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ABSTRACT

Recently, Truncated Quantile Critics (TQC), using distributional representation of
critics, was shown to provide state-of-the-art asymptotic training performance on
all environments from the MuJoCo continuous control benchmark suite. Also re-
cently, Randomized Ensemble Double Q-Learning (REDQ), using a high update-
to-data ratio and target randomization, was shown to achieve high sample effi-
ciency that is competitive with state-of-the-art model-based methods. In this pa-
per, we propose a novel model-free algorithm, Aggressive Q-Learning with En-
sembles (AQE), which improves the sample-efficiency performance of REDQ and
the asymptotic performance of TQC, thereby providing overall state-of-the-art
performance during all stages of training. Moreover, AQE is very simple, re-
quiring neither distributional representation of critics nor target randomization.

1 INTRODUCTION

Off-policy Deep Reinforcement Learning algorithms aim to improve sample efficiency by reusing
past experience. A number of off-policy Deep RL algorithms have been proposed for control tasks
with continuous state and action spaces, including Deep Deterministic Policy Gradient (DDPG),
Twin Delayed DDPG (TD3) and Soft Actor Critic (SAC) (Lillicrap et al., 2016; Fujimoto et al.,
2018; Haarnoja et al., 2018a;b). TD3 introduced clipped double-Q learning, and was shown to be
significantly more sample efficient than popular on-policy methods for a wide range of MuJoCo
benchmarks. Soft Actor Critic (SAC) has similar off-policy structures with clipped double-Q learn-
ing, but it also employs maximum entropy reinforcement learning. SAC was shown to provide
excellent sample efficiency and asymptotic performance in a wide-range of MuJoCo environments,
including the high-dimensional Humanoid environment for which both DDPG and TD3 perform
poorly.

More recently, Kuznetsov et al. (2020) proposed Truncated Quantile Critics (TQC), a model-free
algorithm which includes distributional representations of critics, truncation of critics prediction,
and ensembling of multiple critics. Instead of the usual modeling of the Q-function of the expecta-
tion of return, TQC approximates the distribution of the return random variable conditioned on the
state and action. By dropping several of the top-most “atoms” and varying the number of dropped
atoms of the return distribution approximation, TQC can control the over-estimation bias. TQC’s
asymptotic performance (that is after a long period of training) was shown to be better than that
of SAC on the continuous control MuJoCo benchmark suite, including a 25% improvement on the
most challenging Humanoid environment. However, TQC is not sample efficient in that it generally
requires a large number of samples to reach even moderate performance levels.

Chen et al. (2021) proposed Randomized Ensembled Double Q-learning(REDQ), a model-free algo-
rithm which includes a high Update-To-Data (UTD) ratio, an ensemble of Q functions, and in-target
minimization across a random subset of Q functions from the ensemble. Using a UTD ratio much
larger than one, meaning that several gradient steps are taken for each environment interaction, im-
proves sample efficiency, while the ensemble and in-target minimization allows the algorithm to
maintain stable and near-uniform bias under the high UTD ratio. The algorithm was shown to at-
tain much better performance than SAC at the early stage of training, and to match or improve the
sample-efficiency of the state-of-the-art model-based algorithms for the MuJoCo benchmarks. How-
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ever, although REDQ is highly sample efficient for early-stage training, its asymptotic performance
is significantly below that of TQC.

Is it possible to design a simple, streamlined model-free algorithm which can achieve REDQ’s high
sample efficiency in early-stage training and also achieve TQC’s high asymptotic performance in late
state training? In this paper, we achieve this goal with a new model-free algorithm, Aggressive Q-
Learning with Ensembles (AQE). Like TQC and REDQ, AQE uses an ensemble of Q-functions, and
like REDQ it uses a UTD ratio > 1. However AQE is very simple, requiring neither distributional
representation of critics as in TQC nor target randomization and double-Q learning as in REDQ.
AQE controls over estimation bias and the standard deviation of the bias by varying the number of
ensemble members N and the number of ensembles K ≤ N that are kept when calculating the
targets.

Through carefully designed experiments, we provide a detailed analysis of AQE. We first show that
for the MuJoCo benchmark, AQE provides state-of-the-art performance, surpassing the performance
of SAC, REDQ, and TQC at all stages of training. We perform an ablation study, and show that
AQE is robust to choices of hyperparameters: AQE can work well with small ensembles consisting
of 10-20 ensemble members, and performance does not vary significantly with small changes in
the keep parameter K. We show that that AQE performs better than several variations, including
using the median of all ensemble members and removing the most extreme minimum and maximum
outlier in the targets. In order to improve computational time, we also consider different multi-
head architectures for the ensemble of critics: consistent with the supervised convolutional network
literature, we find that a two-head architecture not only reduces computational time but can actually
improve performance for some environments. Additionally, we show that AQE continues to out-
perform SAC and TQC even when these algorithms are made aggressive with a UTD� 1.

To ensure our comparisons are fair, and to ensure our results are reproducible (Henderson et al.,
2018; Islam et al., 2017; Duan et al., 2016), we provide open source code1. For all algorithmic
comparisons, we use the the authors’ code.

2 ADDITIONAL RELATED WORK

Overestimation bias due to in target maximization in Q-learning can significantly slow learning
(Thrun & Schwartz, 1993). For tabular Q-learning, van Hasselt (2010) introduced Double Q-
Learning, and showed that it removes the overestimation basis and in general leads to an under-
estimation bias. Hasselt et al. (2016) showed that adding Double Q-learning to deep-Q networks
can have a similar effect, leading to a major performance boost for the Atari games benchmark. As
stated in the Introduction, for continuous-action spaces, TD3 and SAC address the overestimation
bias using clipped-double Q-learning, which brings significant performance improvements (Fuji-
moto et al., 2018; Haarnoja et al., 2018a;b).

As mentioned in the Introduction, Kuznetsov et al. (2020) control the over-estimation bias by esti-
mating the distribution of the return random variable, and then by dropping several of the top-most
“atoms” from the estimated distribution. The distribution estimate is based on a methodology de-
veloped in Bellemare et al. (2017); Dabney et al. (2018a;b), which employs an asymmetric Huber
loss function to minimize the Wasserstein distance between the neural network output distribution
and the target distribution. In this paper, in order to counter over-estimation bias, we also drop the
top-most estimates, although we do so solely with an ensemble of Q-function mean estimators rather
than with an ensemble of the more complex distributional models employed in (Kuznetsov et al.,
2020).

It is well-known that using ensembles can improve the performance of DRL algorithms (Faußer &
Schwenker, 2015; Osband et al., 2016; Lee et al., 2021). For Q-learning based methods, Anschel
et al. (2017) use the average of multiple Q estimates to reduce variance. Lan et al. (2020) intro-
duced Maxmin Q-learning, which uses the minimum of all the Q-estimates rather than the average.
Agarwal et al. (2020) use Random Ensemble Mixture (REM), which employs a random convex
combination of multiple Q estimates.

1https://anonymous.4open.science/r/Aggressive-Q-Learning-with-Ensembles-0FC0/
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Model-based methods often attain high sample efficiency by using a high UTD ratio. In particular,
Model-Based Policy Optimization (MBPO) (Janner et al., 2019) uses a large UTD ratio of 20-40.
Compared to Soft-Actor-Critic (SAC), which is model-free and uses a UTD of 1, MBPO achieves
much higher sample efficiency in the OpenAI MuJoCo benchmark (Todorov et al., 2012; Brockman
et al., 2016). REDQ (Chen et al., 2021), a model-free algorithm, also successfully employs a high
UTD ratio to achieve high sample efficiency.

3 ALGORITHM

We propose Aggressive Q-learning with Ensembles (AQE), a simple model-free algorithm which
provides state-of-the-art performance for the MuJoCo benchmark for both early and late stage of
training. The pseudo-code is shown in Algorithm 1. As is the case with most off-policy continuous-
control algorithms, AQE has a single actor (policy network) and multiple critics (Q-function net-
works), and employs Polyak averaging of the target parameters to enhance stability. Building on this
algorithmic base, it also employs an update-to-data ratio G > 1, an ensemble of N ≥ 3 Q-functions
(rather than just two as in TD3 and SAC), and targets that average all the Q-functions excluding the
Q-functions with the highest N − K values. For exploration, it uses entropy maximization as in
SAC, although it could easily incorporate alternative exploration schemes.

The design of AQE borrows components from TQC and REDQ, but also excludes components
from those algorithms. Like TQC, AQE does not employ clipped double Q-learning to control over
estimation bias, but instead drops the highest Q values when calculating the targets. Like REDQ,
AQE employs a UTD > 1 to improve sample efficiency during training. However, unlike TQC,
AQE uses a UTD > 1, and does not employ distributional representations of critics but instead
the simpler Q-function expectation estimates. Unlike REDQ which employs two randomly chosen
ensemble members when calculating the target, AQE does not use target randomization and uses
most of the ensemble members when calculating the target. As discussed in the theory Section 5,
this provides AQE more flexibility through the choice of the N . The resulting algorithm is not only
simple and streamlined, but also provides state-of-the art performance.

AQE has three key hyperparameters, G, N , and K. If we set N = 2, K = 1 and G = 1, AQE is
simply the underlying off-policy algorithm such as SAC. When N > 2, K = 1 and G = 1, then
AQE becomes similar to, but not equivalent to, Maxmin Q-learning (Lan et al., 2020).

3.1 MULTI-HEAD ENSEMBLE ARCHITECTURE

AQE uses an ensemble of Q networks (as does REDQ and TQC). Employing multiple networks,
one for each Q-function output, can be expensive in terms of computation and memory. In order
to reduce the computation and memory requirements, we also consider multi-head architectures
for generating multiple Q-function outputs. Instead of each network providing a single Q-estimate
output, we consider N separate Q networks each with h heads, providing a total of h ·N estimates.
The h heads from one network share all of the layers except the final fully-connected layer. In
practice, we have found h = 2 heads works well for AQE, consistent with work in ensembles of
convolutional neural networks for computer vision tasks (Lee et al., 2015). When properly sharing
low level weights, multi-headed networks may not only retain the performance of full ensembles,
but can sometimes outperform them. We conduct ablation studies on the multi-head architecture in
AQE in Section 4.2.

4 EXPERIMENTS RESULTS

We provide experimental results in this section for AQE, TQC, REDQ and SAC for the five most
challenging MuJoCo environments, namely, Hopper, Walker2d, HalfCheetah, Ant and Humanoid.
To make a fair comparison, the TQC, REDQ and SAC results are reproduced using the authors’
open source code, and use the same network sizes and hyperparameters reported in their papers. In
particular, TQC employs 5 critic networks with 25 distributional samples for a total of 125 atoms.
TQC drops 5 atoms per critic for Hopper, 0 atoms per critic for Half Cheetah, and 2 atoms per critic
for Walker, Ant, and Humanoid. For REDQ, we also use the authors’ suggested values of N = 10
and M = 2, where M is the number ensemble members used in the target calculation.
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Algorithm 1 Aggressive Q-Learning with Ensembles

1: Initial policy parameters θ, N Q-function parameters φi, i = 1,. . . , N , empty replay buffer D.
Set target parameters φtarg,i ← φi for i = 1, 2,. . . , N.

2: repeat
3: Take one action at ∼ πθ(·|st). Observe reward rt, new state st+1.
4: Add data to replay buffer: D ← D ∪ {(st, at, rt, st+1)}
5: for G updates do
6: Randomly sample a mini-batch B = {(s, a, r, s′)} from D.
7: for each (s, a, r, s′) ∈ B do
8: Sample ã′ ∼ πθ(·|s′).
9: Determine the K indices from i = 1, . . . , N that minimize Qtarget,i(s

′, ã′).
10: Compute the Q target y:

y(s, a) = r + γ

(
1
K

∑
i∈K

Qφtarg,i(s
′, ã′)− α log πθ(ã

′|s′)
)

11: for i = 1, . . . , N do
12: Update φi with gradient descent using

∇φi

1
|B|

∑
(s,a,r,s′)∈B

(Qφi(s, a)− y(s, a))
2

13: Update target networks with φtarg,i ← ρφtarg,i + (1− ρ)φi
14: Update policy parameters θ with gradient ascent using

∇θ 1
|B|

∑
s∈B

(
1

N

N∑
i=1

Qφi
(s, ãθ(s))− α log πθ(ãθ(s)|s)

)
ãθ(s) ∼ πθ(·|s)

15: until Convergence

The REDQ paper uses G = 20 for the update-to-data ratio, and provides results for up to 300K
environment interactions. Using such a high value for G is computationally infeasible in our our
experimental setting, since we use 3 million environment interactions for Ant and Humanoid in order
to investigate asymptotic performance as well early-stage sample efficiency. In the experiments
reported here, we use a value of G = 5 for both REDQ and AQE.

For AQE, we use 10 Q-networks each with 2 heads, producing 20 Q-values for each input. The AQE
networks are the same size as those in the REDQ paper. AQE keeps 10 out of 20 values for Hopper,
all 20 values for half-Cheetah, and 16 out of 20 values for Walker, Ant and Humanoid.

Figure 1 shows the training curves for AQE, TQC, REDQ, and SAC. For each algorithm, we plot
the average return of 5 independent trials as the solid curve, and plot the standard deviation across
5 seeds as the shaded region. For each environment, we train each algorithm for exactly the same
number of environment interactions as done in the SAC paper. We use the same evaluation protocol
as in the TQC paper. Specifically, after every epoch, we run ten test episodes with the current policy,
record the undiscounted sum of all the rewards in each episode and take the average of the sums
as the performance. A more detailed discussion on hyperparameters and implementation details is
given in the Appendix.

We see from Figure 1 that AQE is the only algorithm that beats SAC in all five environments dur-
ing all stages of training. Moreover, it typically beats SAC by a very wide margin. Table 1 shows
that, when averaged across the five environments, AQE achieves SAC asymptotic performance ap-
proximately 3x faster than SAC and 2x faster than REDQ and TQC. As seen from Figure 1 and
Table 2, in the early stages of training, AQE matches the excellent performance of REDQ in all five
environments, and both algorithms are much more sample efficient than SAC and TQC. As seen
from Figure 1 and Table 3, in late-stage training, AQE always matches or beats all other algorithms,
except for Humanoid, where TQC is about 10% better. Table 3 shows that, when averaged across all
five environments, AQE’s asymptotic performance is 26%, 22%, and 6% higher than SAC, REDQ,
and TQC, respectively.
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(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 1: AQE versus TQC, REDQ and SAC. AQE is the only algorithm that beats SAC in all five
environments during all stages of training, and it typically beats SAC by a wide margin.

Performance SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 3000 506K 184K 136K 77K 6.57 2.39 1.77
Walker2d at 4000 631K 371K 501K 277K 2.28 1.34 1.81
HalfCheetah at 10000 763K 737K 552K 304K 2.51 2.42 1.82
Ant at 5500 1445K 1759K 1749K 632K 2.29 2.78 2.77
Humanoid at 6000 2469K 1043K 1862K 1345K 1.84 0.78 1.38
Average - - - - 3.10 1.94 1.91

Table 1: Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show the
amount of data collected when the specified performance level is reached (roughly corresponding
to 90% of SAC’s final performance). The last three columns show how many times AQE is more
sample efficient than SAC, TQC and REDQ in reaching that performance level.

4.1 FIXED HYPERPARAMETER ACROSS ENVIRONMENTS

Following the TQC paper, in Figure 1 we used different drop atoms for TQC for the different en-
vironments. To make the comparison fair, we also used different keep values K for AQE for the
different environments. In Figure 2, we repeat the experiment on the five MuJoCo environments,
but now use the same hyperparameter values across environments for TQC (drop two atoms per
network) and AQE (K = 16). These choices of fixed hyper-parameters appear to give the best over-
all performance for the two algorithms. We report detailed early-stage and late-stage performance
comparisons of all algorithms in Table 4 and Table 5.

We can see from the results that with fixed hyperparamters, the conclusions for AQE remain largely
unchanged, except for Hopper, where REDQ becomes the strongest algorithm. Table 4 shows that
when averaging performance across environments, AQE still matches the high sample efficiency
of REDQ during the early stages of training. Furthermore, Table 5 shows that, on average, AQE’s
asymptotic performance is still 16%, 11% and 9% higher than SAC, REDQ and TQC, respectively.

4.2 ABLATIONS

In this section, we use ablations to provide further insight into AQE. We focus on the Ant environ-
ment, and run the experiments up to 1M time steps. (In the Appendix we provide ablations for the
other four environments.) As in the REDQ paper, we consider not only performance but normalized
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Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1807 2747 3345 2.30 1.85 1.22
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 4801 6876 6378 2.09 1.33 0.93
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.86 1.61 1.10

Table 2: Early-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers show
the performance achieved when the specific amount of data is collected. On average, AQE performs
2.9 times better than SAC, 1.6 times better than TQC and 1.1 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 3612 2954 3541 1.08 0.98 1.20
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 10887 11562 13093 1.25 1.20 1.13
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.26 1.06 1.22

Table 3: Late-stage performance comparison of SAC, TQC, REDQ and AQE. The numbers show
the performance achieved when the specific amount of data is collected. The last three columns
show the ratio of AQE performance compared to SAC, TQC and REDQ performance. On average,
during late-stage training, AQE performs 1.26 times better than SAC, 1.06 times better than TQC
and 1.22 times better than REDQ.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 2: Performance for AQE and TQC using same hyper-parameters across the five environments.
AQE uses K = 16 and TQC uses atoms = 2 per critic.

bias and standard deviation of normalized bias as defined by the REDQ authors. We first look at
how the ensemble size N affects AQE. The first row in Figure 3 shows AQE with N equal to 2, 5,
10 and 15, with two heads for each Q network, and the percentage of kept Q-values unchanged. As
the ensemble size N increases, we generally obtain a more stable average bias, a lower std of bias,
and stronger performance. When trained with high UTD value, a relatively small ensemble size, for
example, N = 5, can greatly reduce bias accumulation, resulting in much stronger performance.
This experimental finding is consistent with the results in Theorem 1 in Section 5.
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Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1719 2747 2294 1.58 1.33 0.84
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 3594 6876 6325 2.10 1.76 0.92
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.71 1.59 1.02

Table 4: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
when using the same hyperparameters across the environments. On average, AQE performs 2.71
times better than SAC, 1.59 times better than TQC and 1.02 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 2024 2954 2404 0.73 1.19 0.81
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 9792 11562 11293 1.08 1.15 0.98
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.16 1.09 1.11

Table 5: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
when using the same hyperparameters across the environments. On average, AQE performs 16%
better than SAC, 9% better than TQC and 11% times better than REDQ.

The second row in Figure 3 shows the how the keep parameter can affect the algorithm’s perfor-
mance: under the same high UTD value, as K decreases, the average normalized Q bias goes from
over-estimation to under-estimation. Consistent with the theoretical result in Theorem 1, by de-
creasing K we lower the average bias. When K becomes too small, the Q estimate becomes too
conservative and starts to have negative bias, which makes learning difficult. We see that K = 16
has an average bias closest to 0 and also a consistently small std of bias. These results are similar
for the other four environments, as shown in the Appendix.

The third row in Figure 3 shows results for variants of the target computation methods. The Me-
dian curve uses the median value of all the Q estimates in the ensemble to compute the Q target.
The RemoveMinMax curve drops the minimum and maximum values of all the Q estimates in the
ensemble to compute the Q target. We see that these two variants give larger positive Q bias values.

We also considered different combinations of ensemble size N and the number of multi-heads h
while keeping the total number of Q-function estimates N · h fixed. We performed these experi-
ments for all five environments, and the results are shown in Figure 6 of the Appendix. In terms
of performance, we found the two best combinations to be N = 20, h = 1 and N = 10, h = 2,
with the former being about 50% slower than latter in terms of computation time. In the Appendix
we also consider endowing REDQ with the same multi-head ensemble architecture as AQE and find
that it does not improve REDQ substantially.

In the Appendix, we also consider including a UTD ratio of G = 5 in both SAC and TQC, and
compare these aggressive versions with AQE, also with G = 5. Although SAC becomes more
sample efficient with G = 5, AQE continues to outperform both algorithms except for Humanoid,
where once again TQC performs somewhat better than AQE for the final stage of training.

5 THEORETICAL RESULTS

In this section, we characterize how changing the size of the ensemble N and the keep parameter
K affects the estimation bias term in the AQE algorithm. We will restrict our analysis to the tabular
version of AQE (see Appendix E). Our analysis will follow similar lines of reasoning as Lan et al.
(2020) and Chen et al. (2021) which extends upon the theoretical framework introduced in Thrun &
Schwartz (1993).
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(a) Ensemble size: Perf (b) Ensemble size: Bias (c) Ensemble size:Std

(d) Keep value: Perf (e) Keep value: Bias (f) Keep value: Std

(g) Variations: Perf (h) Variations: Bias (i) Variations: Std

Figure 3: AQE ablation results for Ant. The top row shows the effect of the ensemble size N . The
second row shows the effect of keep number parameter K. The third row compares AQE to some
variants.

For each a ∈ A, let EK,N (s, a) be the ensemble members in {1, . . . , N} with the K lowest values
of Qj(s, a), j = 1, . . . , N . In the tabular case, the target for the Q networks take the form:

r + γmax
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

 . (1)

Define the post-update estimation bias as

ZK,N := r + γmax
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

− (r + γmax
a′

Qπ(s′, a′)
)

= γ

max
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

−max
a′

Qπ(s′, a′)

 (2)

Under this definition, if E[ZK,N ] > 0, then the expected post-update estimation bias is positive and
there is a tendency for the positive bias to accumulate during updates. Similarly, if E[ZK,N ] < 0,
then the expected post-update estimation bias is negative and there is a tendency for the negative
bias to accumulate during updates. Ideally, we would like E[ZK,N ] ≈ 0

Also let
Qj(s, a) = Qπ(s, a) + ej(s, a) (3)
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where ej(s, a) is an independent and identically distributed error term across all j’s and all a’s for
each fixed s. We further assume that E[ej(s, a)] = 0. Note that with this assumption

E

 1

N

N∑
j=1

Qj(s′, a′)

−Qπ(s, a) = 0,

that is the pre-update estimation bias is zero. The following theorem shows how the expected esti-
mation bias changes with N and K:
Theorem 1. The following results hold for E[ZK,N ]:

1. E[ZN,N ] ≥ 0 for all N ≥ 1.

2. E[ZK−1,N ] ≤ E[ZK,N ] for all K ≤ N .

3. E[ZK,N+1] ≤ E[ZK,N ].

4. Suppose that ejsa ≤ c for some c > 0 for all s, a and j. Then there exists an N sufficiently
large and K < N such that E[ZK,N ] < 0.

Proof Sketch. Part 1 is a result of Jensen’s Inequality, and Parts 2 and 3 can be shown by analyzing
how the average of theK smallest ensembles changes when adding an extra ensemble model. Given
the first three parts, we only need to show that E[Z1,N ] < 0 to show that there exists a K for
a sufficiently large N where the expected bias is negative. See supplementary material for full
proof.

Theorem 1 shows that we can control the expected post-update bias E[ZK,N ] through adjusting K
and N . More concretely, we can bring the bias term from above zero (i.e. over estimation) to under
zero (i.e. under estimation) by decreasing K and/or increasing N .

We note also that similar to Chen et al. (2021), we make very few assumptions on the error term
es,a. This is in contrary to Thrun & Schwartz (1993) and Lan et al. (2020), both of whom assume
that the error term is uniformly distributed.

In REDQ, a random subset of ensemble models of size M is chosen and for any fixed M , the bias
does not depend on the number of ensemble models N (Chen et al., 2021). We can thus see from
Figure 7 in Appendix, with M = 2 fixed, increasing the size of ensemble N with the multi-head
architecture does not necessarily help the training of REDQ. Unlike REDQ, AQE can control the
bias term through both the number of ensemble models used in the average calculation K and the
total number of ensembles N , allowing for more flexibility. One other drawback for REDQ is that
it ignores the estimates of all other ensemble estimates except for the minimal one in the randomly
chosen set, which diminishes the power of the multiple ensemble sets. In contrast, AQE utilizes
makes use of most of the ensemble models when calculating the target.

6 CONCLUSION

Perhaps the most important take away from this study is that a simple model-free algorithm can do
surprisingly well, providing state-of-art performance at all stages of training. There is no need for a
model, distributional representation of the return, or in-target randomization to achieve high sample
efficiency and asymptotic performance.

The experimental results in this paper show that the AQE algorithm provides state-of-the-art perfor-
mance not only when hyper-parameters are customized to individual environments (as done in the
TQC paper) but also when the hyper-parameters are held fixed across environments. The ablation
study shows that AQE is robust to small changes in the hyper-parameters. The theoretical results
complement the experimental results, showing that the estimation bias can be controlled by either
varying the ensemble size N or the keep parameter K.
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A HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Table 6 gives a list of hyperparameters used in the experiments. Most of AQE’s hyperparameters
are made the same as in the REDQ paper to ensure fairness and consistency in comparisons, except
that AQE has 2-head critic networks. As compared with AQE and REDQ, TQC uses a larger critic
network with 3 layers of 512 units per layer. In table 7, we report the dropped atoms d for TQC and
the number of Q values we keep in the ensemble to calculate the target in AQE.

Hyperparameters AQE SAC REDQ TQC
optimizer Adam
learning rate 3 · 10−4

discount(γ) 0.99
target smoothing coefficient(ρ) 0.005
replay buffer size 1 · 106

number of critics N 10 2 10 5
number of hidden layers in critic networks 2 2 2 3
size of hidden layers in critic networks 256 256 256 512
number of heads in critic networks h 2 1 1 25
number of hidden layers in policy network 2
size of hidden layers in policy network 256
mini-batch size 256
nonlinearity ReLU
UTD ratio G 5 1 5 1

Table 6: Hyperparameter values.

Environment Dropped atoms per critic Kept Q values out of N · h values
Hopper 5 10
HalfCheetah 0 20
Walker 2 16
Ant 2 16
Humanoid 2 16

Table 7: Environment-dependent hyper-parameters for TQC and AQE.
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B ADDITIONAL RESULTS FOR AQE, SAC-5 AND TQC-5

Figure 4 presents the performance of AQE, SAC-5 and TQC-5 for all the environments. SAC-5 and
TQC-5 uses UTD ratio G = 5 for SAC and TQC, respectively. We can see that AQE continues to
outperform both algorithms except for Humanoid, where TQC performs somewhat better than AQE
in the final stage training. SAC becomes more sample efficient with G = 5; however, AQE still
beats SAC-5 by a large margin.

C ADDITIONAL RESULTS FOR PARAMETER K

Due to lack of space, Figure 3 only compares different AQE keep numbers K for Ant. Figure 5
shows the performance, average estimation bias and standard deviation for all five environments.
Consistent with the theoretical result in Theorem 1, by decreasing K, we lower the average bias.
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(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 4: Performance, average and std of normalized Q bias for AQE, SAC-5 and TQC-5. All of
the algorithms in this experiment use UTD = 5.
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(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 5: Performance, average and std of normalized Q bias for AQE with different values of K.
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D ADDITIONAL RESULTS FOR MULTI-HEAD ARCHITECTURE

Due to lack of space, Figure 3 only compares the different size of the ensemble N and the number
of heads h for Ant. Figure 6 shows the results for all five environments. We can see that the
combination of N = 10, h = 2 and N = 20, h = 1 have comparable performance. However,
N = 10 and h = 2 is faster in terms of computation time.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 6: Performance for AQE with different combinations of number of Q networks and number
of heads.

Will the performance of REDQ match that of AQE if we also provide REDQ a multi-head architec-
ture? Figure 7 examines the performance of REDQ when it is endowed with the same multi-head
architecture as AQE. We see that the performance of REDQ does not substantially improve.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 7: Performance of REDQ with N=10 and heads = 2 as compared with REDQ and AQE.
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E TABULAR AQE WITH N ENSEMBLE MEMBERS AND d DROPS

Algorithm 2 Tabular AQE

1: Initialize: Qj(s, a) for all s ∈ S, a ∈ A, j = 1, . . . , N .
2: repeat
3: For some state s ∈ S, choose a ∈ A based on

{
Qj(s, a)

}N
j=1

, observe r, s′.
4: For each a′ ∈ A, letEK,N (s′, a′) be the ensemble members in {1, . . . , N} with theK lowest

values of Qj(s′, a′), j = 1, . . . , N .
5: Get target

y = r + γ max
a′∈A

1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

6: for j = 1, . . . , N do
7: Update each Qj(s, a)

Qj(s, a)← Qj(s, a) + α(y −Qj(s, a))

8: s← s′

9: until end

F PROOFS

We first present the following lemma:

Lemma F.1 (Chen et al., 2021). Let X1, X2, . . . be an infinite sequence of i.i.d. random vari-
ables with cdf F (x) and let τ = inf x : F (x) > 0. Also let YN = min{X1, X2, . . . , XN}. Then
Y1, Y2, . . . converges to τ almost surely.

Proof. See Appendix A.2 of Chen et al. (2021)

Theorem 1. The following results hold for E[ZK,N ]:

1. E[ZN,N ] ≥ 0 for all N ≥ 1.

2. E[ZK−1,N ] ≤ E[ZK,N ] for all K ≤ N .

3. E[ZK,N+1] ≤ E[ZK,N ].

4. Suppose that ejsa ≤ c for some c > 0 for all s, a and j. Then there exists an N sufficiently
large and K < N such that E[ZK,N ] < 0.

Proof. 1. By definition,

E[ZN,N ] = γ E

max
a′

 1

N

N∑
j=1

Qj(s′, a′)

−max
a′

Qπ(s′, a′)


≥ γ

max
a′

E

 1

N

N∑
j=1

Qj(s′, a′)

−max
a′

Qπ(s′, a′)


= γ

[
max
a′

Qπ(s′, a′)−max
a′

Qπ(s′, a′)
]

= 0

(4)

2. Let

Q̄K,N (s, a) =
1

K

∑
j∈EK,N

Qj(s, a). (5)
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Since for any state s, maxa Q̄K+1,N (s, a) ≥ maxa Q̄K,N (s, a),

E[ZK+1,N ] = γ E
[
′

max
a

Q̄K+1,N (s′, a′)−max
a′

Qπ(s′, a′)
]

≥ γ E
[
′

max
a

Q̄K,N (s′, a′)−max
a′

Qπ(s′, a′)
]

= E[ZK,N ]

(6)

3. Comparing E[ZK,N ] and E[ZK,N+1] is equivalent to comparing Q̄K,N (s, a) and
Q̄K,N+1(s, a). Since ej(s, a) is i.i.d., by extension Qj(s, a) is also i.i.d. for j = 1, 2, · · · .
Suppose Qj(s, a) is drawn from some probability distribution F , then given Q̄K,N (s, a),
Q̄K,N+1(s, a) can be calculated by generating an additional Qi(s, a) from F . The new
sample Qi(s, a) affects the calculation of Q̄K,N+1(s, a) under the following two cases:

• If Qi(s, a) > maxj∈EK,N
Qj(s, a), then the lowest K values remain unchanged

hence Q̄K,N (s, a) = Q̄K,N+1(s, a).
• Else if Qi(s, a) ≤ maxj∈EK,N

Qj(s, a), then maxj∈EK,N
Qj(s, a) would be re-

moved from and Qi(s, a) would be added to the set of lowest K values, therefore
Q̄K,N+1(s, a) ≤ Q̄K,N (s, a).

Combining the two cases Q̄K,N+1(s, a) ≤ Q̄K,N (s, a), therefore E[ZK,N+1] ≤ E[ZK,N ]

4. Since E[ZN,N ] ≥ 0, E[ZK,N ] ≤ E[ZK+1,N ] and E[ZK,N+1] ≤ E[ZK,N ]. It is suffice to
show that E[Z1,N ] < 0 for some N . The rest of the proof largely follows Theorem 1 of
Chen et al. (2021).

Let τ = inf{x : Fa(x) > 0} where Fa(x) is the cdf of Qj(s, a), j = 1, 2, . . . . By Lemma
1, Q̄1,N (s, a) = min1≤j≤N Q

j(s, a) converges almost surely to to τa for each a. Since
the action space is finite, it then follows that maxa Q̄1,N (s, a) converges almost surely to
to τ = maxa τa. Due to our assumption that ej(s, a) ≤ c and that Qπ(s, a) is finite, it then
follows that maxa Q̄1,N (s, a) is also bounded above. By Part 3 of the theorem, Q̄1,N (s, a)
is monotonoically decreasing w.r.t. N . and since maxa Q̄1,N (s, a) is also bounded above
and converges almost surely to τ , we have

E[Z1,N ] = γ

(
E[max

a
min

1≤j≤N
Qj(s, a)]−max

a
Qπ(s, a)

)
= γ

(
E[max

a
Y Na ]−max

a
Qπ(s, a)

)
N→∞−→ γ

(
max
a

τa −max
a

Qπ(s, a)
)
< 0

(7)
where the last equality follows from the assumption that the error ej(s, a) is non-trivial,
and hence τa < maxaQ

π(s, a) for all a. Therefore for a sufficiently large N , there exists
a 1 ≤ K ≤ N such that EK,N < 0.
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