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Abstract

Learning meaningful representations of cellular
states is a key problem in computational biology.
Yet, the scaling behavior of single-cell representa-
tion learning models remains poorly understood.
While recent work has proposed that model per-
formance scales predictably with measurement
noise, this hypothesis has only been validated
with relatively small models and datasets. In this
work-in-progress, we present the first empirical
evidence supporting measurement noise scaling
laws at large scales using datasets on the order
of 107 cells and transformer-based models with
> 107 parameters. We demonstrate that previ-
ously observed noise-scaling behavior again con-
sistently emerge in these large-scale models and
datasets. Our results provide further evidence that
measurement noise is an important scaling axis
for cellular representation learning.

1. Introduction

Across image and text domains it has been observed that
scaling up deep learning model size and training dataset size
often leads to predictable improvements in performance
(Rosenfeld et al., 2019; Kaplan et al., 2020). Inspired by
this, several efforts have been made to train large genera-
tive models on increasingly large collections of single-cell
transcriptomes (e.g. Geneformer, scFoundation, scGPT),
aiming to learn “universal” representations of cellular states
(Theodoris et al., 2023; Hao et al., 2024; Cui et al., 2024).

However, the information contained in a single-cell RNA
sequencing (scRNA-seq) dataset depends not only on the
number of cells it contains, but also the accuracy of the
measurements. Quantifying transcript abundance in a cell
is fundamentally challenging due to low copy number, and
molecular undersampling results in significant measurement
noise. Recent work (Gowri et al., 2025) suggests that rep-
resentation quality improves logarithmically with per-cell

'Somite AI, Boston, MA “Department of Systems Biol-
ogy, Harvard University. Correspondence to: Gokul Gowri

<ggowri@g.harvard.edu>.

Preliminary work.

transcript counts. In particular, for an information theoretic
model quality metric Z and molecular counts per cell u,
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However, this noise-scaling behavior has been verified em-
pirically only in datasets up to 103 cells and with relatively
small models. Whether these noise-scaling laws persist in
far larger models and for datasets with tens of millions of
cells remains unexplored.

A major barrier is that validating measurement noise scaling
laws requires an independent “external signal” (protein mea-
surements, spatial context, etc.) against which to quantify
representation quality. Yet the large majority of scRNA-seq
data lack such auxiliary data. To address this, we propose
developmental time as an external signal. This allows us to
build upon a 107-cell mouse developmental atlas consisting
of several embryos from gastrulation to birth (Qiu et al.,
2024), where we can evaluate a cellular representation by
its ability to capture information about developmental stage.

In this work, we provide the first empirical evidence that
measurement noise scaling laws extend to large-scale foun-
dation models. We show that even with 107 cells and > 107
parameter transformer models, the mutual information be-
tween learned representations and developmental time con-
tinues to follow the same logarithmic scaling law with tran-
script counts. This shows that measurement noise remains a
fundamental axis for improving single-cell generative mod-
els.

2. Experimental setup

We closely follow the experimental setup introduced in
Gowri et al. (2025), while introducing a new external signal
and studying a large Geneformer model. Below, we briefly
review the key details and highlight the contributions of this
work.

2.1. Review: Information-theoretic probing of
representation quality

As in Gowri et al. (2025), we evaluate the quality of a repre-
sentation by measuring the mutual information between the
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Figure 1. Cell subsampling and count downsampling experiments. a) Representation information visualized as a function of cell number
in training dataset. ) Representation information visualized as a function of mean UMI per cell in dataset. Confidence bands show min
and max over three replicates (varying random seed) for spatial, clonal, and protein signals. Replicates for developmental signal are

omitted due to resource constraints.

representation and an external signal. As opposed to model-
specific loss functions, this allows comparisons across mod-
els and datasets. In order to estimate mutual information in
high dimensions, we use an approximation approach intro-
duced in Gowri et al. (2024).

To understand scaling behavior of cellular representation
learning models, we measure representation quality after
training on datasets which are artificially subsampled to
different numbers of cells, and artificially downsampled to
different numbers of transcripts captured, or unique molecu-
lar identifiers (UMI), per cell.

2.2. Settings introduced in this work

The key contributions of this work are (1) the use of devel-
opmental time as an external signal and (2) the exploration
of a large-scale transformer based model.

Scaling analysis with a developmental atlas The use of
developmental time as an external signal enables the ob-
servation of noise scaling behavior in a dataset with 107
cells. Recent work (Qiu et al., 2024) has introduced an atlas
of cell states across 74 mouse embryos from 45 develop-
mental timepoints between gastrulation and birth. We learn
representations using transcriptional profiles, and measure
information contained about developmental timepoint. We
treat the developmental timepoint as a discrete variable.

In addition to this large scale dataset, we additionally repli-
cate scaling analyses on smaller datasets studied in Gowri
et al. (2025) in order to understand the scaling behavior of
large Geneformer models trained on these datasets. In par-
ticular, we study the human peripheral mononuclear blood
cell CITE-seq dataset from Hao et al. (2021), the lineage-
traced scRNA-seq dataset of mouse hematopoeitic stem
cells from Weinreb et al. (2020), and a spatially resolved
transcriptomic dataset of a mouse brain from Vizgen (2021).

Scaling analysis for Geneformer Another key contribu-
tion of this work is to explore large-scale transformer based
models. While previous work (Gowri et al., 2025) consid-
ered a small scale transformer based model, here we use an
implementation of Geneformer with 13 million parameters.
Architecture details can be found in Sec. A. In addition to
this Geneformer implementation, we also include the pre-
viously studied baselines of random projection, PCA, and
scVI (Lopez et al., 2018).

3. Results

Our experimental results are shown in Fig. 1. We will
first briefly compare the performance of each modelling
approach, then show agreement between our experimen-
tal results and the previously proposed noise-scaling form
(Eqn. 1).
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Figure 2. Measurement noise scaling laws describe observed behavior. Scatterplot points indicate experimental results when using the
largest training dataset size for each signal. Dotted line indicates fit of Eqn. 1. Shaded bands indicate 20 confidence interval.
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Figure 3. Observations collapse onto a universal scaling curve.
For all PCA, VAE, and Geneformer models, rescaling UMI per
cell and I (u) falls onto a single curve when w is sufficiently large.

3.1. Model comparison

Overall performance In almost all settings considered,
scVI shows the highest quality representations (with respect
to information probing). PCA and Geneformer perform
relatively similarly to each other, with lower performance
than scVI. In the large-scale developmental dataset, Gene-
former outperforms PCA, while PCA generally outperforms
Geneformer in the smaller 10° cell datasets.

Cell number scaling behavior As expected, random pro-
jections do not improve with larger training datasets: these
representations are independent of the training data. PCA
also benefits minimally from increasing training dataset size
beyond 103 cells, in line with the intuition that linear models
converge quickly. Geneformer and scVI both benefit much
more significantly from increasing training dataset size.

3.2. Noise scaling behavior

We next show that the noise-scaling form (Eqn. 1) closely
fits our observations, even for large datasets and large mod-
els. We first show that when measurements of I(u) and u
are rescaled, all experimental observations collapse onto an

asymptotic form of Eqn. 1 for u > 272/

when w or Iy, is small (Fig. 3).

max - deviating only

We also directly fit the noise-scaling form for individual
curves with fixed cell number. For the largest dataset sizes,
we show the direct fits in Fig. 2.

4. Discussion

This work demonstrates that measurement noise scaling
laws persist in large models trained on large scale sScRNA-
seq datasets of millions of cells. However, many threads of
this work remain in progress.

First, while we have shown that measurement noise scaling
laws describe the relationship between model performance
and transcripts captured, Eqn. 1 does not govern how per-
formance scales with dataset size. An important future
direction is to understand how these scaling axes interact
— to what extent can noisy data be compensated for by an
increase in training samples?

Another interesting future direction is to more carefully
study the role of model scale. Here, we used a fixed model
sizes due to practical constraints. However, there may be
rich joint scaling behavior between model size, dataset size,
and measurement noise.

A related limitation of this work is the lack of extensive
hyperparameter search for the scVI and Geneformer models.
In Fig. 1, models are trained in a consistent fashion between
dataset sizes, although optimal hyper-parameters may vary.

Overall, this work extends the empirical evidence for mea-
surement noise scaling laws. By understanding the role of
measurement noise in deep learning model performance,
this work-in-progress points toward practical implications
for designing and generating large scale sScCRNA-seq datasets
for deep learning.
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Software and Data

All data and code in this paper are publicly available. Source
transcriptomic datasets can be found associated with their
respective publications (Hao et al., 2021; Weinreb et al.,
2020; Vizgen, 2021; Qiu et al., 2024), and code to reproduce
the results in this paper can be found at this link . This work
benefits from several open-source software development
efforts (Virshup et al., 2024; Pedregosa et al., 2011; Gayoso
etal., 2022).
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A. Geneformer architecture details

In all experiments, we use a Geneformer model with the following architectural choices: context length of 512, embeddings
with 256 dimensions, feedfoward size of 512, 4 attention heads, and 3 encoder units. Full implementation details and
training code can be found at this link.
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