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ABSTRACT

Recent studies have explored integrating Chain-of-Thought (CoT) reasoning into
image generation to improve accuracy and controllability. However, existing
methods either rely on costly training, separate reasoning from generation, or lack
fine-grained visual error correction. We propose a training-free CoT-enhanced
image generation framework that leverages the semantic understanding and posi-
tional awareness of Unified Multimodal Models (UMMs). Our method introduces
a CoT-guided Reflection Module for image-level global correction and a semantic-
driven token-level local correction module for fine-grained refinement, forming
a dynamic reasoning loop with iterative triggers and backtracking. Experiments
demonstrate that our approach improves the Show-o baseline from 68% to 78% on
GenEval and achieves a 14% gain on T2I-CompBench, outperforming prior CoT-
based methods under the same baseline, including reinforcement learning-based
approaches. Our framework is entirely training-free, efficient, and establishes a
new paradigm for CoT in image generation.

1 INTRODUCTION

With the increasing scale of model and training data, Large Language Models(LLMs), e.g., GPT-
3(Brown et al. (2020)), PaLM(Chowdhery et al. (2022)), have achieved remarkable performance on
mutiple general tasks. However, their capabilities in complex tasks such as mathematical computa-
tion and programming remain limited. To address this limitation, the Chain-of-Thought (CoT Wei
et al. (2022)) paradigm is proposed, enabling LLMs to generate intermediate reasoning steps and
thereby significantly improving performance (e.g., GPT-5 Wang et al. (2025), DeepSeek-R1 Guo
et al. (2025a)). Inspired by this success, recent work has explored integrating CoT into image gener-
ation to enhance both accuracy and controllability. For instance, PARM (Guo et al. (2025b)) intro-
duces stepwise rewards via reinforcement learning to dynamically guide sampling in autoregressive
generation, improving semantic alignment and fine-grained details. Nevertheless, it is challenged by
substantial computational costs during training, dependency on subjectively defined reward struc-
tures. ImageGen-CoT(Liao et al. (2025)) employs supervised fine-tuning (SFT) to integrate textual
CoT, allowing Mutimodal Large Language Modeels (MLLMs) to generate reasoning details be-
fore image synthesis. However, it separates reasoning from generation and depends on large-scale,
high-quality CoT data. PromptCoT (Yao et al. (2024)) extends the prompts with textual CoT in a
low-cost, zero-training manner, but lacks reasoning about visual tokens and fails to correct local
errors, limiting improvements in fine-grained visual details.

End-to-end Unified Multimodal Models (UMMs) have recently been proposed to unify the content
understanding and visual generation, which are able to analyze semantic information from multi-
modal inputs, implicitly capture spatial relationship of objects and cross-modal correspondences
during inference. These inherent capabilities suggest a natural potential to integrate CoT-based se-
mantic feedback and local correction directly into the image generation process without training.
However, existing methods underutilize this potential, relying primarily on semantic understanding
for image regeneration and failing to exploit the intrinsic positional awareness inherent in UMMs.

Motivated by this, we propose a training-free CoT-enhanced image generation framework. Our
framework leverages the semantic understanding and positional awareness of UMMs by integrat-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing CoT into end-to-end UMMs, enabling dynamic image-level global correction through sematic
understanding and reasoning, while simultaneously supporting token-level local correction based
on positional awareness. Specifically, we develop a CoT guided reflection module (CoT-Reflection
module) to perform reasoning over generated intermediate visual tokens, automatically identify se-
mantic deviations, and generate refined textual prompts for image-level global semantic correction
without requiring additional training. A Semantic-driven token-level local correction module is de-
signed to leverage the positional awareness ability to generate masks for erroneous regions, preserve
correct visual tokens, and mask the identified erroneous tokens for resampling guided by refined tex-
tual prompts, allowing fine-grained token-level local correction with minimized computation cost.
Moreover, we design a CoT-guided dynamic reflection and correction mechanism that integrates the
CoT-Reflection module for global semantic correction and the token-level local correction module
for fine-grained error refinement. The designed trigger points and backtracking in this reflection
and correction mechanism enable these modules to operate iteratively, ensuring global semantic
consistency while efficiently correcting local errors.

Extensive experimental results show that our training-free approach improves the baseline model
(Show-o(Xie (2025)) is used in our experiments) from 68% to 78% on the GenEval(Ghosh et al.
(2023)) benchmark, achieves stronger semantic alignment and finer generation control in complex
scenarios. In addition, our method improves the average score on the T2I-CompBench benchmark
by 14% compared to the baseline model. Unlike prior CoT-based methods that depend on rein-
forcement learning or external discriminators, our method is entirely training-free and cost-effective.
Moreover, it surpasses reinforcement learning-based CoT methods (e.g., PARM) built on the same
baseline on both benchmarks, establishing a new paradigm of CoT in image generation.

The main contributions of this work are as follows:

• We propose a training-free CoT-enhanced image generation framework, unifying reasoning
and synthesis within end-to-end UMMs.

• A CoT-guided dynamic Reflection and Correction mechanism is proposed, which includes
CoT-guided global image-level correction and semantic-driven token-level local correction,
forming a dynamic reasoning loop to ensure both semantic consistency and fine-grained
generation control.

• Extensive experiments demonstrate the substantial improvements of the proposed method
compared to the baseline and state of the arts, validating the effectiveness and efficiency of
our method.

2 RELATED WORK

Chain-of-Thought in Language Models. The Chain-of-Thought (CoT) paradigm, introduced
by Wei et al. (2022), generates intermediate reasoning steps in large language models (LLMs),
significantly improving performance on tasks such as mathematical computation and program-
ming. Subsequent studies have extended CoT in diverse directions. Self-Consistency(Wang
et al. (2023)) enhances reasoning robustness through diverse sampling, Tree-of-Thought(Yao et al.
(2023a)) models reasoning as a tree-based search to improve decision-making, and ReAct(Yao et al.
(2023b))combines reasoning with external tool usage, broadening CoT’s application scope. These
studies show that explicit stepwise reasoning improves model transparency, interpretability, and task
accuracy, establishing CoT as a key paradigm for enhancing LLM reasoning.

Unified Multimodal Models for Understanding and Generation. With advances in LLMs, mul-
timodal models (UMMs) have emerged, extending language models to jointly process images and
text. For understanding tasks, representative works include BLIP-2(Li et al. (2023)) and LLaVA(Liu
et al. (2023)), which couple visual encoders with language models to achieve strong vision–language
alignment. For generation, UMMs aim to enable bidirectional image–text synthesis. Existing ap-
proaches can be categorized into three major types. The first is diffusion-based methods, such as
Dual Diffusion(Li et al. (2025)) and UniDisc(Bao et al. (2025)), which integrate multimodal con-
straints into the diffusion process. The second is autoregressive methods, such as Chameleon(Team
(2024a)), Emu3(Wang et al. (2024)), and Liquid(Chen et al. (2024)), which predict discrete image
tokens end-to-end. The third is hybrid AutoregRessive(AR) + diffusion methods, such as Trans-
fusion(Zhou et al. (2024)) and Show-o(Xie (2025)), which combine the benefits of both approaches.
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Some approaches rely on external generators (e.g., Emu(Sun et al. (2023)) predicts CLIP(Radford
et al. (2021)) features and renders them via Stable Diffusion(Rombach et al. (2022))), while others
generate discrete tokens directly within the UMM.Overall, these methods highlight the potential of
UMMs as a unified framework for bridging visual understanding and generation.

Chain-of-Thought in Vision. In the visual domain, CoT has been applied to both understanding
and generation tasks. For understanding, methods such as Multimodal-CoT(Zhang et al. (2023))
and Visual-CoT(Shao et al. (2024)) extend textual CoT reasoning to visual question answering and
image reasoning, improving interpretability and accuracy. Benchmarks include VQA(Goyal et al.
(2017)) and OK-VQA(Marino et al. (2019)). In visual generation, CoT improves accuracy, espe-
cially in autoregressive settings. PromptCoT(Yao et al. (2024)) extends prompts with textual CoT
before generation for low-cost, zero-training enhancement, while ImageGen-CoT(Liao et al. (2025))
injects textual reasoning chains via supervised learning. Both operate primarily at the text level,
lacking interaction with visual tokens, limiting performance in complex scenarios. PARM(Guo et al.
(2025b)) guides autoregressive generation with stepwise rewards, and T2I-R1(Jiang et al. (2025))
combines semantic- and token-level CoT for high-level planning and block-wise generation. How-
ever, many recent CoT-based approaches for visual generation either operate mainly at the textual
prompt level (e.g., PromptCoT Yao et al. (2024)), or rely on substantial additional training, fine-
tuning, or reward-model design (e.g., ImageGen-CoT Liao et al. (2025), PARM Guo et al. (2025b),
T2I-R1 Jiang et al. (2025)). While some methods have begun to combine semantic- and token-level
CoT, they typically incur significant training or RL costs. Consequently, the potential of UMMs’ in-
trinsic semantic reasoning and positional awareness for efficient, training-free token-level correction
remains underexplored.

Figure 1: Chain-of-Thought (CoT) Enhanced Image Generation Framework. SMTR (Semantic
Masked Token Retention) covers erroneous regions during correction while retaining correct tokens
to ensure generation stability. At Step n+m, descriptions generated by the UMM from intermediate
visual tokens are combined with the original prompt and fed into the CoT-Reflection module, which
analyzes deviations, identifies erroneous objects, assigns relevance scores, and produces a refined
prompt if needed. SDMRA localizes erroneous token regions and generates masks while retaining
partially correct tokens. The masked intermediate visual tokens are then backtracked to Step n
and resampled under the guidance of the refined prompt, correcting errors while preserving global
consistency.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 MODEL FRAMEWORK

Figure 1(a) presents the propose training-free CoT-enhanced image generation framework, which
achieves efficient and controllable image generation in complex scenarios by integrating an image-
level global correction based on sematic understanding and reasoning and token-level local cor-
rection based on UMMs’ positional awareness. The framework consists of two core modules.
The Chain-of-Thought Guided Reflection module (CoT-Reflection module) takes the original text
prompt and descriptions of intermediate visual tokens generated by UMMs as input, performs step-
by-step reasoning to analyze semantic deviations, generates refined prompts, and detects wrongly
generated objects for token-level correction. The Semantic-Driven Masked Region Alignment
(SDMRA) module localizes the regions of the wrongly generated objects with the guidance of the
cross-attention map. Instead of treating correction as a heuristic post-processing, this module detects
semantic errors and generates precise region masks for local error correction, enabling fine-grained
and semantically consistent correction in the generation process.

We design a CoT-guided dynamic reflection and correction mechanism that combines global seman-
tic correction with the CoT-Reflection module and fine-grained local correction with the SDMRA
module. In this mechanism, trigger points and backtracking are designed, which allow these two
modules to operate iteratively and form a loop that ensures global semantic consistency while accu-
rately and efficiently correcting local errors.

The iterative pipeline proceeds with the following steps, Intermediate visual token generation →
Trigger → Understanding → CoT-Reflection → SDMRA → SMTR with refined prompt → Back-
track & Resample, until the generated image satisfies semantic constraints or reaches the iteration
limit.

3.1.1 CHAIN-OF-THOUGHT GUIDED REFLECTION(COT-REFLECTION) MODULE

To enable semantic evaluation during image generation, we design the CoT-Reflection Module,
which performs structured reasoning over generated intermediate visual tokens. As shown in Figure
1(a), the module takes the original prompt and the UMM’s description of the intermediate generation
as input. To ensure generalization and consistency, it employs structured CoT reasoning via Phi-4,
integrating LLM reasoning with semantic constraints to produce comprehensive outputs, including
error analyses, identified deviant objects, and refined prompts that guide subsequent token-level
corrections.

As illustrated in Figure 2, the CoT-Reflection Module performs structured reasoning over interme-
diate visual tokens in a five-step process guided by predefined semantic evaluation rules. In Step 1,
the module compares the generated visual token descriptions with the original prompt, focusing on
explicitly specified hard constraints such as required objects, exact quantities, constrained attributes
(color, size, position), and scene context. Deviations are categorized into missing objects, incorrect
quantities, incorrect attributes, and scene mismatches, with deviant objects precisely identified.

In Step 2 (Error Object Analysis), the module collects the identified deviant objects and associated
errors from Step 1, providing the basis for subsequent token-level error region localization and local
correction. In Step 3 (Relevance Score), a relevance score from 0 to 1 is assigned according to
a set of designed rules that consider the presence, quantity, attributes, and scene consistency of
objects, reflecting the alignment between the generated tokens and the prompt. A score of 1 indicates
full compliance with all hard constraints, while lower scores correspond to increasing numbers or
severity of violations.

In Step 4 (Refinement Decision), the module determines whether prompt refinement is necessary
based on the relevance score and the recorded errors. Finally, in Step 5 (refine Prompt), a refined
prompt is generated to correct the identified violations, including counts, attributes, and relative
positions, while preserving all compliant information and integrating additional non-conflicting de-
tails from the generated description. The output is designed to guide downstream token-level local
corrections and is concise, interpretable, and consistent with the original prompt.
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Figure 2: CoT-Reflection Module performs structured reasoning over intermediate visual tokens
through five steps, including (1) identifying deviations from hard constraints in the prompt, (2)
collecting deviant objects, (3) assigning a relevance score quantifying alignment with the prompt,
(4) deciding whether prompt refinement is needed, and (5) generating a refined prompt to guide
token-level corrections.

3.1.2 SEMANTIC-DRIVEN MASKED REGION ALIGNMENT(SDMRA) MODULE

End-to-end UMMs inherently encode rich semantic and spatial information, capturing object rela-
tionships, spatial layouts, and cross-modal correspondences during inference. Existing methods,
however, primarily exploit UMMs for global semantic understanding, underutilizing their fine-
grained positional awareness. To fully leverage these capabilities, our SDMRA module integrates
UMM attention-based localization with CoT-guided analysis, enabling precise token-level correc-
tions without requiring additional discriminators or reward models.

As shown in Figure 1(c), when a trigger point detects semantic deviations via the CoT-Reflection
Module, SDMRA leverages the error objects identified along with the UMM’s visual perception to
localize erroneous token regions and performs targeted corrections guided by the refined prompt.
To improve localization accuracy, SDMRA fuses attention maps from multiple Transformer layers.
Lower layers provide fine-grained local details, while higher layers capture global semantic relations
Raghu et al. (2021); Abnar & Zuidema (2020),. The cross-layer integration ensures robust and
precise identification of error regions.

Let L = {10, 11, 14, 16, 17, 18} denote the selected Transformer layers of the Show-o model. For
each layer l ∈ L and token position i, attention scores A(l)

i are normalized and positions exceeding
a threshold τl are collected as candidate error tokens. The union of these attention-based candidates
across layers is denoted as Mattn.

Error objects identified by CoT-Reflection Module, Oerr, are mapped to token indices Merr obj. The
final error mask is obtained by combining attention-based and CoT-Reflection signals:

M = Mattn ∪Merr obj. (1)

Tokens in M are masked for resampling, while partially correct tokens are retained. The refined
prompt is concatenated at the backtrack state to guide correction. This process iterates until semantic
compliance is achieved or a maximum iteration limit is reached. By leveraging the UMM’s attention
and semantic understanding, SDMRA enables efficient, fine-grained, token-level correction without
any additional discriminators or reward models.

3.2 COT-GUIDED DYNAMIC REFLECTION AND CORRECTION(COT-RC) MECHANISM

As illustrated in Figure 1(a), the proposed training-free CoT-enhanced framework incorporates a
dynamic reflection and correction mechanism to iteratively refine image generation. To validate its
effectiveness, we apply this mechanism on the Show-o model(Xie (2025)), which generates interme-
diate images using a MaskGIT-style sampling process. Trigger points are inserted in the mid-to-late
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Figure 3: Effect of CoT-RC integration on image generation comparing before and after

stages of generation to evaluate intermediate representations. The CoT-Reflection Module performs
multi-step semantic reasoning to identify inconsistencies between generated tokens and the prompt
(e.g., object categories, counts, or spatial relations), producing refined prompts to correct semantic
deviations. The process then backtracks to key steps, applies SDMRA masks to erroneous token
regions while retaining partially correct tokens, and resamples under the guidance of the refined
prompts, thus avoiding full-image regeneration. This iterative loop—“Generation → Evaluate →
Reflection → Backtrack → Resample”—continues until semantic constraints are satisfied or the
iteration limit is reached, enabling efficient error correction while preserving global semantic con-
sistency. Although we demonstrate this mechanism on Show-o, it is model-agnostic and can be
integrated into other autoregressive generation frameworks.

The advantages of the mechanism are threefold. First, leveraging the UMM’s semantic understand-
ing and attention, the token-level correction loop is triggered at intermediate checkpoints and back-
tracks to the designated step for targeted resampling, allowing focused refinement while preserving
global semantic consistency. Second, the method is entirely training-free, requiring no additional
discriminators or reinforcement learning, enhancing reproducibility and reducing reliance on large-
scale data and computation. Third, it is robust in complex scenarios, preserving global semantic
control while enabling local detail correction, especially for images containing multiple objects,
attributes, and relationships. As shown in Figure 3, the entire generation process enabled by the
CoT-RC mechanism significantly improves the accuracy of image generation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed training-free CoT-RC mechanism for image gen-
eration, we conducted experiments on two benchmarks, GenEval(Ghosh et al. (2023)) and T2I-
CompBench(Ding et al. (2023)). GenEval evaluates the compositional capabilities of text-to-image
models by breaking prompts into object-level tasks and performing fine-grained, instance-level as-
sessment using object detectors. T2I-CompBench evaluates open-world compositional tasks involv-
ing multiple objects, attributes, and spatial relationships, covering three categories: object attributes
(Color/Shape/Texture), object relationships (Spatial/Non-Spatial), and complex compositions (e.g.,
multi-object interactions). With prompts drawn from 12,000 real-world examples, it emphasizes
generalization to unseen, non-predefined combinations.

All experiments were performed on a single NVIDIA A800 GPU. Generated image resolutions were
set to 512 × 512 for Show-O. During SDMRA Module, we leveraged attention maps from layers
10, 11, 14, 16, 17, and 18 of the Show-O model, and set the maximum number of backtracking
iterations to 10.
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Method #Params Single Two Counting Colors Position Attribute Overall
object object binding
Diffusion Models

DALL-E2(Ramesh et al. (2022)) 6.5B 0.94 0.66 0.49 0.77 0.10 0.19 0.52
DALL-E3(Betker et al. (2023)) - 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SDv2.1(Rombach et al. (2021)) 0.9B 0.98 0.51 0.44 0.85 0.07 0.17 0.50
SDXL(Podell et al. (2023)) 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD3(Team (2024b)) 2B 0.99 0.94 0.72 0.89 0.33 0.60 0.74
FLUX.1Black Forest Labs et al. (2025) 12B 0.99 0.81 0.79 0.74 0.20 0.47 0.67
PixArt-α(Chen et al. (2023)) 0.6B 0.98 0.50 0.44 0.80 0.08 0.07 0.48
D-DiT(Li et al. (2025)) 2B 0.97 0.80 0.54 0.76 0.32 0.50 0.65

AutoRegressive Models
Show-o(Xie (2025)) 1.3B 0.98 0.86 0.64 0.83 0.27 0.48 0.68
Emu3(Wang et al. (2024)) 8B - - - - - - 0.66
MUSE-VL(Xie et al. (2024)) 7B - - - - - - 0.57
Show-o2(Xie et al. (2025)) 1.5B 0.99 0.86 0.55 0.86 0.46 0.63 0.73
Show-o2(Xie et al. (2025)) 7B 1.00 0.87 0.58 0.92 0.52 0.62 0.76
Janus-Pro(Chen et al. (2025)) 7B 0.99 0.89 0.59 0.90 0.79 0.66 0.80
Show-O+PARM(Guo et al. (2025b)) 1.3B 0.99 0.86 0.64 0.83 0.66 0.64 0.77
Show-o+CoT-RC(Ours) 1.3B 0.99 0.93 0.83 0.84 0.53 0.59 0.78

Table 1: Evaluation on the GenEval(Ghosh et al. (2023)) benchmark.The best score is in red, with
the second-best in blue and third-best in green. #Params indicates the number of parameters of base
LLM.“-”denotes that the results of the approaches are not reported in their paper.

4.2 COMPARISON EXPERIMENT

Results on GenEval. As shown in Table 1, on the GenEval benchmark, Show-o+CoT-RC achieves
significant improvements across all six metrics, with an overall gain of approximately 10%. Un-
like global metrics such as CLIPScore or FID, GenEval emphasizes object relationships, attribute
binding, and compositional reasoning rather than overall image quality. Under the same baseline,
our training-free CoT approach outperforms reinforcement learning-based methods such as PARM.
Notably, the Counting task improves by +19% and the Position task by +26%, highlighting that
token-level local correction guided by global CoT-based reflection effectively enhances semantic
understanding and spatial reasoning. Moreover, despite having only 1.3B parameters, Show-o with
CoT-RC surpasses FLUX.1 (nearly ten times larger in parameters) and reaches performance com-
parable to autoregressive UMMs with roughly five times more parameters (e.g., Janus-Pro-7B), even
exceeding them on certain tasks. These results demonstrate that integrating CoT-guided reflection
with token-level correction substantially improves the model’s compositional reasoning ability, en-
abling it to robustly handle complex multi-object scenes with accurate object-level alignment.

Results on T2I-CompBench. Similarly, on the T2I-CompBench benchmark (Table2), CoT-RC
CoT-RC achieves significant improvements across all six metrics compared with the baseline, with
an average gain exceeding 14%. Notably, the Color, Texture, and Spatial tasks show the largest
improvements, reaching 20%, 24%, and 19%, respectively. Whether compared with larger main-
stream diffusion models or autoregressive UMMs (e.g., Janus-Pro), our method demonstrates highly
competitive performance across all metrics, surpassing Flux.1, Janus-Pro, and PARM on average.
This indicates that CoT-RC effectively enhances semantic consistency and fine-grained attribute
control in image generation.Furthermore, we observe that CoT-RC generally outperforms Janus-Pro
on T2I-CompBench, while underperforming on GenEval. This discrepancy reflects the different em-
phases of the two benchmarks: GenEval focuses on fine-grained pairwise object relations, whereas
T2I-CompBench emphasizes overall generation quality in complex multi-object scenes. By leverag-
ing UMMs’ global understanding for semantic refinement, CoT-RC prioritizes global optimization,
maintaining coherent layout and semantic alignment in complex scene generation.

Overall, these findings suggest that CoT-RC, by combining image-level global semantic correc-
tion with token-level local correction, effectively incorporates multimodal understanding into image
generation, thereby enhancing both generation quality and reasoning consistency without additional
training.
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Method Attribute Binding Object Relationship Complex↑
Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑

Diffusion Models
StructureDiffusion(Feng et al. (2023)) 0.4990 0.4218 0.4900 0.1386 0.3111 0.3355
Composable Diffusion(Liu et al. (2022)) 0.4063 0.3299 0.3645 0.0800 0.2980 0.2988
Attend-and-Excite(Chefer et al. (2023)) 0.6400 0.4517 0.5963 0.1455 0.3109 0.3401
PixArt-α(Chen et al. (2023)) 0.6690 0.4927 0.6477 0.2064 0.3197 0.3433
CoMat(Jiang et al. (2024)) 0.7827 0.5329 0.6468 0.2428 0.3187 0.3680
SDXL(Podell et al. (2023)) 0.5879 0.4687 0.5299 0.2131 0.3119 0.3247
FLUX.1(Black Forest Labs et al. (2025)) 0.7407 0.5718 0.6922 0.2863 0.3127 0.3703

AutoRegressive Models
Show-o(Xie (2025)) 0.56 0.41 0.46 0.20 0.30 0.29
EMU3(Wang et al. (2024)) 0.7544 0.5706 0.7164 - - -
Janus-Pro-7B(Chen et al. (2025)) 0.6359 0.3528 0.4936 0.2061 0.3085 0.3559
Show-o + PARM(Guo et al. (2025b)) 0.75 0.56 0.66 0.29 0.31 0.37
Show-o+CoT-RC(Ours) 0.7618 0.5375 0.7066 0.3959 0.3130 0.3549

Table 2: Evaluation on the T2I-CompBench(Ding et al. (2023)) benchmark.The best score is in red
,with the second-best in blue and third-best in green. “-”denotes that the results of the approaches
are not reported in their paper. ”↑” shows consistent performance improvements compared with the
baseline.

Model Single Two Counting Colors Position Attribute Overall
object object binding

Show-o(Xie (2025)) 0.98 0.86 0.64 0.83 0.27 0.48 0.68
Show-o+CoT-Reflection(only) 0.99 0.89 0.70 0.85 0.34 0.57 0.72
Show-o+Simple CoT-Reflection+correction 0.98 0.88 0.71 0.82 0.30 0.50 0.70
Show-o+CoT-RC 0.99 0.93 0.83 0.84 0.53 0.59 0.78

Table 3: Evaluation on the GenEval(Ghosh et al. (2023)) benchmark. The best score is in red.“CoT-
Reflection (only)” uses only the CoT-Reflection Module without token-level correction. “Simple
CoT-Reflection+correction” uses token-level correction with a simplified CoT-Reflection that skips
prompt refinement and reduces reasoning steps. “CoT-RC” applies the full CoT-Reflection with
structured reasoning and token-level local correction.

4.3 ABLATION STUDIES

The ablation results in Table 3 validate the contributions of each component in our CoT-RC frame-
work. Incorporating only the CoT-Reflection Module already improves performance over the base-
line, demonstrating the effectiveness of global reasoning for identifying and correcting semantic
deviations. Adding token-level correction with a simplified CoT-Reflection further improves certain
metrics, such as Counting, but yields limited gains in others, indicating that coarse reasoning alone
is insufficient for robust correction. The full CoT-RC approach, combining structured multi-step
CoT reasoning with token-level local correction, consistently achieves the best performance across
tasks, particularly in complex reasoning benchmarks such as Counting and Position. This confirms
that the synergy between global semantic understanding and fine-grained local corrections is critical
for improving both overall generation quality and reasoning consistency without additional training.

4.4 VISUAL GENERATION

As shown in Figure 4, we conducted a qualitative comparison of visual generation under the same
prompt in different models, including the Show-o baseline, the CoT-based PARM image generation
method integrated with Show-o (Show-o + PARM), and the Janus-Pro-7B, the larger autoregressive
UMM. As shown in Figure 4, Show-o can produce coherent scene layouts, but often suffers from
inaccuracies in object counts, attributes, and positions in complex multi-object scenarios. Show-
o+PARM shows improved performance in spatial relationships, but still struggles with generating
the correct object quantities. Janus-Pro-7B excels in strict positional and relational accuracy, yet
exhibits limitations in maintaining global semantic consistency and fine-grained attribute details.
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Figure 4: Visualization results. We show image generation results for the same prompt with four
models, Show-o baseline Xie (2025), Show-o with PARM Guo et al. (2025b), Janus-Pro-7B Chen
et al. (2025), and Show-o with our CoT-RC mechanism. Red boxes indicate incorrect generations
and green boxes indicate correct ones.

In contrast, Show-o+CoT-RC delivers consistently superior results, particularly in complex multi-
object scenes, where generated images better align with the given prompt and exhibit more precise
details. This improvement comes from the synergy of the CoT-RC mechanism of global semantic
understanding and fine-grained local correction. The CoT reflection module conducts step-by-step
reasoning to detect semantic deviations and generate refined prompts, providing explicit guidance
for correction. The Semantic-Driven Masked Region Alignment (SDMRA) Module leverages multi-
layer Transformer attention to precisely locate error regions and apply targeted corrections. This
global–local collaboration effectively addresses limitations of baseline and comparison methods,
significantly enhancing both the accuracy and consistency of generated images.

5 CONCLUSION

We introduce a training-free Chain-of-Thought Reflection and Correction (CoT-RC) mechanism that
enhances autoregressive image generation through token-level local corrections guided by seman-
tic reasoning. CoT-RC leverages the intrinsic semantic understanding and positional awareness of
unified multimodal models (UMMs) to detect generation deviations, refine prompts, and selectively
resample erroneous regions without regenerating the entire image. Extensive benchmark evaluations
demonstrate that CoT-RC significantly improves semantic alignment, spatial consistency, and over-
all generation quality compared with conventional CoT methods applied to the same base model and
other strong baselines, while remaining fully training-free and computationally efficient.
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A APPENDIX

Language polishing statement. Portions of this manuscript were refined for clarity, grammar, and
style using a large language model (LLM). The scientific content, experimental design, results, and
conclusions remain solely those of the authors.

A.1 MATHEMATICAL FORMULATION OF COT-REFLECTION AND SDMRA

Notation. We provide a theoretical grounding for the proposed token-level local resampling in
the Show-o framework.(Xie (2025)).We denote the generative distribution by pθ(x | y), where
x = (x1, . . . , xT ) is the sequence of visual tokens of length T , and y is the textual condition. Each
token index is i ∈ {1, . . . , T}. The generation proceeds in discrete steps t = 1, 2, . . . , following
a MaskGIT(Chang et al. (2022)) style refinement. At a particular step t∗ we perform backtracking
resampling. We use subscript t to denote the predictive distribution at step t.

At step t, the model produces a probability distribution pt(i, ·) for each position i. The most probable
token is

v⋆t,i = argmax
v∈V

pt(i, v), (2)

with corresponding probability

πt,i = max
v

pt(i, v) = pt(i, v
⋆
t,i). (3)

Let Kt denote the index set of tokens that are preserved (i.e., previously fixed and not to be re-
sampled) at step t, and let Kt = {1, . . . , T} \ Kt denote the masked positions to be predicted. The
full intermediate sample used for semantic analysis is constructed by combining preserved tokens
and argmax predictions:

xfull
t =

(
xfull
t,1 , . . . , x

full
t,T

)
, xfull

t,i =

{
xfixed
i , i ∈ Kt,

v⋆t,i, i ∈ Kt.
(4)

This composed image xfull
t is fed into the unified multimodal model (UMM) for semantic interpre-

tation. The CoT-Reflection module returns (i) an refined prompt yopt and (ii) an error-concept index
set Oerr.

Step 1: Multi-layer Attention Masking. Let L be a set of selected Transformer layers (e.g.,
L = {10, 11, 14, 16, 17, 18}). For each layer l ∈ L and position i, obtain an attention score A(l)

i ≥ 0,
normalized as

Ã
(l)
i =

A
(l)
i∑T

j=1 A
(l)
j

. (5)

Given threshold τl, define the layer-wise mask

M (l) = { i | Ã(l)
i ≥ τl }. (6)

The attention-indicated candidate error set is

Mattn =
⋃
l∈L

M (l). (7)

Map CoT-Reflection’s error concepts Oerr to token indices Merr obj. The final error mask is obtained
as a union:

M = Mattn ∪Merr obj, (8)

corresponding to a logical OR operation (1 ∨ 0 = 1, 1 ∨ 1 = 1, 0 ∨ 0 = 0). This ensures that any
position flagged by either signal is treated as erroneous.
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Step 2: Confidence Reweighting. Assign reweighting constants:

εkeep = 1× 10−8, (9)

εerr = 1× 10−9. (10)

Define per-position factors:

εi =


εkeep, i ∈ K (preserved),

εerr, i ∈ M (error region),

1, otherwise,

(11)

where K denotes the global set of preserved tokens with K ∩M = ∅.

Step 3: Combined Scoring and Sorting. Define the adjusted score:

st,i = πt,i · εi. (12)

Tokens are ranked by st,i in descending order.

Step 4: Noise Scheduling and Token Retention. Given noise schedule {β1, . . . , βT }, define

ᾱt =

t∏
s=1

(1− βs). (13)

Let the retention ratio be

ρ(t) = f(ᾱt), f(x) = xγ , γ ∈ (0, 1], (14)

and the retained token count
k(t) = ⌈ρ(t)T ⌉ . (15)

Step 5: Backtracking and Parallel Decoding. At backtracking step tback, compute k = k(tback)
and select the top-k indices by st,i, denoted Kk. Mask the complement Kk, initialize with mask
symbols, and resume parallel decoding from tback conditioned on yopt, updating only positions in
Kk.

This construction ensures that the intermediate image for CoT-Reflection preserves fixed tokens and
fills masked regions with argmax tokens, enabling semantic analysis and targeted resampling in a
MaskGIT-style pipeline.

Computational Efficiency of Backtracking. Directly resampling the entire image at a late gen-
eration step would require recomputing all T token predictions in the MaskGIT pipeline, resulting in
a complexity of O(T ) per step. In contrast, our local backtracking strategy focuses only on a subset
of tokens Kk identified as erroneous or uncertain. Let |Kk| ≪ T denote the number of masked posi-
tions to be re-sampled. Then, the computational cost per step reduces to O(|Kk|), which is typically
orders of magnitude smaller than T .

Formally, let Fθ(x,y) denote the forward pass of the generative model. For global re-sampling:

Costglobal = O(T · Fθ),

while for local backtracking:

Costlocal = O(|Kk| · Fθ) ≪ Costglobal.

Hence, local backtracking enables targeted refinement guided by semantic error signals from CoT-
Reflection while avoiding redundant computation on tokens that are already correct. This approach
balances efficiency and quality, allowing iterative improvement without the high cost of full image
re-generation.
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