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ABSTRACT

We aim to train accurate denoising networks for smartphone/digital cameras from
raw-RGB noisy image pairs. Downscaling is commonly used as a practical de-
noiser for low-resolution images. Based on this processing, we found that the pixel
variance of natural images is more robust to downscaling than the pixel variance of
camera noise. Intuitively, downscaling removes high-frequency noise more eas-
ily than natural textures. To utilize this property, we can adopt noisy/clean image
synthesis at low-resolution to train camera denoisers. On this basis, we propose
a new solution pipeline – NERDS that estimates camera noise and synthesizes
noisy-clean image pairs from only noisy images. In particular, it first models the
noise in raw-sensor images as Poisson-Gaussian distributions, then estimates noise
parameters using the difference of pixel variances by downscaling. We formulate
the noise estimation as a gradient-descent-based optimization problem through a
reparametrization trick. We further introduce a new Image Signal Processor (ISP)
estimation method that enables denoiser training in a human-readable RGB space
by transforming the downscaled raw images to the style of a given RGB noisy im-
age. The noise and ISP estimations utilize rich augmentation to synthesize image
pairs for denoiser training. Experiments show that NERDS can accurately train
CNN-based denoisers (e.g., DnCNN, ResNet-style network) outperforming previ-
ous noise-synthesis-based and self-supervision-based denoisers in real datasets.

1 INTRODUCTION

Image denoising is a conventional machine learning problem restoring original colors and patterns
from noisy images. Deep-learning-based approaches have achieved breakthroughs in recent decades
due to the power of neural networks. Early works (55; 38; 45) have successfully removed additive
white Gaussian noise (AWGN), which allows network training under supervision by synthesizing
noisy-clean image pairs.

Nevertheless, denoising images captured by smartphone/digital cameras poses an obstacle, as it is
difficult to obtain clean images for noisy images with pixel-level alignment. Several works (2; 7)
constructed datasets with the noisy-clean pairs for real-world images. Using these pairs (Fig-
ure 1(a)), many supervised-learning-based denoisers (51; 28; 52; 24; 15) restore crisp images on
benchmarks from the datasets. However, constructing such datasets requires tightly controlled cap-
turing environments, complicated post-processing, and massive human labor.

To overcome the drawback of plain supervised learning, two major types of research have been
studied. The first line of works generates realistic noisy images from clean images to utilize su-
pervised denoiser training as visualized in Figure 1(b). Several approaches (14; 11; 23; 26) adopt
generative models using unpaired noisy-clean images based on GAN (20), but they achieve limited
accuracy on real noise. Some other works synthesize realistic noise using existing noisy-clean image
pairs (53; 1) or metadata for real cameras (6; 22), but they are limited in generalization for unseen
noise. The second category aims to learn denoisers without clean images. The first work (34) in
this category proposed the learning framework using multiple noisy images. After that, many self-
supervised-learning approaches (5; 31; 10) use single noisy images (Figure 1(c)), which enable easy
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Figure 1: Different training schemes for CNN-based camera denoisers. (a) Traditionally, training denoisers
requires pairs of noisy and clean images. However, clean target images are difficult to obtain from smart-
phone/digital cameras. (b) Noise Flow (1) generates realistic noise from clean images by learning real noise
distributions using existing pairs of real images. (c) N2V (31) enables practical training from noisy images
without clean targets but requires custom network architectures. (d) Our NERDS generates pseudo-noisy and
pseudo-clean image pairs at low-resolution by utilizing image downscaling as a general denoiser and noise
estimation through gradient-descent-based optimization.

data collection and denoiser adaptation to the test noise. However, they are still limited in real-world
applications due to the requirements of custom network architectures and strong statistical noise
assumptions.

To address the above limitations on camera denoiser training, we propose a new solution pipeline,
namely Noise Estimation for RGB Denoising & Synthesis (NERDS), that generates noisy-clean
image pairs from raw-RGB noisy image pairs. The pipeline composes three parts–noise estimation,
ISP estimation, and denoiser training. We found that the pixel variance of natural clean images is
robust to image downscaling, which is a widely-used denoiser for low-resolution images (41). The
noise estimation adopts a Poisson-Gaussian noise model for raw images from sensors and optimizes
its noise parameters by the pixel variances of downscaled images. The downscaled images and the
estimated noise parameters enable generating pseudo-noisy and pseudo-clean image pairs at low-
resolution (Figure 1(d)). Training denoisers on human-readable RGB images from real cameras
has another issue: the conversion from the raw images to the RGB images is a black box. Our
ISP estimation enables noise synthesis on the RGB space by learning RAW2RGB conversion using
raw-RGB noisy image pairs1. Our denoiser training can utilize rich data augmentation based on
estimated noise parameters and ISPs. Specifically, we introduce two techniques for this framework.
First, a reparametrization trick allows estimating noise parameters through a gradient-descent-based
optimizer. Second, a technique for style disentanglement from raw-RGB noisy image pairs. We
summarize our contributions as follows:

• To the best of our knowledge, this is the first work to synthesize noisy-clean RGB image
pairs at low-resolution for accurate camera denoiser training from raw-RGB noisy image
pairs.

• We formulate noise estimation for Poisson-Gaussian noise as an optimization problem,
and a novel reparameterization trick allows to estimate accurate noise parameters through
gradient-descent.

• We propose a neural network that estimates the RAW2RGB conversions (or ISPs) used for
given raw-RGB noisy image pairs. The ISP estimation generates realistic noisy-clean RGB
image pairs from raw images.

• Our frameworks can train general CNN-based denoisers (e.g. DnCNN, ResNet-style net-
work) accurately for given test noisy images by performing noise synthesis using them.

1Major camera manufacturers (e.g., Samsung, Apple, Xiaomi, Cannon, and Sony) provide raw and RGB
image pairs on their devices.
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2 RELATED WORK

2.1 BLIND IMAGE DENOISING

Traditional methods Classical methods usually denoise noisy images without training data using
wavelet (17), filtering (8) including BM3D (16), optimization (18; 37; 21), and effective prior (57).
However, they perform limited accuracy compared to the recent deep-learning-based approaches.

Supervised-learning-based methods SIDD (2) and NIND (7) captured real noisy-clean image
pairs to enable supervised-learning for real camera denoisers. However, the capturing procedure
is unacceptably expensive and cumbersome. We describe the literature on realistic noise synthesis
methods for the supervised-learning. DnCNN (55) introduced a neural network to remove additive
white Gaussian noise (AWGN) for the first time. However, Guo et al. (22) demonstrated the lim-
itation of AWGN denoisers to signal-dependent or spatially-correlated noise, which are known as
the characteristics of real-world images. To alleviate this problem, two lines of works have been
researched. The first category uses generative models for noise synthesis with stable learning (14),
various noise characteristics (26), knowledge distillation (47), self-supervised-learning (11), and
conditional adversarial networks (23). Nevertheless, the scene statistics mismatched between clean
and noisy datasets make it difficult to train accurate denoisers in practice.

The second category investigates camera noise modeling. CBDNet (22) transforms AWGN into
realistic noise by using signal-dependent noise parameters and simulating in-camera ISP functions,
such as gamma correction and demosaicing. UPI (6) converts RGB images to raw images and
simulates noise using metadata of specific cameras. CycleISP (53) trains neural networks for both
RAW2RGB and RGB2RAW conversions on large-scale datasets with specific ISP and noise set-
tings. Noise Flow (1) synthesizes raw noisy images using normalizing flow and metadata. The work
on (12) proposed a GAN-based framework for noise generation in raw images which is adaptive
to the camera. In (56), the authors claimed that the noise levels in metadata are inaccurate. Re-
cently, the method in (30) models the RGB noise distribution using normalizing flow. SCUNet (54)
proposed a practical noise model for a general-purpose denoiser.

However, all the above methods require real noisy-clean image pairs, ISPs, metadata, or high-quality
clean images which are not always available. More importantly, the noise synthesis using predeter-
mined training datasets leads to poor denoising performances on unseen noise. In contrast, the
proposed method (NERDS) synthesizes realistic noisy-clean image pairs from only noisy images,
which enables accurate denoiser training specialized in the test images.

Self-supervised-learning-based methods Noise2Noise (34) introduced a framework that trains
denoisers using noisy images only for the first time. Noise2Void (31), Noise2Self (5),
Noise2Same (48), and Neighbor2Neighbor (25) adopted advanced approaches which can train de-
noisers with single images corrupted by the i.i.d noise. Noisier2Noise (40), NAC (49), and R2R (42)
add additive noise to the given noisy images to make auxiliary training pairs by using prior knowl-
edge (or assumptions) of the noise distribution. Notably, the blind-spot network (BSN) in (31)
has been improved by efficient architectures with small receptive fields (32) and dilated convolu-
tions (47). Using the advanced BSNs, FBI-D (10) adopts a denoiser specialized in Poisson-Gaussian
noise for real-world raw image denoising. AP-BSN (33) breaks the spatially-correlated noise of real-
world RGB images by pixel-shuffle downsampling.

Although the above self-supervised-learning methods use practical training datasets (only noisy im-
ages), they require custom network architectures or strong noise assumptions. In contrast, NERDS
performs noise synthesis that allows training general CNN-based denoisers based on the general
noise modeling for smartphone/digital cameras.

2.2 NOISE ESTIMATION

Prior knowledge of noise distribution supports accurate restoration in most methods for image de-
noising, but it is not generally available in practice. Noise estimation methods alleviate this problem,
especially for the additive white Gaussian noise (AWGN) and the Poisson-Gaussian noise. Principal
component analysis (PCA) based approaches (35; 44; 13) perform accurate AWGN estimation. For
the Poisson-Gaussian noise model, most existing methods (3; 46) including (19; 36) adopt two-step
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approaches; estimating the local means and variances, then adopting maximum likelihood estimation
(MLE) to fit the noise model. Foi et al.(19) proposed the Poisson-Gaussian noise model for the first
time and a noise estimation algorithm based on wavelet decomposition. Liu et al. (36) adopted it-
erative patch selection for the generalized source-dependent noise. Recently, PGE-Net (10) adopted
neural networks for accurate and fast optimization based on Generalized Anscombe Transformation
(GAT) (4). In contrast, we proposed a noise estimation method for Poisson-Gaussian noise using
natural scene statistics with gradient-descent-based optimization.

3 PRELIMINARY: NOISE MODELING

In a digital camera, an image sensor converts light into a digital signal (or a raw image), and an
image signal processor (ISP) converts it into a human-readable RGB image. We regard that the
noise of RGB images originates from the image sensor and is transformed by the ISP. Thus, we
model noise distribution of raw images and RAW2RGB conversion including ISPs.

Raw Image: Poisson-Gaussian (P-G) Noise A common noise model for raw images follows the
Poisson-Gaussian distribution (19), defined as:

x ∼ N (z, β2
1z + β2

2), (1)

which is a heteroscedastic Gaussian where z is the true signal, x is a raw noisy image observed on
real image sensors, and β1, β2 ≥ 0 are signal-dependent and signal-independent noise parameters.
Real cameras provide x as well as β1 and β2 in metadata. However, the noise parameters in metadata
are often inaccurate (56). Section A.1.1 discusses the noise distribution of raw images and the noise
parameters in metadata further.

RGB Image: Transformed Noise ISPs transform raw images into RGB images using nonlinear
functions, such as demosaicing, white balancing, color correction, and tone mapping. The trans-
formation changes noise distribution (e.g., breaking the i.i.d property in equation 1). Moreover,
users can retouch image tones and colors, altering the noise distribution further. We define such
RAW2RGB conversion (T ) as a function of the image style (s),

y ≡ T (x; s), (2)

where x is a raw noisy image obtained from real image sensors and y is a RGB noisy image with
custom tones and colors. The real noise datasets (2; 43) used a simple and open-source ISP for
the entire dataset without any image retouching processes. However, modern smartphones and dig-
ital cameras use custom ISPs with hidden internal functions. They provide multiple image styles
depending on scenes.

The following section provides a general framework to estimate P-G noise parameters (β1, β2) and
RAW2RGB conversion (T ) with image style (s) using only noisy images (x, y).

4 PROPOSED METHOD

4.1 OVERVIEW

For a given noisy pair of raw (x) and RGB (y) images, the proposed method composes three steps
to restore the RGB clean image without auxiliary training data. First, we estimate noise parameters
(β1, β2) from x (Section 4.3). Second, we learn the conversion from x to y while disentangling
image style (s) (Section 4.4). Third, we synthesize diverse pairs of noisy-clean images to train
arbitrary RGB denoisers with a general supervised-learning framework (Section 4.5).

4.2 OBSERVATION

We first illustrate our observation on raw noisy images with downscaling. Specifically, we investi-
gate the statistical characteristics variances of 256×256 images in the validation set of SIDD (2).
To evaluate their noise levels, we downscale all raw images for each color channel with the scaling
factor of 2, and rank these images according to the differences of pixel variances before and after
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Figure 2: The ranked curve for the difference of pixel variances through downscaling on images from SIDD
validation and the visualization of noise levels.
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Figure 3: Noise estimation from a raw noisy image with a reparametrization trick.

downscaling. As visualized in Figure 2, we show these values in a blue curve and separate them
into three levels –low, medium, high. It is observed that the images with high differences are very
noisy, while the images with low differences present clean textures. This phenomenon indicates that
the true signal z is more robust to the pixel variances through downscaling than real noise. That
is why we propose the following method, which uses the difference of pixel variances to estimate
noise levels without clean images.

4.3 POISSON-GAUSSIAN NOISE ESTIMATION VIA A REPARAMETERIZATION TRICK

We aim to estimate noise for x without any information other than x. For this, we find an additive
noise (N ) for the downscaled image (xd) by solving the following optimization problem,

min
N

|V ar(x)− V ar(xd +N)|, (3)

where N ∼ N (0, β2
1x

d + β2
2) is the Poisson-Gaussian noise discussed in equation 1 and V ar(·)

denotes a function that outputs the pixel variance of the input image. We can approximate β1 and
β2 as noise parameters for x, given that the difference of pixel variances through downscaling is
correlated with noise levels, as discussed in Section 4.2. Section A.1.2 analyzes the downscaling
effect further. However, equation 3 is difficult to optimize due to the non-differentiable process of
noise sampling. To alleviate this problem, we introduce a reparameterization trick that separates
noise sampling into learnable parameters and sampling from a normal distribution. Formally, we
reformulate equation 3 as

min
β

|V ar(x)− V ar(xd + PG(β,xd)× n)|, (4)
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Figure 4: ISP estimation from a pair of raw-RGB noisy images with style disentanglement.

where PG(β,xd) = (β2
1x

d + β2
2)

0.5 denotes a Poisson-Gaussian converter and n ∼ N (0, 1) is
additive noise with a normal distribution. Given that the only learnable parameters in equation 4
are β1 and β2, a gradient-descent optimizer (e.g., ADAM (29)) easily finds the noise parameters.
Figure 3 visualizes the optimization problem used as noise estimation for x.

We are surprised that such a simple optimization problem estimates accurate noise parameters, while
downscaled images can contain remaining noise or over-smoothing textures. This result is because
the well-designed optimizer learns the characteristics of signal-dependent and signal-independent
noise over the entire image content.

So far we have discussed noise estimation and synthesis on raw images. For more practical applica-
tions, the following section describes RGB noise synthesis by estimating RAW2RGB conversion.

4.4 ISP ESTIMATION WITH STYLE DISENTANGLEMENT

We aim to learn a RAW2RGB conversion (or an ISP) from x to y. However, a naı̀ve network training
from x to y can easily overfit to the image contents. Moreover, to generate multiple styles of RGB
images, training a neural network for each style is resource intensive. For this, we disentangle the
styles from RGB images, allowing a network to learn multiple-style generation.

Specifically, our ISP estimation composes two networks, the style encoder (E) and the RAW2RGB
converter (T ) (Figure 4). E identifies the image style as a style parameter (s) from the raw noisy
image (x) and the RGB noisy image (y) while T uses x and s as input to generate an RGB image
(ŷ). Then, we can recall the equation equation 2 as

ŷ = T (x;E(x,y)), (5)

where s = E(x,y) while training E and T to minimize L1 differences between ŷ and y. E
composes 6 residual blocks, global pooling, and a fully connected layer and T composes 4 residual
blocks and parameterized ISP functions (27). We use the residual blocks of two convolutional
layers and one ReLU activation with 64 filters and 3×3 kernels. The training data can compose a
single pair or multiple pairs of raw-RGB noisy images. For accurate RAW2RGB conversion for
downscaled images, which are unseen in training, we first adopt image scale augmentation (SA)
that changes image resolution. SA generates multiple training patches for a style (or a patch) by
randomly sampled scaling factors to prevent overfitting to a few training data. Formally, we redefine
the style parameter (s) as follows,

s ≡ E(SA(x,y)). (6)
Second, we design a bottleneck structure that lowers the dimension of s to avoid encoding of infor-
mation about image contents. E reduces channels and resolutions of s (s ∈ R3×1×1 in this paper).
s conditions T by channel attention and ISP parameter generation via fully connected layers.

4.5 DENOISER TRAINING WITH DATA AUGMENTATION

We synthesize noisy-clean RGB image pairs at low-resolution to train general RGB denoisers. The
pseudo-noisy/pseudo-clean images are the downscaled raw image (xd) with/without additive noise
N transformed to RGB space using T . Formally, the denoiser (D) training minimizes the following
objective function,

min
D

|T (xd; s)−D(T (xd +N ; s))|, (7)
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where s is the style parameter in equation 6. Our denoising framework allows rich augmentation
for data synthesis. First, scaling and intensity augmentation (SIA) increases content diversity by
changing the image resolution and pixel values from 0.5× to 1.5×. Second, we randomly scale noise
parameters, β1 and β2, from 0.5× to 1.5×. This augmentation alleviates the noise estimation error
in Section 4.3. Lastly, when multiple noisy images are given, we can augment the noise parameters
and the style parameters across different images. Overall, the objective function of our denoiser
training equation 7 becomes

min
D

|T (SIA(xd); s′)−D(T (SIA(xd) +N ′; s′))|, (8)

where SIA is the scale and intensity augmentation, s′ is the augmented style parameter, and N ′ is
the additive noise with augmented noise parameters. At testing, the denoiser takes the RGB noisy
image (y) as input, just like conventional CNN-based approaches.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Downscaling We downscale a raw image x to xd by bicubic interpolation after asymmetric 2D
Gaussian blurring with the kernel size of 21× 21. We randomly select the standard deviation of the
Gaussian blur from 0.25×ds to 0.75×ds for each dimension, where ds denotes downscaling factor
randomly selected in the range of [1.5, 2.5]. We use the same hyper-parameters for noise estimation,
ISP estimation, and denoiser training unless otherwise specified.

Optimization We use ADAM (29), 128×128 image patches, and a batch size of 64 for all ex-
periments. Noise estimation adopts 2.5 × 104 iterations with the initial learning rate of 1 × 10−4

which becomes a tenth part in every 5 × 103 iterations. We use the same initial learning rates for
ISP estimation and denoiser training for 5× 105 iterations without the learning rate decay.

Denoiser We use two simple networks as denoiser to present the generalizability of the proposed
training scheme. Specifically, NERDS+DnCNN uses DnCNN (55) and NERDS+D uses a ResNet-
style architecture, composing a global skip connection and 32 residual blocks. Each block has two
convolutional layers and one ReLU activation with 64 filters and 3×3 kernels.

Dataset We use BSD68 (39) which consists of 68 gray-scale images to evaluate the performance of
noise estimation. For real image denoising, we use raw noisy and RGB noisy images on SIDD (2),
DND (43), and MIT-Adobe FiveK (9). SIDD (2) consists of training, validation, and benchmark
datasets. We use 1,280 256×256 patches from 40 noisy images on the benchmark for denoiser
training. In the setting of extra images, we use 50 noisy images on the training dataset with low ISO
levels of 100 and downscale the noisy images with the scaling factor from 1.1 to 1.2. For DND (43),
we use 1,000 512×512 patches from 50 noisy images on the benchmark. We evaluate the denoising
performances on the benchmarks by submitting the results to the public websites for SIDD and
DND. MIT-Adobe FiveK (9) consists of 5,000 raw images and paired RGB images retouched by 5
photographers. Each RGB image has its own RAW2RGB conversion using Adobe Lightroom while
the raw image contains real camera noise. We demonstrate an extreme scenario where only 5 noisy
images are available for denoiser training.

5.2 RESULTS FOR NOISE ESTIMATION AND SYNTHESIS

We first validate our noise estimation on additive Poisson-Gaussian noise to images on BSD68 (39),
and then visualize the noise synthesis at low-resolution from noisy images on MIT-Adobe FiveK (9).

Poisson-Gaussian noise estimation We demonstrate the effectiveness of our NERDS-raw on P-G
noise estimation by comparing with Foi et al. (19), Liu et al. (36), and PGE-Net (10) which estimate
P-G noise parameters from noisy images. Table 1 presents the average of the noise parameters
estimated from each image on BSD68 with four different noise levels. In most cases, NERDS-raw
estimates the most accurate noise parameters.
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Table 1: Performance comparison of Poisson-Gaussian noise estimation. The reported scores are average
values of (β̂1, β̂2) estimated from BSD68 with additive Poisson-Gaussian noise level of (β1, β2). Bold denotes
the best result.

Noise level Foi et al. Liu et al. PGE-Net NERDS-raw (Ours)
(β1, β2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2)

(0.100, 0.0200) (0.096, 0.042) (0.072, 0.045) (0.098, 0.0030) (0.100, 0.0229)
(0.100, 0.0002) (0.097, 0.035) (0.071, 0.044) (0.095, 0.0001) (0.101, 0.0001)
(0.050, 0.0200) (0.049, 0.031) (0.040, 0.040) (0.052, 0.0001) (0.051, 0.0245)
(0.050, 0.0002) (0.051, 0.018) (0.039, 0.034) (0.051, 0.0001) (0.052, 0.0002)

Real Image NERDS-noisy NERDS-clean Real Image NERDS-noisy NERDS-clean
Figure 5: Noise synthesis results using NERDS. NERDS can synthesize noisy-clean RGB image pairs at low-
resolution from raw-RGB noisy image pairs. NERDS-noisy and NERDS-clean denote synthetic RGB images
with and without noise. This example uses the downscaling factor of 2. (Zooming-in for the best view.)

Noisy-clean RGB image synthesis Figure 5 shows noise synthesis results using NERDS. Each
real image from MIT-Adobe FiveK has its own RAW2RGB conversion. NERDS-noisy contains
realistic noise specialized to each real image, such as blue/dark noise in dark areas with none i.i.d
characteristics. Figure 9 visualizes more pseudo-noisy and pseudo-clean image pairs on SIDD/DND
datasets. To the best of our knowledge, NERDS is the first work to generate the realistic noisy
images and the paired clean images for the unknown RAW2RGB conversions (or ISPs) by using
only raw-RGB noisy image pairs. Existing works for noise synthesis (6; 54; 53; 1; 30) require real
noisy-clean image pairs, metadata, and ISPs. Thus, naı̀ve comparisons between NERDS and the
existing methods are unfair, but we present them in Section A.3.1.

5.3 COMPARISONS TO THE SOTA DENOISING METHODS

Results on benchmarks Given that NERDS trains denoisers without clean images, we com-
pare our denoisers with the SotA denoising methods that do not use the pairs of real noisy-
clean images. Specifically, we compare GAT+BM3D (16), N2V (31), AP-BSN (33), FBI-D (10),
C2N+DIDN (26), and SCUNet (54) on SIDD and DND benchmarks. Table 2 presents the effec-
tiveness of the proposed denoisers, NERDS+DnCNN and NERDS+D. C2N+DIDN (26) synthesizes
realistic noise using unpaired noisy-clean images, while our NERDS+DnCNN outperforms it with
the simpler denoiser (DIDN vs. DnCNN). SCUNet (54) synthesizes realistic noise using high-
quality clean images and the predetermined noise models including specific noise levels and ISP
pipelines. The other works require only noisy images via prior-based filtering (16), self-supervised
learning (31; 33; 47), and noise estimation (10). The works without clean images perform denois-
ing in raw image space and received the results in RGB image space by submitting the denoised
raw images to the public websites (2; 43). They often fail to remove noise in RGB image space,
given that they assume strong noise characteristics such as Poisson-Gaussian distributions and the
i.i.d property that do not hold in the RGB image space. Section A.2 presents a generalization test
for NERDS+D with latency analysis to denoise a test image from scratch. Section A.3.2 provides
the comparisons with the noise synthesis methods which use the pairs of real noisy-clean images.
Figure 10, 11, and 12 visualize more denoising results on SIDD, DND, and MIT-Adobe FiveK.

Ablation Study Our NERDS enables rich and effective augmentation for denoiser training. Ta-
ble 3 demonstrates the ablation study on the data augmentation. The setting without image scale
augmentation (Table 3(1)) uses a fixed downscaling factor of 2. Each component improves the
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Table 2: Performance comparison with SotA denoising methods. The reported scores are PSNR (dB)/SSIM on
RGB images from the SIDD and DND benchmarks. Bold denotes the best result. ✓denotes accessible types of
images at training. Extra images denote images other than the noisy images of the benchmark.

Dataset GAT+BM3D N2V AP-BSN FBI-D C2N+DIDN SCUNet NERDS+DnCNN NERDS+D

Clean images - - - - ✓ ✓ - - -
Extra images - - - ✓ ✓ ✓ - - ✓

Synthetic pairs - - - - ✓ ✓ ✓ ✓ ✓

SIDD 34.61/0.879 32.85/0.847 36.91/0.931 38.07/0.942 35.35/0.937 22.89/0.797 36.42/0.923 37.40/0.941 38.28/0.949
DND 37.98/0.920 35.82/0.902 38.09/0.937 38.98/0.945 37.28/0.924 - 38.21/0.941 39.34/0.950 -

Table 3: Ablation study on data augmentation to train NERDS+D. PSNR (dB)/SSIM on RGB images from
SIDD validation.

Augmentation (1) (2) (3) (4) (5) (6)

Image scale - ✓ ✓ ✓ ✓ ✓
Image intensity - - ✓ ✓ ✓ ✓
Noise parameter - - - ✓ ✓ ✓
Style parameter - - - - ✓ ✓

Extra images - - - - - ✓

SIDD 35.63/0.897 36.79/0.928 37.16/0.935 37.84/0.944 38.02/0.946 38.51/0.950

Real Image CycleISP NERDS+D (Ours) Real Image SCUNet NERDS+D (Ours)
Figure 6: Qualitative comparisons of denoising results on MIT-Adobe FiveK (9). Pink arrows indicate the re-
maining noise of CycleISP and the over-smooth textures of SCUNet while our denoiser generates crisp images.
(Zooming-in for the best view.)

restoration performances. In particular, noise parameter augmentation improves over than 0.6 dB,
given that it can alleviate noise estimation error. The usage of extra images enables high-quality
clean image synthesis by downscaling images with low noise levels and small scaling factors.

Results on MIT-Above FiveK We evaluate CycleISP (53), SCUNet (54), and NERDS+D on re-
touched images from MIT-Adobe FiveK (9). CycleISP (53) employs supervised learning on SIDD
training dataset with additional synthetic data using the predetermined noise levels and ISP pipeline.
Nevertheless, CycleISP fails to denoise the retouched image as visualized in Figure 6. SCUNet (54)
is trained on high-quality images with practically designed additive noise, but SCUNet often gener-
ates over-smooth textures. These results are due to different noise distributions between the training
images and the test images. In contrast, NERDS+D removes severe real noise while maintaining
image details. We report more qualitative results in Figure 12.

6 CONCLUSION

We present a general framework to train denoisers from noisy images, called NERDS. The frame-
work composes noise estimation, ISP estimation, and denoiser training. For noise synthesis, we
estimate Poisson-Gaussian noise in raw images and ISP (or RAW2RGB conversion) for each RGB
image. NERDS allows rich data augmentation for accurate denoiser training. Experimental results
show the state-of-the-art restoration accuracy on real noise benchmarks.
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ISO

Figure 7: Noise distribution of images from Galaxy S6. β1 and β2 are the noise levels of metadata, while
β̂1 and β̂2 are the estimated noise parameters for Poisson-Gaussian distribution using NERDS. While (β1, β2)
have specific values at each ISO level, the radius of the circles for β̂1 and β̂2 represents the standard deviation
of the estimated values for each image on SIDD training dataset.

Table 4: Ablation study of P-G noise parameters to train denoisers. Each method provides different values
of noise parameters for the same denoiser architecture, augmentation techniques, and training schemes. The
reported scores indicate restoration performances on RGB images from the SIDD validation. NERDS-raw
achieves the best PSNR score.

Metadata Random NERDS-raw (Ours)

PSNR (dB)/SSIM 37.56/0.937 37.92/0.941 38.51/0.950

A APPENDIX

A.1 DISCUSSIONS

A.1.1 NOISE DISTRIBUTION OF RAW IMAGES

Our NERDS assumes that the raw images have the noise that follows Poisson-Gaussian distribution.
However, the image sensor of a smartphone or a digital camera is a black box. We do not know what
kind of post-processing has been applied to the raw images, or whether the noise level (parameters)
in the metadata represent the proper parameters of Poisson-Gaussian distribution. For instance, one
of the noise levels in the metadata of Galaxy S6 (β2 in Figure 7) equals zero for all images, which
is theoretically impossible for both shot and read noise parameters of the Poisson-Gaussian model.
Nonetheless, Figure 7 presents a similar tendency between the noise levels in the metadata (β1,
β2) and the estimated noise parameters (β̂1, β̂2). Thus, we approximate the noise distribution in
raw images as Poisson-Gaussian noise and show that NERDS+D can achieve satisfactory denoising
results using the estimated Poisson-Gaussian noise.

To show the effectiveness of accurate P-G noise parameter estimation, Table 4 presents an ablation
study of the values of P-G noise parameters. NERDS-raw, Metadata, and Random represent the
restoration performance of an RGB image denoiser trained with the noise parameters from each
method. NERDS-raw indicates the model in Table 3(6), Metadata uses the noise levels from the
metadata, and Random uniformly samples noise parameters between the maximum and minimum
values in NERDS-raw. Metadata and Random use the same denoiser architecture (D), augmentation
techniques, and training schemes with NERDS-raw except the values of noise parameters for a fair
comparison.

A.1.2 CLEAN IMAGE VIA DOWNSCALING

The optimal clean image via downscaling is a noise-free low-resolution image that has the same
statistics as the true signal (clean high-resolution image). Empirically, we regard the raw images
downscaled after burring (low-pass filtering) as raw pseudo-clean images. However, blurring images
breaks the optimal setting when image structures are too small (e.g., 1-pixel dots) or the noise is too
severe compared to the size of the blur. Figure 8 shows the evidence and limitations of the utility
of pseudo-clean images used in NERDS. First, the images downscaled without pre-blurring have
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Figure 8: Standard deviation (std) of downscaled images. Blue lines denote the std of clean images while
the others denote the std of noisy images. Downscaling without pre-blurring maintains the std values through
scaling on both BSD68 ((a)) and SIDD ((c)). In contrast, blurring before downscaling reduces the std values
of noisy images drastically than clean images ((b) and (d)). (e) Large blur kernels (2× larger than the kernels
used in NERDS) reduce the std values more steeply.

Table 5: DKL comparison for ablation study of NERDS-raw with the different sizes of blur kernels. NERDS-
raw w/Blur, which is the original NERDS-raw, achieves the best performance.

NERDS-raw w/oBlur w/Blur (Ours) w/LargeBlur

DKL 0.1710 0.0344 0.0535

similar statistics to those of the images before downscaling. This indicates that the image scaling can
be regarded as capturing an image at different distances between an object and a camera. Second,
the blurring operation reduces the std values of noisy images drastically more than clean images.
This is why we use downscaled images as pseudo-clean images. However, blurring also reduces
the std values of clean images, making it challenging to find optimal clean images. To alleviate this
difficulty, we estimate the noise by gradient-descent-based optimization and adopt augmentation of
noise parameter scaling (×0.5 ∼ ×1.5) for accurate denoiser training.

We further analyze the effectiveness of blur kernels by measuring KL divergence between syn-
thesized noisy images and real noisy images. The lower value, the better. Table 5 visualizes an
ablation study on the size of blur kernels on the SIDD dataset. NERDS-raw w/Blur achieves the
best performance compared to both cases of w/oBlur and w/LargeBlur. These results indicate that
the downscaled images work as clean images well with the proper size of blur kernels.

A.2 EFFICIENT INFERENCE AT TEST TIME

The proposed method composes three steps (noise estimation, ISP estimation, and denoiser training)
and an additional step of denoiser testing. Each step described above has the latency described in
Table 6. We use GeForce RTX 2080 Ti GPU and an HD image for testing.

The noise estimation, ISP estimation, and denoiser training using noisy test images are time-
consuming. To skip the processes at test time, Table 7 presents a generalization test for NERDS+D
trained on different datasets. NERDS+D trained on DND has accurate restoration performance
on DND but performs 2 dB lower PSNR on SIDD than the model trained on SIDD. In contrast,
NERDS+D trained on SIDD performs accurate restoration on both datasets. This phenomenon
indicates that SIDD contains noise distributions similar to DND and that well-designed noisy im-
ages enable generalized denoiser training. For instance, camera manufacturers can collect training
datasets of only noisy images concerning the image sensor, ISP, and expected image retouching.
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Table 6: Latency analysis of the processes for NERDS and NERDS+D.

Noise Estimation ISP Estimation Denoiser Training Denoiser Testing

Latency 30 m 1 h 6 h 0.1 s

Table 7: Generalization test for NERDS+D on different training datasets without clean images. The reported
scores are PSNR (dB)/SSIM on RGB images from the SIDD validation and the DND benchmark. Bold denotes
the best result.

NERDS+D Taining
SIDD DND

Testing SIDD 38.51/0.950 36.26/0.923
DND 39.14/0.949 39.34/0.950

A.3 COMPARISONS TO NOISE SYNTHESIS METHODS USING REAL IMAGE PAIRS

The recently proposed methods (1; 12; 56; 30) synthesize noisy images with novel noise models.
These methods use noise/clean image pairs and metadata that are not accessible at test time, such as
the DND dataset. Although the proposed method is a general framework for denoising training with-
out a clean image, we present comparisons with these methods by evaluating the noise estimation
results with denoising performance and KL divergence.

Table 8: DKL comparison with SotA noise synthesis methods. NERDS-raw w/clean image outperforms all
compared methods.

Calibrated P-G (56) Noise Flow (1) Camera-Aware (12) NERDS-raw (Ours)

Clean data ✓ ✓ ✓ ✓
DKL 1.5147 0.0481 0.0144 0.0079 0.0344

Table 9: Raw image denoising comparison with SotA noise synthesis methods on the SIDD benchmark.
NERDS-raw achieves the best PSNR score. We use DnCNN as a denoiser for NERDS-raw.

Gaussian Noise Flow (1) Camera-Aware (12) NERDS-raw (Ours)

PSNR (dB)/SSIM 43.63/0.968 48.52/0.992 48.71/0.993 48.93/0.985

Table 10: RGB image denoising comparison with SotA noise synthesis methods on the SIDD benchmark.
NERDS achieves the best PSNR/SSIM scores. All methods use DnCNN as the denoiser.

Gaussian Noise Flow (1) C2N (26) RGB Noise Flow (30) NERDS (Ours)

PSNR (dB)/SSIM 32.72/0.873 33.81/0.894 33.76/0.901 34.74/0.912 36.42/0.923

A.3.1 RESULTS FOR NOISE ESTIMATION AND SYNTHESIS

Table 8 presents the comparisons of KL divergence (DKL) between synthesized noisy images and
real noisy images. The lower values, the better. The proposed method outperforms all compared
methods when using clean images. We could not reproduce the results of RGB Noise Flow (30) since
the source code was not available. The score reported in the paper is 0.044 for RGB Noise Flow,
where Noise Flow scores 0.198. The scores of KL divergence are dependent on hyperparameters.

A.3.2 RESULTS FOR RAW/RGB IMAGE DENOISING

Table 9 and 10 present denoising performances for raw/RGB images on the SIDD benchmark, where
NERDS-raw and all methods for RGB images use DnCNN as a denoiser. Although NERDS-raw
and NERDS do not use clean images for noise estimation, noise synthesis, and denoiser training,
NERDS-raw and NERDS achieve the best PSNR scores in each table. When converting the denoised
raw images using NERDS to RGB images, the PSNR is 35.74 dB which is lower than RGB image
denoising (36.42 dB).

A.4 ADDITIONAL ABLATION STUDY

Ablation Study for Noise Estimation (NERDS-raw). For noise estimation (NERDS-raw), we
design ablation studies on blurring strengths and downscaling factors on BSD68 in Table 11 and 12.
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Table 11: Ablation study for noise estimation on blurring strengths.

Noise level w/oBlur w/Blur (Ours) w/LargeBlur
(β1, β2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2)

(0.100, 0.0200) (0.080, 0.144) (0.100, 0.0229) (0.119, 0.0220)

Table 12: Ablation study for noise estimation on downscaling factors (DF).

Noise level DF 1 DF 1.5∼2.5 (Ours) DF 2.5∼4.5
(β1, β2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2)

(0.100, 0.0200) (0.065, 0.0085) (0.100, 0.0229) (0.100, 0.0279)

Table 13: Ablation study for denoiser training on blurring strengths.

w/oBlur w/Blur (Ours) w/LargeBlur

PSNR (dB)/SSIM 26.99/0.642 38.02/0.946 38.01/0.944

Table 14: Ablation study for denoiser training on blurring strengths.

DF 1 DF 1.5∼2.5 (Ours) DF 2.5∼4.5

PSNR (dB)/SSIM 37.66/0.942 38.02/0.946 37.89/0.943

The setting of w/LargeBlur uses two times larger blur kernels than NERDS-raw. The settings of
w/Blur and DF 1.5∼2.5, which indicates NERDS-raw in Table 1, present better performance than
compared settings. The settings of w/oBlur or DF 1 perform worse than those of w/LargeBlur or
DF 2.5∼4.5. These ablation studies show the effectiveness of image downscaling after blurring for
NERDS-raw.

Ablation Study for Denoiser Training (NERDS+D). Table 13 and 14 present ablation studies
on blurring strengths and downscaling factors for denoiser training on the SIDD validation. This
experiment uses SIDD validation to visualize the effectiveness of downscaling and blurring to noisy
images. The setting of w/LargeBlur uses two times larger blur kernels than NERDS+D. Results
show that our settings for NERDS+D perform the best accuracy at the diverse DFs and blurring
strengths. The setting of w/oBlur performs poor PSNR/SSIM given that the downscaled images
still constrain severe noise as demonstrated in Figure 8(c). Instead, the comparable results between
w/Blur and w/LargeBlur indicate that the denoiser training is robust to blurring strengths. The
settings for diverse DFs perform similar results given that blurring transforms noise from the P-G
distribution. The transformed noise can be regarded as high-frequency textures that allow denoisers
training for P-G noise.

A.5 ADDITIONAL QUALITATIVE RESULTS

Synthesized Noisy-Clean Image Pairs. Figure 9 visualizes noise synthesis results using NERDS.
NERDS-clean contains low-level noise while NERDS-noisy presents severe noise similar to the real
noisy images. We have empirically found that denoisers do not learn to remove noise in NERDS-
clean. This phenomenon is because the blurring and downscaling process in NERDS distorts the
noise of raw images while denoisers learn to remove Poisson-Gaussian noise in the raw images.
Moreover, given that NERDS does not require any clean data, NERDS successfully synthesizes
noisy-clean image pairs on DND and MIT-Adobe FiveK datasets which are not available to access
clean images.

Denoised Images. We present more images denoised by NERDS+D on SIDD (Figure 10), DND
(Figure 11), and MIT-Adove FiveK (Figure 12). While AP-BSN (33), FBI-D (10), SCUNet (54),
C2N (26)+DIDN (50), and CycleISP (53) often fail to restore image patterns in GT, NERDS+D
successfully recover the original structures. AP-BSN uses pixel shuffle for self-supervised learn-
ing to decorrelate spatially but also loses spatial information for denoising. FBI-D learns raw im-
age denoising for Poisson-Gaussian noise, but denoising raw images is an indirect approach for
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the human visual system (or RGB space). SCUNet over-smooth or over-sharpen images. This
restoration style helps to generate readable characters, but it can distort the patterns in GT (See Fig-
ure 10). C2N+DIDN is the denoiser trained by generating noisy images from clean images using
both noisy and clean images on SIDD datasets. For DND benchmarks, C2N+DIDN sometimes gen-
erates artifacts or noise that significantly drops the restoration accuracy (See Figure 11). In contrast,
NERDS+D uses only noisy images on DND benchmarks to generate noisy-clean image pairs for
accurate denoiser training. CycleISP is the denoiser trained by paired noisy-clean images on SIDD
datasets and paired images synthesized by the metadata of DND benchmarks. CycleISP performs
the highest PSNR and SSIM on both SIDD and DND benchmarks compared to the methods in Ta-
ble 2. However, CycleISP fails to remove the noise on MIT-Adobe FiveK (See Figure 12). This
failure comes from the noise distribution of RGB images mismatched between MIT-Adobe FiveK
and SIDD (or DND) datasets.

Noisy Image

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v x o o v x o o

sidd b x v o v x o o

dnd x o o v o o v o

fivek v o v o o o

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v - o - o v x o o

sidd b - - - - v - - o

dnd - o - o o - - o

fivek - - o v o o o

Clean Image NERDS-noisy NERDS-clean

Not Available

Not Available

Figure 9: Examples of noisy synthesis results using NERDS. We upscale NERDS-noisy, NERDS-clean, and
the green boxes with the scaling factor of 2 for visualization.
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Input

Real Image

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v x o o v x o o

sidd b x v o v x o o

dnd x o o v o o v o

fivek v o v o o o

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v - o - o v x o o

sidd b - - - - v - - o

dnd - o - o o - - o

fivek - - o v o o o

30.71/0.844320.08/0.624129.50/0.804628.72/-∞/1.000PSNR/SSIM

30.41/- 32.77/0.9889 15.62/0.8136 33.77/0.9914∞/1.000PSNR/SSIM
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Figure 10: Qualitative results and PSNR (dB)/SSIM on SIDD validation.
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Figure 11: Qualitative results and PSNR (dB)/SSIM on DND.
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Figure 12: Qualitative results on MIT-Adobe FiveK. CycleISP often fails to remove noise, while FBI-D and
SCUNet over-smooth or over-sharpen images. Note that NERDS+D uses only 5 test noisy images and estimated
noise parameters from them for training. (Zooming-in for the best view.) We use T of NERDS to convert raw
images denoised by FBI-D to RGB images.
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