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Abstract
The dynamic nature of proteins is crucial for de-
termining their biological functions and proper-
ties, and molecular dynamics (MD) simulations
stand as a predominant tool to study such phenom-
ena. By utilizing empirically derived force fields,
MD simulations explore the conformational space
through numerically evolving the system along
MD trajectories. However, the high-energy barrier
of the force fields can hamper the exploration of
MD, resulting in inadequately sampled ensemble.
In this paper, we propose leveraging score-based
generative models (SGMs) trained on large-scale
general protein structures to perform protein con-
formational sampling to complement traditional
MD simulations. Experimental results demon-
strate the effectiveness of our approach on several
benchmark systems by comparing the results with
long MD trajectories and state-of-the-art genera-
tive structure prediction models.

1. Introduction
Understanding the dynamical properties of protein is crucial
for elucidating the structural mechanism of their biologi-
cal functions and regulations. Transitions can exist in the
conformational ensembles which proteins populate, ranging
from angstrom to nanometer in length, and from nanosec-
ond to second in time. Experimental measurements, such
as crystallographic B-factors and NMR spectroscopy, can
be performed to probe such dynamics. However, these are
limited in spatial and temporal scale. Despite the success
of structure prediction methods (Baek et al., 2021; Jumper
et al., 2021; Lin et al., 2023), which enables the study of pro-
teins based on their high-accuracy structures, the predicted
conformational ensembles often lack diversity (Chakravarty
& Porter, 2022; Saldaño et al., 2022). Molecular dynam-
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ics (MD) serves as a physics-based tool for studying the
protein dynamics by employing an empirical force field for
simulation. A significant challenge encountered by MD sim-
ulations is the high energy-barriers, which forbid transitions
within a limited number of simulation steps. Specifically,
two typical conformational states with high probability den-
sity (low energy) often lie on either side of a high energy
barrier. Consequently, transitions between these states can
only be achieved with sufficiently long simulation time,
otherwise the trajectories remain trapped within the same
energy well, resulting in limited exploration.

Over the past decades, enhanced sampling methods have
been proposed to overcome the energy barrier and encour-
age more exploration of MD simulations (Abrams & Bussi,
2013). These methods in general fall into two categories:
(1) collective variables (CV)-based approaches, such as
umbrella sampling (Torrie & Valleau, 1977) and metady-
namics (Laio & Parrinello, 2002); (2) tempering-based (or
CV-free) approaches such as simulated tempering (Marinari
& Parisi, 1992) and parallel tempering (synonymous replica
exchange molecular dynamics, REMD) (Hansmann, 1997;
Sugita & Okamoto, 1999; Swendsen & Wang, 1986), where
the term "tempering" refers to methods that involve increas-
ing the temperature of the simulated system to overcome
energy barriers (Abrams & Bussi, 2013). The CV-based
methods require pre-defined collective variables, or reac-
tion coordinates, which are a low-dimension representation
describing the motion of interest using particle coordinates
of the system. However, defining proper CV is usually
challenging for real systems (Yang et al., 2019). In con-
trast, tempering-based methods operate by scheduling the
system’s temperature to facilitate barrier-crossing transi-
tions (Abrams & Bussi, 2013), which borrows the idea from
classical simulated annealing approaches for optimization.

Inspired by tempering-based enhanced sampling meth-
ods (Marinari & Parisi, 1992), we leverage the score-based
generative models (SGMs) (Ho et al., 2020; Sohl-Dickstein
et al., 2015; Song et al., 2020) and present the Score-based
ENhanced Sampling (SENS), a score-based framework for
protein conformational sampling which is trained on general
protein structures from Protein Data Bank (PDB) (Berman
et al., 2000). SENS operates by dispersing the input confor-
mation to its geometric neighborhood and then annealing
back the perturbed conformations into respective equilib-
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Figure 1. The illustrative comparison between (a) tempering-based
enhanced sampling versus (b) sampling via SENS. (a) The initial
conformations first go through high-temperature MD simulations
such that they may "jump out" (red) with large kinetic energy, fol-
lowed by low-temperature MD steps (green). The motion is highly
dependent on the energy surface and hampered by potentially
high-energy barrier; (b) The initial conformations are randomly
dispersed by a perturbation kernel (red). Then the noisy conforma-
tions find their respective equilibrium guided by the learned score
functions (green). By contrast with (a), these two operations are
both energy-agnostic.

rium states with the learned score functions. This approach
enables directly sampling of diverse conformation ensem-
bles, thus effectively circumventing the high-energy barrier
issue in traditional MD simulations. Moreover, SENS does
not rely on any specific simulation data for training, and
can be transferred to perform zero-shot conformational sam-
pling by an amortized training. To assess the effectiveness
of the SENS, we evaluate it on several benchmark systems,
comparing the results with long MD simulations and state-
of-the-art generative structure prediction models. The per-
formance of SENS demonstrates its potential as a promising
tool for enhanced protein conformational sampling.

2. Preliminary: Score-based generative models
Score-based generative models (SGMs) can be represented
by a diffusion process x(t) ∈ Rd defined by the Itô stochas-
tic differential equation(SDE):

dx = f(x, t)dt+ g(t)dw, (1)

with continuous time index t ∈ [0, T ], where the f(x, t) ∈
Rd is the time-dependent drift coefficient, g(t) ∈ R is the
diffusion coefficient, and w ∈ Rd is the standard Wiener
process. Then, the corresponding backward SDE that de-
scribes the dynamics from x(T ) to x(0) is (Anderson, 1982;
Song et al., 2020):

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, (2)

where dt is negative infinitesimal timestep and w is the
standard Wiener process as continuous time t flows back
from T to 0. Two widely used SDE-based schemes (Song
et al., 2020) are (1) Variance Exploding (VE) SDE:

dx =

√
d[σ2(t)]

dt
dw, (3)

and (2) Variance Preserving (VP) SDE:

dx = −1

2
β(t)xdt+

√
β(t)dw, (4)

where σ(t) ∈ R+ and β(t) ∈ R+ are pre-defined noise
schedule functions to perturb the data.

3. Score-based enhanced sampling
Suppose we have an observed conformation of a protein (we
shall identify it with subscript [p]) denoted by x[p] ∈ R3N[p] ,
where N[p] is the total number of atoms of interest. Our
goal is to obtain a diverse conformation ensemble X̃∗

[p] =

{x̃(i)
[p]} (members indexed by i ∈ Λ) that well captures

the dynamics of p with x[p] as starting point. To achieve
this, consider two stochastic operators: (1) heat operator
Hϵ : R3N[p]×|Λ| → R3N[p]×|Λ|. and (2) anneal operator
Aη : R3N[p]×|Λ| → R3N[p]×|Λ|, where ϵ, η are random
variables governing the randomness, and |Λ| is the size
of ensemble to be sampled. Inspired by tempering based
enhanced sampling (Hansmann, 1997; Marinari & Parisi,
1992; Sugita & Okamoto, 1999; Swendsen & Wang, 1986),
the problem can be described as follows:

X̃[p] = Aη(Hϵ(X[p])), (5)

where X[p] = repeat(x[p]; |Λ|) ∈ R3N[p]×|Λ| is an operation
that repeats x[p] for |Λ| times to create a set of replicas
before simulation. The above formulation indicates that the
conformational ensemble can be obtained as a composition
of heat and anneal operators. For simplicity, we consider
independent operators such that Eq. (5) can be replaced
by its point-to-point versions, which are adopted in later
paragraphs.

Repeat Heat

Score-based enhanced sampling

Anneal

Sampled ensemble

Figure 2. Illustration of SENS. Given an initial conformation (Trp-
cage as example, PDB ID: 2JOF), a number of replicas are created
(repeat) and fed to the heat process. The heat process respectively
perturbs each replica until a specific time δT , where δ (0 < δ < 1)
is a parameter controlling the range of perturbation. Afterwards,
the anneal process yields the sampled ensemble.

Based on this, we propose a novel score-based framework
that realizes these two operators. We reason that, as a gener-
ative model: (1) The perturbing-denoising nature of SGMs
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transforms the input within the same space; (2) The continu-
ous diffusion process allows us to partially perturb the input
instead of projecting into a latent space; (3) SGMs have
proved their effectiveness for modeling multimodal distribu-
tion (Dhariwal & Nichol, 2021) and are seldom haunted by
the mode collapse issue.

3.1. Sampling via forward-backward dynamics

To better sample protein conformational ensembles, we pro-
pose a forward-backward dynamics that leverages the multi-
level score functions learned by score matching. Firstly,
consider the following realization of operators defined by
integrals, given δ ∈ (0, 1) is the parameter controlling the
perturbation scale:

Hw(x(0)) := x(0) +

∫ δT

0

[f(x(t), t)dt+ g(t)dw] , (6)

where x(t) is the diffusion process as Eq. (1), with initial
value x(0) being input geometry as in classical MD simula-
tions. The f(·, ·), g(·) and w = w(t) are defined over time
domain t ∈ [0, T ] according to Eq. (1). And with positive
dt:

Aw̄(x(δT )) := x(δT ) +

∫ 2δT

δT

g(τ(t))dw̄

+

∫ 2δT

δT

[
−f(x̄(t), τ(t)) + g2(τ(t))∇x̄(t) log pt(x̄(t))

]
dt,

(7)

where τ(t) := 2δT − t for brief notation. x̄(t) := x(2δT −
t), w̄ := w(2δT − t) are identical processes as Eq. (1) and
(2) with change of variable; the rest of symbols are denoted
the same as above. Then, the sampled conformation x̃ by
the forward-backward dynamics take the following form by
composing two operators:

x̃ = Aw̄(Hw(x(0))) (8)

Intuitively, Eq. (8) is composed of both forward and back-
ward SDEs (Eq. (1) and (2)), first enforcing proper pertur-
bation and then mapping the perturbed examples into the
annealed conformations. The definitions above realize the
heat and anneal operator respectively by pushing forward a
new SDE from t = 0 to 2δT .

3.2. Score matching objective

To approximate the score functions in Eq. (8), we can train
a time-dependent score network sθ(x, t) via the following
objectives:

argmin
θ

Et

{
λ(t)Ex0,xt

[
∥sθ(xt, t)−∇xt log pt|0(xt|x0)∥2

]}
,

(9)
where λ(t) > 0 is a positive loss reweighting function, xt ∼
pt|0(xt|x0) and x0 ∼ p(x) are defined by the corresponding

perturbation kernel, and the time t is uniformly sampled
over cropped time domain [0, tm] (δT ≤ tm ≤ T is the
pre-specified upper bound of δT used during inference).

3.3. Control sampling with temperature

Temperature plays an important role during sampling by
effectively trade-off diversity and fidelity (i.e. exploration
and exploitation). Given a probability density p(x), the tem-
pering distribution by an inverse temperature factor β > 0
is denoted as p(β)(x) = (p(x))β/Zβ , where Zβ is the nor-
malizing constant

∫
x
(p(x))βdx, which only depends on β.

The tempering strategy is commonly used for categorical
distributions, such as language modeling, via rescaling the
logits. Unfortunately, for SGMs, the temperature coeffi-
cient does not explicitly appear in the backward SDE. In
this work, we propose using an β-related affine transfor-
mation on the score function ∇x log pt(x) to achieve low-
temperature sampling. Details can be found in appendix.

3.4. Model architectures

To parameterize the score network sθ(x, t) for conformation
sampling, we adopt the modified EGNN (Satorras et al.,
2021) with SE(3)-equivariant property. Following (Janson
et al., 2023; Jing et al., 2023), we focus on residue-level
protein structures, where the representation of conformation
is denoted as x = (x1, x2, . . . , xN ) ∈ RN×3, where xi ∈
R3 is the coordinate of Cα atom of the i’s residue. For
message passing, we construct a k-nearest-neighbors (kNN)
graph with maximum number of neighbors set to k = 64. To
attend to the chain structure of protein, sinusoidal positional
embedding (Vaswani et al., 2017) is appended to the node
feature along with the time embedding, which is used to
condition the score network. See appendix for the detailed
model implementations.

4. Experiment
To assess the performance of SENS on zero-shot confor-
mational sampling, we set up the benchmark set consisting
of 12 fast-folding proteins with up to 1ms all-atom MD
trajectories as reference (named reference MD) (Lindorff-
Larsen et al., 2011). Specifically, they include Chignolin,
Trp-cage, BBA, Villin, WW domain, NTL9, BBL, Protein
B, Homeodomain, Protein G, α3D and λ-repressor. We
generate 100 conformations for each target from SENS and
baseline models. The conformations from reference MD
are uniformly sampled from MD trajectories in the same
size with different timescales: 1µs, 10µs, full (the longest
time in data). For example, 10µs means conformations are
sampled from trajectories with the first 10µs. To better
show the effect of temperature in MD simulation, we run
two independent 0.1µs simulations (named short MD) with
different temperatures for comparison as well.
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Table 1. Benchmark results of different methods with MD references. The samples from reference MD trajectories are colored as brown
while samples from other baselines are obtained by running their codes. The cell color indicates the top three best scores in each column,
and the best result of our methods are bolded.

Validity(↑) JS-D(↓) JS-Rg (↓) Div-TM(↑) Div-RMSD(↑)
AF2 reducedMSA (Vani et al., 2023) 1.000 0.330 0.517 0.057 0.049

AF2 noMSA 0.995 0.321 0.431 0.194 0.224
EigenFold (Jing et al., 2023) 0.894 0.249 0.477 0.218 0.166
idpGAN (Janson et al., 2023) 1.000 0.251 0.530 0.839 1.346

SENS (δ = 0.3, β = 5.0) 1.000 0.283 0.524 0.543 0.275
SENS (δ = 0.4, β = 5.0) 1.000 0.252 0.422 0.647 0.401
SENS (δ = 0.3, β = 2.0) 1.000 0.267 0.474 0.536 0.277
SENS (δ = 0.4, β = 2.0) 0.998 0.217 0.401 0.693 0.440
SENS (δ = 0.3, β = 1.0) 0.998 0.257 0.416 0.576 0.295
SENS (δ = 0.4, β = 1.0) 0.993 0.203 0.338 0.734 0.498

Short MD 0.1µs 1.000 0.217 0.300 0.508 0.449
Short MD 0.1µs (high temp.) 1.000 0.204 0.285 0.536 0.495

Reference 1µs (Lindorff-Larsen et al., 2011) 1.000 0.135 0.178 0.582 0.642
Reference 10µs (Lindorff-Larsen et al., 2011) 1.000 0.100 0.156 0.650 0.736
Reference full (Lindorff-Larsen et al., 2011) 1.000 0.000 0.000 0.659 0.756
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Figure 3. Contact probability distribution for protein Lambda
(PDB ID: 1LMB) conformations from different methods.

The training and validation examples for training SENS are
acquired from PDB. We adopted the VESDE diffusion as
backbone model for SENS. Baseline models were selected
as (1) AlphaFold2 (AF2) (Jumper et al., 2021) with either
no MSA (sequence only) or reduced MSA (Chakravarty &
Porter, 2022) as input; (2) idpGAN (Janson et al., 2023), a
recently reported conditional generative method based on
generative adversarial networks (GAN); (3) EigenFold (Jing
et al., 2023), a recently developed generative structure pre-
diction model that employs harmonic diffusion to enable
diversity. More details of data and baselines will be listed
in the appendix.

Our evaluation metrics are categorized into: Validity is de-
fined by clash ratio which is the number of clash-free sam-
ples divided by the number of samples. Clash is counted
by examining whether a contact pair is within certain dis-
tance threshold. Fidelity compares the distribution diver-
gence between sampled conformations and the full reference
MD. We use the symmetric Jensen-Shannon (JS) divergence

based on (i) pairwise distance distribution (JS-D) and (ii)
radius of gyration distribution (JS-Rg) as in idpGAN (Jan-
son et al., 2023). Diversity is defined the average pairwise
dissimilarity scores based on root mean square deviation
(RMSD, unit: nm) and TM-score (Zhang & Skolnick, 2004)
for the generated ensemble. For the latter, we apply the
inverse TMscore (1 − TM(i, j)) to express "diversity" to-
gether with RMSD. During evaluation, each metric was
averaged among different benchmark targets to give the
finally evaluation. As shown in Table 1, SENS’s perfor-
mance validated its effectiveness in sampling diverse, yet
physically plausible conformations when compared to other
(generative) structure prediction models and traditional MD
simulations. All structure generation models suffered from
limited diversity and bad fidelity. Though idpGAN showed
outstanding sampling diversity, its conformations tend to be
disordered and deviate from true distribution (also as shown
in Fig. 3). Notably for SENS, increasing temperature (w/
declined β) results in more diverse ensembles and better
coverage of reference conformation space by trading off a
bit validity. The detailed of metrics and results can be found
in appendix.

To better demonstrate the performance of our proposed
method, we conducted a case study using the bovine pan-
creatic trypsin inhibitor (BPTI) protein. The dynamic prop-
erties of BPTI have been extensively studied using long
molecular dynamics (MD) simulations (Shaw et al., 2010).
Experiments and MD simulations revealed BPTI exhibits
five distinct structural clusters (Shaw et al., 2010). Similar
to our benchmark, full MD trajectory (1,013 µs) were used
as reference and generative structure prediction methods
were compared with ours. Principal Component Analysis
(PCA) were employed for dimension reduction to illustrate
the conformation distribution. As shown in the upper panel
of Fig. 4, AlphaFold2 redusedMSA and EigenFold were
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Figure 4. Visualization of sampled BPTI conformations and structure clusters. The upper panel illustrates a PCA-reduced map of the
sampled conformations, pairwise distances were used as features. The color gradient represents the estimated density. Red circles indicate
the locations of five structure clusters. 68.05% of the idpGAN samples are found outside the depicted area. The lower panel depicts the
nearest sampled structure of SENS(δ = 0.3, β = 1.0, colored) to the five structure clusters (grey). RMSD (nm) is presented below.

only able to sample a constrained region, while idpGAN
sampled an excessive amount of disordered conformations,
which are unsuitable for structured proteins like BPTI. In
contrast, our method was able to sample a reasonable and
diverse range of conformations, outperform 1µs simulations,
and approaching the full reference trajectory. In the lower
panel of Fig. 4, we present the nearest sampled structure
from SENS(δ = 0.3, β = 1.0, colored) to the five structural
clusters. Similar structure can be found for all five structure
clusters within RMSD 0.25 nm. These findings demon-
strates a promising performance for SENS in generating
reliable and diverse protein conformations.

5. Conclusion
In this paper, we presented SENS, a score-based framework
for protein conformational sampling inspired by tempering-
based enhanced sampling methods in molecular dynamics
(MD) simulations. SENS firstly disperses the initial confor-
mation within its neighborhood, followed by a score-based
annealing process. We trained SENS on general protein
structure data from the Protein Data Bank (PDB) using
score matching objectives. Experimental results on several
MD benchmarking systems demonstrate that SENS can
effectively sample a diverse ensemble from the initial con-
formation and achieve comparable performance with long
simulation results.

Limitations of SENS and potential future directions encom-
pass several aspects: (1) The isotropic perturbation kernels
could be improved by incorporating drift and diffusion terms
specifically designed for protein structures (Ingraham et al.,
2022; Jing et al., 2023). This modification would allow the
perturbations based on non-Euclidean coordinates, draw-

ing parallels to CV-based enhanced sampling techniques.
(2) SENS has mainly been tested on VE/VPSDE diffu-
sion (Song et al., 2020) as proof of concept. The backward
process, however, can be computationally intensive due to
plenty of network evaluations. To accelerate SENS for
efficient sampling, one might consider the use of distilla-
tion (Salimans & Ho, 2022) or more advanced frameworks
such as consistency models (Song et al., 2023). (3) An inter-
esting application of SENS is to plug it in atom-level MD
simulations by providing out-of-barrier conformation set as
MD starting points. To achieve this, one may either extend
SENS for modeling all-atom structures, or develop back-
mapping algorithms like in (Yang & Gómez-Bombarelli,
2023). (4) The proposed method, in its current form, re-
lies solely on structure data for training. As amino acid
sequences was also reported to be used for inferring protein
structure (Lin et al., 2023), it’s worth exploring the feasi-
bility to use sequence as conditional signal when modeling
dynamics. For example, one can provide gradient guidance
during the backward SDE (Song et al., 2020) using an exter-
nal classifier, which could be trained on sequence-structure
pairing data using a CLIP-like architecture (Radford et al.,
2021).
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A. Further details of SENS
A.1. Equivariant score network

In this section, we elaborate the equivariant model architecture used to parameterize the score function for SENS. Basically,
we adopt the E(n)-equivariant graph neural networks (EGNN) (Satorras et al., 2021) given its simple and computationally
efficient form, with an additional SE(3)-equivariant convolutional layer to achieve the SE(3)-equivariant property during the
backward process. The SE(3)-equivariant property of a function (x′,h′) = f(x,h) with respect to group transformations
operating on three-dimensional (3D) coordinates x ∈ RN×3 and hidden features h ∈ RN×d, is defined below:

(x′R⊤ + t,h′) = f(xR⊤ + t,h), (10)

where rotation matrix R ∈ R3×3 (orthogonal with determinant 1) and translation vector t ∈ R3 define the special Euclidean
group (SE(3) group) transformations, where any rotation (yet not reflection) and translation in 3D space are included. The
hidden features are invariant to the group actions and thus not affected by the transformation. The advantage of leveraging
such equivariance is that the conformations generated via a group orbit, i.e., by applying all group actions on some specific
input x, can be equivalent (trivial) in 3D space because they belong to the same molecular species. Neural networks
equipped with equivariant property can focus more on performing non-trivial mapping for the conformations.

The SE(3) convolutional layer is applied before the EGNN network, and adopts the definition in SE(3)-transformer (Fuchs
et al., 2020) and tensor field networks (TFN) (Thomas et al., 2018). To simplify, we only consider up to type-1 features
(scalar and vector field) from each node’s neighborhood for the convolution, which means, the output type-l (l = 0, 1)
feature for node i is:

f l
out,i = wllf l

in,i +

1∑
k=0

∑
j∈Ni

W lk(xj − xi)f
k
in,j , (11)

where f l
in,i is the type-l feature for node i, W lk : R3 → R(2l+1)×(2k+1) is the learnable kernel mapping from type-k

features to type-l features, and wllf l
in,i is the self-interaction term with learnable parameters wll ∈ R. As shown in (Thomas

et al., 2018), such kernel is a combination of equivariant basis kernels {W lk
J }

k+l
J=|k−l|, or formally

W lk(x) =

k+l∑
J=|k−l|

ϕlk
J (∥x∥)W lk

J (x), where W lk
J (x) =

J∑
m=−J

YJm(x/∥x∥)Qlk
Jm, (12)

where Qlk
Jm are the Clebsch-Gordan matrices of shape (2l + 1)× (2k + 1), YJm indicates the m’s dimension of spherical

harmonic YJ : R3 → R2J+1, and ϕJ(·) are learnable radial functions with input radial ∥x∥.

EGNN is a type of message passing graph neural networks with the equivariant graph convolutional layers (EGCL) defined
on type-1 and type-0 features (xl+1,hl+1) = ϕl

EGNN(x
l,hl), or formally as follows (l is the index of layer):

mij = ϕm(hl
i,h

l
j , d

2
ij , eij), hl+1

i = ϕh(h
l
i,
∑
j∈Ni

aijmij),

xl+1
i = xl

i +
∑
j∈Ni

(
xl
i − xl

j

dij + 1
)ϕx(h

l
i,h

l
j , d

2
ij , eij), (13)

where dij := ∥xl
i − xl

j∥2 denotes the Euclidean distance between two nodes w.r.t. their type-1 features, eij is the edge
attributes from input, aij = ϕa(mij) indicates the attention mechanism that aggregates the message mij , Ni is the
neighborhood of node i, and the learnable mappings (ϕm, ϕh, ϕx, ϕa) are parameterized by multi-layer perceptrons (MLP).
The whole EGNN architecture is composed of L such layers to perform the non-linear and equivariant transformation.

Denoting the SE(3) convolutional layer as φθ(·) and the EGNN network as EGNNθ(·), the equivariant score network used
in our work has the composition form as sθ(x, t) = Out(1)

[
(EGNNθ ◦ φθ)(x,h

0(t))
]
, where ◦ means the composition of

two functions, Out(1)(·) indicates extracting only the type-1 feature (vector field), x is the atom coordinates and h0(t) is
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the time-dependent initial embedding (type-0 features). Since the special Euclidean group SE(3) is just a subgroup of the
Euclidean group E(3) by excluding reflections, it is trivial to prove that the score network sθ(x, t), composed of SE(3) and
E(3)-equivariant functions, is SE(3)-equivariant w.r.t. x for any fixed t.

A.2. Implementation details

For equivariant score network, the nodes x0 (type-1) are initialized by the coordinates of the Cα atoms of the input conforma-
tion, while the node features h0 (type-0) are initialized by the sinusoidal time embedding and positional embedding (Vaswani
et al., 2017). To be specific, both embeddings having a dimension of 128 are concatenated and then passed through a affine
transformation and a followed layer normalization. The size of node embedding is 128 and we do not consider edge feature
to construct the denoising network. The whole EGNN network consists of 4 convolutional layers, 128 features per layer
and SiLU activation functions. The score network is trained for a total 10,000,000 updates with batch size 2, learning rate
1e-5 using Adam optimizer and a warmup linear schedule, where learning rate are linearly increasing to the maximum
value for the first 100,000 steps and linearly decreasing to zero for the rest of steps. The training was deployed on NVIDIA
Tesla V100-SXM2 32GB and the training process approximately lasted 24 GPU days for a single run. To determine the
best model checkpoint for sampling experiments, we employed early stopping strategy to avoid overfitting based on the
validation loss per epoch. For diffusion, we used T = 1000 as the total number of time steps. During sampling, the reverse
diffusion samplers (Song et al., 2020) were adopted to discretize the reverse-time domain and calculate the integral.

A.3. Data processing

Following (Jing et al., 2023), we set the training split as all structures released before April 30th, 2020 while the validation
split as structures between May 1st, 2020 and November 30th, 2020. Single chain structures with sequence length between
20 and 256 were used. On top of these, we removed structures if they meet any of the criteria: (1) have missing atom or
coordinates; or (2) contain residue discontinuity; or (3) resolution >5Å. We also dropped out structures appearing in our
evaluation benchmarks to prevent data leakage. Finally, we obtained a training set with 193,145 structures, plus a validation
set containing 12,110 structures.

For each atom coordinate in the PDB dataset, we perform the whitening transformation by deducting a mean vector and
element-wise rescaling by a factor. Specifically, for any protein conformation with N atoms x = (x1, x2, . . . , xN ), we
apply xi ← (1/σ̂train)⊙ (xi − 1/N

∑
i xi),∀i, where xi ∈ R3 is the Euclidean coordinate (xyz) of the ith atom, σ̂train is the

standard deviation vector calculated independently for each component in 3D space (we denote as x[0], x[1], x[2]) among
all the atom coordinates in the training set, while ⊙ is Hadamard (element-wise) product operation. In practice, we set
σ̂train=[10.08, 10.05, 10.74] and such statistic is computed from the whole training set.

A.4. Details of temperature-controlled sampling

Consider some probability distribution p(x) to which we do not have access. We have done approximating its corresponding
score function∇x log pt(x) using a pre-trained network sθ(x, t). Our goal is to find the β−tempering version of the score
∇x log p

(β)
t (x) such that the backward SDE can be mediated by β. To derive its expression, we firstly consider the case of

Gaussian data distribution, i.e., x ∼ N (µ0,Σ0), and introduce the following lemma:

Lemma A.1. Let x(0) ∼ N (µ0,Σ0) be the data sample from some gaussian distribution, then the marginal distribution of
perturbed data x(t) of Eq. (3) and (4) is subject to the following gaussian process:

x(VE)(t) ∼ N (x(t)|µ0,Σ0 + (σ2(t)− σ2(0))I), (14)

and
x(VP)(t) ∼ N (x(t)|α(t)µ0, α

2(t)Σ0 + (1− α(t))2I), (15)

where α(t) = exp(− 1
2

∫ t

0
β(s)ds). Then we can obtain the following score rescaling theorem:

Theorem A.2. (Score rescaling) Suppose x(0) ∈ Rd is Gaussian distributed with covariance matrix Σ, then sampling via
the backward process Eq. (2) with temperature control suffices to apply a linear transformation per time the score function
at time t, or as the following form:

∇x log p
(β)
t (x) = R(t;Σ, β)∇x log pt(x), (16)
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where R(t;Σ, β) ∈ Rd×d is a time-dependent positive semi-definite matrix describing the tempering transformation, which
only depends the covariance of data x(0) as well as an inverse temperature scalar β > 0. Especially, R(t;Σ, β = 1) ≡ I,
i.e., sampling without tempering effect. See appendix for detailed proof of Lemma A.1 and Theorem A.2, along with their
specific forms for different SDEs. The score rescaling in Eq. (16) only assumes Gaussian, yet this assumption can already
be too strong. In the following section, we show that even when the Gaussian assumption fails to be made, we can still
trade-off sample quality and diversity with the rescaling transformation via Eq. (16).

A.4.1. PROOF OF LEMMA A.1

Below we give a detailed proof of A.1. Consider we have a data sample x0 ∈ Rd is normally distributed, then its marginal
distribution is:

p0(x0) = N (x0|µ0,Σ0) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x0 − µ0)

TΣ0
−1(x0 − µ0)

)
. (17)

Because we need to derive both marginal distribution for both VESDE and VPSDE, we start with a more general case.
Consider another conditional Gaussian distribution pt for xt given x0 in the form:

pt|0(xt|x0) = N (xt|Ax0 + b,Σt), (18)

where A ∈ Rd×d,b ∈ Rd are parameters defining the linear function of its condition variable x0, and Σt is the covariance
matrix of xt. This is exactly an example of a linear Gaussian model (Roweis & Ghahramani, 1999).

The derivation of pt(xt) involves computing the integral
∫
x
p0(x)pt|0(xt|x)dx, which in general can be as intractable as the

evidence (normalizing constant of posterior) that appears in Bayesian inference. However, this can be solved in closed-form
for Gaussian distributions. As proved in the Section 2.3.3 of (Bishop & Nasrabadi, 2006), the marginal distribution pt(xt) is
also normally distributed and take the following form:

pt(xt) = N (xt|Aµ0 + b,Σt +AΣ0A
⊤), (19)

Therefore, for VESDE, the perturbation kernel in Eq. (3) give the conditional distribution (Song et al., 2020) as:

p(VE)
t|0 (xt|x0) = N (xt|x0, (σ

2(t)− σ2(0))I), (20)

where σ(t) is noise scale function of VESDE and t ∈ [0, T ] is the continuous time variable. Then, plug in the conditional
distribution back to Eq. (19), it finally yields

p(VE)
t (xt) = N (xt|µ0,Σ0 + (σ2(t)− σ2(0))I). (21)

Also, for VPSDE, the conditional distribution based on the perturbation kernel is:

p(VP)
t|0 (xt|x0) = N (xt|α(t)x0, (1− α2(t))I), (22)

where α(t) = exp(− 1
2

∫ t

0
β(s)ds) and β(t) is the noise function in VPSDE. Similar to above, the marginal distribution of

xt is:

p(VP)
t (xt) = N (xt|α(t)µ0, α

2(t)Σ0 + (1− α2(t))I), (23)

A.4.2. PROOF OF THEOREM A.2

Since we have obtained the marginal distributions pt(xt) as above, we can prove the Theorem A.2 by giving the specific
form of tempering transformation. Consider the general form of marginal distribution as 19, based on the density function of
Gaussian distribution, the corresponding score function can be written as:
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∇xt log pt(xt) = −(Σt +AΣ0A
⊤)−1 (xt − (Aµ0 + b)) , (24)

Now suppose we want to "temper" the original data distribution p0(x0) = N (x0|µ0,Σ0) to a inverse temperature factor
β > 0, i.e.,

p
(β)
0 (x0) =

(p0(x0))
β

Zβ
= N (x0|µ0, β

−1Σ0), (25)

where Zβ is the normalizing constant. This indicates the inverse temperature β actually rescales the data covariance by a
factor 1/β. Plug-in back to Eq. (24), we have:

∇xt
log(β) pt(xt) = −(Σt + β−1AΣ0A

⊤)−1 (xt − (Aµ0 + b))

= −(Σt + β−1AΣ0A
⊤)−1

[
(Σt +AΣ0A

⊤)(Σt +AΣ0A
⊤)−1

]
(xt − (Aµ0 + b))

= (Σt + β−1AΣ0A
⊤)−1(Σt +AΣ0A

⊤)
[
−(Σt +AΣ0A

⊤)−1 (xt − (Aµ0 + b))
]

= (Σt + β−1AΣ0A
⊤)−1(Σt +AΣ0A

⊤)∇xt log pt(xt). (26)

Finally, let R(t;Σ, β) := (Σt + β−1AΣ0A
⊤)−1(Σt +AΣ0A

⊤), we have the result of Theorem A.2:

∇x log p
(β)
t (x) = R(t;Σ, β)∇x log pt(x). (27)

Note that for different SDEs, the tempering transformation R(t;Σ, β) takes different forms since it is also determined
by Σt and A, which are further determined by the noise schedule functions. To be specific, for VESDE, A = I,Σt =
(σ2(t)− σ2(0))I; for VPSDE, A = α(t)I,Σt = (1− α2(t))I. Therefore, by plugging in, the tempering transformation
will be:

R(VE)(t;Σ, β) := ((σ2(t)− σ2(0))I+
1

β
Σ0)

−1((σ2(t)− σ2(0))I+Σ0), (28)

for VESDE and

R(VP)(t;Σ, β) := ((1− α2(t))I+
α2(t)

β
Σ0)

−1((1− α2(t))I+ α2(t)Σ0), (29)

for VPSDE.

A.4.3. COVARIANCE DETERMINATION

According to Eq. (16), we need to compute the covariance matrix Σ in order to properly rescale the score function during
sampling. Because covariance Σ for the test protein in benchmark set cannot assume to be accessible during inference,
we estimate it using the covariance of training set Σ ≈ Σ̂train since they can be viewed as identically distributed. To
accommodate structures with different length, we adopt a simple strategy by applying the unified covariance matrix for each
atom and concatenate together, such that Σ has the following block diagonal form:


Σa 0 . . . 0
0 Σa . . . 0
...

...
...

...
0 . . . 0 Σa


where Σa ∈ R3×3 is the covariance matrix calculated among all the atoms in the training set, and the number of blocks in a
row or column depends on the number of atoms in the test protein when applying the rescaling transformation. We then
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Figure S1. Covariance matrix Σa calculated among all atom coordinates in the training set after the whitening process as in A.3.

evaluate Σtrain for the training net after whitening. As shown in Fig. S1, the Σa is nearly a identity matrix in R3 and thus the
Σ can be as simple as a identity matrix in RN×3 when applying to a protein with N atoms.

A.5. Pseudo free energy computation

Similar to the likelihood computation in probability flow ODE (Song et al., 2020), we can also derive from Eq. (8) the
(pseudo) free energy with the pretrained score functions. This can be used for energy reweighting (Noé et al., 2019) of
the sampled ensemble to Boltzmann distribution, which is useful for computing thermodynamics quantities. We firstly
write the probability flow ODE that belongs to the backward diffusion in Eq. (2) by replacing the score function with
time-conditioned score network sθ(x, t) as follows (negative dt, same below):

dx = [f(x, t)− 1

2
g2(t)∇xsθ(x, t)]dt. (30)

Let f̃θ(x, t) := f(x, t)− 1
2g

2(t)∇xsθ(x, t), and consider a sampled conformation x̃ from input conformation x(0), we can
compute the pseudo free energy (PFE) by employing the instantaneous change of variables formula (Chen et al., 2018):

PFE(x̃0) = − log pδT |0(x(δT )|x(0))−
∫ δT

0

∇ · f̃θ(x(t), t)dt, (31)

where the perturbed sample x(δT ) and log pδT |0(x(δT )|x(0)) are explicitly defined by the perturbation kernel in Eq.
(6) and can be evaluated in closed-form. To reduce the expensive computation of the second term, we may used the
Skilling-Hutchinson trace estimator (Hutchinson, 1989; Skilling, 1989) as suggested in (Grathwohl et al., 2018; Song et al.,
2020):

∇ · f̃θ(x, t) = Ep(ϵ)[ϵ
⊤∇f̃θ(x, t)ϵ], (32)

where∇f̃θ(x, t) denotes the Jacobian of f̃θ(·, t), and the ϵ ∈ Rd is a white noise, i.e., E[ϵ] = 0 and Cov[ϵ] = I. In practice,
we can sample ϵ ∼ p(ϵ) and compute the unbiased estimation using above equation up to arbitrarily small error (Song et al.,
2020) given sufficient computation.

A.6. Pseudocode of forward-backward dynamics

The pseudocode for the forward-backward dynamics is shown in Algorithm 1 and 2 for better illustration.
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Algorithm 1 Forward-backward dynamics (VESDE)
1: Require: input conformation x, constant perturbation scale δ; time upper bound for diffusion process T ; score network

sθ; noise scale function σ; data covariance Σ; inverse temperature τ .
2: x0 ← x // initialize state
3: {t1, . . . , tM} ← Discretize([0, δT ]) // discretize time domain
4: for i = 1 to M do
5: z ∼ N (0, I)
6: xi ← xi−1 +

√
σ2(ti)− σ2(ti−1)z

7: for i = M − 1 to 0 do
8: Ri+1 ← R(ti+1;Σ, τ) // in Eq. (28)
9: s′i+1 ← Ri+1sθ(xi+1, σ(ti+1)) // score rescaling

10: x′
i ← xi+1 +

[
σ2(ti+1)− σ2(ti)

]
s′i+1

11: z ∼ N (0, I)
12: xi ← x′

i +
√
σ2(ti+1)− σ2(ti)z

13: return x0

Algorithm 2 Forward-backward dynamics (VPSDE)
1: Require: input conformation x, constant perturbation scale δ; time upper bound for diffusion process T ; score network

sθ; noise scale function β; data covariance Σ; inverse temperature τ .
2: x0 ← x // initialize state
3: {t1, . . . , tM} ← Discretize([0, δT ]) // discretize time domain
4: for i = 1 to M do
5: z ∼ N (0, I)
6: xi ←

√
1− β(ti)xi−1 +

√
β(ti)z

7: for i = M − 1 to 0 do
8: Ri+1 ← R(ti+1;Σ, τ) // in Eq. (29)
9: s′i+1 ← Ri+1sθ(xi+1, ti+1) // score rescaling

10: x′
i ←

[
2−

√
1− β(ti+1)

]
xi+1 + β(ti+1)s

′
i+1

11: z ∼ N (0, I)
12: xi ← x′

i +
√
β(ti+1)z

13: return x0



Score-based Enhanced Sampling for Protein Molecular Dynamics

B. Details of evaluation metrics
In this section, we elaborate the definition of the evaluation metrics introduced in the experiments.

Validity The Validity is defined as the ratio of clash conformations. It is calculated as the number of conformations
that contain steric clashes divided by the number of all evaluating examples. Steric clash is determined by whether two
contacting atoms is too close to each other. For an example conformational ensemble X := {xi}ni=1, we have:

Validity({xi}ni=1) = 1− 1

n

n∑
i=1

1{∃j, k, s.t. d(xi[j],xi[k]) < d0 and |j − k| > 2}, (33)

where x[j] ∈ R3 indicates the coordinate of the j’s atom in conformation x, d0 > 0 is the distance threshold to discriminate
steric clash, and the contacting pairs are only considered to be those beyond the 2-hop neighborhood along the chain
(|j − k| > 2). In practice, we choose d0 according to the van der Waals radius of Cα (1.7Å) minus an allowable overlap
δd, or formally d0 = 2× 1.7− δd (unit : Å). The default value of δd is set to be 0.4Å, which is a reasonable value when
examining protein-protein interactions (Ramachandran et al., 2011).

Fidelity The fidelity of a set of conformations is evaluated by measuring the similarity between the distribution of the
reference ensemble X and the distribution of generated ensemble X̃, which takes the idea of Fréchet inception distance
(FID) (Heusel et al., 2017) for the evaluation of image synthesis. Following (Janson et al., 2023), we adopt two distributions
that can loyally reflect the ensemble characteristics: (1) pairwise distance distribution, a N × N × C tensor D (N is
the number of atoms of each conformation), whose element D[i, j] = (p

(ij)
1 , . . . , p

(ij)
C ) records the discretized distance

distribution p(ij) = Cat(p(ij)1 , . . . , p
(ij)
C ) of a pair of atom i and j among conformations in ensemble. Following (Janson

et al., 2023), the distance range between minimum and maximum values is equally divided by C = 50 bins to give the
categorical distribution; (2) radius of gyration distribution, where similar discretization treatment is applied same as above.
On top of these, the Jensen-Shannon (JS) divergences is applied for both distributions between the reference ensemble and
generated ensemble due to its symmetric property. It takes the following form (DKL denotes the Kullback–Leibler (KL)
divergence, p, q are distribution):

DJS(p ∥ q) =
1

2
DKL(p ∥ m) +

1

2
DKL(q ∥ m), where m =

1

2
(p+ q). (34)

Note that there exists N(N − 1)/2 pairs of atoms in a N -atom conformation. To derive a scalar divergence between two
input ensembles, we use the averaged JS divergence (Janson et al., 2023) over all atom pairs, or formally:

Davg
JS (X ∥ X̃) =

2

N(N − 1)

N∑
i=1

N∑
j=i+1

DJS(p
(ij) ∥ p̃(ij)). (35)

Since the distribution of radius of gyration is uni-dimensional, the JS divergence is applied as usual.

Diversity The diversity of the ensemble of interest can be derived from any structural similarity score by enumerating
and averaging the pairwise scores between two members of that ensemble. Here we adopt two most commonly used
scoring functions: root mean square deviation (RMSD) and TM-score (Zhang & Skolnick, 2004). RMSD reflects the
deviation degree in length (here we use nanometer (nm) as the unit) and is thus unnormalized. TM-score, on the contrary,
is a normalized score to evaluate the structural similarity between two input structures, ranging from 0 to 1 and unit-free.
A higher TM-score indicates that two structures share more similarity. Given above, the diversity (Div) of an ensemble
X := {xi}ni=1 is defined as follows:

Div-RMSD(X) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

RMSD(xi,xj), (36)

and
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Div-TM(X) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

(1− TM(xi,xj)) , (37)

where we apply the inverse score [1− TM(·, ·)] to express diversity (the higher score the more diverse) aligned with RMSD.
During evaluation, both scores are calculated using the officially released binary from (Zhang & Skolnick, 2004).

C. Implementation of other methods
C.1. Introduction of baseline models

As for baselines, AlphaFold2 (AF2) (Jumper et al., 2021) is notably powerful for its highly accurate structure prediction
for unseen proteins. However, several recent studies (Chakravarty & Porter, 2022; Saldaño et al., 2022; Vani et al., 2022;
Wayment-Steele et al., 2022) have investigated its potential for conformational sampling, with their results underscoring the
limitations in conformational diversity. In accordance with these studies, We use AF2 with either no MSA (sequence only)
or reduced MSA (Chakravarty & Porter, 2022) as input, running all 5 models under multiple random seed to encourage
diversity; idpGAN (Janson et al., 2023) is a recently reported conditional generative method based on generative adversarial
networks (GAN). idpGAN is trained with plenty of simulation data of intrinsically disordered peptides (IDP) and can
generalize to generate unseen protein dynamics; Like idpGAN, EigenFold (Jing et al., 2023) is a recently developed
generative structure prediction model that employs harmonic diffusion that enables diversity while keeping good accuracy.
Specifically, EigenFold was trained on general PDB database and use the pre-computed embeddings from OmegaFold (Wu
et al., 2022b), which are different from idpGAN.

C.2. AlphaFold2 structure prediction

The AlphaFold2 (AF2) (Jumper et al., 2021) predictions rely on an AF2 variant ParaFold (Zhong et al., 2022), which
exploits the CPU parallelism to accelerate the multiple sequence alignment (MSA) query during the feature preparation
stage and keeps the rest intact. We adapted the original pipelines to exploit AlphaFold2’s mechanisms for sampling protein
conformations. The 12 fast-folding proteins and BPTI were processed using all five AlphaFold pTM models, enabling
a broad capture of potential conformations to enhance the prediction accuracy. Two distinct input settings, reducedMSA
and noMSA, were used; the former simplified the MSA input by limiting concurrent sequence alignments, while the latter
omitted the MSA entirely and and replaced it with a single sequence. In both settings, structure templates were not included
to enhance the diversity of sampled conformations. This protocol is inspired by the protocol of AlphaFold2-RAVE (Vani
et al., 2023), which exploited the potential capacity of AlphaFold2 to generate many possible conformations.

Specifically, in the reducedMSA setting, JackHMMER and HHBlits were used for searching MSA from databases including
UniRef90, MGnify, and BFD, following AlphaFold2’s original pipeline (Jumper et al., 2021). Only a small portion of
the found MSA was used as input to compute the MSA representation fed to Evoformer, consistent with the method
in (Del Alamo et al., 2022; Vani et al., 2023), ’max_extra_msa’ and ’max_msa_clusters’ were set to be 16 and
8 respectively. Conversely, the noMSA setting created a dummy MSA file as precomputed MSA for AlphaFold2 and as a
result only a single sequence is used to predict structure. For both settings, each pTM model was repeated 20 times with
varying random seeds.

C.3. Full-atom molecular dynamics simulations

To compare SENS with traditional molecular dynamics methods, we employ OpenMM (version 8.0) (Eastman et al., 2017)
to conduct short MD simulations on our fast-folding protein benchmark systems as well as BPTI. Initial structures were
taken from long simulations of (Lindorff-Larsen et al., 2011) and (Shaw et al., 2010). AMBER ff14SB (Maier et al., 2015)
was used as the protein force-field and TIP3P was used as solvent model. All systems were neutralized and solvated in the
boxes of 10 Å. All bonds involving hydrogen atoms were constrained with the SHAKE algorithm (Ciccotti & Ryckaert,
1986; Ryckaert et al., 1977). The particle mesh Ewald (PME) algorithm (Darden et al., 1993) was used to calculate the
long-range electrostatic interactions. Initial structures were relaxed with minimization until convergence, then subjected to
the equilibration stage with 10 ps time step size in the NVT and NPT ensemble sequentially. The simulation temperature of
each system was set according to the original paper (Lindorff-Larsen et al., 2011). Another independent simulation, with a
30K higher temperature under the same setting, was used for comparison, which we named ’high temp’.
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Figure S3. RDF of unconditionally sampled protein conformations, with Cα radius ranging from 2Å to 20Å. RDF of reference is colored
as blue line while RDF of samples of specified β as orange line.

Decreased temperature

(No control)

Figure S4. Visualization of protein examples unconditionally generated under different temperatures from noise. When temperature
decreases (β increases), the structures exhibit an increased propensity for structural components.

D. Extended results
D.1. Unconditional sampling

In order to validate the proposed method, we firstly investigated the effect of inverse temperature β on the generative
(backward) process. For evaluation, we generated 100 samples of length 128 from Gaussian noise under different β (ranging
from 0.5 to 5.0) respectively. Note that when β = 1.0, sampling is not affected by temperature.
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Figure S2. Pairwise TM-score (blue) and RMSD (or-
ange) of unconditionally generated structures from
SENS along with decreased temperature.

Firstly, we computed the radial distribution function (RDF) of Cα for
the sampled conformations and reference set, which was curated from
CATH v4.3 (Sillitoe et al., 2021) with 40% sequence identity since it
represents a good structural coverage of protein space. As shown in
Fig. S3, as the temperature decreases, the RDF of generated samples
becomes similar to RDF of reference. Moreover, as shown in Fig. S2,
the pairwise TM-score increases/RMSD decreases while we decrease
the temperature for sampling, which low temperature can uniformly lead
to less diverse sampled ensembles. Lastly, we visualized the generated
protein ribbon under different temperatures in Fig. S4. It demonstrates
that decreasing temperature gives rise to samples with more structural
components (more protein-like than random point clouds). Especially,
when β = 5.0, the generated example exhibits the helical-bundle feature
which is similar to high-quality de novo designed miniproteins (Cao
et al., 2020).

D.2. Per system pairwise distance and Rg distributions

In this section, we present the per system pairwise distance and radius of
gyration distributions of all fast-folding protein systems, which are used to calculate the average fidelity scores shown in our
main result. In Fig S5, the Rg distributions of selected methods are shown. In Fig. S6 and S7, the contacting probability
distribution of different methods across all 12 benchmarking systems is shown, and each row indicates a specific protein
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Figure S5. Rg distribution across all benchmarking systems. The shaded regions illustrate the spread of the Rg values for individual
samples, while the dashed vertical lines mark the means of respective distributions.

system with the reference (full MD) result aligned in the rightmost column. The sampled conformations come from VESDE
implementation of SENS as suggested in the main text.

D.3. More results for protein structural dynamics

We also tested the performance of SENS using VPSDE to construct the forward-backward dynamics proposed in the paper.
The evaluation results under different hyperparameters are shown in Table S1, and are aligned with the VESDE counterpart.
The results demonstrate that in general VPSDE can better capture the conformational distribution (lower JS divergence on
average and higher diversity), yet cause more structural clashes (lower validity) in the sampled conformations. This scenario
could result from the decaying drift term − 1

2β(t)x in VPSDE and not in VESDE over-destroying the input structure during
forward process. In particular, a β value of 5.0 can result in a temperature that is excessively low for VPSDE—though
not for VESDE—impacting the generation of non-clashing conformations. In practice, one might need to carefully and
heuristically tune the parameters δ, β for different systems and when using different diffusion dynamics to find the best
value.

D.4. Apo/Holo conformational diversity

Following (Jing et al., 2023; Saldaño et al., 2022), we tested SENS with other non-MD baseline methods (AlphaFold2,
idpGAN, EigenFold) on the apo/holo pairs of conformers (Saldaño et al., 2022). To accommodate the training protein
lengths, we adopt a subset of 66 pairs with length less than or equal to 256 residues out of 91 structure pairs proposed
in (Saldaño et al., 2022). For each target pair, a conformational ensemble of size 10 sampled from each model is tested. For
evaluation, we adopted the same metric TM_ens defined in (Jing et al., 2023), which evaluates to what degree the resulting
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Figure S6. The contact probability distribution for all benchmarking systems. The color gradient illustrates the probability of contact, with
red indicating a higher probability and blue a lower one. Contact is defined here as a Cα-Cα distance less than 8 Å.
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Figure S7. Extended part of Fig. S6.
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Table S1. Benchmark results of VE/VPSDE under different hyperparameters. Best results among those using VESDE or VPSDE are
bolded.

Validity(↑) JS-D(↓) JS-Rg (↓) Div-TM(↑) Div-RMSD(↑)
VPSDE (δ = 0.3, β = 5.0) 0.521 0.275 0.549 0.769 0.730
VPSDE (δ = 0.4, β = 5.0) 0.553 0.280 0.589 0.774 0.787
VPSDE (δ = 0.3, β = 2.0) 0.989 0.222 0.430 0.761 0.743
VPSDE (δ = 0.4, β = 2.0) 0.990 0.224 0.468 0.767 0.827
VPSDE (δ = 0.3, β = 1.0) 0.959 0.186 0.296 0.814 0.878
VPSDE (δ = 0.4, β = 1.0) 0.958 0.193 0.321 0.819 0.932
VESDE (δ = 0.3, β = 5.0) 1.000 0.283 0.524 0.543 0.275
VESDE (δ = 0.4, β = 5.0) 1.000 0.252 0.422 0.647 0.401
VESDE (δ = 0.3, β = 2.0) 1.000 0.267 0.474 0.536 0.277
VESDE (δ = 0.4, β = 2.0) 0.998 0.217 0.401 0.693 0.440
VESDE (δ = 0.3, β = 1.0) 0.998 0.257 0.416 0.576 0.295
VESDE (δ = 0.4, β = 1.0) 0.993 0.203 0.338 0.734 0.498

Short MD 0.1µs 1.000 0.217 0.300 0.508 0.449
Short MD 0.1µs (high temp.) 1.000 0.204 0.285 0.536 0.495

Reference 1µs 1.000 0.135 0.178 0.582 0.642
Reference 10µs 1.000 0.100 0.156 0.650 0.736
Reference full 1.000 0.000 0.000 0.659 0.756

ensemble captures both the apo and holo states. By definition,

TMens(xapo,xholo, {yi}) =
1

2

[
max

i
TM(yi,xapo) + max

i
TM(yi,xholo)

]
, (38)

where xapo,xholo denote the pair of ground truth apo/holo structures respectively, {yi} indicates the generated ensemble.
Similar to EigenFold, we plot the TM_ens scores for each apo/holo pair jointly with the intrinsic TM-score (calculated
between apo/holo) denoted as TM_conf1/2. For baseline models, we input the protein sequence to obtain 10 different
conformations; for SENS, we started with apo or holo structures and sampled 5 structures from either starting point.

As shown in Fig. S8, the results show that (generative) structure prediction models including AF2 and EigenFold can succeed
in predicting only one form either apo or holo, and thus points are aggregated around the baseline result y = 0.5x+ 0.5
(when the model can predict one single structure perfectly). Notably, when there is no MSA input, AF2 even failed to
predict correctly single structure. For idpGAN, the generated ensembles show no relation with either apo or holo target such
that the TM scores are all low. For the proposed SENS, since it had access to ground truth structure as starting point, the
listed results demonstrate no improvements as well. As the δ increases, we find a declining TM_ens score, which indicates
the sampled ensembles are isolated from both apo and holo forms. Among all these methods, not a single model achieves
significant improvement over baseline on the apo/holo task, the solving of which can be important and interesting to serve as
a future research direction.

E. Related works
Protein structure design A parallel research interest emerging recently focuses on the protein backbone structure design
based on deep generative models. Early attempts include ProtDiff (Trippe et al., 2022), which generates novel CA-only
backbones; protein structure-sequence co-generation based on structural constraints (Anand & Achim, 2022); and diffusion
models tailored for antibody design (Luo et al., 2022). FoldingDiff complements these by applying diffusion to the dihedral
angles of backbones. Chroma (Ingraham et al., 2022) designs novel protein backbones with several conditional inputs
including natural language and comprehensively evaluates the programmability. Meanwhile, RFdiffusion (Watson et al.,
2022) pushed the diffusion-based protein design to the experimental side and validated the effectiveness of generative
modeling for this task. More advanced methods including Genie (Lin & AlQuraishi, 2023) and FrameDiff (Yim et al., 2023)
have been proposed very recently, leveraging the invariant point attention (IPA) modules proposed by AF2 (Jumper et al.,
2021) to enhance model capacity.
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(c) EigenFold
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(e) SENS (δ = 0.2)
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(f) SENS (δ = 0.3)
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(g) SENS (δ = 0.4)
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(h) SENS (δ = 0.5)

Figure S8. The scatter plots of TM_ens versus TM_conf1/2 on the apo/holo pairing dataset from different methods. The red line in each
subfigure is the plot of y = 0.5x+ 0.5 for a reference baseline.

Learning for protein dynamics Due to the inefficiency of classical simulations for protein dynamics (Bernardi et al.,
2015; Karplus & McCammon, 2002), several works attempted to perform efficient sampling or learn neural force fields from
simulation data. Boltzmann generators (Noé et al., 2019) were developed to generate equilibrium samples using normalizing
flows (Dinh et al., 2014; Rezende & Mohamed, 2015) trained on simulation data or ground-truth energy. CGNets (Wang
et al., 2019) proposed learning coarse-grained (CG) force fields trained by a force-matching objective in a supervised
learning manner. Flow-matching (Kohler et al., 2023) improved this by complementing density estimation and sampling
right before force-matching, thus not relying on ground-truth forces in simulation data. The most recent work (Arts et al.,
2023) proposed to train diffusion model on samples from equilibrium distribution of a specific protein, and leveraged either
the first-layer score function as learned force field or the entire backward diffusion to perform conformational sampling.
However, these works can suffer from the transferability problem (Wang et al., 2019) and cannot be generalized to unseen
proteins. While these methods were designed ad hoc and can only be applied to the proteins they are trained on, our method
is distinguished from them by performing zero-shot conformation sampling, ready for modeling unseen protein dynamics.

F. Further discussion
In this paper, we have proposed the SENS for conformational sampling which leverages the bidirectional diffusion dynamics
in SGMs. This method shares several aspects with (generative) structure prediction and protein backbone generation
methods. Structure predictions, with representative methods AlphaFold2 (Jumper et al., 2021) and RoseTTAFold (Baek
et al., 2021), aim to recover the stablest protein folding state from its sequence. In terms of evaluation, crystal structures are
used as ground truth to assess accuracy within the classical regression framework. Those methods that can predict highly
accurate folding structure and generalize to unseen proteins (even quite a bit different from training data) are encouraged
and have a good potential to replace the experimental techniques such as X-ray diffraction and electron microscopy. The
generative structure predictions, with the representative EigenFold (Jing et al., 2023), treat the protein folding task from
discriminative prediction to conditional distribution learning, which shares the idea of DiffDock (Corso et al., 2022). The
step of "go generative" has a benefit as gaining predictive robustness yet may suffer from making additional assumption
(discussion on this topic belongs to the structured prediction problem (Belanger & McCallum, 2016) in machine learning
domains). One key assumption by employing generative protein structure prediction is that there exists multiple stable
conformations from one single amino-acid sequence, which is common and reasonable to protein structures. However,
one of the biggest concerns is the lack of ground truth multi-state structure data that belongs to a single sequence. We
believe in the significance of exploring such topic not only for better augmenting the current folding methods but also for
the potential application to promote the study of protein dynamics. Methods for generating protein backbones, such as
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ProtDiff (Trippe et al., 2022), aim to complement the known protein space with de novo-designed backbone structures by
generative models. The novel backbones are usually fed to an inverse folding model, for example ProteinMPNN (Dauparas
et al., 2022), to further obtain the specific protein sequences that can potentially fold to those backbones. Such backbone
generative models (Ingraham et al., 2022; Trippe et al., 2022; Watson et al., 2022; Wu et al., 2022a; Yim et al., 2023)
effectively model the protein structure space and do yield protein-like decoys. The functionality of such generated decoys
remains to be validated in the in vitro assays and seldom computational metrics can give good evaluations. Therefore, it is
also promising to investigate such computational evaluation for the generated protein backbones. Moreover, since the goal of
backbone generation is only to model the marginal distribution of backbone structures alone, one interesting question to be
investigated is whether we can "go further generative" than the generative structure prediction models by modeling the joint
distribution of both protein structures and sequences, generating structure and sequence in parallel similar to the frameworks
of (Anand & Achim, 2022; Luo et al., 2022; Shi et al., 2022). We consider the study of these as our potential future works.


