require: Replay bufferD, Estimators {Qℓ}Lℓ=1, maximum
standard deviation σ.

1: {si}Ni=1 ← sample observations from D
2: ai ← π(si)

3: Q̄(si, ai) =
1
L

∑L
ℓ=1Qℓ(si, ai)

4: std-Q(sℓ, aℓ) =

√
1
L

∑L
ℓ=1

(
Qℓ(si, ai)− Q̄(si, ai)

)2
5: std-Q(si, ai)← Clip(std-Q(si, ai), 0, σ).
6: Q(si, ai) = Q̄(si, ai)− std-Q(si, ai)
7: Return: Q(si, ai) for all i = 1, . . . , N .

mators (critics) {Qℓ}Lℓ=1 is trained in the same way (mini-
mizing the squared Bellman error as in standard SAC ) on
a different dataset collected by the same actor. That is, on
independent identically distributed datasets. For complete-
ness, the SAC critic training is included in Algorithm 7 in
Appendix F. In the continuous setting, it is clearly not pos-
sible to compute the optimistic state-action value at every
state-action pair. Thankfully, it suffices to compute the op-
timistic state action value function Q, invoking the routine
OPTIMISTICQ-NN, only for the state-actions in a mini-
batch D = {si, ai}Ni=1. Indeed, the policy network weights
does not require perfect knowledge of Q over S × A but
only an Adam (Kingma & Ba, 2015) update step on the loss
Lπ = 1

N

∑N
i=1 (−η log π(ai|si) +Q(si, ai)) .

In the next section, we show that for multiple choices of
UPDATECOST (ML-IRL, CSIL and RKL) replacing the
standard SAC critic update routine with OPTIMISTICQ-NN
leads to improved performance.

6. Experiments
We perform experiments for both state only and state ac-
tion IL on the following MuJoCo (Todorov et al., 2012)
environments: Ant, Hopper, Walker2d, and Humanoid.

For the state-only IL setting, we showcase the improvement
on RKL (Ni et al., 2021) and ML-IRL (State-Only) (Zeng
et al., 2022). In both cases, we found that using L = 4 critic
networks and an appropriately chosen value for the standard
deviation clipping threshold σ consistently improves upon
the baseline. In the Appendix D, we conduct an ablation
study for L and σ.

We denote our derived algorithms as RKL+SOAR and ML-
IRL+SOAR. In addition to observing an improvement over
standard RKL and ML-IRL, we outperform the state-only
version of the recently introduced OPT-AIL algorithm (Xu
et al., 2024) (see Figure 2) which incorporates an alternative,
more complicated, deep exploration technique.

For the state-action experiments, we plug in the SOAR
template on CSIL, the state-action version of ML-IRL and
HYPE (Ren et al., 2024). We coined the derived versions
CSIL+SOAR and ML-IRL+SOAR (see Appendix F for
detailed pseudocodes of these algorithms). We also com-
pare with GAIL (Ho & Ermon, 2016), SQIL (Reddy et al.,
2019b), and OPT-AIL. We observe that the exploration
mechanism injected by the SOAR principle allows us to
achieve reliably superior results (see Figure 3).

Further details about the hyperparameters are provided in
the Appendix D. Moreover, we notice that for all the algo-
rithms in the higher-dimensional and thus more challenging
environments (Ant-v5 and Humanoid-v5), the advantage of
the SOAR exploration technique becomes more evident.

6.1. Experiment on a hard exploration task

An anonymous reviewer pointed out that the MuJoCo bench-
mark is not the hardest for what concern exploration. This
is a very valid suggestion that we address here. This will
also allow to understand better the role of the number of
critics L. Therefore, to highlight even more the importance
of exploration especially in imitation learning from states
only we run SOAR-IL in the worst case construction used in
the lower bound for the number of environment interaction
in (Moulin et al., 2025, Theorem 19).

1.2 × 10
4

MDP Samples

48

56

64

72

C
um

ul
at

iv
e 

R
ew

ar
d L = 1

L = 2
L = 3
L = 5
L = 10
L = 50
L = 100
Expert

Figure 4: Ablation for L on hard exploration task. State only
imitation experiment in a hard exploration environment (used in
the lower bound from (Moulin et al., 2025, Theorem 19)) . Results
averaged over 5 seeds, for a dataset of 100 states sampled from the
expert occupancy measure.

We can see that with only 1 network, the mean of the learner
does not reach the expert performance and the variance is
very high meaning that some seeds are successful and others
fail. This is in perfect agreement with Corollary 4.11 which
predicts that for low values of the number of critics L, the
optimistic properties of the critic estimators can not be guar-
anteed with high probability. For L = 2, the environment
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Figure 2: Experiments from State-Only Expert Trajectories. 16 expert trajectories, average over 5 seeds, L = 4 Clipping values σ -
ML-IRL: [Ant: 10.0, Hopper: 50.0, Walker2d: 0.5, Humanoid: 5.0], rkl: [Ant: 0.8, Hopper: 50.0, Walker2d: 30.0, Humanoid: 100.0]

Figure 3: Experiments from State-Action Expert Trajectories. 16 expert trajectories, average over 5 seeds, L = 4. Clipping values σ -
CSIL: [Ant: 10.0, Hopper: 5.0, Walker2d: 0.5, Humanoid: 0.1], ML-IRL(SA): [Ant: 5.0, Hopper: 10.0, Walker2d: 0.5, Humanoid: 50.0]

is solved successfully albeit with a higher variance than the
case L = 3.

Increasing L further leads to worst results in terms of MDP
samples needed to solve the task. This is because according
to Lemma 4.13 the upper bound on the expected on policy
temporal difference error scales with L so an excessively
large L should be avoided. We used α = 0.5, η = 4, and
we scaled the standard deviation bonus by 0.001.

7. Conclusions and Open Questions
While there has been interest in developing heuristically
effective exploration techniques in deep RL, the same is not
true for deep IL. For example, even in the detailed study
What matters in Adversarial Imitation Learning ? (Orsini
et al., 2021) the effectiveness of deep exploration techniques
is not investigated.

Prior to our work, only few studied the benefits of explo-
ration in imitation learning, mostly in the state-only regime
(Kidambi et al., 2021). However, their theoretical algo-
rithm uses bonuses that cannot be implemented with neural

networks. Similarly, the recent work (Xu et al., 2024) uses
exploration technique in Deep IL but requires solving a com-
plicated non-concave maximization problem. Our approach
is remarkably easier to implement. It achieves convincing
empirical results results and enjoys theoretical guarantees.

Moreover, our framework can be applied to and is expected
to be beneficial for other existing IL algorithms based on
SAC (such as AdRIL (Swamy et al., 2021) and SMILING
(Wu et al., 2024)). Moreover, the same hope for any future
deep IL algorithm using SAC for policy updates.

Open Questions On the theoretical side, we plan to ana-
lyze the ensemble exploration technique with function ap-
proximation under more general structural assumption on
the environment. From the practical one, a very relevant
question is to investigate if the exploration enhanced ver-
sions of DQN (Osband et al., 2016a; 2018) can speed up
imitation learning from visual input. Finally, the same idea
might find application in the LLM finetuning given the re-
cently highlighted potential of IL for this task (Wulfmeier
et al., 2024; Foster et al., 2024).
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A. Related Works
IL Theory The first theoretical guarantees obtained for the imitation learning problem dates back to the work of (Abbeel
& Ng, 2004) and (Syed & Schapire, 2007) which notably used the idea of no-regret learning. However, their work requires
either knowledge of the environment transitions or they require a suboptimal in the precision parameter ε amount of expert
trajectories to estimate those. Our theoretical guarantees are in the same setting of previous works like (Shani et al., 2021)
and (Xu et al., 2023) which do not require knowledge of the environment transitions a priori but assumes online trajectory
access to the environment. The main difference that their work focuses on the easier finite horizon setting. Additionally,
their exploration techniques only applies to the tabular setting. Indeed, in the MuJoCo experiments in (Shani et al., 2021),
the authors do not attempt to implement the exploration mechanism required for their theoretical guarantees. In a similar
way, also (Xu et al., 2023) can not be implemented beyond the tabular setting because it relies on a reward free procedure
requiring bonuses proportional to the number of visits to each state action pair. (Ren et al., 2024) suggest an algorithm which
does not require exploration but it can not improve upon behavioural cloning in terms of expert trajectories. (Rajaraman
et al., 2020; 2021b; Foster et al., 2024) analyze instead offline imitation learning (behavioural cloning) where no additional
interaction with the environment is allowed. This setting is more general but it comes at the cost of additional assumptions
such as policy realizability or worst depedence on the horizon on the required number of trajectories. (Foster et al., 2024)
presents an analysis for general policy classes but they require a maximum likelihood oracle which can not be implemented
exactly when using neural network function approximation.

There has been also a variety of studies tackling the problem of computationally efficient algorithm with linear function
approximation such as (Kamoutsi et al., 2021; Viano et al., 2022b; 2024; Rajaraman et al., 2021a; Swamy et al., 2022).
However, their proof techniques are strictly depending on the linearity of the dynamics therefore the experiments in
continuous control tasks require changes in the algorithmic design. Albeit our guarantees are restricted to the tabular setting,
the algorithm can be implemented with no modifications with neural networks.

Several works focus on the setting where expert queries are allowed at any state visited during the MDP interaction (Ross &
Bagnell, 2010; Ross et al., 2011; Swamy et al., 2021) or that require a generative model for the algorithm updates (Swamy
et al., 2022). Another recent work requires a generative model to sample the initial state of the trajectory from the expert
occupancy measure (Swamy et al., 2023). Our algorithm requires sampling only trajectories in the MDP therefore it does not
leverage the aforementioned generative model assumption. In contrast, the setting of this work matches the most practical
one adopted for example in (Ho et al., 2016; Ho & Ermon, 2016; Fu et al., 2018; Reddy et al., 2019a; Dadashi et al., 2021;
Watson et al., 2023; Garg et al., 2021; Ni et al., 2021). In this case, the expert policy can not be queried and the learner
access only a precollected dataset of expert demonstrations.

Theory for IL from States Only This setting has been firstly studied in (Sun et al., 2019b) in the finite horizon setting
and with general function approximation their work does not use exploration mechanism. However their work requires an
additional realizability assumption of the expert value function, it can only learn a difficult to store and deploy non stationary
policy and provides suboptimal guarantees on τE in terms of the horizon dependence.

The follow up from (Arora et al., 2020), still requires the realizability of the state value function which is not needed in
our work. The work of Kidambi et al. (2021) uses the idea of exploration in state only finite horizon imitation learning.
Their analysis for tabular MDP gives a bound on K which has a worst horizon dependence and it requires the design of
exploration bonuses tight to the structural properties of the MDP. Therefore, their NN experiments requires an empirical
approximation of such bonuses while the SOAR framework applies naturally.

Wu et al. (2024) imposes expert score function realizability and that the expected state norm remains bounded during
learning. The algorithm has provable guarantees but it requires an expensive RL in the loop routine that we avoid in our
work.

Exploration Techniques in Deep RL Ensemble of Q networks has also been used for training stabilization (Anschel
et al., 2017). (Zhang et al., 2025) introduces exploration technique based on multiple actors. Ciosek et al. (2019) does not
have theoretical guarantees but it uses the idea of constructing an optimistic critic using mean plus standard deviation but
only to define an exploratory policy with which collecting data. Our approach instead maintains only one actor policy which
is updated with the optimistic Q estimate. (Parker-Holder et al., 2020; Lyu et al., 2022) exploration with ensemble of actors
rather than critics. (Kurutach et al., 2018; Chua et al., 2018) uses an ensemble of networks trained to learn the transition
model to improve the sample complexity in model based RL. (Henaff et al., 2022) learns instead an inverse dynamics model
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and via an encoder and decoder model and uses the features output by the encoder to compute elliptical potential bonuses
which are standard in linear bandits (Abbasi-Yadkori et al., 2011). Moskovitz et al. (2021) improved TD-3 (Fujimoto et al.,
2018) using an ensemble of critics and a bandit algorithm to find an aggregation rule balancing well the amount of optimism
required by online exploration and pessimism required by off policy algorithms such as TD-3.

In addition, there are several deep RL work that takes a bayesian point of view to the problem, these algorithms often
achieve remarkable performance but the algorithm implemented with deep networks requires usually adjustments creating
a mismatch compared to the provable algorithms in the tabular case. Among those (Luis et al., 2023; Zhou et al., 2020;
O’Donoghue et al., 2018) use the Bellman equation for the state value function variance to train a network (dubbed U
network) that models the uncertainty of the network predicting the Q values. They respectively prove that this trick improves
the performances of SAC, PPO (Schulman et al., 2017) and DQN(Mnih et al., 2015). (Curi et al., 2020) uses the model
uncertainty estimate in the update of the actor.

Moreover, building on the theoretical analysis of PSRL (Osband & Van Roy, 2014) and RLSVI (Osband et al., 2016b)
that show sublinear bayesian regret bound. At any step, these algorithms sample from a posterior distribution either an
MDP where to plan or a value function to follow greedly at each step. Between one step and the other the posterior is
updated given the new data. While the theorical analysis in the above works prescribe a randomization at the value function
parameters level, in the deep RL version, dubbed Boostrapped DQN (Osband et al., 2016a), the perturbation is performed
implicitly maintaining a set of Q networks and sampling uniformly at each round according to which network the agent
chooses the greedy action. (Chen et al., 2017) improved upon Bootstrapped DQN using an aggregation rule. That is acting
greedy with respect to the mean plus standard deviation of the q ensemble. Osband et al. (2018) further builds on this
idea adding a differ prior to each network in the ensemble to increase diversity. Finally, Osband et al. (2023a) replaces the
uniform sampling in (Osband et al., 2016a) with a learned distribution with an epistemic network (Osband et al., 2023b).

Furthermore, motivated by the bayesian regret bound proven in (O’Donoghue, 2021) in the tabular case and the one in
(O’Donoghue, 2023), (Tarbouriech et al., 2024) proves a regret bound in the function approximation setting and showcased
convincing performance in the Atari benchmark. Their algorithm requires to know the variance of the cost posterior
distribution which is not available in the neural network experiments. Therefore, it is estimated using the standard deviation
of an ensemble of cost network. In our work, we use an ensemble of Q networks and not cost networks.

Additionally, (Ishfaq et al., 2021) analyzed ensemble exploration techniques in the general function approximation setting.
Their ensemble consists of different critics trained on the same state actions dataset but with rewards perturbed with a
gaussian random vector. (Ishfaq et al., 2023; 2024) looked at efficient implementation of Thompson sampling in Deep RL
and obtained convincing results in Atari and providing guarantees for linear MDPs and general function approximation
respectively. Moreover, (Ishfaq et al., 2025) extended the above results for continuous action spaces. Unfortunately, these
methods do not apply directly to imitation learning because they require a fixed reward function.

Exploration techniques in Deep IL As mentioned only few works investigated exploration techniques in Deep IL. Apart
from the previously mentioned works, (Yu et al., 2020) adopts a model based approach and used exploration bonuses based
on prediction error of the next observed state (a.k.a. curiosity driven exploration (Pathak et al., 2017; Burda et al., 2018)).
Finally we notice that ensembles have been used in IL theory IL also for goals different to exploration. In particular, (Swamy
et al., 2022) partitioned the expert dataset in two subdataset and show that these technique allows for improved expert
sample complexity bounds when the expert is deterministic.

State-only imitation learning Torabi et al. (2018b) tackled the problem of imitation learning from states only modifying
the discriminator of GAIL (Ho & Ermon, 2016) to take as input state next state pairs instead of state action pairs. Further
practical improvements have been proposed in (Zhu et al., 2020) that allows for the use of off-policy data. The works (Yang
et al., 2019; Nair et al., 2017; Pathak et al., 2018; Radosavovic et al., 2021) use the idea of an inverse dynamic model while
(Edwards et al., 2019; Ganai et al., 2023) develops a practical algorithm aiming at estimating the forward dynamic model.
Furthermore, (Torabi et al., 2018a) introduces a twist in behavioral cloning using inverse dynamic modelling to make it
applicable to state only expert datasets. A comprehensive literature review can be found in (Torabi et al., 2019). More
recently, features/state only imitation learning has found application in non markovian decision making problems (Qin et al.,
2024). Sikchi et al. (2022) introduce an algorithm that takes advantage of an offline ranker between trajectories to get strong
empirical results in LfO setting. Another line of works (Gupta et al., 2017; Sermanet et al., 2018; Liu et al., 2019; Viano
et al., 2021; 2022a; Gangwani & Peng, 2020; Cao & Sadigh, 2021; Gangwani et al., 2022) motivate imitation learning from
observation alone arguing that the expert providing the demonstrations and the learner acts in slightly different environments.
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In (Kim et al., 2022a; Sikchi et al., 2024), the authors proposed convex programming based methods to imitate an expert
policy from expert state only demonstration and auxiliary arbitrary state action pairs. Several works (Ni et al., 2021; Kim
et al., 2022b; Ma et al., 2022; Yu et al., 2023) introduce empirical methods to minimize an f -divergence between expert and
learner state occupancy measure. Complementary, (Chang et al., 2023) minimizes the Wasserstein distance between expert
and learner state occupancy measure. Their numerical results are convincing but no sample complexity bounds are provided.
Convincing results have been obtained also in (Chang et al., 2024) that uses the idea of boosting and in (Wu et al., 2024)
which uses a diffusion models inspired loss to update the cost.

B. Theoretical Analysis
B.1. Upper bounding the policy regret

Corollary B.1. Consider an MDP where maxs,a∈S×A supp(P (·|s, a)) = 2, then for L ≥ 36 log
(

|S||A|K
δ

)
it holds that

with probability at least 1− δ

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤ PV k(s, a) ∀ s, a ∈ S ×A, ∀ k ∈ [K].

Proof. Let us fix a state-action-next state triplet s, a, s′, a batch index ℓ ∈ [L] and an iteration index k ∈ [K]. Then, we
consider the following stochastic estimator for the probability of transitioning to s′ from state s taking action a.

P̂ kℓ (s
′|s, a) = Nk

ℓ (s, a, s
′)

Nk
ℓ (s, a) + 2

=

∑
s̄,ā,s̄′∈Rk

ℓ
1{s̄,ā,s̄′=s,a,s′}

Nk
ℓ (s, a) + 2

=

∑
s̄,ā,s̄′∈Rk

ℓ :s̄,ā=s,a
1{s̄′=s′}

Nk
ℓ (s, a) + 2

.

Notice that in above estimators the denominator corresponds to the number of visits of the pair s, a up to the time k ∈ [K]
within the batch ℓ ∈ [L], i.e. Nk

ℓ (s, a), increased by 2 for technical reasons. At the numerator instead we have the sum of
Nk
ℓ (s, a) indicators functions which equals one when the state following the state action pair s, a is equal to s′. Each of this

indicator is a random variable distributed according to a Bernoulli random variable with mean P (s′|s, a). At this point, we
can use the technique introduced in (Cassel et al., 2024). In particular, we will show that

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a)
]
≥ 1

4
∀s, a, s′ ∈ S ×A× children(s),∀k ∈ [K],∀ℓ ∈ [L].

We distinguish 3 cases: Nk
ℓ (s, a) = 0, Nk

ℓ (s, a) = 1, Nk
ℓ (s, a) ≥ 2. If Nk

ℓ (s, a) = 0, then, we have that

P̂ kℓ (s
′|s, a) = 0 ≤ P (s′|s, a).

If Nk
ℓ (s, a) = 1, we distinguish two cases. If P (s′|s, a) ≥ 1

3 , then

P̂ kℓ (s
′|s, a) ≤ 1

3
≤ P (s′|s, a).

Otherwise, if Nk
ℓ (s, a) = 1, and P (s′|s, a) ≤ 1

3 then

P
[
1{s̄′=s′}

3
≤ P (s′|s, a)

]
= P

[
1{s̄′=s′} = 0

]
= 1− P (s′|s, a) ≥ 2

3
≥ 1

4
.

Finally, for Nk
ℓ (s, a) ≥ 2,we have that for P (s′|s, a) ≥ 1− 1

Nk
ℓ (s,a)

it holds that

P̂ kℓ (s
′|s, a) ≤ Nk

ℓ (s, a)

Nk
ℓ (s, a) + 2

= 1− 2

Nk
ℓ (s, a) + 2

≤ 1− 1

Nk
ℓ (s, a)

≤ P (s′|s, a),

where the last inequality holds for Nk
ℓ ≥ 2. Otherwise, for P (s′|s, a) ≤ 1 − 1

Nk
ℓ (s,a)

we can apply (Cassel et al., 2024,
Lemma 2) (adapted from (Wiklund, 2023, Corollary 1) ) to obtain

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a)
]
≥ P

 ∑
s̄,ā,s̄′∈Rk

ℓ :s̄,ā=s,a

1{s̄′=s′} ≤ Nk
ℓ (s, a)P (s

′|s, a)

 ≥ 1

4
.
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At this point notice that for any positive vector V ∈ [0, (1− γ)−1]|S|, it holds that

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a) ∀s′ ∈ children(s)
]
= P

[
P̂ kℓ (s

′|s, a)V (s′) ≤ P (s′|s, a)V (s′) ∀s′ ∈ children(s)
]

≤ P

[∑
s′∈S

P̂ kℓ (s
′|s, a)V (s′) ≤

∑
s′∈S

P (s′|s, a)V (s′)

]
where the inequality holds because of the following implication between events

P̂ kℓ (s
′|s, a)V (s′) ≤ P (s′|s, a)V (s′) ∀s′ ∈ children(s)

=⇒
∑

s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≤

∑
s′∈children(s)

P (s′|s, a)V (s′).

Moreover, since the estimation at each state s′ is independent we have that

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a) ∀s′ ∈ children(s)
]
=

∏
s′∈children(s)

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a)
]
≥
(
1

4

)|children(s)|

Then, for any s, a ∈ S ×A is concluded by the following chain of inequalities

P

min
ℓ∈[L]

∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≥

∑
s′∈children(s)

P (s′|s, a)V (s′)


= P

 ∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≥

∑
s′∈children(s)

P (s′|s, a)V (s′) ∀ℓ ∈ [L]


=
∏
ℓ∈[L]

1− P

 ∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≤

∑
s′∈children(s)

P (s′|s, a)V (s′)


≤
∏
ℓ∈[L]

(
1− P

[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a) ∀s′ ∈ children(s)
])

≤
∏
ℓ∈[L]

(
1− 1

4

|children(s)|
)
≤ e−L log

(
4|children(s)|

4|children(s)|−1

)
.

Therefore, choosing L ≥ log(1/δ)

log
(

4|children(s)|

4|children(s)|−1

) , we ensure that

P
[
min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ PV k(s, a)

]
≤ δ.

For |children(s)| = 2, we have that
(
log
(

4|children(s)|

4|children(s)|−1

))−1

≤ 36, therefore with a union bound over the sets S,A and

[K] we conclude that for L ≥ 36 log
(

|S||A|K
δ

)
, it holds that

P
[
min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤ PV k(s, a) ∀ s, a, k ∈ S ×A× [K]

]
≥ 1− δ.

B.2. Policy Regret Decomposition

Theorem 4.2. Policy Regret In a binarized MDP with |S| states and discount factor γ, it holds that with probability 1− 3δ,
for any policy π⋆, Regretπ(K,π

⋆) is upper bounded by

log |A|
η(1− γ)

+
ηK

(1− γ)4
+ Õ


√
K |S|2 |A| log(1/δ)

(1− γ)2


18
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and for η =
√

log|A|(1−γ)3
K it holds that using the update in (Min) or in (Mean-Std) it holds that Regret(K,π⋆) is upper

bounded by Õ
(√

K|S|2|A| log(1/δ)
(1−γ)5

)
.

Proof. The theorem is proven with the following regret decomposition in virtue of Lemma 4.5 already presented in the main
text. Denoting δk(s, a) ≜ ck(s, a) + γPV k(s, a)−Qk+1(s, a) and gk(s, a) ≜ Qk+1(s, a)−Qk(s, a)

(1− γ)Regretπ(K;π⋆) =

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(BTRL)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
(Optimism)

+

K∑
k=1

Es,a∼dπk

[
gk(s, a)

]
−

K∑
k=1

Es,a∼dπ⋆

[
gk(s, a)

]
(Shift)

At this point, we bound each term with the following Lemmas, we obtain√
log |A|K
(1− γ)5

+ Õ


√
K |S|2 |A| log(1/δ)

(1− γ)2


≤ Õ

√K |S|2 |A| log(1/δ)
(1− γ)5

 .

Bound on (BTRL) Then, we continue bounding the first term invoking the following lemma.

Lemma B.2. Let us consider the sequence of policies
{
πk
}K
k=1

generated by Algorithm 2 for all η > 0 then it holds that

(BTRL) ≤ log|A|
η .

Proof.

K∑
k=1

Es∼dπ⋆
ρek

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
=
∑
k∈K

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
= Es∼dπ⋆

[∑
k∈K

〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(2)

Then, applying a standard regret bound for Be the Regularized Leader (BTRL) it holds that for all s ∈ S∑
k∈K

〈
Qk(s, ·), πk(s)− π⋆(s)

〉
=

log |A|
η

Then, plugging into (2) we conclude that

(BTRL) ≤ log |A|
η

.

Bound on (Shift) We follow the idea from (Moulin & Neu, 2023) of controlling this term proving that two consecutive
policies will have occupancy measures within a O(η) total variation distance.

Lemma B.3. For the sequence of policies
{
πk
}K
k=1

generated by Algorithm 2, for all η > 0, it holds that (Shift) ≤ ηK
(1−γ)3 .
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Proof. Let us denote Qmax = (1− γ)−1

K∑
k=1

〈
dπ

k

, Qk −Qk+1
〉
=

(〈
dπ

1

, Q1
〉
+

K−1∑
2

〈
Qk, dπ

k

− dπ
k−1
〉
−
〈
dπ

K

, QK
〉)

≤ Qmax +
ηQ2

max(K − 2)

(1− γ)
≤ ηQ2

max(K − 1)

(1− γ)
.

In the first inequality, we used Lemma C.4. Finally, noticing that

−
K∑
k=1

〈
dπ

⋆

, Qk −Qk+1
〉
=
〈
dπ

⋆

, QK −Q1
〉
≤ Qmax

and that

(Shift) =
K∑
k=1

〈
dπ

k

, Qk −Qk+1
〉
−

K∑
k=1

〈
dπ

⋆

, Qk −Qk+1
〉

allows us to conclude the proof summing the two bounds.

Bound on (Optimism)

Lemma B.4. Let us consider an MDP where maxs,a∈S×A supp(P (·|s, a)) = 2. For each k ∈ [K], if the Qk+1 in
Algorithm 2, are updated according to (Min) or (Mean-Std), the iterates produced by Algorithm 2 satisfy with probability
1− 3δ that

(Optimism) ≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

Proof. For the optimism term we can observe that using the update of the Q values, we have that

δk(s, a) = γ(PV k(s, a)− min
ℓ∈[L]

P̂ kℓ V
k(s, a))

Therefore, in virtue of Corollary 4.11 with probability 1− δ it holds that

δk(s, a) ≥ 0 ∀ s, a ∈ S ×A.

Therefore, with probability 1− δ, we have that

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤

K∑
k=1

∑
s,a

dπ
k

(s, a)δk(s, a)

= γ

K∑
k=1

E
s,a∼dπk

[
PV k(s, a)− min

ℓ∈[L]
P̂ kℓ V

k(s, a)

]
At this point, using Lemma B.5 and a union bound we have that with probability 1− 2δ, it holds that

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤ γ

K∑
k=1

Es,a∼dπk

[√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)]

+ γ

K∑
k=1

E
s,a∼dπk

[
2

(Nk(s, a)/L+ 1)(1− γ)

]
+ 4
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≤

√√√√K

K∑
k=1

E
s,a∼dπk

[
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)]

+ γ

K∑
k=1

E
s,a∼dπk

[
2

(Nk(s, a)/L+ 1)(1− γ)

]
+ 4

At this point, since Lk is geometrically distributed for every k ∈ [K] it holds that Lk ≤ Lmax := log(K/δ)
(1−γ) for all k ∈ [K]

with probability 1− δ. Therefore, we can invoke Lemma C.2 to bound
∑K
k=1 Es,a∼dπk

[
2

(Nk(s,a)/L+1)

]
. Another union

bound ensures that with probability 1− 3δ, we have that

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤ 1

1− γ

√
K |S| log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
(2L |S| |A| log (KLmax) + 4 log (2K/δ))

+
2

1− γ
(2L |S| |A| log (KLmax) + 4 log (2K/δ))

= Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

where the Õ notation hides logarithmic factors in K, 1− γ, |S| and |A|.

Now, we prove the part of the Theorem that considers the update for Qk+1 given in (Mean-Std). Under this update, we have
that

δk(s, a) = γ

PV k(s, a)−max

 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)−

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2

, 0




Then, applying Samuelson’s inequality Lemma C.5, we have that

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)−

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2

moreover, it holds that
min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ 0

Therefore,

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ max

 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)−

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2

, 0


which implies

δk(s, a) ≥ γ
(
PV k(s, a)− min

ℓ∈[L]
P̂ kℓ V

k(s, a)

)
≥ 0

where the last inequality holds with probability 1− δ thanks to Corollary 4.11. Therefore, with probability 1− δ, we have
that

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤

K∑
k=1

∑
s,a

dπ
k

(s, a)δk(s, a)

21



IL-SOAR : Imitation Learning with Soft Optimistic Actor cRitic

≤ γ
K∑
k=1

E
s,a∼dπk

 1

L

L∑
ℓ=1

(
PV k(s, a)− P̂ kℓ V k(s, a)

)
+

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2
 ,

where the last inequality holds removing the maximum. For the first term, we can use Lemma B.5 and continue as in the
previous proof to show that with probability 1− δ

γ

K∑
k=1

E
s,a∼dπk

[
1

L

L∑
ℓ=1

(
PV k(s, a)− P̂ kℓ V k(s, a)

)]
≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

So, we are left with bounding the term

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


To this end, by Jensen’s inequality we have that

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


≤ γ
K∑
k=1

E
s,a∼dπk


√√√√ 1

L

L∑
ℓ′=1

L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− P̂ kℓ′V k(s, a)
)2

≤ γ
K∑
k=1

E
s,a∼dπk


√√√√ 2

L

L∑
ℓ′=1

L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− PV k(s, a)
)2

≤ γ
K∑
k=1

E
s,a∼dπk


√√√√2

L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− PV k(s, a)
)2

At this point, notice that invoking Lemma B.5, we have that for all ℓ ∈ [L] with probability 1− δ(
P̂ kℓ V

k(s, a)− PV k(s, a)
)2

≤

(√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K
+

2

(Nk(s, a)/L+ 1)(1− γ)

)2

≤ 3 |S|
(Nk(s, a)/L+ 1)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

12

K2
+

12

(Nk(s, a)/L+ 1)2(1− γ)2

= Õ

(
3 |S| log

(
1
δ

)
(Nk(s, a)/L+ 1)(1− γ)2

)
.

Therefore, plugging into the previous display we obtain

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2

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≤
K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

Õ

(
3 |S| log

(
1
δ

)
(Nk(s, a)/L+ 1)(1− γ)2

)
≤

√√√√K

K∑
k=1

E
s,a∼dπk

[
L∑
ℓ=1

Õ

(
3 |S| log

(
1
δ

)
(Nk(s, a)/L+ 1)(1− γ)2

)]

≤ Õ


√√√√K

K∑
k=1

Es,a∼dπk

[
3 |S|L2 log

(
1
δ

)
(Nk(s, a) + 1)(1− γ)2

]
≤ Õ


√√√√ |S|2 log ( 1δ )K

(1− γ)2
K∑
k=1

E
s,a∼dπk

[
1

Nk(s, a) + 1

]
Finally, we bound E

s,a∼dπk

[
1

Nk(s,a)+1

]
using Lemma C.2 under the event Lk ≤ Lmax := log(K/δ)

(1−γ) which holds with
probability 1− δ. Thanks to an union bound we have that with probability 1− 2δ,

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


≤ Õ

√ |S|2 log ( 1δ )K
(1− γ)2

|S| |A| log (KLmax) + 4 log (2KLmax/δ)


≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

Therefore, the proof is concluded also for the case of Q value being updated as in (Mean-Std).

Lemma B.5. With probability 1− δ, it holds that for all s, a ∈ S ×A,

PV k(s, a)− P̂ kℓ V k(s, a) ≤

√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

+
2

(Nk(s, a)/L+ 1)(1− γ)
∀ℓ, k ∈ [L]× [K]

In particular, the above statement implies that for all k ∈ [K]

PV k(s, a)− min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤

√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

+
2

(Nk(s, a)/L+ 1)(1− γ)

Proof. Let us introduce the value class of the possible value functions generated by Algorithm 2. i.e. V ={
f ∈ R|S| | ∥f∥∞ ≤

1
1−γ , f(s) ≥ 0 ∀s ∈ S

}
. Let us introduce a ϵcov-covering set Cϵcov(V) such that for any V ∈ V

there exists Ṽ ∈ Cϵcov(V) such that
∥∥∥Ṽ − V ∥∥∥

∞
≤ ϵcov. Therefore let us denote by Ṽ k the element of Cϵcov(V) such that∥∥∥V k − Ṽ k∥∥∥

∞
≤ ϵcov. Then, let us consider a generic Ṽ ∈ Cϵcov(V),

PṼ (s, a)− 1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā} =
1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

PṼ (s, a)1{s,a=s̄,ā}
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− 1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā}

=
1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā}

Then, notice that denoting s′n(s, a) the state sample after s, a the nth time the state action pair was visited we have that

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā} =

Nk
ℓ (s,a)∑
n=1

(
PṼ (s, a)− Ṽ (s′n(s, a))

)
Applying directly the Azuma Hoeffding inequality is not possible because the number of elements in the sum, i.e. the

number of visits Nk
ℓ (s, a) is not a random variable independent on the random variables {s′n(s, a)}

Nk
ℓ (s,a)

n=1 (see (Lattimore
& Szepesvári, 2020, Exercise 7.1) ).

Therefore, we first apply the Azuma Hoeffding inequality for a specific k and for a specific value of the visits Nk
ℓ (s, a).

That is, it holds that with probability 1− δ

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā} ≤

√
Nk
ℓ (s, a) log(1/δ)

2(1− γ)2

Therefore via a union bound for k ∈ [K] and Nk
ℓ (s, a) ∈ {0, 1, . . . ,K} we have that with probability 1− δ it holds that for

all k ∈ [K]

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā} ≤

√
Nk
ℓ (s, a) log(K(K + 1)/δ)

2(1− γ)2
.

Therefore, we can conclude that with probability at least 1− δ for all k ∈ [K]

PṼ (s, a)− 1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā} ≤

√
log(K(K + 1)/δ)

2Nk
ℓ (s, a)(1− γ)2

.

Now, by a another union bound over Cϵcov(V) , [K], [L] and S ×A and denoting

P̄ kℓ Ṽ (s, a) :=
1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā},

it holds that

P

[
PṼ (s, a)− P̄ kℓ Ṽ (s, a) ≤

√
log(K(K + 1) |S| |A| |Cϵcov(V)|L/δ)

Nk
ℓ (s, a)(1− γ)2

∀s, a, ℓ, k ∈ S ×A× [L]× [K], Ṽ ∈ V

]
≥ 1− δ

Therefore, now let us consider the element Ṽ k ∈ Cϵcov(V) such that
∥∥∥V k − Ṽ k∥∥∥

∞
≤ ϵcov. Then, we have that for all

ℓ ∈ [L]

PV k(s, a)− P̄ kℓ V k(s, a) = PṼ k(s, a)− P̄ kℓ Ṽ k(s, a) + (P − P̄ kℓ )(Ṽ k − V k)
= PṼ k(s, a)− P̄ kℓ Ṽ k(s, a) + 2ϵcov

≤

√
log(K(K + 1) |S| |A| |Cϵcov(V)|L/δ)

Nk
ℓ (s, a)(1− γ)2

+ 2ϵcov
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≤

√
|S|

Nk
ℓ (s, a)(1− γ)2

log

(
K(K + 1) |S| |A|L

(1− γ)ϵcovδ

)
+ 2ϵcov

With ϵcov = K−1, we get

PV k(s, a)− P̄ kℓ V k(s, a) ≤

√
|S|

Nk
ℓ (s, a)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

Then, we can continue as follows

P̂ kℓ V
k(s, a) =

Nk
ℓ (s, a)

Nk
ℓ (s, a) + 2

P̄ kℓ V
k(s, a)

≥ Nk
ℓ (s, a)

Nk
ℓ (s, a) + 2

[
PV k(s, a)−

√
|S|

Nk
ℓ (s, a)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
− 2

K

]

= PV k(s, a)− 2

Nk
ℓ (s, a) + 2

PV k(s, a)−

√
|S|

(Nk
ℓ (s, a) + 2)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
− 2

K

≥ PV k(s, a)− 2

(Nk
ℓ (s, a) + 2)(1− γ)

−

√
|S|

(Nk
ℓ (s, a) + 2)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
− 2

K

Finally, rearranging and using that Nk
ℓ (s, a) =

⌊
Nk(s,a)

L

⌋
≥ Nk(s,a)

L − 1, we obtain that with probability 1− δ, it holds
that for all ℓ ∈ [L], k ∈ [K], s, a ∈ S ×A

PV k(s, a)− P̂ kℓ V k(s, a) ≤

√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

+
2

(Nk(s, a)/L+ 1)(1− γ)

B.3. Upper bound the regret of the reward player

Theorem 4.3. Cost Regret In a binarized MDP with |S| states and discount factor γ, it holds that with probability 1− 2δ,
(1− γ)Regretc(K; ctrue) is upper bounded by

4
√
K log(1/δ) +K

√
|S| |A| log (|S| |A| /δ)

2 |DπE |

Proof. We decompose the regret as follows

K∑
k=1

〈
ctrue − ck, dπ

k

− dπE

〉
=

K∑
k=1

〈
ctrue − ck, esk

Lk
− d̂πE

〉
+

K∑
k=1

〈
ctrue − ck, dπ

k

− esk
Lk

〉
+

K∑
k=1

〈
ctrue − ck, d̂πE − dπE

〉
For the first term, we can invoke a standard online gradient descent bound and get

K∑
k=1

〈
ctrue − ck, esk

Lk
− d̂πE

〉
≤ 2

η
+ ηK

∥∥∥d̂πE

∥∥∥
2
/2
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≤ 2

η
+ ηK

∥∥∥d̂πE

∥∥∥
1
/2

≤ 2

η
+
ηK

2

Therefore choosing η =
√

4
K , we get

K∑
k=1

〈
ctrue − ck, esk

Lk
− d̂πE

〉
≤ 2
√
K.

Then, we can handle the remaining two terms. In particular
∑K
k=1

〈
ctrue − ck, dπ

k − esk
Lk

〉
is the sum of a martingale

difference sequence. Therefore, applying the Azuma-Hoeffding inequality it holds that with probability 1− δ

K∑
k=1

〈
ctrue − ck, dπ

k

− esk
Lk

〉
≤
√
2K log(1/δ)

where we used that
∣∣∣〈ctrue − ck, dπk − esk

Lk

〉∣∣∣ ≤ 2 for all k ∈ [K]. Finally for the expert concentration term, we have that

K∑
k=1

〈
ctrue − ck, d̂πE − dπE

〉
≤ K

√
|S| |A| ∥dπE − dπE∥∞

Then, for any fixed state action pair s, a with probability 1− δ/(|S| |A|) by Azuma-Hoeffding inequality it holds that

dπE(s)− dπE(s) =
1

|DπE |
∑

s′∈DπE

1{s′=s} − dπE(s) ≤

√
log(|S| |A| δ−1)

2 |DπE |

Therefore, by a union bound it holds that with probability 1− δ,

∥dπE − dπE∥∞ ≤

√
log(|S| |A| δ−1)

2 |DπE |
.

Putting together, the bounds on the three terms allow to conclude the proof.

C. Technical Lemmas
Lemma C.1. Consider the MDP M = (S,A, P, c,ν0, γ) and two policies π, π′ : S → ∆A. Then consider for any

Q̂ ∈ R|S||A| and V̂ π(s) =
〈
π(·|s), Q̂(s, ·)

〉
and Qπ

′
, V π

′
be respectively the state-action and state value function of the

policy π in MDP M . Then, it holds that (1− γ)
〈
ν0, V̂

π − V π′
〉

equals〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ Es∼dπ′

[〈
Q̂(s, ·, π(·|s)− π′(·|s)

〉]
.

Proof. 〈
dπ

′
, Q̂
〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+
〈
dπ

′
, c+ γP V̂ π

〉
Then, using the property of occupancy measure we have that

〈
dπ

′
, c
〉
= (1− γ)

〈
ν0, V

π′
〉

where V π
′

is the value function
of the policy π′ in the MDP. Then, it holds that〈

dπ
′
, Q̂
〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
dπ

′
, γP V̂ π

〉
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=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
γPT dπ

′
, V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
ET dπ

′
− (1− γ)ν0, V̂

π
〉

=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
− V̂ π

〉
+
〈
ET dπ

′
, V̂ π

〉
.

Rearranging and using the definition of V̂ π yields the conclusion.

Lemma C.2. Let us assume that Lk ≤ Lmax for all k ∈ [K]. Then, it holds that with probability 1− δ

K∑
k=1

E
s,a∼dπk

[
1

Nk(s, a)/L+ 1

]
≤ 2L |S| |A| log (KLmax) + 4 log (2KLmax/δ)

Proof. Let us assume that Lk ≤ Lmax for all k ∈ [K]. Invoking (?)Lemma D.4]cohen2019learning, it holds that with
probability 1− δ

K∑
k=1

E
s,a∼dπk

[
1

Nk(s, a)/L+ 1

]
≤ 2

K∑
k=1

Lk∑
t=1

1

Nk(skt , a
k
t )/L+ 1

+ 4 log (2KLmax/δ)

≤ 2
∑

s,a∈S×A

K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }
Nk(s, a)/L+ 1

+ 4 log (2KLmax/δ)

≤ 2L
∑

s,a∈S×A

K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }
Nk(s, a) + 1

+ 4 log (2KLmax/δ)

≤ 2L
∑

s,a∈S×A

K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }∑k
τ=1

∑Lτ

t=1 1{s,a=sτt ,aτt } + 1
+ 4 log (2KLmax/δ)

≤ 2L
∑

s,a∈S×A
log

 K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }

+ 4 log (2KLmax/δ)

≤ 2L |S| |A| log (KLmax) + 4 log (2KLmax/δ)

where we used Lemma C.3 for f(x) = x−1.

Lemma C.3. Let a0 ≥ 0 and f [0,∞)→ [0,∞) be a non increasing function , then

T∑
t=1

αtf(a0 +

T∑
t=1

αt) ≤
∫ ∑T

t=1 at

a0

f(x)dx

Proof. See (Orabona, 2023) Lemma 4.13.

Lemma C.4. The sequence of policies
{
πk
}K
k=1

generated by Algorithm 2 and let dπ denote the occupancy measure for the
policy π. Then it holds that

∀k ∈ [K]
∥∥∥dπk

− dπ
k+1
∥∥∥
1
≤ ηQmax

(1− γ)

Proof. By Lemma A.1 in (Sun et al., 2019a) it holds that∥∥∥dπk

− dπ
k+1
∥∥∥
1
≤ 1

1− γ
E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
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Then, we notice that by 1-strong convexity of the KL divergence it holds that

1

2
E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥2
1

]
≤ 1

2
E
x∼dπk

[
DKL(π

k+1(·|x), πk(·|x))
]

≤ 1

2
E
x∼dπk

∑
a∈A

πk+1(a|x)

(
−ηQk(x, a)− log

(∑
a∈A

πk(a|x) exp(−ηQk(x, a))

))

= −η
2
E
x∼dπk

∑
a∈A

πk+1(a|x)Qk(x, a)−
1

2
E
x∼dπk log

(∑
a∈A

πk(a|x) exp(−ηQk(x, a))

)
≤ −η

2
E
x∼dπk

∑
a∈A

πk+1(a|x)Qk(x, a) +
η

2
E
x∼dπk

∑
a∈A

πk(a|x)Qk(x, a)

where the last inequality follows by Jensen’s inequality and convexity of − log. Hence, we continue the upper bound as
follows

1

2
E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥2
1

]
=
η

2
E
x∼dπk

∑
a∈A

Qk(x, a) · (πk(·|x)− πk+1(·|x))

≤ ηQmax

2
· Ex∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
Which implies, by Jensen’s inequality and diving both sides by 1

2Ex∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
that

E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
≤ ηQmax.

Lemma C.5. Samuelson’s inequality Let us consider L scalars {Xℓ}Lℓ=1 and denote the sample mean as X̄ =

L−1
∑L
ℓ=1Xℓ and the empirical standard deviation as σ̂ =

√∑L
ℓ=1(Xℓ−X̄)2

L−1 , then it holds that

X̄ −
√
L− 1σ̂ ≤ Xℓ ≤ X̄ +

√
L− 1σ̂ ∀ ℓ ∈ [L]

Proof. Let us consider an arbitrary vector v ∈ RL. Then, we have that ∥v∥∞ ≤ ∥v∥2. At this point let us consider
v = [X1 − X̄, . . . , XL − X̄]T . Moreover, let us define as ℓ⋆ the index such that ∥v∥∞ =

∣∣Xℓ⋆ − X̄
∣∣. Then, we have that

for all ℓ ∈ [L], ∣∣Xℓ − X̄
∣∣ ≤ ∣∣Xℓ⋆ − X̄

∣∣ ≤
√√√√ L∑

ℓ=1

(Xℓ − X̄)2 =
√
L− 1σ̂.

Therefore, rewriting the absolute value it holds that

X̄ −
√
L− 1σ̂ ≤ Xℓ ≤ X̄ +

√
L− 1σ̂

The next lemma says that the effective horizon in the original MDP and the binarized MDP is equal up to a log2 (|S|) factor.

Lemma C.6. It holds that
1

1− γ1/ log2|S| ≤
log2 |S|+ 2

1− γ
.

Proof.

1

1− γ1/ log2|S| =
1

1− γ
1− γ

1− γ1/ log2|S|
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=
1

1− γ
1− γlog2|S|

bin

1− γbin

=
1

1− γ

log2|S|+1∑
t=0

γtbin

≤ log2 |S|+ 2

1− γ
.

D. Implementation details
Environment: We use the Hopper-v5, Ant-v5, HalfCheetah-v5, and Walker2d-v5 environments from OpenAI Gym.

Expert Samples: The expert policy is trained using SAC. The training configuration uses 3000 epochs. The agent explores
randomly for the first 10 episodes before starting policy learning. A replay buffer of 1 million experiences is used, with a
batch size of 100 and a learning rate of 1e-3. The temperature parameter (α) is set to 0.2. The policy updates occur every 50
steps, with 1 update per interval. After training 64 experts trajectories are collected to be used later for the agent training.
The cumulative reward of the expert policies in the different environments are as given in the following table.

Table 1: Expert returns

Method Ant-v5 Hopper-v5 Humanoid-v5 Walker2d-v5
Expert 4061.41 3500.87 5237.48 5580.39
return ± 730.58 ± 4.33 ± 414.69 ± 20.30

IL algorithms implementation: Our starting code base is taken from the repository of f-IRL7 (Ni et al., 2021), and the
implementation of the other algorithms are based on this one. For more details about the implementation please refer to our
repository. The most important hyperparameters are reported in Table 2

• ML-IRL, f-IRL and rkl: These algorithms were already implemented in the f-IRL repository. The method leverages
SAC as the underlying reinforcement learning algorithm and different type of objectives for the cost update. The
multi-Q-network exploration bonus is implemented inside the SAC update, there we keep track of multiple Q-networks
and use their mean and standard deviation to update the policy. The clipping is applied on the standard deviation which
serves as the exploration bonus.

• CSIL: We started from the f-IRL implementation, maintaining the same hyperparameters for a fair comparison. The
key modification was removing reward model training from the RL loop, instead training it only once before entering
the loop using behavioral cloning and L2 normalization, after which the reward model remained fixed throughout the
training.

• OPT-AIL (state-only and state-action): We started from the implementation of ML-IRL and added the OPT-AIL
exploration bonus, incorporating optimism-regularized Bellman error minimization for Q-value functions as described
in the original article (Xu et al., 2024).

The updated Q-loss can be formulated as:

LQ = E
[
(Qθ(s, a)− (r + γ(1− d)(Qθ̄(s′, a′)− α log π(a′|s′))))2

]
− λE[Qθ(s, a)] (3)

Where: - Qθ is the current Q-network - Qθ̄ is the target Q-network - r is the learned reward - γ is the discount factor
- d is the done flag - α is the entropy coefficient - λ is the optimism regularization parameter - The expectation is
taken across the data distribution D sampled from the replay buffer, which includes state-action-reward-next state-done
transitions and individual state-action pairs.

7https://github.com/twni2016/f-IRL/tree/main
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Table 2: Core Hyperparameters Across Environments

Parameter Walker2d Humanoid Hopper Ant

Number of Iterations 1.5 M 1 M 1 M 1.2 M
Reward Network size [64, 64] [64, 64] [64, 64] [128, 128]
Policy Network size [256, 256] [256, 256] [256, 256] [256, 256]
Reward Learning Rate 1e-4 1e-4 1e-4 1e-4
SAC Learning Rate 1e-3 1e-3 1e-3 1e-3

Figure 5: Mean return of ML-IRL Ant-v5 with a different number of neural networks. The grid search for the clipping
values was performed over the following values [0.1 0.5 1 5 10 50]. Results are averaged over 3 seeds.

• SQIL (Reddy et al., 2019b): was implemented by initializing a replay buffer with expert trajectories and assigning
them a reward of 1, while collecting additional on-policy trajectories from the agent’s current policy with a reward of 0.
During training, the SAC agent learns from both expert and agent-generated transitions, effectively learning to imitate
expert behavior through the asymmetric reward structure. The agent updates its policy by sampling from this mixed
replay buffer, where the expert transitions provide a high-reward signal to guide the learning process.

• GAILs: we used the implementation available from Stable-Baselines3 (Raffin et al., 2021). This is the only
method not based on SAC.

D.1. Hyperparameters tuning

To determine how different numbers of neural networks changed the performance, we conducted an ablation study on
both the clipping value and the number of neural networks. We performed this analysis for the ML-IRL algorithm on the
Ant-V5 environment. We chose this environment since previous experiments showed that its higher complexity led to higher
variance in the performance of different algorithms. It was necessary to perform a grid search on the number of neural
networks because we noticed that different numbers of neural networks preferred different clipping values.

The results are reported in Figure 5. As we observed, in all cases, adding more neural networks leads to better performances.
However, this improvement does not increase proportionally with the number of neural networks; in fact, the run with 10
neural networks is outperformed by the one with 4. This led us to select 4 as the fixed value of neural networks, also justified
by the much slower training time of the 10-network case.

For every environment and algorithm, we performed a grid search over different clipping values. The range of clipping
values varied across algorithms. Figure 6 shows the different values used in the search and their impact on performance.
The difference in performance across clipping values is small in simpler environments (e.g., Hopper or Walker2d) while it
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becomes more evident in more complex environments with larger state-action spaces. These plots also show the necessity of
the clipping for the exploration bonus. In most environments and algorithms, when a large clipping value is applied, it leads
to performance degradation.

Empirically, the Q-network’s standard deviation diverges due to unclipped Q-values. Without value clipping, high Q-values
for specific state-action pairs increase the probability of being visited, causing more of these pairs to accumulate in the
replay buffer across different rollouts and potentially amplifying the standard deviation across the q-network for the next
update. This justifies the necessity of a clipping value on the exploration bonus.
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(a) CSIL Comparison (b) ML-IRL Comparison

(c) ML-IRL-SA Comparison (d) RKL Comparison

Figure 6: Comparison of clipping values across different environments, showing the effect on average return for each
environment.
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E. Experiments with single expert trajectory
Here we report the we report the result of the experiments using a single trajectory. Our findings indicate that the performance
remained consistent regardless of the number of trajectories used and the performance are comparable to the ones with 16
trajectories. Notable differences in performance improvement were observed in Humanoid-v5 and ant state environments in
the state only settings, where a more pronounced gap was evident.

Figure 7: Experiments from State-Only Expert Trajectories. 1 expert trajectories, average over 3 seeds, L = 4 Clipping values σ -
ML-IRL: [Ant: 0.1, Hopper: 0.1, Walker2d: 50.0, Humanoid: 0.5], rkl: [Ant: 0.1, Hopper: 0.5, Walker2d: 1.0, Humanoid: 50.0]

Figure 8: Experiments from State-Action Expert Trajectories. 1 expert trajectories, average over 3 seeds, L = 4. Clipping values σ -
CSIL: [Ant: 0.5, Hopper: 50.0, Walker2d: 0.1, Humanoid: 0.1], ML-IRL(SA): [Ant: 0.1, Hopper: 0.5, Walker2d: 0.1, Humanoid: 1.0]

F. Omitted Pseudocodes
This section introduces the omitted pseudocodes to clarify the implementation of the algorithms based on SOAR. We first
give a pseudocode (see Algorithm 6) that mirrors Algorithm 1 in the setting where deep neural network approximation is
needed due to the continuous structure of the state-action space. The critic training is the same as in the standard SAC
(Haarnoja et al., 2018) but we report it in Algorithm 7 for safe completeness. Notice that we adopt the double critic training
originally proposed in (van Hasselt et al., 2015) to avoid an excessive underestimation of the critics value8.

8Notice that (van Hasselt et al., 2015) talks about excessive overestimation of the prediction target in the critic training rather than
underestimation. This difference is due to the fact that their paper casts RL as reward maximization while we adopt a cost minimization
perspective. For the same reason we take the maximum between the two critics rather than the minimum as done in (van Hasselt et al.,
2015).
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Algorithm 6 Base Method + SOAR pseudocode

Require: Policy step size η, cost step size α, expert dataset DτE , discount factor γ, maximum standard deviation parameter
σ,

1: Initialize actor network πψ1 randomly.
2: Initialize the cost network cw1 randomly.
3: Initialize the L critics {Qθ11 , . . . , Qθ1L} randomly.
4: Initialize the L target critics {Qθ1,targ

1
, . . . , Qθ1,targ

L
} randomly.

5: Initialize L empty replay buffers
{
Dkℓ
}L
ℓ=1

. (One for each critic)
6: for k = 1 to K do
7: τkℓ ← COLLECTTRAJECTORY(π) for each ℓ ∈ [L].
8: Add τkℓ to replay buffer Dkℓ ← D

k−1
ℓ ∪ τkℓ .

9: Let Dk = ∪Lℓ=1Dkℓ
10: cwk ← UPDATECOST(cwk−1 ,DπE ,Dk, α) using the Base Method (such as CSIL, f -IRL or ML-IRL ).
11: for ℓ = 1 to L do
12: Qθk+1

ℓ
, Q

θk+1,targ
ℓ

= UPDATECRITICS(Dkℓ , πψk , η, γ, cθk)

13: end for
14:

{
Qk+1(s, a)

}
s,a∈Dk = OPTIMISTICQ-NN(Dk,

{
Qθk+1

ℓ

}L
ℓ=1

, σ) (see Algorithm 5)

15: Define the loss Lkπ = 1
|Dk|

∑
s,a∈Dk

(
−η log πψk(a|s) +Qk+1(s, a)

)
.

16: Update policy weights to ψk+1 using Adam (Kingma & Ba, 2015) on the loss Lkπ .
17: end for
18: Return π

Algorithm 7 UPDATECRITICS

Require: Dkℓ , πψk , α, γ, cw

1: Let B = {si, ai, r, s′i, donei}Ni=1 be a minibatch sampled from D
2: a′i ← π(s′i) for all i ∈ [N ].

3: Define Q
θk,targ
ℓ

(si, ai)← max
(
Q
θ
k,targ,(1)
ℓ

(si, ai), Qθk,targ,(2)
ℓ

(si, ai)
)

for all si, ai ∈ B.

4: Backupi ← cw(si, ai) + γ(1− donei)
(
Q
θk,targ
ℓ

(si, ai) + α log πψk(a′i|s′i)
)

5: L
θ
k,(1)
ℓ

= 1
N

∑N
i=1

(
Q
θ
k,(1)
ℓ

(si, ai)− Backupi
)2

6: L
θ
k,(2)
ℓ

= 1
N

∑N
i=1

(
Q
θ
k,(2)
ℓ

(si, ai)− Backupi
)2

7: θk+1,(1)
ℓ ← θ

k,(1)
ℓ − ηQ∇Lθk,(1)

ℓ

8: θk+1,(2)
ℓ ← θ

k,(2)
ℓ − ηQ∇Lθk,(2)

ℓ

.

9: θk+1,targ,(1) ← (1− τtarg)θ
k,targ,(1) + τtargθ

k,(1).
10: θk+1,targ,(2) ← (1− τtarg)θ

k,targ,(2) + τtargθ
k,(2).

11: Qθk+1
ℓ

(s, a) = max
(
Q
θ
k+1,(1)
ℓ

(s, a), Q
θ
k+1,(2)
ℓ

(s, a)
)

for all s, a ∈ Dk.

12: Q
θk+1,targ
ℓ

(s, a) = max
(
Q
θ
k+1,targ,(1)
ℓ

(s, a), Q
θ
k+1,targ,(2)
ℓ

(s, a)
)

for all s, a ∈ Dk.
13: return Qθk+1

ℓ
, Q

θk+1,targ
ℓ

.

F.1. Instantiating the cost update

We show after how the algorithmic template in Algorithm 1 captures different imitation learning algorithms just changing
the cost update. For example, f -IRL with the reversed KL divergence (RKL) can be seen as Algorithm 1 with the cost
update described in Algorithm 8. Moreover, our SOAR+RKL is obtained plugging in the cost update in Algorithm 8 in
Algorithm 6.
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Algorithm 8 UPDATECOST for RKL (f -IRL for reversed KL divergence) (Ni et al., 2021)

Require: c,DπE ,Dπk , α, divergence generating function f(x) = − log(x) for the reversed KL divergence, prior distribution
over trajectories p(τ).

1: ρw(τ) =
1
Z p(τ)e

−cw(τ)

2: χ⋆ ← argmaxω Es∼DπE
[logDχ(s)] + Es∼Dk [log(1−Dχ(s))]

3: Estimate the density ratio:
4: ρE(s)

ρw(s) =
Dχ⋆ (s)

1−Dχ⋆ (s)

5: Compute the stochastic gradient

∇̂w =
1

T
Eτ∼ρw

[
T∑
t=1

hf

(
ρE(st)

ρw(st)

)
·

(
−

T∑
t=1

∇θcw(st)

)]

− 1

T
Eτ∼ρw

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)]
· Eτ∼ρθ

[(
−

T∑
t=1

∇θcw(st)

)]

6: w ← w − α∇̂w
7: Return cw

Next, we present the cost update for the algorithm ML-IRL (Zeng et al., 2022). We present it for the state-action version.
The state-only version is obtained simply omitting the action dependence everywhere.

Algorithm 9 UPDATECOST for ML-IRL (State-Action version) (Zeng et al., 2022)

Require: cw,DπE , τ
k =

{
skt , a

k
t

}Lk

t=1
, α.

1: Sample a state-action trajectory τE =
{
sEt , a

E
t

}LE

t=1
from the expert dataset DπE where LE is a geometric random

variable with parameter (1− γ)−1.
2: Compute the stochastic loss

L̂w =

LE∑
t=0

γtcw(s
E
t , a

E
t )−

Lk∑
t=0

γtcw(s
k
t , a

k
t )

3: w ← w − α∇wL̂w
4: Return cw

To conclude, we present the cost update for CSIL. Notice that since the cost used by CSIL does not leverage the information
of the policy at iteration k we can move the cost update before the main loop and keep a constant cost function fixed during
the training of the policy. Notice that the CSIL the reward is simply given by the log probabilities learned by the behavioural
cloning policy. Therefore the reward parameters in CSIL coincides with the parameters of the behavioral cloning policy
network. We point out that using a reward of this form is similarly done in (Vieillard et al., 2020). We plan to explore further
the connection between Munchausen RL and CSIL in future work.

Algorithm 10 UPDATECOST for CSIL (Watson et al., 2023)

Require: DπE .
1: Compute the behavioral cloning policy finding an approximate solution to the following problem.

w⋆ = argmax
w

∑
s,a∈DπE

log πw(a|s)

2: Return cw⋆(s, a) = − log πw⋆(a|s)
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G. Details for the experiment on a hard exploration task
The environment used for this experiment coincides with the construction used in the lower bound for the number of
environment interaction in (Moulin et al., 2025, Theorem 19). This is a simple two states MDP ( a low reward state and a
high reward state ) with 20 actions per state. From the high reward state all actions are identical. From the low reward state,
all actions are identical but the one chosen by the deterministic expert which has just a slightly higher probability to lead to
the high reward state from the low reward state. Even observing the expert state occupancy measure perfectly, it is difficult
for the learner to find out which is the action which the expert took. That is because all actions are almost identical but one.
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