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Abstract

Data for pretraining machine learning models often consists of collections of
heterogeneous datasets. Although training on their union is reasonable in agnostic
settings, it might be suboptimal when the target domain —where the model will
ultimately be used— is known in advance. In that case, one would ideally pretrain
only on the dataset(s) most similar to the target one. Instead of limiting this choice
to those datasets already present in the pretraining collection, here we explore
extending this search to all datasets that can be synthesized as ‘combinations’ of
them. We define such combinations as multi-dataset interpolations, formalized
through the notion of generalized geodesics from optimal transport (OT) theory.
We compute these geodesics using a recent notion of distance between labeled
datasets, and derive alternative interpolation schemes based on it: using either
barycentric projections or optimal transport maps, the latter computed using recent
neural OT methods. These methods are scalable, efficient, and —notably— can
be used to interpolate even between datasets with distinct and unrelated label sets.
Through various experiments in transfer learning, we demonstrate this promising
new approach to targeted on-demand dataset synthesis.

1 Introduction

Recent progress in machine learning has been characterized by the rapid adoption of large pretrained
models as a fundamental building block (Brown et al., 2020). These models are typically pretrained
on large amounts of general purpose data, and then adapted (e.g., fine-tuned) to a specific task of
interest. Such pretraining datasets usually draw from multiple heterogeneous data sources, e.g., from
arising from different domains or sources. Traditionally, all available datasets are used in their entirety
during pretraining, for example by pooling them together into a single dataset (when they all share the
same label sets) or by training in all of them sequentially one by one. These strategies, however, come
with important disadvantages. Training on the union of multiple datasets might be prohibitive or too
time consuming, and it might even be detrimental. Indeed, there is a growing line of research showing
evidence that removing pretraining data sometimes helps transfer performance (Jain et al., 2022).
On the other hand, sequential learning (e.g., consuming datasets one by one) is infamously prone to
catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick et al., 2017): the information from
earlier datasets gradually vanishing as the model is trained on new datasets. While all of these suggest
that training on only some subset of the pretraining datasets, how to choose these is unclear. However,
when the target dataset on which the model is to be used is known in advance, the answer is much
easier: intuitively, one would train only on those relevant to the target one: e.g., those most similar
to it. Indeed, recent work has shown that selecting pretraining datasets based on the distance to the
target is a successful strategy (Alvarez-Melis & Fusi, 2020; Gao & Chaudhari, 2021). However, such
methods are limited to selecting (only) among individual datasets already present in the collection.
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In this work, we propose a novel approach to generate synthetic pretraining datasets as combinations
of existing ones. In particular, this method searches among all possible continuous combinations of
the available datasets, and thus is not limited to select one of them necessarily. When given access to
the target dataset of interest, we seek among all such combinations the one closest (in terms of a metric
between datasets) to the target. By characterizing datasets as sampled from a underlying probability
distribution, this problem can be understood as a generalization (from Euclidean to probability space)
of the problem of finding among the convex hull of a set of reference points, that closest to a query
point. While this problem has a simple closed-form solution in Euclidean space (via an orthogonal
projection), solving it probability space is, as we shall see here, much more challenging.

We tackle this problem from the perspective of interpolation. Formally, we model the combination of
datasets as an interpolation between their distributions, formalized through the notion of geodesics in
probability space endowed with the Wasserstein metric (Ambrosio et al., 2008; Villani, 2008). In
particular, we rely on generalized geodesics (Craig, 2016; Ambrosio et al., 2008), constant-speed
curves connecting a pair (or more) distributions parametrized with respect to a ‘base’ distribution,
whose role is played by the target dataset in our setting. Computing such geodesics requires access to
either an optimal transport coupling or map between the base distribution and every other reference
distribution. The former can be computed very efficiently with off-the-shelf OT solvers, but are
limited to generate only as many samples as the problem is originally solved on. In contrast, OT
maps allow for on-demand out-of-sample mapping, and can be estimated using recent advances in
neural OT methods (Fan et al., 2020; Korotin et al., 2022b; Makkuva et al., 2020). However, most
existing OT methods assume unlabeled (feature-only) distributions, but our goal here is to interpolate
between classification (i.e., labeled) datasets. Therefore, we leverage a recent generalization of OT to
labeled datasets to compute couplings (Alvarez-Melis & Fusi, 2020), and adapt and generalize neural
OT methods to the labeled setting to estimate OT maps.

In summary, the contributions of this paper are: (i) a novel approach to generate new synthetic
classification datasets from existing ones by using geodesic interpolations, applicable even if they
have disjoint label sets, (ii) two efficient methods to compute generalize geodesics, which might be
of independent interest, (iii) empirical validation of the method in a transfer learning setting.

2 Background
2.1 Distributional interpolation with OT
Consider P(X ) the space of probability distribution finite second moments over some Euclidean
space X . Given µ, ν ∈ P(X ), the Monge formulation optimal transport problem seeks a map
T : X → X that transforms µ into ν at minimal cost. Formally, the objective of this problem is
minT :T♯µ=ν

∫
Rd ∥x− T (x)∥22dν(x), where the minimization is over all the maps that pushforward

distribution µ into distribution ν. While a solution to this problem might not exist, a relaxation due
to Kantorovich is guaranteed to have one. This modified version yields the 2-Wasserstein distance:
W 2

2 (µ, ν) = minπ∈Π(µ,ν)

∫
Rd ∥x − x′∥22dπ(x, x′), where now the constraint set Π(µ, ν) = {π ∈

P(X 2) | P0♯π = µ, P1♯π = ν} contains all couplings with marginals µ and ν. The optimal such
coupling is known as the OT plan. A celebrated result by Brenier (1991) states that whenever P
has density with respect to Lebesgue measure, the optimal T ∗ exists and is unique. In that case, the
Kantorovich and Monge formulations coincide and their solutions are linked by π∗ = (Id, T ∗)♯µ
where Id is the identity map. The Wasserstein-2 distance enjoys many desirable geometrical properties
compared to other distances for distributions (Ambrosio et al., 2008). One such property is the
characterization of geodesics in probability space (Agueh & Carlier, 2011; Santambrogio, 2015).
When P(X ) is equipped with metric Wp, the unique minimal geodesic between any two distributions
µ0 and µ1 is fully determined by π, the optimal transport plan between them, through the relation:

ρDt := ((1− t)x+ ty)♯π(x, y), t ∈ [0, 1],

known as displacement interpolation. If the Monge map exists, the geodesic can also be written as

ρMt := ((1− t)Id + tT ∗)♯µ1, t ∈ [0, 1], (1)

and is known as McCann’s interpolation (McCann, 1997). It easy to see that ρM0 = µ1 and ρM1 = µ2.

Such interpolations are only defined between two distributions. When there are m ≥ 2 marginal
distributions {µ1, . . . , µm}, the Wasserstein barycenter ρBa := argminρ

∑m
i=1 aiW

2
2 (ρ, µi), a ∈

∆m ⊂ Rm generalizes McCann’s interpolation (Agueh & Carlier, 2011). Intuitively, the interpolation
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parameters a = [a1, . . . , am] determine the ‘mixture proportions’ of each dataset in the combination,
akin to a convex combination of points in Euclidean space. In particular, when a is a one-hot vector
with ai = 1, then ρBa = µi, i.e., the barycenter is simply the i-th distribution. Barycenters have
attracted great attention in machine learning recently (Srivastava et al., 2018; Korotin et al., 2021),
but they remain challenging to compute in high dimension (Fan et al., 2020; Korotin et al., 2022a).

Another limitation of these interpolation notions is the non-convexity of W 2
2 along them. In Euclidean

space, given three points x1, x2, y ∈ Rd, the function t 7→ ∥xt − y∥22, where xt is the interpolation
xt = (1 − t)x1 + tx2, is convex. In contrast, in Wasserstein space, neither the function t 7→
W 2

2 (ρ
M
t , ν) or 7→ W 2

2 (ρ
B
a , ν) are guaranteed to be convex (Santambrogio, 2017, Sec. 4.4). This

complicates theoretical analysis, such as in gradient flows. To circumvent this issue, Ambrosio
et al. (2008) introduced the generalized geodesic of {µ1, . . . , µm} with base ν and defined it as
ρGa := (

∑m
i=1 aiT

∗
i ) ♯ν, a ∈ ∆m, where T ∗

i is the optimal map from ν to µi.
Lemma 1. The functional µ 7→ W 2

2 (µ, ν) is convex along the generalized geodesics, and
W 2

2 (ρ
G
a , ν) ≤

∑m
i=1 aiW

2
2 (µi, ν).

Thus, unlike the barycenter the generalized geodesic does yield a notion of convexity satisfied by
the Wasserstein distance, and is also easier to compute. For these reasons, we adopt this notion of
interpolation for our approach. It remains to discuss how to apply it on (labeled) datasets.

2.2 Dataset distance
Consider a dataset DP = {z(i)}Ni=1 = {x(i), y(i)}Ni=1

i.i.d.∼ P (x, y). The Optimal Transport Dataset
Distance (OTDD) (Alvarez-Melis & Fusi, 2020) measures its distance to another dataset DQ as:

d2OT(DP ,DQ) = min
π∈Π(P,Q)

∫ (
∥x− x′∥22 +W 2

2 (αy, αy′)
)

dπ(z, z′), (2)

which defines a proper metric between datasets. Here, αy, αy′ are class-conditional measures
corresponding to P (x|y) and Q(x|y′). This distance is strongly correlated with transfer learning
performance, i.e., the accuracy achieved when training a model on DP and then fine-tuning and
evaluating on DP . Therefore, it can be used to select pretraining datasets for a given target domain.
Henceforth we abuse the notation P to represent both a dataset and its underlying distribution for
simplicity. To avoid confusion, we use ν and µ to represent distributions in the feature space, which
is Euclidean space, and use P,Q to represent distributions in the product space of features and labels.

3 Method and algorithm
Our method consists of two steps: estimating optimal transport maps between the target dataset and
all training datasets (Sec. 3.1), and using them to generate a convex combinations of these datasets
by interpolating along generalized geodesics (Sec. 3.2). For some downstream applications we will
additionally project the target dataset into the ‘convex hull’ of the training datasets (Sec. 3.3).

3.1 Solving optimal map between labelled datasets
The OTDD is a special case of Wasserstein distance, so it is natural to consider the alternative Monge
(map-based) formulation to (2). We propose two methods to approximate the OTDD map, one using
the entropy-regularized OT and another one based on neural OT.

OTDD barycentric projection. Barycentric projections (Ambrosio et al., 2008; Pooladian &
Niles-Weed, 2021) can be efficiently computed for entropic regularized OT using the Sinkhorn
algorithm (Sinkhorn, 1967). Assume that we have i.i.d. samples Xν = (x

(1)
ν , . . . , x

(Nν)
ν ), Xµ =

(x
(1)
µ , . . . , x

(Nµ)
µ ) from two distributions ν and µ separately. After solving the optimal coupling

π∗ := minπ∈Π(ν,µ)

∫
∥x− x′∥22dπ(x, x′), the barycentric projection can be expressed as TB(Xν) =

Nνπ
∗Xµ. We extend the method to two datasets ZQ = {XQ, YQ}, ZP = {XP , YP }, where we

have additional i.i.d. label data YQ = (y
(1)
Q , . . . , y

(NQ)
Q ), YP = (y

(1)
P , . . . , y

(NP )
P ). We first solve the

optimal coupling π∗ for OTDD (2) following the regularized scheme in Alvarez-Melis & Fusi (2020),
and represent labels as one-hot vectors y ∈ RC . The barycentric projection is divided into two parts:

TB(ZQ) = [NQπ
∗XP , NQπ

∗YP ]. (3)
However, this approach has two important limitations: it can not naturally map out-of-sample data
and it does not scale well to large datasets (due to the quadratic dependency on sample size).
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OTDD neural map. Inspired by recent approaches to estimate Monge maps using neural networks
(Rout et al., 2022; Fan et al., 2021), we design a similar framework for the OTDD setting. Fan
et al. (2021); Gazdieva et al. (2022) approach the Monge OT problem with general cost functions by
solving its max-min dual problem supf infT

∫
[c(x, T (x))− f(T (x))] dν(x) +

∫
f(x′)dµ(x′). We

extend this method to the distributions involving labels by introducing an additional classifier in the
map. Given two datasets P,Q, we parameterize the map TN : Rd × RCQ → Rd × RCP as

TN (z) = TN (x, y) = [x̄; ȳ] = [G(z); ℓ(G(z))],

where G(·) : Rd → Rd is the pushforward feature map, and the ℓ(·) : Rd → RCP is a
frozen classifier that is pre-trained on the dataset P . Notice that, with the cost c(z, T (z)) =
∥x−G(z)∥22 +W 2

2 (αy, αȳ), the Monge formulation of OTDD (2) reads infT♯Q=P

∫
∥x−G(z)∥22 +

W 2
2 (αy, αȳ)dQ(z). We therefore propose to solve the max-min dual problem

sup
f

inf
G

∫ [
∥x−G(z)∥22 +W 2

2 (αy, αȳ)
]

dQ(z)−
∫

f(x̄, ȳ)dQ(z) +

∫
f(x′, y′)dP (z′). (4)

Implementation details are provided in Appendix D. Compared to previous conditional Monge map
solvers (Bunne et al., 2022a; Asadulaev et al., 2022), the two methods proposed here: (i) do not
assume class overlap across datasets, allowing for maps between datasets with different label sets; (ii)
are invariant to class permutation and re-labeling; (iii) do not force no one-to-one class alignments,
e.g., samples can be mapped across similar classes.

3.2 Convex combination in dataset space
Computing generalized geodesics requires constructing convex combinations of data points from
different datasets. Given a weight vector a ∈ Rm, features can be naturally combined as xa =∑m

i=1 aixi. But combining labels is not as simple because: (i) we allow for datasets with different
number of labels, so adding them directly is not possible; (ii) we do not assume different datasets
have the same label sets, e.g. MNIST (digits) vs CIFAR10 (objects). Our solution is to represent
all labels in the same dimensional space by padding them with zeros in all entries corresponding to
other datasets. As an example, consider three datasets with 2, 3, and 4 classes respectively. Given
a label vector y1 ∈ R2 for the first one, we embed it into R9 as ỹ1 = [y1;03;04]

⊤. Defining ỹ2, ỹ3
analogously, we compute their combination as ya = a1ỹ1 + a2ỹ2 + a3ỹ3. This representation is
loss-less and preserves the distinction of labels across datasets.

3.3 Projection onto generalized geodesic of datasets
We finally put together the components in Sec 3.1 and 3.2 to construct generalized geodesics
between datasets in two steps. First, we compute OTDD maps T ∗

i between Q and all other datasets
Pi, i = 1, . . . ,m using the discrete or neural OT approaches. Then, for any interpolation vector
a ∈ ∆m we identify a dataset along the generalized geodesic via Pa := (

∑m
i=1 aiT ∗

i ) ♯Q. By using
the convex combination method in Sec. 3.2 for labeled data, we can efficiently sample from Pa.

We next consider locating the dataset P ∗
a that minimizes the distance between Pa and Q, i.e. the

projection of Q onto the generalized geodesic. We firstly approach this problem from a Euclidean
viewpoint. Suppose there are several distributions {µi}mi=1 and an additional distribution ν on Eu-
clidean space Rd, Lemma 1 guarantees there exists a unique parameter a∗ that minimizes W 2

2 (ρ
G
a , ν).

However, it is not straightforward to locate a∗ because there is no closed-form formula of the map
a 7→ W 2

2 (ρ
G
a , ν) and it can be expensive to calculate W 2

2 (ρ
G
a , ν) for all possible a. To solve this

problem, we resort to another transport distance: (2,ν)-transport metric.
Definition 1 (Craig (2016)). The (2,ν)-transport metric is given by W2,ν(µi, µj) :=(∫

∥T ∗
i (x)− T ∗

j (x)∥22dν(x)
)1/2

, where T ∗
i is the optimal map from ν to µi.

When ν has density with respect to Lebesgue measure, then W2,ν is a valid metric (Craig, 2016, Prop.
1.15). Moreover, we can derive the closed-form formula of the map a 7→ W 2

2,ν(ρ
G
a , ν).

Proposition 1. W 2
2,ν(ρ

G
a , ν) =

∑m
i=1 aiW

2
2,ν(µi, ν)− 1

2

∑
i̸=j aiajW

2
2,ν(µi, µj).

This equation implies that given distributions {µi}, ν in Euclidean space, we can trivially solve the
optimal a∗ that minimizes W 2

2,ν(ρ
G
a , ν) by a quadratic programming solver2. The proof (Appendix C)

relies on Brenier’s theorem. Inspired by this, we also define a transport metric for datasets:
2We use the implementation https://github.com/stephane-caron/qpsolvers
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(a) (b)
Figure 1: Comparison to mixup interpolation, (a) Approximated projection P̂a of 3D dataset Q
onto the generalized geodesic of datasets {Pi}. (b) Left to right: the 2D projection of the datasets Q,
(
∑m

i=1 a
∗
i T ∗

i ) ♯Q, (
∑m

i=1 a
∗
i Ti) ♯Q, where T ∗

i is the (optimal) OTDD map and Ti uses mixup.

Definition 2. The squared (2,Q)-dataset distance is given by W2
2,Q(Pi, Pj) :=∫ (

∥xi − xj∥22 +W 2
2 (αyi

, αyj
)
)

dQ(z), where [xi; yi] = T ∗
i (z) and T ∗

i is the OTDD map
from Q to Pi.

Denote P2,Q(X × P(X )) as the set of all probability measures P that satisfy dOT(P,Q) < ∞ and
the OTDD map from Q to P exists. The following result shows that (2,Q)-dataset distance is a proper
distance. The proof is also left to the Appendix C.
Proposition 2. W2,Q is a valid metric on P2,Q(X × P(X )).

Unfortunately, in this case W2
2,Q(Pi, Pj) does not have an analytic form like before because Brenier’s

theorem may not hold for a general transport cost problem. However, we still borrow this idea and
define an approximated projection P̂a as the minimizer of function

W2(Pa, Q) :=

m∑
i=1

aiW2
2,Q(Pi, Q)− 1

2

∑
i ̸=j

aiajW2
2,Q(Pi, Pj), (5)

which is an analog of Proposition 1. Unlike the Wasserstein distance, W2
2,Q(·, ·) is easier to com-

pute because it does not involve optimization, so it is relatively cheap the locate the minimizer of
W2(Pa, Q). Experimentally, we observe that W 2

2,Q(Pa, Q) is predictive of model transferability
across tasks. Figure 1(a) illustrates this projection on toy 3D datasets, color-coded by class.

4 Experiments

4.1 Learning OTDD maps on synthetic datasets
Figure 1(b) illustrates the role of the optimal map in estimating the projection of a dataset into the
generalized geodesic hull of three others. Using maps T ∗

i estimated via barycentric projection (3)
results in a better preservation of class structure, whereas using non-optimal maps Ti based on random
couplings (as the usual mixup does) destroys class structure.

4.2 Transfer learning
Next, we use our framework to generate new pretraining datasets for few-shot learning. Given m
labeled pretraining datasets {Pi}, we consider a few-shot test dataset, in which only partial data is
labelled, e.g. 5 samples per class. Suppose the training resource and time are both limited such that
the user can choose only one dataset to train the model, in the mean time, the user expects the model
to have the best generalization ability. To this end, we assume the training dataset is chosen from the
generalized geodesic {Pa}. With a choice of the one-hot weight vector a, Pa recovers the original
dataset Pi for some i. Otherwise, Pa will be the interpolation of datasets {Pi}. We first show that
the generalization ability of training models has a strong correlation with the distance W2

2,Q(Pa, Q).
Then we compare our framework with several baseline methods.

Connection to generalization. The closed-form expression of W 2
2,ν(ρ

G
a , ν) (Prop. 1) provides

the distance between a base distribution ν and the distribution along generalized geodesic ρGa in
Euclidean space. We study its analog (5) for labelled datasets Q and {Pi} in Figure 2. To investigate
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Figure 2: Relationship between the function W2(Pa, Q) and the accuracy of the fine-tuned model.
The training datasets are marked on the vertexes of each ternary plot. Different location in each
ternary plot represents different interpolation dataset Pa, where the center is the most mixed dataset,
i.e. a = [1/3, 1/3, 1/3]. We visualize the function (5) in the first row and the fine-tuning accuracy in
the second. Comparing the first row and the second, we find the accuracy and W2(Pa, Q) are highly
correlated. This implies that the model trained on the minimizer dataset of W2(Pa, Q) tends to have
a better generalization ability. Each ternary plot is an average of 5 runs with distinct random seeds.

Table 1: Pretraining on synthetic data. Shown is 5-shot transfer accuracy (mean ± s.d. over 5 runs).

Methods MNIST-M MNIST USPS FMNIST KMNIST EMNIST

OTDD barycentric projection 42.10±4.37 93.74±1.46 86.01±1.50 70.12±3.02 52.55±2.73 67.06±2.55
OTDD neural map 40.06±4.75 88.78±3.85 83.80±1.60 70.02±2.59 50.32±3.10 65.32±1.80

Mixup 33.85±2.22 88.68±1.57 88.61±2.00 66.74±3.79 48.16±3.38 60.95±1.38

Train on few-shot dataset 19.10±3.57 72.80±3.10 80.73±2.07 60.50±3.07 41.67±2.11 53.60±1.18
1-NN on few-shot dataset 20.95±1.39 64.50±3.32 73.64±2.35 60.92±2.42 40.18±3.09 39.70±0.57

the generalization abilities of models trained on different datasets, we discretize the simplex ∆3

to obtain 36 interpolation parameters a, and train a 5-layer LeNet classifier on each Pa. Then we
fine-tune all of these classifiers on the few-shot test dataset Q with only 20 samples per each class.
We control the same number of training iterations and fine-tuning iterations across all experiments.
We fix the same colorbar range for all heatmaps across datasets to highlight the different impact of
choosing training dataset. For some test datasets, the choice of training dataset can affect the fine-
tuning accuracy greatly. For example, when Q is EMNIST and the training dataset is FMNIST, the
fine-tuning accuracy is only ∼ 60%, but this can be improved to > 70% by choosing an interpolated
dataset closer to MNIST. This is reasonable because MNIST shares more similarity with EMNSIT
than FMNIST or USPS. To some test datasets like FMNIST and KMNIST, this difference is not so
obvious because all training datasets are all far away from the test dataset.

Comparison with baselines. Next, we compare our method with several baseline methods on
NIST datasets. In each set of experiment, we select one dataset as the test dataset, and the rest NIST
datasets are the training datasets. We assume the test dataset is 5-shot, and to do this, we randomly
choose 5 samples per class to be the labeled data, and treat the remaining samples as unlabeled. Our
method firstly trains a model on P̂a, and fine-tune the model on 5-shot test dataset. To obtain P̂a, we
use barycentric projection or neural map to approximate the OTDD maps from test dataset to the
training datasets. Our results are shown in the first two rows in Table 1. The first baseline method
is to create a synthetic dataset as training dataset by Mixup among datasets. We randomly sample
data from each training datasets, and do the convex combination of them with weight â. We use the
same convex combination method in Sec. 3.2, thus this baseline is equivalent to our framework with
suboptimal OTDD maps. The other two baselines (the bottom block in Table 1) skip the transfer
learning part, and directly train the model or solve 1-NN on the few-shot test dataset. Overall, transfer
learning can bring additional knowledge from other domains and improve the test accuracy by at most
21%. Among the methods in the first block, training on datasets generated by OTDD barycentric
projection outperforms others except USPS dataset, where the difference is only about 2.6%.
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A Related work

Mixup and related In-Domain Interpolation Generating training data through convex combi-
nations was popularized by mixup (Zhang et al., 2018): a simple data augmentation technique that
interpolates features and labels between pairs of points. This and other works based on it (Zhang et al.,
2021; Chuang & Mroueh, 2021) use mixup to improve in-domain model robustness and generalization
by increasing in-distribution diversity of the training data. Although sharing some intuitive principles
with mixup, our method interpolates entire datasets —rather than individual datapoints— with the
goal of improving across-distribution diversity and therefore out-of-domain generalization.

Dataset synthesis in machine learning Generating data beyond what is provided as training dataset
is a crucial component of machine learning in practice. Basic transformations such as rotations,
cropping, and pixel transformations can be found in most state-of-the-art computer vision models.
More recently, Generative Adversarial Nets (GAN) have been used to generate synthetic data in
various contexts (Bowles et al., 2018; Yoon et al., 2019), a technique that has proven particularly
successful in the medical imaging domain (Sandfort et al., 2019). Since GANs are trained to
replicate the dataset on which they are trained, these approaches are typically confined to generate
in-distribution diversity, and typically operate on features only.

Discrete OT, Neural OT, Gradient Flows Barycentric projection (Ambrosio et al., 2008; Perrot
et al., 2016) is a typical effective method to approximate optimal transport map with discrete
regularized OT. Other than this, neural net based optimal map in Euclidean space has made great
progress (Makkuva et al., 2020; Fan et al., 2021; Rout et al., 2022) recently and reveal its power
in image generation (Rout et al., 2022), style transfer (Korotin et al., 2022b), etc. However, the
study of the optimal map between two datasets is relatively scarse. Some conditional Monge map
solvers (Asadulaev et al., 2022; Bunne et al., 2022a) utilize the label information in a semi-supervised
manner, where they assume the label to label correspondence between two distributions is known.
Our dataset mapping is distinct from them because we do not enforce the label to label mapping.
Based on the optimal coupling or map, geodesics and interpolation in general metric spaces have been
studied extensively in the optimal transport and metric geometry literatures (McCann, 1997; Agueh
& Carlier, 2011; Ambrosio et al., 2008; Santambrogio, 2015; Villani, 2008; Craig, 2016), albeit
mostly in a theoretical setting. Gradient flows (Santambrogio, 2015), as an alternative approach for
interpolation between distributions, have become increasingly popular in machine learning to model
existing processes (Bunne et al., 2022b; Mokrov et al., 2021; Fan et al., 2022) or solving optimization
problems over datasets (Alvarez-Melis & Fusi, 2021), but they are computationally heavy.

B Discussion

Complexity The complexity of solving OTDD barycentric projection by Sinkhorn algorithm is
O(N2) (Dvurechensky et al., 2018), where N is the number of data in both datasets. This can be
expensive for large-scale dataset. In practice, we solve the batched barycentric projection, i.e. take
a batch from source and target datasets and solve the projection from source batch to target batch,
and we normally fix batch size B as 104. This reduces the complexity from O(N2) to O(BN).
The complexity of solving OTDD neural map is O(BKH), where K is number of iterations, and
H is the size of the network. We always choose K = O(N) in the experiments. The complexity of
solving all the (2, Q)-dataset distances in (5) is O(m2N) since we need to solve the dataset distance
between each pair of training datasets. Putting these pieces together, the complexity of approximating
the interpolation parameter â for the minimizer of (5) is O(N(B +m2)).

Limitation The generation of synthetic dataset relies on solving OTDD maps from test dataset to
each training dataset. These OTDD maps are tailored to the considered test dataset and can not be
reused for a new test dataset. Another limitation is our framework is based on model training and
fine-tuning pipeline. This can be resource demanding for large-scale models, like GPT model.
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C Proofs

Proof of Lemma 1. By Santambrogio (2017, Sec. 4.4), the result holds when m = 2. Then Proposi-
tion 7.5 in Agueh & Carlier (2011) extends the result to the case of m > 2.

Proof of Proposition 1. Since linear combination preserves cyclically monotonicity,
∑m

i=1 aiT
∗
i (x)

is the optimal map from ν to ρGa (McCann, 1995). Then according to the definition of W2,ν(·, ·), we
can write

W 2
2,ν(ρ

G
a , ν) =

∫ ∥∥∥∥∥x−
m∑
i=1

aiT
∗
i (x)

∥∥∥∥∥
2

dν(x). (6)

For scalars p, q1, . . . , qm, it holds that(
p−

m∑
i=1

aiqi

)2

= p2 +

m∑
i=1

a2i q
2
i − 2

m∑
i=1

aipqi +
∑
i ̸=j

aiajqiqj

= p2 +

m∑
i=1

(ai − ai
∑
j ̸=i

aj)q
2
i − 2

m∑
i=1

aipqi +
∑
i ̸=j

aiajqiqj

=

m∑
i=1

ai(p− qi)
2 − 1

2

∑
i ̸=j

aiaj(qi − qj)
2.

Plugging this equality into (6) gives

W 2
2,ν(ρ

G
a , ν) =

∫  m∑
i=1

ai∥x− T ∗
i (x)∥2 −

1

2

∑
i ̸=j

aiaj∥T ∗
i (x)− T ∗

j (x)∥2
 dν(x)

=

m∑
i=1

ai

∫
∥x− T ∗

i (x)∥2dν(x)− 1

2

∑
i ̸=j

aiaj

∫
∥T ∗

i (x)− T ∗
j (x)∥2dν(x)

=

m∑
i=1

aiW
2
2,ν(µi, ν)−

1

2

∑
i̸=j

aiajW
2
2,ν(µi, µj).

Proof of Proposition 2. Firstly, W2,Q is symmetric and nonnegative by definition. It is non-
degenerate since W2,Q(Pi, Pj) ≥ dOT(Pi, Pj) and dOT is a metric. Finally, we show it satisfies
the triangular inequality. Indeed,

W2,Q(P1, P3)

=

(∫
∥x1 − x3∥2 +W 2

2 (αy1
, αy3

)dQ(z)

)1/2

≤
(∫

(∥x1 − x2∥+ ∥x2 − x3∥)2 + (W2(αy1
, αy2

) +W2(αy2
, αy3

))2dQ(z)

)1/2

≤
(∫

∥x1 − x2∥2 +W 2
2 (αy1

, αy2
)dQ(z)

)1/2

+

(∫
∥x2 − x3∥2 +W 2

2 (αy2
, αy3

)dQ(z)

)1/2

= W2,Q(P1, P2) +W2,Q(P2, P3),

where the first inequality is the triangular inequality and the second inequality is the Minkowski
inequality.

D Implementation details of OTDD map

OTDD barycentric projection We use the implementation https://github.com/microsoft/
otdd to solve OTDD coupling. The rest part is straightforward.
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OTDD neural map To solve the problem (4), we parameterize f,G, ℓ to be three neural networks.
In NIST dataset experiments, we parameterize f as ResNet 3 from WGAN-QC (Liu et al., 2019),
and take feature map G to be UNet4 (Ronneberger et al., 2015). We generate the labels ȳ with a
pre-trained classifier ℓ(·), and use a LeNet or VGG-5 with Spinal layers5 (Kabir et al., 2022) to
parameterize ℓ(·). In 2D Gaussian mixture experiments, we use Residual MLP to represent all of
them.

We remove the discriminator’s condition on label to simplify the loss function as

sup
f

inf
G

∫ (
∥x−G(z)∥22︸ ︷︷ ︸

feature loss

+W 2
2 (αy, αȳ)︸ ︷︷ ︸
label loss

)
dQ(z)−

∫
f(x̄)dQ(z) +

∫
f(x′)dP (z′)︸ ︷︷ ︸

discriminator loss

.

In this formula, we assume both y and ȳ are hard labels, but in practice, the output of ℓ(·) is a
soft label. Simply taking the argmax to get a hard label can break the computational graph, so we
replace the label loss W 2

2 (αy, αȳ) by y⊤Mȳ, where M ∈ RCQ×CP is the label-to-label matrix where
M(i, j) := W 2

2 (αyi
, αyj

), and y is the one-hot label from dataset Q. The matrix M is precomputed
before the training, and is frozen during the training.

We pre-train the feature map G to be identity map before the main adversarial training. We use the
Exponential Moving Average6 of the trained feature maps as the final feature map.

Data processing For all the NIST datasets, we rescale the images to size 32× 32, and repeat their
channel 3 times and obtain 3-channel images. We use the default train-test split from torchvision.

Hyperparameters For the experimental results in Sec. 4.2, we use the OTDD neural map and train
them with learning rate 10−3 and batch size 64. We train a LeNet for 2000 iterations, and fine-tune
for 100 epochs. Regard the comparison with other baselines in Sec. 4.2, for transfer learning methods,
we train a SpinalNet for 104 iterations, and fine-tune it for 2000 iterations on test dataset. Training
from scratch on the test dataset takes also 2000 iterations.

E Additional results

E.1 OTDD neural map visualization

In Figure 4, we in addition provide qualitative results of OTDD map from EMNIST (let-
ter) (Cohen et al., 2017) dataset to all other *NIST dataset and USPS dataset. At this point,
we can confirm three traits of OTDD map, which are mentioned at the end of Sec. 3.1.

Figure 3: The numbers above images are the labels.
In the first labelling method, all 0 MNIST digits
are assigned as class "0", and they are labelled as
class "7" in the bottom labelling.

1) We don’t assume a known source label to
target label correspondence. So we can map be-
tween two irrelevent datasets such as EMNIST
and FashinMNIST. 2) The map is invariant to
the permutation of label assignment. For exam-
ple, we show two different labelling in Figure
3, and the final OTDD map will be the same.
3) It doesn’t enforce the label to label mapping
but would follow the feature similarity. From
Figure 4 in the appendix, we notice many cross-
class mapping behaviors. For example, when
the target domain is USPS (Hull, 1994) dataset, the lower-case letter "l" is always mapped to digit 1,
and the capital letter "L" is mapped to other digits such as 6 or 0 because the map follows the feature
similarity.

We also show the OTDD neural map between 2D Gaussian mixture models with 16 components in
Figure 5. This example is very special so that we have the closed-form solution of OTDD map. The
feature map is a identity map and the pushforward label is equal to the corresponding class that has

3https://github.com/harryliew/WGAN-QC
4https://github.com/milesial/Pytorch-UNet
5https://github.com/dipuk0506/SpinalNet
6https://github.com/fadel/pytorch_ema
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Figure 4: The dataset Q is EMNIST (letters). We show all the datasets pushforwarded towards
Fashion-MNIST, MNIST, USPS, KMNIST by OTDD map. The OTDD map is solved by neural OT
method.

the same conditional distribution p(x|y) as source label. For example, the sample from top left corner
cluster is still mapped to the top left corner cluster, and the label is changed from blue to orange.
This map achieves zero transport cost. Since the transport cost is always non-negative, this map is the
optimal OTDD map. However, Asadulaev et al. (2022); Bunne et al. (2022a) enforce mapping to
preserve the labels, so with their methods, the blue cluster would still map to the blue cluster. Thus
their feature map is highly non-convex and more difficult to learn. We refer to Figure 5 in Asadulaev
et al. (2022) for their performance on the same example. Compared with them, our pushforward
dataset aligns with the target dataset better.

Figure 5: OTDD neural map for 2D Gaussian mixture distributions.
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E.2 McCann’s interpolation between datasets

Our OTDD map can be extended to generate McCann’s interpolation between datasets. We propose
an anolog of McCann’s interpolation (1) in the dataset space. We define McCann’s interpolation
between datasets P0 and P1 as

PM
t := ((1− t)Id + tT ∗)♯P0, t ∈ [0, 1],

where T ∗ is the optimal OTDD map from P0 to P1 and t is the interpolation parameter. The
superscript M of PM

t means McCann. We use the same convex combination method in Sec. 3.2 to
obtain samples from PM

t . Assume (x0, y0) ∼ P0, (x1, y1) = T ∗(x0, y0) and P0, P1 contain 7, 3
classes respectively, i.e. y0 ∈ R7, y1 ∈ R3. Then the combination of features is xt = (1− t)x0+ tx1,
and the combination of labels is

yt = (1− t)

[
y0
03

]
+ t

[
07

y1

]
.

Thus (xt, yt) is a sample from ((1− t)Id + tT ∗)♯P0. We visualize McCann’s interpolation between
two Gaussian mixture distributions in Figure 6. This method can map the labelled data from a dataset
to another, and do the interpolation between them. Thus we can use it to map abundant data from
an external dataset, to a scarce dataset for data augmentation. For example, in Figure 7, the target
dataset only has 30 samples, but the source dataset has 60000 samples. We learn the OTDD neural
map between them and solve their interpolation. We find that PM

1 creates new data out of the domain
of the original target distribution, which Mixup (Zhang et al., 2018) can not achieve. Thus, the data
from PM

t for t close to 1.0 can enrich the target dataset, and be potentially used in data augmentation
for classification tasks.

Figure 6: McCann’s interpolation for 2D labelled datasets. Each color represents a class. When
t → 1.0, the samples within blue classes become less and less, and finally disappear when t = 1.0.

Figure 7: Data augmentation by mapping an external dataset to a few-shot dataset.
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