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Abstract
Fine-Grained Openset Detection (FGOD) poses
a fundamental challenge due to the similarity be-
tween the openset classes and those closed-set
ones. Since real-world objects/entities tend to
form a hierarchical structure, the fine-grained rela-
tionship among the closed-set classes as captured
by the hierarchy could potentially improve the
FGOD performance. Intuitively, the hierarchical
dependency among different classes allows the
model to recognize their subtle differences, which
in turn makes it better at differentiating similar
open-set classes even they may share the same
parent. However, simply performing openset de-
tection in a top-down fashion by building a local
detector for each node may result in a poor detec-
tion performance. Our theoretical analysis also
reveals that maximizing the probability of the path
leading to the ground-truth leaf node also results
in a sub-optimal training process. To systemati-
cally address this issue, we propose to formulate
a novel state-based node representation, which
constructs a state space based upon the entire hier-
archical structure. We prove that the state-based
representation guarantees to maximize the proba-
bility on the path leading to the ground-truth leaf
node. Extensive experiments on multiple real-
world hierarchical datasets clearly demonstrate
the superior performance of the proposed method.

1. Introduction
Openset detection aims to identify data samples that are
not part of the known set (a.k.a., closed-set) of classes in
the training data. Most existing methods try to assign the
detected openset samples into a single openset class (Sun
et al., 2020; Bendale & Boult, 2016; Vaze et al., 2021; Chen
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Figure 1. With the support of a hierarchy, fine-grained openset
detection can assign an openset data sample into different parent
nodes as shown: Le Conte Sparrow → Openset Sparrow, Ring
Necked Pheasant → Openset Bird

et al., 2020b; 2021; Yang et al., 2020; Zhang & Patel, 2016).
They typically quantify an openset score to measure the
difference between the openset sample and all the closed-
set classes as a whole. However, the semantic similarity
between openset samples with closed-set classes may vary
significantly. As the similarity increases, openset detection
becomes more challenging and such problems are referred
to as near OOD detection (Fang et al., 2022; Ren et al., 2021;
Fort et al., 2021). Theoretical results have also been devel-
oped to strictly quantify the difficulty of these problems
from the learnability perspective (Fang et al., 2022).

In many real-world settings, the fine-grained relationship
between the closed-set classes can be precisely captured
through a hierarchical structure. Such a hierarchy could
help to improve the detection performance of some openset
examples despite having a high semantic similarity with cer-
tain closed-set classes. As shown in Figure 1, the closed-set
training data consists of four types of birds, which can be fur-
ther grouped into two parent classes, Seagull and Sparrow.
Due to migration of birds from other regions, one may need
to identify previously unseen species. Identifying the closest
related species of these new birds can help expand the exist-
ing hierarchy and provide insights into migration patterns.
By training a model that adequately captures the hierarchical
dependencies among different closed-set classes, it can be
better equipped to more accurately recognize openset sam-
ples with different levels of similarity with the closed-set
ones. For example, when being presented with a Le Conte
Sparrow, the knowledge learned from the hierarchy could
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Figure 2. Error prediction analysis for a global detector that assigns an openset sample from Brandt Cormorant to a totally wrong class
due to lack of considering the hierarchical dependencies.

allow the model to recognize some important but subtle dif-
ferences from the two known Seagull classes. Meanwhile,
it is also more different from the two Seagull classes. As
a result, the model is able to perform fine-grained openset
detection (FGOD) to recognize Le Conte Sparrow as an
openset sparrow as shown in Figure 1. Similarly, when
facing a Ring Necked Pheasant, the model could recognize
that it is different from both Seagull and Sparrow while pos-
sessing some key characteristics of birds, and hence assigns
it as an openset bird.

As illustrated by the example above, detecting openset sam-
ples that share semantic similarity with the closed-set classes
(i.e., near OOD detection) can be achieved by conducting
FGOD when the closed-set classes can be organized into
a hierarchical structure. Such hierarchical structures com-
monly exist in real-world settings as evidenced by many
benchmark datasets (e.g., Imagenet and Cifar100). To
achieve fine-grained detection, an openset sample should
be assigned to the right parent node in the hierarchy based
on its difference to classes at different levels. Following
the hierarchy, FGOD can be conveniently conducted in a
top-down fashion by building a local detector at each non-
leaf node. Each detector performs the classification of child
nodes under the non-leaf node while quantifying an openset
score. If a detector obtains a high openset score, an openset
sample is detected. Otherwise, one child node is selected
based on the classification result and the process continues
unless a leaf node is reached.

However, using a sequence of local detectors in a top-down
fashion may result in a poor FGOD performance. Each
detector is trained by only considering its own child node
distribution, which fails to fully utilize fine-grained depen-
dencies from nodes at lower levels or those located at other
parts of the hierarchy. This usually leads to local detection
decisions that are sub-optimal. To train more robust detec-
tors, one can collectively consider all the ancestor nodes on
the path to the ground-truth leaf node. By choosing the path
with the highest overall probability, the model can more ef-
fectively avoid poor local decisions. Nevertheless, a deeper
analysis reveals that solely maximizing the (ground-truth)

path probability does not guarantee to decrease the proba-
bility of other nodes that are not the children of the nodes
on the path, which compromises the detection performance,
as evidenced by our experiments.

To avoid large error accumulation of local detectors, a global
detector can be trained that maximizes the probability of
the ground truth node by considering all the leaf nodes. For
open-set detection, besides evaluating an open-set score,
an extra child node can be added to each non-leaf node
denoting its open-set child class (Lee et al., 2018; Pyakurel
& Yu, 2024), which transforms open-set detection as a multi-
class classification problem that only considers all leaf nodes
(see Figure 8 in the Appendix for an illustrative example).
However, a global detector trained in such a way ignores the
detailed hierarchical dependencies among different classes.
Our thorough theoretical analysis reveals that the global
detector formulation indeed leads to a sub-optimal training
process causing large hierarchical detection errors. Such
errors can be more precisely captured by the hierarchical
performance metrics that measure the number of correct
predictions out of all predictions along the hierarchy to
reach the leaf node as shown in Figure 2.

To address the fundamental limitations of both local
and global detectors for FGOD, we propose to learn
novel state-based node representations from a hierar-
chy of closed-set classes to advance the frontiers of
fine-grained open-set detection. Through the formu-
lation of legal states, we can avoid error accumula-
tion like in local detectors while effectively capturing
fine-grained hierarchical dependencies between different
nodes, including (parent → child), (ancestor →
descendant), and (sibling → sibling). Such a
formulation ensures that the probabilities assigned to each
node (both leaf and non-leaf) strictly follow their hierarchi-
cal dependencies with theoretical guarantees. This implies
that node probabilities are derived from a global view of the
entire hierarchy. It is worth noting that there are a few exist-
ing works, such as (Deng et al., 2014; Chen et al., 2022),
that perform state formulation, but they are designed for
hierarchical classification instead of fine-grained openset
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detection. Our novel theoretical analysis shows that the
use of state-based representations in model training guar-
antees to decrease the probabilities of all non-ground truth
nodes while increasing the ground-truth node’s probability.
Since these non-ground truth nodes include both leaf and
non-leaf nodes, the prediction of the proposed method, even
when wrong is close to the ground truth node in the hierar-
chy as shown in Figure 2, resulting in a higher hierarchical
precision. Our contribution is threefold:

• a thorough theoretical analysis that unveals fundamental
limitations of local and global detectors when performing
open-set detection in a hierarchical structure,

• formulation of novel state-based node representations
from a hierarchy of closed-set classes along with a FGOD
process that avoids error accumulation in open-set detec-
tion while effectively capturing fine-grained hierarchical
dependencies between different nodes,

• a formal analysis of the proposed state-FGOD model that
ensures an optimal training process and guarantees to
improve the hierarchical detection performance.

Extensive experimentation conducted on multiple real-world
hierarchical datasets demonstrates the superior performance
of the proposed method.

2. Related Works
Openset detection. Openset detection usually rely on
a score to differentiate openset samples from closed-set
classes. Openmax (Bendale & Boult, 2016) redistributes
the closed-set probabilities and assigns a probability as a
score to the openset class. Some works utilize the maximum
softmax probability from the classification of closed-set
classes for detection (Hendrycks & Gimpel, 2016; Vaze
et al., 2021). Vaze et al. (Vaze et al., 2021) replace the
probability with logit and utilize the maximum logit score
for openset detection. Some works (Chen et al., 2020b;
2021; Yang et al., 2020) focus on training prototypes of
closed-set classes in the embedding layer and learning a
representation of openset class far from all the prototypes.
Based on the distance of openset sample from the closed-set
prototypes, detection is performed. A line of research quan-
tifies uncertainty measure to identify openset samples based
on evidential uncertainty (Sensoy et al., 2018; Malinin &
Gales, 2018; Charpentier et al., 2020), free energy (Liu
et al., 2020; Wang et al., 2021; Du et al., 2021). Few works
(Fang et al., 2022; Ren et al., 2021; Fort et al., 2021; Lang
et al., 2024; Sun et al., 2023; Fu et al., 2023) particularly
focus on near-OOD detection, where openset samples are
semantically similar to the closed-set classes. Our work
extends beyond near-OOD detection, which not only detects
a near-OOD sample but also identifies its closest parent in
the hierarchy of the closed-set classes.

Hierarchical classification. Based on how the work lever-
ages the hierarchical structure of data, it can be divided
into two types: (i) modify network architecture, and (ii)
Constraint on the loss function. First line of work (Cerri
et al., 2014; Chen et al., 2020a; Peng et al., 2018; Du et al.,
2020; Zhao et al., 2021; Chen et al., 2019) modifies the
network architecture to adapt the hierarchical structure of
data. Among the state-of-the-art, Zhao et al. (Zhao et al.,
2021) uses higher-order attention to discover relations in
the form of a graph of embeddings. Similarly, Du et al. (Du
et al., 2020) adopts progressive training and jigsaw puzzles
to focus on both fine-grained and coarse-grained features
required to identify hierarchical features. Graph-Neural-
Network is also leveraged to construct a graph between
class and attributes (Chen et al., 2019). Another line of
work (Giunchiglia & Lukasiewicz, 2020; Deng et al., 2014;
Chen et al., 2022; Chang et al., 2021) imposes constraints on
the loss function to ensure hierarchical relations are being
followed. The goal of the work in this setting is to improve
the performance of hierarchical classes seen in the training.
ProTeCt (Wu et al., 2024) proposes a tree-cut loss function
for taxonomic openset detection. This work deals with iden-
tifying samples at different granularity in the hierarchy, not
the samples from the open-world. Li et al. leverages the hier-
archical relationship to perform hierarchical classification at
the pixel level. Different from ours, this work does not con-
sider the open-world setting. To handle fine-grained openset
detection, our method ensures hierarchical constraints while
performing openset detection in the hierarchy.

Fine-grained openset detection. Fine-grained openset de-
tection is relatively under-explored in the literature. There
are two ways of dealing the problem: (i) Local Detector
and (ii) Global Detector. For the former, a local openset
detector can be applied at each non-leaf class of the closed-
set hierarchy. For each local openset detector, (Lee et al.,
2018) quantifies the confidence score based on KL diver-
gence between the model and uniform probability distribu-
tion and (Wang et al., 2022) quantifies uncertainty based on
fuzzy logic. The global detector trains a single classifier to
identify the sample between closed-set and openset classes.
Several strategies are proposed to leverage samples from
closed-set classes as openset ones (Lee et al., 2018). (Ruiz
& Serrat, 2022) trains prototypes of closed and open set
classes using a cosine loss. E-HND (Pyakurel & Yu, 2024)
leverages an evidential loss to further separate closed and
open-set classes by allocating fine-grained evidences. In
this work, we address the fundamental limitations of both
local and global detectors as outlined in the introduction by
learning novel state-based node representations from a class
hierarchy to advance fine-grained openset detection. An-
other line of work, Generalized Category Discovery (GCD)
(Rastegar et al., 2023) targets a related problem similar to
FGOD of assigning openset samples to a specific category.
FGOD leverages an existing hierarchical structure and de-
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fines openset class for every non-leaf class in the hierarchy
so that openset test samples can be assigned to those openset
classes. GCD, on the other hand, does not leverage existing
hierarchy but learns to categorize the classes into a hierar-
chical structure. When a hierarchy is not present for the
dataset, GCD approaches can be applied to obtain the hier-
archy before the FGOD methods are applied. In that sense,
GCD and HND are complementary to each other.

3. Methodology
We first formally define the problem of fine-grained openset
detection (FGOD) with a hierarchy of closed-set classes.
We present a standard process that builds a local detector
on each node and performs openset detection along with the
hierarchy. We provide novel theoretical insight on why it
leads to a sub-optimal training process even considering all
the ancestor nodes on the path leading to the ground-truth
leaf node. Such theoretical insight inspires the design of
the state-based node representations from a hierarchy that
guarantees an optimal FGOD training process.

3.1. Problem Formulation
Given a training dataset: Dtrain = {xn, yn}Nn=1, a data sam-
ple xn belongs to one of the K classes as yn ∈ Y =
{1, 2, ...K}. For the test dataset Dtest = {xn′ , yn′}N ′

n′=1,
the test label yn′ may or may not belong to train label set Y .
In general openset detection, the goal is to identify whether
a test sample is from the closed-set of classes and if so,
assigns it into the correct class. It can be formally defined
as f : xn′ → Y ∪{K +1}, where label K +1 refers to the
openset class.

Openset detection becomes more challenging when the the
semantic similarity between openset samples and closed-
set classes increases. By leveraging the hierarchy obtained
from the classes associated with labels Y , we formulate the
problem of Fine-Grained Openset Detection (FGOD) with
a hierarchy. For openset test samples, the goal of FGOD is
to identify the node at which the sample becomes openset.
To formally define the problem, we first introduce a few
notations. For a node y in a hierarchy H, we refer to its
parents, children, descendants, ancestors, and siblings as
P(y), C(y),D(y),A(y) and Sb(y). The hierarchy contains
leaf nodes L(H) and non-leaf nodes Nl(H). Next, we
assume that each non-leaf node y has an extra child O(y),
denoting the openset child, along with its closed-set children
C(y). The set of all the openset nodes from the hierarchy
is O(H). Formally, the goal of FGOD can be defined as
h : xn′ → Y ∪O(H).

3.2. Why is a Local Detector Sub-optimal for FGOD
with a Hierarchy?

By leveraging the hierarchy of closed-set classes, a local
openset detector can be built on each non-leaf node. Each

detector performs classification of child nodes while quan-
tifying an openset score. If the score is higher than a pre-
determined threshold, openset is detected. Otherwise, the
sample is classified as one of the child nodes. The process
starts from the root node and stops if openset is detected or
reaches the leaf node of the hierarchy. For model training,
we define known Dk

lc and openset Do
lc data samples for each

classifier lc. If a training sample belongs to descendant
classes of a non-leaf node lc, it is assigned to Dk

lc, otherwise
to Do

lc. Using Dk
lc, a loss function (eg, cross-entropy) can

be defined to guide the model to correctly classify its child
nodes. Some regularization term is usually included to en-
sure a high openset score for samples from Do

lc. Additional
details and an algorithm summarizing the detection process
is presented in the Appendix.

0.4 0.6
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Figure 3. Local detector augmented with path probability

While using a sequence of local detectors offers an intuitive
way to tackle FGOD, the final prediction depends on mul-
tiple classifiers. Each classifier makes a decision based on
the local view only. If a single classifier makes a mistake,
no matter how well other classifiers perform, the final pre-
diction will be wrong. Thus, it fails to take advantage of
fine-grained views from the hierarchy. As shown in Figure 3
for a test sample with ground-truth node 4⃝. First, node 3 is
predicted, instead of node 2⃝, and then node 6 is predicted
as the final prediction. However, it fails to examine that
nodes 6⃝ and 7⃝ have a close to uniform distribution, while
node 4 dominates the probability over node 5⃝. If we could
leverage fine-grained probabilities from all the descendants,
this issue could be mitigated. An intuitive solution is to
augment the local detector method by considering all the
ancestor nodes of the ground-truth leaf node and maximize
the the probability of the entire path. Specifically, for each
leaf node in the hierarchy, we define a path from the root
node to the leaf node. For each path, we calculate path prob-
ability by multiplying the local probabilities (conditioned
on the parent node) of all the nodes that lie in the path.

∀y ∈ L(H), ph(y) =
∏

a∈A(y)

p(a|P(a)) (1)

For each classifier, the local probability is obtained by the
softmax operation on the logits of its child nodes. Therefore,
the path probabilities are based on logits of only those nodes,
whose parent classifiers are in the path. For example, for
the training sample from node 4⃝ in Figure 3, only logits
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

0 0 0 0 0 0 0 0 0 0 s0

1 0 0 1 0 0 0 0 0 0 s4

1 1 0 0 1 0 0 0 0 0 s5

1 1 0 0 0 1 0 0 0 0 s6

1 1 0 0 0 0 1 0 0 0 s7

1 0 1 0 0 0 0 1 0 0 s8

1 0 1 0 0 0 0 0 1 0 s9

1 0 1 0 0 0 0 0 0 1 s10

(b)

ai =
ei � emin

emax � emin
(11)

ai = [
ei �min(e)

min(e)
]m (12)

Table 1: Bias based results

Shot Accuracy ECE

1 35.662±1.944 0.298±0.02

2 60.862±2.25 0.429±0.007

5 76.192±0.978 0.377±0.009

10 79.958±0.728 0.34±0.005

20 82.558±0.831 0.333±0.012

Table 2: Bias based results

Shot Accuracy ECE

1 47.846±0.404 0.395±0.008

2 66.862±0.806 0.51±0.007

5 78.458±0.307 0.498±0.004

10 80.94±0.464 0.461±0.008

20 82.416±0.467 0.444±0.006

Table 3: Sidetune based results

Shot Accuracy ECE

1 46.473±1.636 0.374±0.015

2 59.254±0.196 0.466±0.004

5 67.662±0.249 0.501±0.004

10 71.098±0.29 0.511±0.004

20 72.334±0.677 0.505±0.008

2

Figure 5. An example of global states

from nodes 2⃝, 3⃝, 4⃝, and 5⃝ are used in path probability
calculation. Logits from the rest of the nodes are not used,
making the optimization from path probability regulariza-
tion sub-optimal, as shown in the following theorem.

Theorem 3.1. (Sub-optimality of FGOD with path prob-
ability) Given a hierarchyH and a training sample (x, y).
A(y) is the set of nodes belonging to the path from root to
leaf node y. Then, the cross-entropy loss function based on
path probability does not guarantee a decrease in logits of
node y′ /∈ C(a),∀a ∈ A(y).

Proof. (Proof Sketch) We provide the detailed proof in Ap-
pendix C. First, we define path probability for ground truth
label y as a function of logits of the nodes in hierarchy, then
evaluate the loss based on the probability of path ph(y).
Next, we calculate the gradient of the loss function for
ground truth logit gy = dLph

dh(y|x) , and non-ground truth logits

gy′ = dLph

dh(y′|x) . We observe that gradient gy is dependent
on logits of children of its parent only (local optimization).
Similarly, for non-ground truth label y′ /∈ C(a),∀a ∈ A(y),
the value of gradient gy′ = 0. There is no update for those
non-ground truth logits. Therefore, there is no guarantee of
a decrease in logits of node y′ /∈ C(a),∀a ∈ A(y).

3.3. Learning State-Based Node Representations for
Effective FGOD

To solve the problem of sub-optimality of FGOD using local
detectors, it is essential to leverage all important hierarchi-
cal dependencies among the nodes so that the probability

optimization no longer considers local view only, and guar-
antees an update of all the parameters in the right direction.
We denote H′ as an augmented hierarchy H with openset
nodes O(H) (see Figure 4 for an example). The leaf and
non-leaf nodes ofH′ becomes L(H′) = L(H)∪O(H) and
Nl(H′) = Nl(H).
The hierarchy H′ can be represented as a graph G =
(V,Es, Ee) consisting of nodes V = {v1, v2, ...vM}, where
M = |L(H′) +Nl(H′)|. The relationship between two
nodes vi and vj can be defined as an edge (vi, vj), where
each node is assigned the value of 1 or 0 to denote the node
is either active or inactive in the edge. There are two types
of edges in the graph: subsumption edges Es ⊂ V × V
and exclusion edges Ee ⊂ V ×V . A subsumption edge
(vi, vj) ∈ Es is a directed edge that refers to node vi being
a parent of vj . Similarly, an exclusion edge (vi, vj) ∈ Ee

is an undirected edge that refers to nodes vi and vj being
mutually exclusion to each other. The graphical nodes for
the hierarchy of Bird along with subsumption and exclusion
edges are illustrated in Figure 4. First, we define the legal
assignment of the values for each edge, referred to as local
legal states. Next, we define the legal assignment of the val-
ues to all the nodes, referred to as global legal states. The
legal assignment for the Es is (1, 1), (1, 0), (0, 0), mean-
ing when the child node is active, the parent node has to
be active. Similarly, the legal assignment for the Ee is
(0, 1), (0, 0), (1, 0), meaning both of the nodes can not be
active. The values except the legal assignments are illegal.
With the definition of local legal states, we define a global
legal state below.

Definition 3.2 (Global Legal State). Given a graph G =
(V,Es, Ee), a global legal state s ∈ {0, 1}M assigns val-
ues to all the nodes V such that the following three condi-
tions are satisfied: C1: ∀(vi, vj) ∈ Es, (vi, vj) ̸= (0, 1),
C2: ∀(vi, vj) ∈ Ee, (vi, vj) ̸= (1, 1), and C3: (∃v ∈
L(H′), v = 1) ∨ (∀v, v = 0).

Remark. For each state, C3 ensures that one of the leaf
nodes is active or none of the nodes is active. Since we
include openset nodes O(H) as leaf nodes of H′, without
the condition (∃v ∈ L(H′), it will result in invalid global
states. We also need to allow a state where the openset
sample lies outside the entire hierarchy, which is given by
∀v, v = 0. All the legal global states can be represented
in the form of a matrix, defined as global state matrix S.
The resulting dimension of S is (|L(H′)| + 1) ×M . An
example of the legal global states is presented in Figure 5,
where nodes and states follow Figure 4. It is important to
note that each state (except for s0) corresponds to a leaf
node in open-set augmented hierarchy H′, so performing
classification on the states is equivalent to conducting the
multi-class classification as performed in the global detec-
tors. More importantly, each state captures the important
fine-grained dependencies among the ancestor nodes that
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lead to the corresponding leaf node. If we look at state s6, it
corresponds to assigning a sample to California Gull, where
nodes v1, v2, and v6 are active and all the other nodes in the
hierarchy are inactive. Those active nodes are ancestors of
California Gull. Further, inactive nodes are siblings of either
California Gull or its ancestors. Similar interpretations can
be made about all the other states, where the index of the
state corresponds to the node index from Figure 4 and the
red color signifies openset cases.

Evaluating the state and node probabilities. Consider
a network h parameterized with θ. We can obtain the
logit from h for all the nodes V ∈ G represented as
h(v1|x; θ), ..., h(vm|x; θ), ...h(vM |x; θ). First, we calcu-
late an un-normalized probability for each of the state s
by multiplying the exponent of logit from all the nodes that
are active in state s:

p̃(s|x) =
M∏

m=1

eh(vm|x;θ)1(vm=1|s) (2)

where 1(vm=1|s) is an indicator function that takes value of
1 when vm = 1. The un-normalized state probabilities p̃ is
of dimension |L(H′)|+ 1, which can be normalized

Z =
∑
s∈S

p̃(s|x), p(s|x) = p̃(s|x)
Z

(3)

We can further obtain node probabilities p(vm|x) by sum-
ming all the state probabilities where the node vm is active:

p(vm|x) =
∑
s∈S

p(s|x)1(vm=1|s) (4)

Proposition 3.3. For any node vm, the parent-child relation
satisfies the probability constraint:

pvm|x ≥
∑

c∈C(vm)

p(c|x),

pvm|x =
∑

c∈C(vm)

p(c|x) + p(O(vm)|x) (5)

With the complete knowledge of children of node vm, the
equality holds. Otherwise, the inequality indicates the pres-
ence of an openset node associated with vm. In our formu-
lation, we support the presence of an extra openset node.

Model training and inference. We capture the hierarchi-
cal relationship between all the nodes through state represen-
tations. Next, we train a state-based detector that classifies
all the leaf nodes in the hierarchyH′. We remove one node
vm at a time. This creates a dynamic hierarchy H′ \ vm.
When vm is removed, all the samples that belong to vm
will be treated as openset samples with respect toH′ \ vm.
Since the openset samples can occur at different levels or
positions within the class hierarchy, this process allows the
model to learn to detect diverse types of openset samples, de-
pending on their specific location within the hierarchy. It is
designed to address the unique requirement for fine-grained
open-set detection. For a training input x with ground truth
y, if vm = y or vm ∈ A(y), then the ground truth label
is changed to the openset class as y = O(P(vm)). Other-
wise, the ground truth label is not changed, and the sample
belongs to closed-set classes. We train a single model pa-
rameterized by θ. For each removed node vm and training
sample (x, y), the training loss maximizes ground truth node
probability p(y|x, θ,H′ \ vm). The loss function is:

L = E
vm∈V

E
(x,y)

[− ln p(y|x, θ,H′ \ vm)] (6)

The conceptual diagram of the proposed method along with
model training is illustrated in Figure 6. The inference
process using the proposed State-FGOD is summarized in
Algorithm 2 of the Appendix. Next, we show that mini-
mization of the cross entropy loss function using state-based
formulation leads to optimal model training in Theorem 3.4.

Theorem 3.4. (Optimal model training from state-based
node representations) Given a hierarchyH′ and a training
sample (x, y), the ground truth logits are h(a|x; θ),∀a ∈
A(y) and the non-ground truth logits are h(a′|x; θ),∀a′ /∈
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A(y). Then, the cross-entropy loss function based on state
probability guarantees the increase in value of ground truth
logits and decrease in the value of non-ground truth logits.

Proof. (Proof Sketch) First, we define cross-entropy loss
L based on node probability p(y|x). Next, we calculate
the gradient of the loss function for the ground truth logit
gy = dL

dh(y|x) , and non-ground truth logits gy′ = dL
dh(y′|x) .

We observe that gradient gy is dependent on logits of all
nodes (global view). When logit of non-ground truth in-
creases, the gradient magnitude increases, updating the
model parameters such that it increases the logit of ground
truth node. Similarly, for non-ground truth label y′, the gra-
dient gy′ updates the model parameters such that it decreases
the value of the non-ground truth logit h(y′|x). Therefore,
this guarantees a decrease in logits of non-ground truth node
y′. The detailed proof is in Appendix C.

Along with the proofs, we have further illustrated the con-
cept of gradient analysis of Theorems 3.1 and 3.4 using the
representative example from Figure 4 in Appendix C.3. As
pointed out in the introduction, building a global detector by
performing multi-class classification over all the leaf nodes
in H′ may lead to a high hierarchical detection error. The
following Corollary provides the root cause for that, which
explains why a global detector is sub-optimal.

Corollary 3.5 (Sub-optimality of global detectors). Given
a hierarchy H′ and a training sample (x, y), the ground
truth labels are a ∈ A(y) and the non-ground truth labels
are a′ /∈ A(y). The cross-entropy loss based on probability
from only leaf labels, y and y′ /∈ A(y) ∧ y′ ∈ L(H′) does
not increase the value of non-leaf ground truth logits.

Remarks. Existing global detector methods do not fully
leverage fine-grained hierarchical dependencies to train the
model, and hence non-leaf logits are not optimized for fine-
grained openset detection. As a result, these methods may
assign the openset sample to the incorrect parent node, lead-
ing to lower hierarchical precision as shown in Figure 2.

4. Experiments
In this section, we first present the datasets and baselines
used in the experiments. Next, we discuss the comparison
settings and evaluation metrics. We then show the FGOD
results and ablation studies to justify the proposed method.

Datasets and implementation details We use the fol-
lowing real-world hierarchical datasets for the experiments.
(i) Tiny Imagenet (Le & Yang, 2015): a subset of Ima-
geNet, (ii) CUB-200-2011 (Welinder et al., 2010): images
of fine-grained species of bird (iii) Animals With Attributes
2 (AWA2): images of animals (Lampert et al., 2014). Details
for each dataset are presented in Appendix D. For both the
compared algorithms and the proposed method, we experi-
ment with ViT-B/16 using prompt-based parameter-efficient

fine-tuning. Additionally, we conduct an ablation study to
evaluate different backbone architectures and also compare
different fine-tuning methods.

Baselines. There are two categories of methods that can
be adapted for FGOD: (i) Local detector and (ii) Global
detector methods. For local detector, the following base-
lines can be leveraged: top-down (TD), maximum softmax
probability (MSP) and hierarchical classification with extra
Node (HC-EN). For global detector, the following baselines
are compared: Dual Accuracy Reward Trade-off Search
(DARTS) (Deng et al., 2012), Relabel (Lee et al., 2018),
Leave-One-Out (LOO) (Lee et al., 2018), Evidential learn-
ing (Sensoy et al., 2018; Pyakurel & Yu, 2024), TD+LOO
(Lee et al., 2018) and E-HND (Pyakurel & Yu, 2024). The
details are presented in Appendix.

4.1. Comparison Settings and Evaluation Metrics
We compare the performance of the proposed method with
the baselines using top-1 accuracy. For an openset sam-
ple {xn′ , yn′} with prediction ŷn′ , it is correct if ŷn′ =
O(P(yn′)). The number of correct predictions out of closed-
set samples is called Closed-set Accuracy (CA), and openset
samples are Openset Accuracy (OA). For global detector
methods, we can adjust the bias to the logits of the leaf and
non-leaf nodes to obtain different CA and OA. We present
the comparison of global detector methods with AUC and
OA at 50% CA as OA@50.

4.2. Fine-Grained Openset Detection Results
We present the openset accuracy and AUC results in Table
1. The comparison reveals the superior performance of our
method. We observe that the global detector-based meth-
ods, in general, have better performance than local detector-
based methods. In Tiny Imagenet, the performance gap is
more prominent as the dataset has 12 levels in the hierar-
chy, and the error accumulation from the detectors becomes
more severe. Among local detector methods, the elimination
of setting thresholds on openset score improves the perfor-
mance, as given by HC-EN baseline for the Tiny Imagenet
dataset. For other datasets, local detector methods based on
different openset score quantification methods, MSP and
KL divergence score in TD method, also show competitive
performance. This suggests that the performance of the
local detector-based method is impacted by the number of
hierarchy levels, quality of openset scores, and thresholds on
the openset scores. In general, due to the decision of local
classifiers, the local detector methods achieve lower FGOD
performance in comparison to global detector methods. For
global detector methods, the proposed State-FGOD consis-
tently outperforms other methods on all the datasets (im-
provement in AUC of CUB:+5.45, Tiny Imagenet:+2.45
and AWA2:+2.82 w.r.t. the best-performing baseline). This
is further demonstrated by AUC curve Figure 7. Among the
baselines, LOO, and E-HND methods demonstrate competi-
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Table 1. Comparison with Local and Global Detectors

Method CUB Tiny Imagenet AWA2
CA/OA HMean/AUC CA/OA HMean/AUC CA/OA HMean/AUC

(a) Local Detector Methods
TD 72.47/18.75 29.79/− 50.43/9.20 15.56/− 80.42/33.83 47.62/−

MSP 72.62/24.23 36.33/− 62.68/7.52 13.42/− 89.12/30.28 45.19/−
HC-EN 78.26/8.30 15.01/− 48.83/11.56 18.69/− 89.77/26.08 40.41/−

(b) Global Detector Methods
DARTS 50.00/46.74 48.32/41.82 50.00/17.15 25.54/12.75 50.00/38.29 43.36/34.29
Relabel 50.00/50.95 50.47/41.35 50.00/22.02 30.58/17.58 50.00/30.50 39.52/32.68

Evidential 50.00/43.34 46.43/33.41 50.00/19.35 27.90/14.53 50.00/46.95 48.42/36.93
LOO 50.00/48.34 49.15/38.45 50.00/21.53 30.10/17.26 50.00/48.83 49.40/45.31

TD+LOO 50.00/44.17 46.90/32.77 50.00/19.37 27.92/14.87 50.00/35.26 41.35/28.40
E-HND 50.00/54.43 52.12/45.59 50.00/21.45 30.02/17.31 50.00/47.05 48.47/41.69

State-FGOD 50.00/64.47 56.31/51.04 50.00/24.71 33.07/ 20.03 50.00/ 53.32 51.60 /48.13
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Figure 7. Closed-set accuracy vs Openset accuracy curves

Table 2. Comparison using hierarchical precision and recall

Method Hierarchical Precision Hierarchical Recall HarmonicMean
Closed-set Openset Closed-set Openset Closed-set Openset

TD 96.88 90.36 84.69 87.05 90.37 88.67
LOO 95.96 83.86 87.22 92.31 91.38 87.88

TD+LOO 94.67 84.75 85.03 86.43 89.59 85.58
E-HND 97.23 85.83 86.36 92.07 91.47 88.84

State-FGOD 98.06 90.68 87.40 92.81 92.42 91.73

tive performance.

Hierarchical performance measure. We conduct this
study to understand the performance of our method w.r.t
hierarchical performance measure. We use the CUB dataset
with hierarchical metrics: hierarchical precision, hierarchi-
cal recall, and harmonic mean. Apart from leaf-level ground
truth, hierarchical metrics also measure whether the an-
cestors of the ground truth leaf node are being correctly
predicted. Hierarchical Precision (HP) mea-
sures the number of nodes correctly predicted by the model
out of all the nodes predicted in the hierarchy. Similarly,
Hierarchical Recall (HR) measures the number
of nodes correctly predicted out of all the ground truth nodes

from the hierarchy. For a sample (x, y), if the prediction is
ŷ, the hierarchical metrics are defined as:

HP =
|Common Ancestors(y, ŷ)|

|Ancestors(ŷ)| , (7)

HR =
|Common Ancestors(y, ŷ)|

|Ancestors(y)| (8)

The comparison table using hierarchical metrics is presented
in Table 2. Along with our method, we compare perfor-
mance of TD method (a representative method from local
detectors) and several representative methods from global
detectors. As can be seen, local detector has poor openset
recall. The error accumulation of local detector affects the
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Table 4. Impact of state-based representation
Method SP? OA@50 AUC

DARTS × 46.74 41.82
✓ 57.02(+10.28) 46.71(+4.89)

Relabel × 50.95 41.35
✓ 59.80(+8.85) 45.71(+4.36)

LOO × 48.34 38.45
✓ 55.31(+6.97) 46.23(+7.78)

recall performance, as the ground truth node lies in leaf
nodes of hierarchy. On the other hand, global detector
doesn’t fully utilize the fine-grained relationships in the hi-
erarchy resulting in poor openset precision. The proposed
State-FGOD is able to avoid error accumulation while ef-
fectively capturing important dependencies among different
nodes in hierarchy, which achieves a good balance on both
hierarchical metrics for closed-set and openset classes.

Table 3. Top-2 Accuracies
Method OA@50 AUC

LOO 70.08 62.49
TD+LOO 57.94 48.39

EHND 84.58 74.08
State-FGOD 87.24 76.72

Top-2 Accuracy. Ta-
ble 3 compares repre-
sentative global detec-
tors using top-2 accu-
racy on the CUB dataset.
The performance im-
provement shows the effectiveness of the proposed method.
By leveraging the relationships among all the nodes, it ef-
fectively improves the performance of FGOD.

4.3. Ablation Studies
Impact of state-representation in global detectors. We
study how the state formulation impacts the global detec-
tor methods. We apply state formulation on representative
methods: DARTS, Relabel, and LOO on CUB dataset and
present our results in Table 4. Using state formulation in
global detector methods results in significant performance
improvement. This study further highlights the importance
of the utilization of hierarchy relationships between nodes.

Table 5. Impact of backbone
Backbone OA@50 AUC

ResNet101 45.63 34.39
ResNet152 44.34 33.73

ViT-B/16 + Adapter 59.58 47.12
ViT-B/16 + Bias 58.45 47.72

ViT-B/16 + Prompt 64.47 51.04

Impact of back-
bone. We study
the impact of dif-
ferent backbones
to the proposed
method. We
experiment with
CUB dataset and architectures: ResNet101, ResNet152 (He
et al., 2016), and ViT-B/16. For ResNet-based methods, we
use a linear layer on top of Resnet features for fine-tuning.
For ViT, we leverage popular parameter-efficient fine-tuning
methods: prompt (Jia et al., 2022), bias (Cai et al., 2020),
and adapter (Rebuffi et al., 2017). The results are presented
in Table 5. Among different settings, ViT-B/16 fine-tuned
with prompt, leads to superior performance. Prompt
fine-tuning allows training learnable parameters in the input

Table 6. Impact of path probability
PP? TD MSP HC-EN

CA × 72.47 72.62 78.26
✓ 72.63(+0.16) 72.17(−0.45) 77.58(−0.68)

OA × 18.75 24.23 8.30
✓ 21.16(+2.41) 28.27(+4.04) 10.05(+1.75)

HMean × 29.79 36.33 15.01
✓ 32.77(+2.98) 40.62(+4.29) 17.79(+2.78)

space, which helps learn hierarchical relationships between
classes in the input space.

Table 7. Impact of component
Method OA@50 AUC

w/o Prompt 55.31 46.23
w/o State 48.34 38.45

State-FGOD 64.47 51.04

Impact of com-
ponent: The
conceptual di-
agram of the
proposed method
is presented in
Figure 6. To better learn the hierarchical relationships,
we have two components in the proposed method: (i)
Prompt Tuning (ii) State representation. We study the
impact of each component in CUB dataset. We present
the results in Table 7. As we remove each component, we
see a significant drop in the performance, justifying the
importance of the components.

Impact of path probability. In our methodology, we dis-
cuss how local detector methods are not able to leverage
the fine-grained probability information to make decisions
leading to error accumulation. We use path probability to
identify the path in a hierarchy instead of all the classifier’s
predictions. For each local detector method, we compare
the performance with and without path probability for CUB
dataset in Table 6. With the use of path probability, we see
improvement of both closed-set and openset performance in
most of the methods. This study shows the importance of
utilization of fine-grained probabilities for FGOD.

5. Conclusion
Openset detection poses a significant challenge when the
samples are semantically similar to the closed-set classes.
In this work, we leverage the hierarchical structure of the
closed-set classes to detect the openset samples in a fine-
grained manner. We formulate legal states to fully capture
the hierarchical relationship between all the nodes in the
hierarchy that allows us to optimize the performance of
recognizing openset samples at different levels in the hier-
archy. Further, we perform theoretical analysis to show the
fundamental advantage of the proposed method. Our ap-
proach exhibits superior performance, as validated through
extensive experimentation on various real-world hierarchi-
cal datasets.
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Impact Statement
In this work, we leverage the hierarchical relationships to
perform fine-grained openset detection. Such hierarchical
relations are useful by providing more information about the
openset data samples that leads to an informed decision. The
proposed approach can be potentially applied in many fields
like wildlife monitoring, studying the nature of malware
attacks, and identifying the parent class of traffic signs for
self-driving cars.
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Supplementary Material

Organization. In section A, we present the summary of all the notations used in the paper. In section B, we discuss the
details of local and global detectors. In section C, we provide the proofs and illustrations of theorems presented in the main
paper. In section D, we discuss details of experiments and provide additional results. In section E, we discuss potential
societal impacts of the work, along with the limitation and future works. In section F, we provide the source code.

A. Summary of Notations

Notation Description

H A training hierarchy of closed-set classes
Dtrain Training Dataset
N Total number of data samples in training
Y Set of all leaf labels of training dataset
L(H) Set of all leaf nodes; is a function of hierarchy
Nl(H) Set of all non-leaf nodes; is a function of hierarchy
P(y) Parents of node y
C(y) Children of node y
D(y) Descendants of node y
A(y) Ancestors of node y
Sb(y) Siblings of node y
Dtest Test Dataset
O(y) An openset class belonging to y
O(H) A set of openset classes of hierarchyH
H′ A resulting hierarchy ofH′ augmented with O(H)
Dk

lc Known dataset for classifier lc
Do

lc Openset dataset for classifier lc
ph(y) Path probability of path from root to node y
gy Gradient of loss w.r.t ground truth logit
gy′ Gradient of loss w.r.t non-ground truth logit
G Graph representing hierarchyH′

V All the nodes of the graph G
Es A set of all the subsumption edges in the graph G
Ee A set of all the exclusion edges in the graph G
s A global state assigning binary values to all the nodes in G
S Global state matrix of G
M Total number of nodes in G
h FGOD network

h(vm|x; θ) Logit from FGOD network for node vm
p̃(s|x) Un-normalized probability for state s
p(s|x) Normalized probability for state s
p(vm|x) Probability for node vm
θH′ FGOD network parameters
θH′\a FGOD network parameters when node a is removed fromH′

B. FGOD using Local and Global Detectors
In this section, we provide additional details on using local and global detectors for FGOD.

1
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Algorithm 1 FGOD with a hierarchy

Require: A set of thresholds λ for all local detectors (one for each non-leaf node).
Current local classifier, lc← root node
while Stopping Condition ̸= 1 do

Probability distribution of lc: p ∈ R|C(lc)|

Openset score: o ∈ R
Prediction from ŷ: argmax(p)
if o ≤ λlc then
lc: predicted child node, ŷ
if lc ∈ L(H) then

Final Prediction← lc, Stopping Condition← 1
end if

else
Final Prediction← O(lc), Stopping Condition← 1

end if
end while

Local detector based FGOD. Algorithm 1 summarizes the open-set detection process using a local detector. Based
on how openset is determined, existing general openset detection methods can be adapted for FGOD. Here, we consider
some commonly used open-detection strategies. For example, the openset score can be quantified using the KL divergence
between a uniform distribution and model predicted distribution over the child nodes (eg, the top-down method (Lee et al.,
2018)), model predicted maximum softmax probability (MSP) (Vaze et al., 2021), free energy based evaluation (Liu et al.,
2020), or evidential uncertainty (Sensoy et al., 2018). In what follows, we first use the top-down method as a concrete
example to present a specific loss function in (9) and then generalize into a more abstract form in (10):

LH = E
lc∈Nl(H)

{ E
(x,y)∈Dk

lc

[− ln p(y|x, lc; θ)] + E
(x,y)∈Do

lc

KL[U(.|lc)||p(.|x, lc; θ)]} (9)

= E
lc∈Nl(H)

{L1
lc + L2

lc} (10)

where L1
lc maximizes the probability of ground truth class for each classifier using known samples Dk

lc, and L2
lc is a

regularization term for the classifier to assign a high openset score to openset samples in Do
lc.

We summarize the inference process of FGOD with a hierarchy in Algorithm 1.

In addition to using the KL divergence to specify the confidence, we may consider other options, including (i) Maximum
Softmax Probability (MSP) (Vaze et al., 2021), evidential uncertainty (Sensoy et al., 2018), energy score (Liu et al., 2020),
and Maximum Logit (Vaze et al., 2021) as openset score. For MSP baseline, the training is the same as the Top-down
method, as in Eq. (9). For other baselines, we use the loss function according to evidential loss, where the first loss is
to output high evidence for the correct class, and KL regularizer is used to train the novel samples to output uniform KL
divergence. The evidential based loss function is:

LHC-evidential = E
lc∈Nl(H)

{ E
(x,y)∈Dk

lc

|C(lc)|∑
k=1

yik[ln(St
lc
i )− ln(αik)]

+ E
(x,y)∈Do

lc

KL[D(.|x, lc; θ)||D(.| < 1, 1, ..., >, lc)] (11)
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For each method, if the following conditions hold, the sample is not detected as openset.

Maximum Softmax Probability: max(Pr(.|x, lc; θ)) ≥ λlc (12)

Evidential Uncertainty:
|C(lc)|
Stlci

≤ λlc (13)

Energy Score: − ln

|C(lc)|∑
k=1

exphk(x; θ) ≤ λlc (14)

Maximum Logit Score: max(hk(x; θ)) ≥ λlc (15)

Instead of relying on the openset score, samples in Do
lc can be treated as an extra openset child nodeO(y) (Neal et al., 2018).

In this way, if the classifier predicts the highest probability for O(y), it detects the sample as openset. Figure 8 provides a
specific example on how to add an extra node to each non-leaf node in the hierarchy that transforms open-set detection in a
hierarchy into a multi-class classification problem, where each leaf node correspond to a class. In this case, the openset
score comparison no longer depends on a pre-defined threshold. If the highest probability of any child node is lower than
that of the extra novel node, we can classify the sample as openset. A loss function can be defined accordingly:

LH = E
lc∈Nl(H)

{ E
(x,y)∈Dk

lc

[− ln p(y|x, lc; θ)] + E
(x,y)∈Do

lc

[− ln p(O(lc)|x, lc; θ)]} (16)

Similarly, each detector leverages the openset score to find out if the sample is openset or not. For this method, if the
following condition holds, the sample is not openset.

max(p(.|x, lc; θ)) ≥ p(O(lc)|x, lc; θ) (17)

Details of Global Detector Methods

• Dual Accuracy Reward Trade-off Search (DARTS) (Deng et al., 2012) is adapted for FGOD by training a classifier
using leaf nodes and obtaining the expected rewards for all the leaf nodes and openset non-leaf nodes.

• Relabel (Lee et al., 2018) trains a single classifier using leaf and openset non-leaf nodes by relabeling some of the leaf
nodes as openset ancestor nodes.

• Leave-One-Out (LOO) (Lee et al., 2018) trains a classifier with leaf and openset non-leaf nodes. For openset nodes,
each node from the hierarchy is removed one at a time to use it as an openset parent node.

• Top Down + Leave-One-Out (TD+LOO) (Lee et al., 2018) uses input from Top Down method to LOO training.

• Evidential learning (Sensoy et al., 2018; Pyakurel & Yu, 2024) uses the evidential loss to train a classifier following
the LOO strategy. Evidential uncertainty is used for openset detection.

• Evidential-Hierarchical Novelty Detection (E-HND) (Pyakurel & Yu, 2024) trains the model to separate evidence
margin of closed-set and openset classes.

Open-set Detection using State-FGOD. The inference process of State-FGOD is summarized in Algorithm 2.

C. Proofs of Theorems
C.1. Proof of Theorem 1

Proof. Let us assume the ground truth node as y. For simplicity purpose, we denote the logit output by the neural network
by o. For example: we denote h(y|x) by oy . The path probability of the node y is given by:

ph(y|x) =
∏

a∈A(y)

p(a|P (a);x) (18)

=
eoy

eoy +
∑

sb∈Sb(y)
eosb
× eoP(y)

eoP(y) +
∑

sb′∈Sb(P(y)) e
osb′
× ...× 1 (19)
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Bird

Seagull Sparrow

Ivory
Gull

Fox
Sparrow

Grasshopper
Sparrow

California
Gull

Detector 1

Detector 2 Detector 2

Bird

Seagull Sparrow

Ivory
Gull

Fox
Sparrow

Grasshopper
Sparrow

California
Gull

Openset
Sparrow

Openset
Sparrow

Openset
Bird

(a) (b)
Figure 8. A diagrammatic representation of (a) Local detector method: There are three classifiers on Bird, Seagull and Sparrow,
respectively. (b) Global Detector method: A single global classifier for all leaf nodes and openset non-leaf nodes.

Algorithm 2 Inference using State-FGOD

Require: A set of biases b.
Require: A trained State-FGOD model h parameterized with θ.
Input: A test data sample {xn′ , yn′}.
Logits for all the M nodes: h(v1|xn′ ; θ), h(v2|xn′ ; θ), ..., h(vm|xn′ ; θ), ...h(vM |xn′ ; θ)
Un-normalized probabilities for each state p̃(s|xn′) using Eq. (2).
Un-normalized probabilities for each leaf node vm ∈ L(H′)

p̃(vm|xn′) =
∑

s∈S p̃(s|xn′)1(vm=1|s).
for b in biases b do

Add bias to logits of openset nodes, ∀vm ∈ O(H), p̃(vm|xn′) = p̃(vm|xn′) + b
Obtain normalized probabilities for all leaf nodes ofH′ as p
Select node with the highest probability as ŷ = argmax(p)

end for

The definition of cross-entropy loss for path probability becomes.

Lph = − log

[
eoy

eoy +
∑

sb∈Sb(y)
eosb
× eoP(y)

eoP(y) +
∑

sb′∈Sb(P(y)) e
osb′
× ...× 1

]
(20)

First, we take the derivative of loss w.r.t ground truth logit oy. All the terms except the 1st one are not a function of oy, so
we treat them as a constant con. Similarly, we denote the normalization of the first fraction as Zy .

dLph
doy

=
d

doy
− log

[
eoy

eoy +
∑

sb∈Sb(y)
eosb
× con

]
(21)

Using chain and product rule of derivative

= − Zy

eoy
1

con
×
[
eoy

Zy
× 0 + con× Zye

oy − eoyeoy

Z2
y

]
(22)

= − Zy

eoy
× 1

con
× con

Z2
y

× [eoy (Zy − eoy )] (23)

= −
[
1− eoy

eoy +
∑

sb∈Sb(y)
eosb

]
(24)

The gradient is negative, meaning minimizing the loss function increases the ground truth logit oy. If the value of oy is
low, the gradient magnitude is high. Similarly, for a high value of non-ground truth sibling leaf logit, osb, sb ∈ Sb(y), the
gradient magnitude is high. Except for the non-ground truth sibling leaf logits, the gradient magnitude is not dependent
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on logits of other nodes, which implies a local optimization. Next, we take derivative w.r.t a non-ground truth leaf logit,
sb ∈ Sb(y). The terms other than the 1st are not the function of sb, so we treat them as a constant con.

dLph
dosb

=
d

dosb
− log

[
eoy

eoy +
∑

sb∈Sb(y)
eosb
× con

]
(25)

Using chain and product rule of derivative

= − Zy

eoy
1

con
×
[
eoy

Zy
× 0 + con× Zy × 0− eoyeosb

Z2
y

]
(26)

=
Zy

eoy
× 1

con
× con

Z2
y

× [eoy × eosb ] (27)

=
eosb

eoy +
∑

sb∈Sb(y)
eosb

(28)

The gradient is positive, meaning minimizing the loss function decreases the non-ground truth sibling leaf logit. If the value
of osb is high, the gradient magnitude is high. Similar gradient analysis can be obtained for all non-ground truth nodes,
y′ ∈ C(a),∀a ∈ A(y). Next, we take derivative w.r.t a non-ground truth logit of the node y′ /∈ C(a),∀a ∈ A(y), which are
not child of the node in the path of the root node to the ground truth node.

dLph
doy′

= 0 (29)

The gradient is 0 as the loss is not a function of the y′. So, minimizing the loss function does not update the logits of these
nodes. Therefore, it does not guarantee the decrease of all the non-ground truth logits.

C.2. Proof of Theorem 2

Proof. The state probability of the node y is given by:

p̃(y|x) =
∏

a∈A(y)

eoa = e
∑

a∈A(y) oa (30)

p(y|x) = p̃(y|x)
1 +

∑
l∈L(H′) p̃(l|x)

(31)

=
e
∑

a∈A(y) oa

1 +
∑

l∈L(H′) e
∑

a′∈A(l) oa′
(32)

The cross-entropy loss for state probability becomes

L = − log

[
e
∑

a∈A(y) oa

1 +
∑

l∈L(H′) e
∑

a′∈A(l) oa′

]
(33)

First, we take the derivative of the loss w.r.t ground truth logit oy . We denote the normalization of the first fraction as Z.

dL
doy

= − Z

e
∑

a∈A(y) oa
× Ze

∑
a∈A(y) oa − e

∑
a∈A(y) oae

∑
a∈A(y) oa

Z2
(34)

= − Z

e
∑

a∈A(y) oa
× e

∑
a∈A(y) oa

Z2
×
[
Z − e

∑
a∈A(y) oa

]
(35)

= −
[
1− e

∑
a∈A(y) oa

1 +
∑

l∈L(H′) e
∑

a′∈A(l) oa′

]
(36)

The gradient is negative, meaning minimizing the loss function increases the ground truth logit oy . If the value of oy is low,
the gradient magnitude is high. For a high value of all the non-ground truth logits, the gradient magnitude is high. Next, we
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take the derivative w.r.t a non-ground truth leaf logit y′.

dL
doy′

= − Z

e
∑

a∈A(y) oa
× Z × 0− e

∑
a∈A(y) oae

∑
a′∈A(y′) oa′

Z2
(37)

=
Z

e
∑

a∈A(y) oa
× e

∑
a∈A(y) oa

Z2
× e

∑
a′∈A(y′) oa′ (38)

=
e
∑

a′∈A(y′) oa′

1 +
∑

l∈L(H′) e
∑

a′∈A(l) oa′
(39)

The gradient is positive, meaning minimizing the loss function decreases the non-ground truth leaf logit o′y . If the value of
o′y is high, the gradient magnitude is high. Therefore, it guarantees the decrease of all the non-ground truth leaf logits. Next,
we take the derivative of the loss w.r.t a non-ground truth non-leaf logit y′a.

dL
doy′

= − Z

e
∑

a∈A(y) oa
(40)

×
Z × 0− e

∑
a∈A(y) oa [

∑
y′∈D(y′

a)∧y′∈L(H′) e
∑

a′∈A(y′) oa′ ]

Z2
(41)

=

∑
y′∈D(y′

a)∧y′∈L(H′) e
∑

a′∈A(y′) oa′

Z
(42)

The gradient is positive, meaning minimizing the loss function decreases the non-ground truth leaf logit oy′
a
. If the value of

oy′
a

is high, the gradient magnitude is also high. With this analysis, all the values of non-ground truth logits o′y decrease by
minimization of the loss function.

C.3. Illustration of theorems

In this section, we illustrate the key concept introduced by Theorems 3.1 and 3.4. We use Figure 4 as a representative
example. For each of the nodes, we have an associated logit value defined as: Seagull: o2, Sparrow: o3, Openset Bird: o4,
Openset Seagull: o5, California Gull: o6, Ivory Gull: o7, Fox Sparrow: o8, Grasshopper Sparrow: o9 and Openset Sparrow:
o10. Let’s take a sample from California Gull, the path probability can be defined as:

ph(California Gull|x) = exp(o2 + o6)

Zph
(43)

where, Zph = exp(o2 + o5) + exp(o2 + o6) + exp(o2 + o7) + exp(o3 + o5) + exp(o3 + o6) + exp(o3 + o7) + exp(o4 +
o5) + exp(o4 + o6) + exp(o4 + o7). The loss function that maximizes the path probability ph(California Gull|x) is defined
as:

Lph = − log

[
exp(o2 + o6)

Zph

]
(44)

In theorem 3.1, there are three types of gradient analysis: (i) gradient for ground truth logit, (ii) gradient for non-ground
truth logit, and (iii) gradient for non-ground truth logit with special condition. First, we analyse gradient w.r.t logit of the
ground truth class o6:

dLph
do6

= − Zph

exp(o2 + o6)
× Zph exp(o2 + o6)− exp(o2 + o6)[exp(o2 + o6) + exp(o3 + o6) + exp(o4 + o6)]

Z2
ph

= −Zph − [exp(o2 + o6) + exp(o3 + o6) + exp(o4 + o6)]

Zph

= −
[
1− exp(o6)[exp(o2) + exp(o3) + exp(o4)]

[exp(o2) + exp(o3) + exp(o4)][exp(o5) + exp(o6) + exp(o7)]

]
= −

[
1− exp(o6)

exp(o5) + exp(o6) + exp(o7)

]
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Table 8. Gradient Summary
Method Node Gradient Remark

Path Prob. Seagull −[1− eo2

eo2+eo3+eo4 ] Local Optimization: Magnitude only depends on the ground truth node
Seagull and its siblings (Sparrow and Openset Bird).

State Prob. Seagull −[1− eo1+o2×{eo5+eo6+eo7}
Zsp

] Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Sparrow eo3

eo2+eo3+eo4 Local Optimization: Magnitude only depends on the non-ground truth
node Sparrow and its siblings (Seagull and Openset Bird).

State Prob. Sparrow eo1+o3×{eo8+eo9+eo10}
Zsp

Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Openset
Bird

eo4

eo2+eo3+eo4 Local Optimization: Magnitude only depends on the non-ground truth
node Openset Bird and its siblings (Seagull and Sparrow).

State Prob. Openset
Bird

eo1+o4

Zsp
Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Openset
Seagull

eo5

eo5+eo6+eo7 Local Optimization: Magnitude only depends on the non-ground truth
node Openset Seagull and its siblings (California and Ivory Gull).

State Prob. Openset
Sparrow

eo1+o2+o5

Zsp
Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. California
Gull

−[1− eo6

eo5+eo6+eo7 ] Local Optimization: Magnitude only depends on the ground truth node
California Gull and its siblings (Ivory Gull and Openset Seagull).

State Prob. California
Gull

−[1− eo1+o2+o6

Zsp
] Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Ivory Gull eo7

eo5+eo6+eo7 Local Optimization: Magnitude only depends on the non-ground truth
node Ivory Gull and its siblings ( Openset Seagull and California Gull).

State Prob. Ivory Gull eo1+o2+o7

Zsp
Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Fox Spar-
row

0 There is no gradient update.

State Prob. Fox Spar-
row

eo1+o3+o8

Zsp
Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Grasshopper
Sparrow

0 There is no gradient update.

State Prob. Grasshopper
Sparrow

eo1+o3+o9

Zsp
Global Optimization: The gradient magnitude depends on all the nodes.

Path Prob. Openset
Sparrow

0 There is no gradient update.

State Prob. Openset
Sparrow

eo1+o3+o10

Zsp
Global Optimization: The gradient magnitude depends on all the nodes.

Here, the gradient is −ve, and the gradient magnitude only depends on the siblings of California Gull: Openset Seagull and
Ivory Gull. The gradient update increases the value of o6. We can observe that, the increase of the value is dependent only
on the local view (the ground truth class and its siblings.)

Next, we analyse gradient w.r.t a non-ground truth class o7.

dLph
do7

= − Zph

exp(o2 + o6)
× Zph × 0− exp(o2 + o6)[exp(o2 + o7) + exp(o3 + o7) + exp(o4 + o7)]

Z2
ph

=
exp(o2 + o7) + exp(o3 + o7) + exp(o4 + o7)

Zph

=
exp(o7)[exp(o2) + exp(o3) + exp(o4)]

[exp(o2) + exp(o3) + exp(o4)]× [exp(o5) + exp(o6) + exp(o7)]

=
exp(o7)

exp(o5) + exp(o6) + exp(o7)

Here, the gradient is +ve, and the gradient magnitude only depends on the ground truth and its siblings (local optimization).
Finally, let’s analyse gradient w.r.t a non-ground truth class y′ /∈ C(a),∀a ∈ A(y) as presented in theorem 3.1. In the
representative example of 4, the symbols represent the following for the image of California Gull:
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• y = California Gull

• A(y) = {Bird, Seagull, California Gull}
• ∀a ∈ A(y), C(a) = {Seagull, Sparrow, Openset Bird, Opensest Seagull, California Gull, Ivory Gull}
• Non-ground truth nodes with condition: y′ /∈ C(a),∀a ∈ A(y) = { Fox Sparrow, Grasshopper Sparrow, Openset

Sparrow }

If we take the gradient w.r.t non-ground truth node with condition, for example o8.

dLph
do8

= 0 (45)

Since, the gradient value is 0, there is no update for the non-ground truth logits with condition. It should be noted that, in
this particular example, the non-ground truth nodes with condition are from the leaf level in the hierarchy. However, as the
depth of hierarchy increases, nodes from non-leaf levels are also included in the non-ground truth nodes with condition.

For theorem 3.4, we have two types of gradient analysis. (i) ground truth logit and (ii) non-ground truth logit. The state
probability for California Gull can be defined as:

p(California Gull|x) = exp(o1 + o2 + o6)

Zsp
(46)

where Zsp = 1 + exp(o1 + o4) + exp(o1 + o2 + o5) + exp(o1 + o2 + o6) + exp(o1 + o2 + o7) + exp(o1 + o3 + o8) +
exp(o1 + o3 + o9) + exp(o1 + o3 + o10) The corresponding loss function is defined as:

L = − log

[
exp(o1 + o2 + o6)

Zsp

]
(47)

First, taking gradient for ground truth class, California Gull we have:

dL
do6

= − Zsp

exp(o1 + o2 + o6)
× Zsp × exp(o1 + o2 + o6)− exp(o1 + o2 + o6) exp(o1 + o2 + o6)

Z2
sp

= −
[
1− exp(o1 + o2 + o6)

Zsp

]
The gradient is -ve and the magnitude is dependent of all the nodes (global view). Next, taking gradient for non-ground truth
class Fox Sparrow:

dL
do8

= − Zsp

exp(o1 + o2 + o6)
× Zsp × 0− exp(o1 + o2 + o6) exp(o1 + o3 + o8)

Z2
sp

=
exp(o1 + o3 + o8)

Zsp

We see that all the gradient is +ve and magnitude is dependent on all the nodes. Similarly, there is not any nodes with zero
gradient update. The gradient summary of all the nodes for sample of California Gull in the example 4 with the remark is
presented in Table 8.

D. Details of Experiments and Additional Results
In this section, we present more details on the experiments along with some additional results.

D.1. Details of Datasets

We perform experiments on three real-world hierarchical datasets. The details of each dataset are summarized in Table 9,
including (i) the Total number of samples, (ii) the Total number of classes, (iii) Known class split: total number of classes
used in the training (iv) Openset class split: total number of classes used in testing as openset classes (v) Number of leaf
nodes in the training hierarchy (vi) Number of non-leaf nodes in the training hierarchy and (vii) Maximum depth associated
with the training hierarchy.
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Table 9. Description of real-world hierarchical datasets
Dataset Name TinyImagenet CUB-200-2011 AWA2

Total Number of Samples 120, 000 12, 000 37, 000
Total Number of Classes 200 200 50

Known Class Split 150 150 40
Openset Class Split 50 50 10

Leaf Nodes in Training Hierarchy 150 150 40
Non-Leaf Nodes in Training Hierarchy 86 43 21

Max Depth of Training Hierarchy 12 7 7

Table 10. Significance Test
CUB Tiny Imagenet AWA2

NA@50 AUC NA@50 AUC NA@50 AUC
Baseline 53.72±0.39 45.54±0.08 21.42±0.96 17.16±0.69 48.75±0.23 44.86±0.28

State-FGOD 64.29 ± 0.17 50.79 ± 0.17 24.53 ± 0.50 19.83 ± 0.39 53.24 ± 0.30 47.71 ± 0.31
p-value 1.48× 10−11 5.77× 10−12 2.06× 10−4 7.07× 10−5 2.87× 10−12 3.64× 10−10

D.2. Implementation Details

For the proposed method and baselines, we use ViT-B/16 as the baseline, and prompt as parameter efficient fine-tuning
method. We follow the default configuration of prompts, learning rate, and number of epochs as presented by (Jia et al., 2022).
For the taxonomy definition, we define a pre-defined numpy file, along with state representation. The state representation
defined in the NumPy file is leveraged in defining the loss function 6. The code is written in Python using PyTorch as
a library. We conduct all the experiments in NVIDIA A100 with 32GB memory. For the known-novel split, we follow
(Pyakurel & Yu, 2024). The conceptual diagram of model training is presented in Figure 6. For the EHND method, we use
the value of β1 and β2 as suggested by the paper (Pyakurel & Yu, 2024). For relabel method, we use the relabing rate of
20%.

D.3. Significance Test

For the results presented in the main paper, the strongest baseline for CUB is E-HND. Similarly, for TinyImageNet and
AWA2, the strongest baseline is Relabel and LOO respectively. In this section, we run our method along with the strongest
baseline for 5 different seeds to test whether the improvement of the proposed method is statistically significant. The mean
of the performance, the standard deviation of the proposed method, and the strongest baseline, along with the p-value of the
t-test is presented in Table 10. The lower value of p-values justifies the statistical significance of the improvement from the
proposed method.

D.4. Additional Results

Experimental results on Stanford Cars and Cifar100 In this section, we compare the proposed method on additional
datasets along with some representative global detectors: LOO, Relabel, and EHND. For Cifar100, we select 40 classes as
closed-set classes. We construct the hierarchy of using those 40 classes as leaf classes resulting in 21 non-leaf nodes and a
depth of 3. Similarly, for Stanford Cars, we select 166 classes as closed-set classes. We construct the hierarchy using those
166 classes as leaf classes resulting in 10 non-leaf nodes and a depth of 3. The comparison results are presented in Table
11. From the comparison, we see that the performance of the proposed method is superior to the baselines justifying the
effectiveness of the proposed methodology.

Qualitative study. We start by showing how the path probability mitigates the shortcomings of local detector methods.
For an openset sample of Le Conte Sparrow, we use the baseline Hierarchical Classifier with extra nodes with and without
path probability in Figure 9(a). The ground truth of the openset sample is Sparrow. We provide probabilities from local
detectors in the box of its corresponding child nodes, and path probabilities in blue color at the end of each path. The correct
way of inference for local detectors is Bird→ Passeriform Bird→ Sparrow. Then, the detector Sparrow should allocate a
high openset score so that it would not be further classified to the child node. However, we see that Oscine Bird gets the
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Table 11. Comparison results on additional datasets

Method Stanford Cars Cifar100
OA@50 AUC OA@50 AUC

LOO 33.15 28.31 22.71 18.38
Relabel 29.82 26.75 18.89 16.26
EHND 41.47 28.81 15.89 12.42

State-FGOD 47.03 35.05 24.97 20.69
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Figure 9. Detection result on a sample of Le Conte Sparrow, an openset sample of Sparrow for (a) local detector vs local detector with
path probability and (b) State-FGOD

higher probability (0.576) than the correct prediction Sparrow (0.343) and makes the mistake of Fine-Grained Openset
Detection. However, if we use path probabilities for inference as provided for all the given paths in Figure 9(a), the path
from Bird→ Nelson Sharp Tailed Sparrow with path probability (0.051) is selected. Next, the local detector Sparrow has a
high openset score of 0.58, and therefore provides the final prediction as Openset Sparrow. In this way, path probability
mitigates the error from Passeriform Bird detector.

However, there is still one issue that Sparrow class has a lower probability than Oscine Bird. Although the final prediction is
correct, the correct non-leaf nodes still can have a lower probability value than their siblings. If we observe the prediction
from the proposed method (State-FGOD) in Figure 9(b), the ground truth Openset Sparrow has the highest probability
(0.5218) among all the leaf nodes of the hierarchy. Additionally, non-leaf node Sparrow (0.8614) has the highest probability
than its siblings (eg, Oscine Bird with probability of 0.1186). Similar is the case for Passeriform Bird. This probability
distribution is possible for the proposed method due to the state formulation as discussed in Proposition 3.3.

For the next openset sample from Chestnut Sided Warbler, we compare the local detector with path probability with the
proposed method (State-FGOD) in Figure 10. We observe that one of the child nodes Green Kingfisher has a higher logit
value, and high probability, making the path probability higher for the path of Bird→ Green Kingfisher highest in Figure
10(a). Because of this, the path probability of one of the child nodes of ground truth node Warbler is not the highest, making
Green Kingfisher a wrong final prediction of FGOD. However, in Figure 10(b), we observe that the proposed method assigns
the highest logit to Openset Warbler, making a correct FGOD prediction.

Computational Cost Analysis: We conducted a computational cost analysis. We define the input dimension of the
classifier head as D, the total number of leaf nodes in the class hierarchy as N , and the depth of the hierarchy as h. For ViT
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Figure 10. Detection result on a sample of Chestnut Sided Warbler, an openset sample of Warbler for (a) local detector with path
probability vs (b) State-FGOD

and ResNet backbone, the value of D is 768 and 2048, respectively. For the TinyImagenet, CUB, and AWA2, the value of
N is 236, 193 and 61, respectively. The corresponding values of h for these datasets are 12, 7, and 7, respectively. So, we
note that D > N ≫ h.

For local detectors, we assume the output dimension of each classifier to be n on average, which is no more than 5 in our
datasets. So, we have n≪ N . The time complexity of the logit calculation is O(D × n× h). The top-down inference for
receiving the final prediction takes O(n× h). The total complexity is O(D× n× h) + O(n× h), and overall complexity is
O(D × n × h). For global detectors, the classifier output dimension is N , resulting in a logit calculation complexity of
O(D×N). The prediction complexity is O(N). Hence, we obtain a total complexity of O(D×N) +O(N) and an overall
complexity of O(D ×N). For the proposed method, we need to aggregate the probabilities by utilizing the global states,
which is an extra step compared to global detectors. This is obtained using matrix multiplication of logits and global states,
adding the complexity of O(N2). Thus, the total complexity is O(D ×N) +O(N) +O(N2). For the datasets we used,
we have D > N , resulting in an overall complexity of O(D ×N), which is the same as the global detectors.

We use the ViT backbone to calculate the inference time (in milliseconds for one test sample) for the proposed method
and representative baselines. The analysis is presented in Table 12. The total inference includes the time of both the
logits calculation and the final prediction. Since the number of leaf classes follows the order NTiny > NCUB > NAWA2,
the corresponding inference times (both total and logit calculation) adheres to the same trend TimeTiny > TimeCUB >
TimeAWA2. Among all the datasets, local detectors require less time than global detectors, which is due to smaller output
dimension n < N and top-down inference h < N . Finally, the overall complexity analysis revealed that the logits
calculation has the dominant time complexity. This is reflected in a substantial portion of the total inference time occupied
by logits calculation. In comparison to other global detector methods, the proposed method requires slightly higher inference
time, which is due to extra step of calculating global state probabilities. Overall, the inference time of all the methods is
fairly fast, making them usable in a practical setting.

E. Limitations, and Future Work
In this work, we evaluate the proposed approach using various benchmark datasets to validate the superior performance
of the proposed method. We acknowledge that the real openset dataset is unbounded for a given training hierarchy. To
capture the nature of such data, we utilize the samples from the closed-set classes to train open-set classes as well. It
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Table 12. Inference and Logits Calculation Time (in milliseconds)

Method Metric TinyImagenet CUB AWA2

TD Total inference 0.0009189 0.0007314 0.0002797
Logits calculation 0.0007530 0.0005900 0.0001950

MSP Total inference 0.0009213 0.0007297 0.0002807
Logits calculation 0.0007530 0.0005900 0.0001950

HC-EN Total inference 0.0009225 0.0007464 0.0002794
Logits calculation 0.0007530 0.0005900 0.0001950

LOO Total inference 0.3191200 0.2956500 0.1330400
Logits calculation 0.3138200 0.2930120 0.1304500

E-HND Total inference 0.3186700 0.2959900 0.1341200
Logits calculation 0.3138200 0.2930120 0.1304500

STATE-FGOD Total inference 0.3204700 0.2984500 0.1365200
Logits calculation 0.3138200 0.2930120 0.1304500

would be interesting to generate meaningful openset samples and use them to augment training data to further improve the
performance of FGOD. We will investigate the data augmentation to aid fine-grained openset dataset as a future work.

F. Source Code
The source code is provided in the repository: https://github.com/ritmininglab/STATE-FGOD
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