
Hardware-Efficient Quantization for Green Custom Foundation Models

Toshiaki Koike-Akino * 1 2 Chang Meng 2 Volkan Cevher 2 Giovanni De Micheli 2

Abstract
We propose a new hardware-efficient quantiza-
tion (HEQ) for low-power full-custom foundation
models. The HEQ jointly optimizes multiplier
hardware and weight quantization to minimize
the total power consumption. Exploiting power
profile of custom multipliers, our method achieves
a significant power reduction up to 20 folds.

1. Introduction
Recent foundation models exhibit excellent performance
for a variety of artificial-intelligence (AI) domains such as
language and vision processing. However, the required stor-
age and computational resources are ever growing every
year (Schwartz et al., 2020). To solve the issue, various
model compression methods for green AI such as distilla-
tion, pruning, and quantization, were introduced (Frantar
& Alistarh, 2022; Gou et al., 2021; Reed, 1993; Yuan &
Agaian, 2023; Gholami et al., 2022).

For instance, binarized networks (Qin et al., 2023; Cour-
bariaux et al., 2016; Kim & Smaragdis, 2016; Rastegari
et al., 2016; Zhou et al., 2016; Liu et al., 2018) have shown
relatively good performance even with 1-bit quantization.
Nevertheless, binarization often causes a substantial loss,
and most quantization papers (Frantar et al., 2022; Lin et al.,
2023) for foundation models consider at least 3 bits to
achieve an acceptable performance.

DeepShift (Elhoushi et al., 2021) uses power-of-two weights
to eliminate multiplication operations. Hessian-aware quan-
tization (HAWQ) (Dong et al., 2019) uses layer-wise quan-
tization based on optimal brain pruning (LeCun et al.,
1989). It was extended to mixed-precision and dyadic
rationals (Dong et al., 2020; Yao et al., 2021). Then,
GPTQ (Frantar et al., 2022) extends them with zero-shot cal-
ibration, while activation-aware quantization (AWQ) (Lin
et al., 2023) uses adaptive scaling.

1Mitsubishi Electric Research Laboratories (MERL), Cam-
bridge, MA 02139, USA 2Ecole Polytechnique Federale de Lau-
sanne (EPFL), 1015 Lausanne, Switzerland. Correspondence to:
Toshiaki Koike-Akino <koike@merl.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Our paper provides a new framework for hardware-efficient
quantization (HEQ), exploiting the synthesis profile of cus-
tom floating-point (FP) multipliers. The key idea is based
on the fact that the power consumption of multipliers de-
pends on weight distributions, motivating us to optimize the
weight quantization to implement green AI chips, i.e., low-
power custom foundation models. The major contributions
of this paper are listed as follows.

• We synthesize the hardware of FP multipliers, to show
its energy efficiency over integer multipliers.

• We propose an HEQ framework, enabling hardware
profiles differentiable to optimize the weight quantiza-
tion for power reduction.

• Our HEQ framework achieves 25% power reduction,
and our custom multipliers provide up to 20-fold power
reduction altogether.

2. Green Foundation Hardware Design
2.1. Floating-Point vs. Integer Quantization

Floating-point (FP) format is defined by 3 parameters
(Ne, Nm, B): the number of exponent bits, number of man-
tissa bits, and bias, respectively. Let s, e, and m be the
1-bit sign, Ne-bit exponent, and Nm-bit mantissa, respec-
tively. The total bit width is thus n = 1 + Ne + Nm. We
represent e and m as both integers and binary strings, in-
terchangeably, without losing generality. The FP value is
defined as: x = (−1)s × 2E−B × M , where E = e and
M = 1.m when e ̸= 0, unless otherwise E = 1 and
M = 0.m (a.k.a., subnormal condition). FP format is
generic enough to cover integers, power-of-twos, dyadic
numbers, and fixed-point formats. FP8 format was rigor-
ously analyzed for deep learning (Noune et al., 2022), and
pytorch supports float8 e5m2 and float8 e4m3, for
(Ne, Nm, B) = (5, 2, 15) and (4, 3, 7), respectively. Like-
wise, we denote (Ne, Nm, B) FP format as “eNemNmbB”.
Unless specified, bias is chosen as B = 2Ne−1 − 1.

Most standard n-bit integer quantization method (Gholami
et al., 2022) uses group-wise scale and bias: Wq = WintS+
Z, where integer value is Wint = round[(W − Z)/S],
scale value is S = (Wmax −Wmin)/(2

n − 1) and bias is
Z = Wmin with Wmax and Wmin being the maximum and

1

Hardware-Efficient Quantization for Green Custom Foundation Models

Table 1. Power/delay/area profiles of general multipliers designed through Yosys/ABC logic synthesis and Synopsys Design Compiler on
45nm CMOS technology standard cell library. Power consumption is at 0.2GHz clock frequency.

Multipliers int32 float32e8m23 int16 float16e5m10 bfloat16e8m7 int8 float8e5m2 float8e4m3 int4 float4e3m0b6

Power (µW) 5,883.5 4,886.3 1,054.6 814.6 435.6 170.5 63.3 101.3 15.6 8.4
Delay (ns) 4.99 5.00 2.67 3.76 3.25 1.58 1.25 1.65 0.45 0.29
Area (µm2) 5,412.8 4,063.9 1,157.6 828.9 508.6 231.2 95.2 144.7 29.5 16.0

W

x

y

Pretrained
Foundation Model

Pretrain
Wq

x

y

Quantized
Foundation Model

Calibrate

Quantize Synthesize
Wq

x

y

General
Foundation AI Chip

Memory

Customize
Constant Logic f(Wq)

x

y

Custom
Foundation AI Chip

Power Profile
Hardware-Efficient Quantization

Figure 1. Design of green custom foundation models.

H’

HWq

General Multiplier

Shannon
Decomp

n-bitn-bit

n-bit

H’

HWq
n-bit

n-bit

MUX

…

Decomposed Const Multipliers

Custom

H’

HWq
n-bitn-bit

MUX

…

Custom Const Multiplier

2n

Figure 2. Shannon decomposition of general multiplier towards
custom constant-weight multiplier.

minimum values of weights W in a group. Besides the n-bit
integer Wint, it requires extra bits for scale and bias, which
are typically stored as FP values. For fair comparison, we
do not consider extra bits for group-wise scale and bias.

2.2. Floating-Point vs. Integer Multipliers

As weight multiplications in AI models are the most hard-
ware intensive part, we analyze the power, delay, and area
profiles of multiplier hardware. We synthesize general mul-
tipliers (George & Tomar, 2019; Yadav et al., 2022) with
the Nangate 45nm Open Cell Library (Nangate, 2011) using
Yosys (Wolf et al., 2013), ABC (Brayton & Mishchenko,
2010), and Synopsys Design Compiler (Synopsys, 2024).
More details are described in Appendix B, C, and D.

Table 1 shows the comparisons of different precision multi-
pliers. Notably, it reveals that FP multipliers are hardware-
efficient compared to integer multipliers. It is because the
major block in FP multipliers is an integer multiplier block
for mantissa parts, which requires quadratic complexity
O[N2

m]. For example, FP32 multipliers use a 24-bit inte-
ger multiplier, which is simpler than the full 32-bit inte-
ger multiplier. Accordingly, bfloat16 having 7-bit man-
tissa is about 2-fold energy-efficient over float16 and
int16. Similarly, float8 e5m2 having just 2-bit man-

Figure 3. Power profile across quantized weight value for custom
FP8 e4m3 multipliers. Average power is 13.3µW, average delay
is 0.48ns, and average area is 28.7µm2.

tissa is about 3-fold energy-efficient than int8 multipliers.
Many integer quantization papers in the literature made a
false assumption that FP operations are more complex than
integer operations. Unlike such papers, we focus on FP
quantization to realize green AI models. More analysis of
general multiplier design for various precision is found in
Appendix D.

2.3. Custom Green AI Deployment

Figure 1 illustrates a design framework of green custom
foundation AI models. The foundation model is initially
pretrained using training datasets. The model weight W
is then quantized to Wq. This quantization may employ
a calibration step using calibration datasets to minimize
the quantization loss, similar to (Frantar et al., 2022; Lin
et al., 2023). Synthesizing the model provides a general AI
chip, which uses general multipliers to compute a product
of arbitrary hidden node H and quantized weight Wq. This
general AI chip reads a built-in memory storing the quan-
tized weight Wq. Our custom AI chip uses a constant logic
and custom multipliers dedicated to each hidden node to
be multiplied with a constant weight Wq without accessing
memory. Once the weight is quantized and frozen, we no
longer need general FP multipliers as one of operands is
always constant. Our HEQ approach takes the power profile
of such a custom AI model into account to calibrate the
quantized weights.

2.4. Constant-Weight Multiplier

Any boolean functions can be factorized into fewer-bit
boolean functions via Shannon decomposition (Shannon,

2

Hardware-Efficient Quantization for Green Custom Foundation Models

W

Po
w

er
 C

on
su

m
pt

io
n Interpolate

Wq W’q

P(Wq)

P(W’q)

P(W)
~

G
ra

di
en

t

Higher Accuracy

Lower Power
Consumption

Regularization

Interpolated STE: No Gradient

Cancel Out Discrete
Output

Figure 4. Interpolated STE for differentiable hardware profile. Reg-
ularized loss to minimize cross entropy and power consumption.

1949). Figure 2 shows such a general multiplier decom-
posed into 2n constant multipliers. It is obvious that each
constant multiplier is much simpler than the original general
multiplier because it has only one operand and another mul-
tiplicand is constant. For custom AI chips, we do not need
the multiplexer to select the output from multiple constant
multipliers because the quantized weight Wq is determined
at the synthesis time.

This custom multiplier can significantly reduce the power
consumption. Figure 3 shows the power profile for the cus-
tom FP8 e4m3 multipliers over constant weight Wq across
28 quantization choices. Its average power consumption
is 13.3µW, which is 7.6-times lower power than the gen-
eral FP8 e4m3 multiplier (101.3µW as in Table 1). More
interestingly, it is even lower power than general int4 mul-
tiplier (15.6µW). The power, delay and area profiles of other
custom multipliers are found in Appendix F.

As shown in Figure 3, the power profile of custom multiplers
highly depends on the quantization value Wq. For instance,
if Wq is power-of-two having zeros in mantissa parts, the
constant-weight multiplier will be a constant bit-shift opera-
tion. The power dip appears every 2Nm quantization point
in Figure 3, which is mainly because of this reason. This
unequal power profile of custom multipliers motives us to
optimize the quantized weight distribution.

3. Hardware-Efficient Quantization (HEQ)
3.1. Quantization-Aware Training (QAT)

Our HEQ uses quantization-aware training (QAT) in cali-
bration step, where the pretrained foundation model having
full-precision weights W is quantized with a calibration
dataset. QAT calibration refines the weights W such that
its quantized value Wq maintains a good performance. Be-
cause quantization is non-differentiable, we use straight-
through estimator (STE) trick (Gholami et al., 2022). Specif-
ically, the forward processing is carried out as follows:
W := W −W.detach()+Wq, where detach() means stop-
ping the gradient in the backward pass, and quantized weight
Wq is obtained by casting FP32 value to lower-precision FP.

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

10
-10

10
-5

10
0

10
5

10
10
6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

A
c
c
u
ra

c
y
 (

%
)

P
o
w

e
r

(u
W

)

Lambda

Power
Accuracy

Accuracy (λ=0)

0.45%

15.4%

(a) FP8 e5m2

98.0

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

10
-10

10
-5

10
0

10
5

10
10
6.0

6.5

7.0

7.5

8.0

8.5

A
c
c
u
ra

c
y
 (

%
)

P
o
w

e
r

(u
W

)

Lambda

Power
Accuracy

Accuracy (λ=0)

0.45%

25.4%

(b) FP8 e4m3

Figure 5. Power-aware quantization results across regularization
factor λ. Error band shows a confidence interval under one stan-
dard deviation over 7 random seeds.

Although this casting process is not differentiable, the STE
trick can bypass the gradient calculation.

The weights are updated with gradient methods to mini-
mize a loss function such as cross entropy in the calibration
step. With the QAT calibration, quantization error can be
significantly reduced compared to post-training quantiza-
tion (PTQ), which directly casts the FP32 weights into the
closest value in the lower-precision FP format. Neverthe-
less, the QAT alone does not efficiently promote the energy
efficiency unless we can control the weight distribution.

3.2. Hardware-Aware Calibration

To further reduce the power consumption, our HEQ uses
a regularized loss function to minimize the cross entropy
loss and the total power consumption at once. We first
obtain the synthesis profile of custom multipliers like in
Figure 3, which provides a power consumption table P (Wq)
depending on 2n choices of quantization value Wq. As
such a look-up table is not differentiable, we apply a linear

3

Hardware-Efficient Quantization for Green Custom Foundation Models

Table 2. Comparison of quantization methods for implementing custom ViT model.
PTQ on General Multiplier

Precision FP32e8m23 FP16e5m10 BF16e8m7 FP8e5m2 FP8e4m3 FP6e3m2b7 FP5e3m1b7 FP4e3m0b6 INT4e0m3b4 FP3e2m0b5

Accuracy (%) 98.29±0.11 98.03±0.21 98.04±0.22 98.01±0.25 97.81±0.25 97.83±0.00 97.45±0.00 92.49±0.90 10.69±1.25 14.25±2.06

Power (µW) 4,886.3 814.6 435.6 63.3 101.3 46.62 24.04 8.4 15.6 1.2

HEQ on Custom Multiplier

Precision FP32e8m23 FP16e5m10 BF16e8m7 FP8e5m2 FP8e4m3 FP6e3m2b7 FP5e3m1b7 FP4e3m0b6 INT4e0m3b4 FP3e2m0b5

Accuracy (%) — 98.70±0.09 — 98.65±0.05 98.60±0.11 98.78±0.05 98.67±0.09 97.99±0.08 55.91±6.74 97.35±0.14

Power (µW) — 179.09±0.82 — 6.87±0.06 6.25±0.02 2.35±0.00 1.19±0.01 0.60±0.00 0.13±0.00 0.07±0.00

interpolation for arbitrary precision W to get interpolated
power consumption:

P̃ (W) = P (Wq)
W ′

q−W

W ′
q−Wq

+ P (W ′
q)

W−Wq

W ′
q−Wq

, (1)

where Wq and W ′
q are the closest and second closest quanti-

zation values from W . Then, we further introduce the STE
trick on top of this interpolated profile as follows:

P̃ (W) := P̃ (W)− P̃ (W).detach() + P (Wq), (2)

which we call interpolated STE trick, enabling discrete
output of power consumption yet differentiable. This in-
terpolated STE trick for differentiable hardware profile is
depicted in Figure 4. The gradient towards lower-power
quantization value can promote reducing the total power
consumption. Different interpolation could be used as well.

In order to balance the trade-off between the power reduc-
tion and accuracy, our HEQ uses a regularized loss function:

L = Ex,y

[
CE

(
f(x, {Wi}), y

)
+ λ

∑
i
1
N P̃ (Wi)

]
, (3)

where CE(·) denotes the cross entropy, (x, y) is a pair of
supervised calibration data input and output, f(·) denotes
the foundation model, {Wi} is a set of all N weights, Wi is
the i-th weight, and λ is a regularization factor.

4. Experiments
We customize the vision transformer (ViT) model (Doso-
vitskiy et al., 2020) pre-trained on ImageNet-21k (Deng
et al., 2009), and further fine-tuned towards ImageNet-1k
and CIFAR10 dataset (Krizhevsky et al., 2009). This ViT
model has a total of 86.6M parameters to quantize. More
details of settings are described in Appendix E.

Figure 5 shows classification accuracy and power consump-
tion across regularization factor λ for custom FP8 multipli-
ers e5m2 and e4m3. Interestingly, a moderate regularization
offers improvement in both classification accuracy and en-
ergy efficiency by up to 0.45% and 25.4%, respectively.
Appendix G and I show more results on fewer-bit FP quan-
tizations, showing importance of bias factor and exponent

bit allocation. How the weight distribution is adjusted by
regularization is also discussed in Appendix H.

Table 2 shows the overall quantization results. The full-
precision FP32 has 98.29% accuracy, and PTQ with lower
precision gradually degrades the performance. FP8 still
maintains a reasonable accuracy above 97.81%, while FP4
has about 6% loss. Nevertheless, FP4 is still much better
than INT4 quantization, which has a poor performance of
10.69%. More importantly, general FP4 multiplier has 582-
fold power reduction over FP32.

Our HEQ with proper λ can improve the performance and
energy efficiency. Notably, FP5 quantization has even bet-
ter performance than FP32 precision due to regularization
gain at only 1.19µW power consumption, which is 4100-
times lower energy (4886.3/1.19). The reason why FP5
and FP6 are better than higher-precision FP is discussed
in Appendix G and H. Using the custom multipliers, the
power consumption for each FP quantization can be re-
duced by up to 20 folds (e.g., 24.04µW/1.19µW for FP5).
When using FP3 quantization, the total power consumption
over the entire 86.6M-parameter model is still only 6.06W,
while keeping the quantization loss within 1% from FP32,
which requires an enormous power of 0.42MW with fully
parallelized general multipliers. Thus, our full-custom AI
chip can be greater than 4 orders of magnitude greener
(0.42M/6.06 ≃ 7× 104). The power-accuracy tradeoff is
highlighted in Appendix J. We also evaluated delay-aware
quantization using our HEQ framework in Appendix K,
achieving up to 19-times acceleration in inference time.

5. Conclusion
We proposed hardware-efficient quantization (HEQ), achiev-
ing a significant power reduction. With Shannon decompo-
sition, our custom multipliers exhibit a few orders of mag-
nitude lower-power consumption than general multipliers.
We introduced an interpolated STE trick to make hardware
profiles differentiable, leading to a significant improvement
in both accuracy and energy efficiency. It allows 3-bit quan-
tization having 4 orders of magnitude power reduction over
FP32 models while the loss is within 1%. We plan to extend

4

Hardware-Efficient Quantization for Green Custom Foundation Models

to mixed-precision and approximated logic synthesis with
more rigorous experiments of various foundation models.

Impact Statement
Our paper’s goal is to advance the field of machine learning.
While there are many potential societal consequences of our
work, we feel none of major negative impacts is specifically
highlighted.

References
Brayton, R. and Mishchenko, A. ABC: An academic

industrial-strength verification tool. In Computer Aided
Verification: 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings 22, pp.
24–40. Springer, 2010.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to +1 or -1. arXiv preprint arXiv:1602.02830, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. HAWQ: Hessian aware quantization of neural
networks with mixed-precision. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 293–302, 2019.

Dong, Z., Yao, Z., Arfeen, D., Gholami, A., Mahoney,
M. W., and Keutzer, K. HAWQ-v2: Hessian aware trace-
weighted quantization of neural networks. Advances in
neural information processing systems, 33:18518–18529,
2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Elhoushi, M., Chen, Z., Shafiq, F., Tian, Y. H., and Li, J. Y.
DeepShift: Towards multiplication-less neural networks.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2359–2368, 2021.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. GPTQ: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

George, M. L. and Tomar, G. S. Comparative review of
floating point multiplier. International Journal of Hybrid
Technology, 12(2):21–48, 2019.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods for effi-
cient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge
distillation: A survey. International Journal of Computer
Vision, 129(6):1789–1819, 2021.

Kim, M. and Smaragdis, P. Bitwise neural networks. arXiv
preprint arXiv:1601.06071, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images, 2009.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 2,
1989.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. AWQ: Activation-aware weight quantization
for LLM compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Lin, M., Ji, R., Xu, Z., Zhang, B., Wang, Y., Wu, Y., Huang,
F., and Lin, C.-W. Rotated binary neural network. Ad-
vances in neural information processing systems, 33:
7474–7485, 2020.

Lin, X., Zhao, C., and Pan, W. Towards accurate binary
convolutional neural network. Advances in neural infor-
mation processing systems, 30, 2017.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., and Cheng, K.-
T. Bi-Real Net: Enhancing the performance of 1-bit cnns
with improved representational capability and advanced
training algorithm. In Proceedings of the European con-
ference on computer vision (ECCV), pp. 722–737, 2018.

Nangate. The Nangate 45nm Open Cell Library. https:
//si2.org/open-cell-library/, 2011.

Noune, B., Jones, P., Justus, D., Masters, D., and Luschi, C.
8-bit numerical formats for deep neural networks. arXiv
preprint arXiv:2206.02915, 2022.

Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., and
Song, J. Forward and backward information retention for
accurate binary neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 2250–2259, 2020.

5

https://si2.org/open-cell-library/
https://si2.org/open-cell-library/

Hardware-Efficient Quantization for Green Custom Foundation Models

Qin, H., Zhang, M., Ding, Y., Li, A., Cai, Z., Liu, Z., Yu,
F., and Liu, X. BiBench: Benchmarking and analyzing
network binarization. In International Conference on
Machine Learning, pp. 28351–28388. PMLR, 2023.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
XNOR-Net: Imagenet classification using binary con-
volutional neural networks. In European conference on
computer vision, pp. 525–542. Springer, 2016.

Reed, R. Pruning algorithms—a survey. IEEE transactions
on Neural Networks, 4(5):740–747, 1993.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green
AI. Communications of the ACM, 63(12):54–63, 2020.

Shannon, C. E. The synthesis of two-terminal switching
circuits. The Bell System Technical Journal, 28(1):59–98,
1949.

Synopsys. Design Compiler. https://www.
synopsys.com/, 2024.

Wolf, C., Glaser, J., and Kepler, J. Yosys - A free Ver-
ilog synthesis suite. In Proceedings of the 21st Austrian
Workshop on Microelectronics (Austrochip), volume 97,
2013.

Yadav, J., Kumar, A., Shareef, S., Bansal, S., and Rathour, N.
Comparative analysis of Vedic multiplier using various
adder architectures. In Journal of Physics: Conference
Series, volume 2327, pp. 012022. IOP Publishing, 2022.

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan,
E., Wang, L., Huang, Q., Wang, Y., Mahoney, M., et al.
HAWQ-v3: Dyadic neural network quantization. In In-
ternational Conference on Machine Learning, pp. 11875–
11886. PMLR, 2021.

Yuan, C. and Agaian, S. S. A comprehensive review of
binary neural network. Artificial Intelligence Review, 56
(11):12949–13013, 2023.

Zhang, Y., Pan, J., Liu, X., Chen, H., Chen, D., and
Zhang, Z. FracBNN: Accurate and FPGA-efficient bi-
nary neural networks with fractional activations. In The
2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 171–182, 2021.

Zhao, R., Song, W., Zhang, W., Xing, T., Lin, J.-H.,
Srivastava, M., Gupta, R., and Zhang, Z. Accel-
erating binarized convolutional neural networks with
software-programmable fpgas. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 15–24, 2017.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.
DoReFa-Net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

6

https://www.synopsys.com/
https://www.synopsys.com/

Hardware-Efficient Quantization for Green Custom Foundation Models

A. Related Work
Various model compression methods were proposed, such
as knowledge distillation (Frantar & Alistarh, 2022; Gou
et al., 2021), pruning (Reed, 1993), and quantization (Yuan
& Agaian, 2023; Gholami et al., 2022).

Extreme 1-bit quantization (Qin et al., 2023) has shown rel-
atively good performance even with 1-bit quantization, e.g.,
BNN (Courbariaux et al., 2016; Kim & Smaragdis, 2016),
XNOR-Net (Rastegari et al., 2016), DoReFa-Net (Zhou
et al., 2016), Bi-Real (Liu et al., 2018), IR-Net (Qin et al.,
2020), RBNN (Lin et al., 2020), and ABC-Net (Lin et al.,
2017). They proposed a variety of gradient approximation
methods for non-differentiable binarization operation. For
example, BNN uses STE trick as:

W := sign(W)︸ ︷︷ ︸
Non-Differentiable

+

Differentiable︷︸︸︷
W ′ −W ′.detach()︸ ︷︷ ︸

Cancel Out

, (4)

W ′ =clamp(W,−1, 1), (5)

where sign(x) = (−1)x≤0 is non-differentiable sign func-
tion, and clamp(x, a, b) = max(a,min(b, x)) is a piece-
wise differentiable truncation function.

Binarized networks have many papers on hardware imple-
mentation, mostly on generic field-programmable gate-array
(FPGA) platform, e.g., (Zhao et al., 2017; Zhang et al.,
2021). Nevertheless, binarization often causes a substantial
loss, and most quantization papers (Frantar et al., 2022; Lin
et al., 2023) for foundation models consider at least 3 bits
to achieve an acceptable performance.

DeepShift (Elhoushi et al., 2021) uses power-of-two weights
to eliminate multiplication operations. Hessian-aware quan-
tization (HAWQ) (Dong et al., 2019) uses layer-wise quanti-
zation based on optimal brain pruning (LeCun et al., 1989).
HAWQv2 (Dong et al., 2020) considers mixed-precision
weight and activation. HAWQv3 (Yao et al., 2021) uses
integer weight in dyadic format. Then, GPTQ (Frantar et al.,
2022) extends HAWQ using zero-shot calibration, while
activation-aware quantization (AWQ) (Lin et al., 2023) uses
activation-dependent scaling.

B. Standard Cell Library
In integrated circuit design, a standard cell library is a collec-
tion of pre-designed and pre-characterized logic gates and
other standard circuit elements used to implement a circuit,
ensuring consistency and efficiency in the design and manu-
facturing process. Specifically, we utilize the Nangate 45nm
open cell library (Nangate, 2011), January 2011 version, in
our experiments. The library contains 134 standard cells
including:

• 9 non-functional cells;

• 16 flip-flops;

• 5 latches;

• 102 combinational cells;

• half-adders and full-adders.

The cells offer basic logic functions (AND, NAND, OR,
NOR, XOR, XNOR, OR-AND, AND-OR, BUFF, and INV)
with different drive strengths.

We use a typical voltage of 1.1V at 25◦C room temperature.
Note that our analysis uses 45nm CMOS (complementary
metal-oxide semiconductor) technology, while much lower
power can be achieved with recent CMOS technologies such
as the 5nm process.

C. Logic Synthesis
Logic synthesis converts an abstract specification of de-
sired circuit behavior, typically at the register-transfer level
(RTL), into a gate netlist consisting of cells from a stan-
dard cell library. This process optimizes for reducing circuit
power, delay, and area. In our experiments, we generate
custom multipliers using three logic synthesis tools, i.e.,
Yosys (Wolf et al., 2013), ABC (Brayton & Mishchenko,
2010), and Synopsys Design Compiler (Synopsys, 2024)
following the workflow described below.

First, we write RTL codes to describe the custom multiplier
using Verilog. Yosys is then used to convert the Verilog
code to a gate netlist via the synth command. Next, the
obtained netlist is further refined by ABC. Specifically, we
apply the area-oriented optimization script compress2rs,
and the area-oriented technology mapping command amap
to map the circuit into cells in the Nangate 45nm library.1

To reduce the power, delay, and area more aggressively, the
optimized netlist is further synthesized by Synopsys Design
Compiler. We used compile ultra command to further
optimize the logic under a maximum delay constraint of
5ns. The power, delay, and area profiles are then analyzed,
with a clock frequency of 0.2GHz to be used for the power
analysis.

D. Hardware Profile of General Multiplier
We synthesize general multipliers (George & Tomar, 2019;
Yadav et al., 2022) with the Nangate 45nm Open Cell Li-
brary (Nangate, 2011) using Yosys (Wolf et al., 2013),
ABC (Brayton & Mishchenko, 2010), and Synopsys De-
sign Compiler (Synopsys, 2024).

Figure 6 shows a general FP multiplier. It consists of 3
major blocks: mantissa multiplication, exponent addition,

1We apply area-oriented logic synthesis because area and power
are postively correlated.

7

Hardware-Efficient Quantization for Green Custom Foundation Models

Sign Exponent Mantissa

1 Ne Nm

x w
Sign Exponent Mantissa

1 Ne Nm

(Nm+1)-bit Integer
Multiplication

1/0

1/0
Ne-bit Integer

Addition

Sign Exponent Mantissa
y

Normalization Bit Shift & Round

Bias

Increment

Figure 6. General FP multiplier diagram: exponent adder; mantissa
multiplier; normalization. Hardware complexity is dominated by
(Nm + 1)-bit integer multiplier block.

and normalization. The most hardware-intensive block is
mantissa multiplication in the order of O[N2

m] complexity.
As the FP multiplier uses integer multipliers at a fewer-bit
width, it can be more energy-efficient than full-bit-width
integer multipliers. Other blocks in FP multipliers are in the
linear complexity as they are based on integer additions and
bit shifts.

Figure 7 shows the synthesis results in the power/delay/area
profiles for few-precision multipliers over FP1 to FP8 hav-
ing different Ne. As discussed, integer multipliers are more
energy demanding, while power-of-two multipliers (expo-
nential quantization with Nm = 0) are most energy-efficient
as no multiplication block is required in Figure 6.

E. ViT CIFAR10 Task
Table 3 lists hyperparameters for the experi-
ment of ViT quantization. The base ViT model
(google/vit-base-patch16-224)2 is pretrained
on ImageNet-21k and fine-tuned on ImageNet-1k. The
ViT model is depicted in Figure 8. It has 12 layers of
multi-head attention modules, each of which has 12 heads,
768 features, and a token length of 769. The original base
model has 36.6M parameters in floating-point 32 bits,
requiring 330MiB storage.

CIFAR10 is an image classification dataset having 10 classes
of 32 × 32 colored images with 50k training samples and
10k test samples. We use up-sampling to 224× 224 resolu-
tions with random resized cropping and horizontal flip. The
original classifier head has 1000 class output, and we se-
lected 10 outputs based on the prediction score of CIFAR10
training data. The matched labels are listed in Table 4.

We use CIFAR10 training data for quantization calibration,
and use testing data for performance analysis. AdamW is
used with OneCycle scheduling up to 100 epochs while

2https://huggingface.co/google/
vit-base-patch16-224

Table 3. Hyperparameter configurations for ViT quantization.

Hyperparameter Value

Optimizer AdamW
Learning Rate Schedule OneCycle
Weight Decay 0.01
Batch Size 32
Epochs 100
Early Stopping Patience 1
Learning Rate 0.001

Table 4. Label matching from ImageNet-1k to CIFAR10.

ImageNet-1k CIFAR10

404 airliner 0 airplane
675 moving van 1 automobile
9 ostrich 2 bird
285 Egyptian cat 3 cat
351 hartebeest 4 deer
152 Japanese spaniel 5 dog
32 tailed frog 6 frog
339 sorrel horse 7 horse
814 speedboat 8 ship
867 trailer truck 9 truck

early stopping is taken place when accuracy dropped with a
patience of 1.

We use our HEQ framework for 7 times with different ran-
dom seeds to obtain the mean accuracy and mean power
consumption as well as those standard deviations.

F. Hardware Profile of Custom Multiplier
Table 5 lists average power, delay, and area profiles for cus-
tom FP multipliers, i.e., constant-weight multipliers in the
Shannon decomposition. When using general multipliers in
Table 1, it is nearly infeasible to fully parallerize the foun-
dation model. For instance, the ViT model having 86.6M
parameters requires 4886.3µW×86.6M = 0.42MW power
and 4063.9µm2×86.6M = 0.35m2 die size with FP32 gen-
eral multipliers. However, the custom FP3 multipliers can
pack the ViT in a dia size of about 0.53µm2 × 86.8M =
45mm2, having 0.13µW× 86.6M = 11.3W power. Hence,
realizing low-power full-custom foundation chip is feasible.

Figure 9 shows power, delay and area profiles of custom
multipliers for FP8 e5m2. The power consumption highly
depends on the quantized value of the weight operand for
multiplications. When the weight operand has zeroes in
mantissa part, the FP multiplier reduces to bit-shift operators
and more energy-efficient than other weight values. Hence,
one can see that the power dip happens every 4 apart when
mantissa becomes 0.

8

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224

Hardware-Efficient Quantization for Green Custom Foundation Models

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8

P
o
w

e
r

(u
W

)

Number of Bits

Integer e0
FP e3
FP e4
FP e5
FP e6

Exponential m0

(a) Power

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5 6 7 8

D
e
la

y
 (

n
s
)

Number of Bits

Integer e0
FP e3
FP e4
FP e5
FP e6

Exponential m0

(b) Delay

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

A
re

a
 (

u
m

2
)

Number of Bits

Integer e0
FP e3
FP e4
FP e5
FP e6

Exponential m0

(c) Area

Figure 7. Power/delay/area profile of general multipliers on 45nm CMOS technology standard cell library.

Transformer Encoder

…

Image Patches (768, 3, 16, 16)

Linear Projection
Class
Token

Positional Embedding

(769, 768)

Classifier
Head

(1000)
x 12 layers

Layer Norm

12-Head
Self-Attention

Layer Norm

Linear(3x768, 768)

Linear(768, 3x768)

GeLU

Linear(768, 768)

Figure 8. Base ViT foundation model.

Average power is 9.2µW, which is 7-fold lower than the
power consumption of general FP8 multipliers requiring
63.3µW.

Figure 10 shows power, delay and area profiles of custom
multipliers for FP8 e4m3. Similarly, the power dip happens
every 8 apart when the mantissa bits become all 0. Average
power is 12.9µW, which is 8-fold lower than the power
consumption of general FP8 multiplier requiring 101.3µW.

Figure 11, 12, 13, 14 and 15 show hardware profiles for FP7
e4m2b8, FP6 e3m2b7, FP5 e3m1b7, FP4 e3m0b6, and FP4
e0m3b4 multipliers, respectively.

G. Linear vs. Nonlinear Quantization
FP quantization is generally nonlinear or non-uniform as
the quantization step is non-equal. Nevertheless, FP quan-
tization will be linear or uniform when we assign all bits
into mantissa parts, i.e., Ne = 0. When we assign all bits
into exponent parts, it will be power-of-two quantization
like DeepShift, i.e., Nm = 0. When the precision is high

Table 5. Average power/delay/area profile of custom FP multipliers
on 45nm CMOS technology standard cell library.

FP Power (µW) Delay (ns) Area (µm2)

FP16 e5m10 280.56 2.64 330.54
FP8 e5m2 9.23 0.41 21.30
FP8 e4m3 13.26 0.48 28.72
FP7 e4m2b8 7.53 0.34 17.24
FP6 e3m2b7 3.93 0.17 9.73
FP5 e3m1b7 2.32 0.10 6.10
FP4 e3m0b6 0.94 0.059 3.03
FP3 e2m0b5 0.13 0.015 0.53

like FP8, balancing bit allocations to exponent and mantissa
parts can improve the overall performance. However, if
there are only a few bits, how should we allocate them into
exponent and mantissa?

Figure 16 shows QAT calibration results for FP3 to FP5
quantization using different exponent, mantissa, and bias
parameters. It clearly shows that allocating all bits into the
exponent part is more advantageous than the mantissa part
for few-bit FP. This is favorable to hardware design as the
power-of-two multipliers are simple bit-shift operators. It
suggests that nonlinear/non-uniform quantization is gener-
ally better than linear/uniform quantization. For FP6, there
is a slight improvement from e5m0 to e4m1 at the peak
performance.

We can also find that the selection of bias parameter B is a
crucial factor. Typically, FP bias is choise as B = 2Ne−1−1
to balance the representation from large to small values.
However, most AI weights have no large values, and we
should increase the bias point in general. For example, the
best bias for FP4 e3m0 was B = 6, which is larger than
standard choice of B = 3.

H. Weight Distribution
The weight distributions are adjusted by the regularization
factor λ. Figure 17 shows the weight distribution of custom

9

Hardware-Efficient Quantization for Green Custom Foundation Models

(a) Power (b) Delay (c) Area

Figure 9. Power/delay/area profile across quantized weight value for custom FP8 multiplier: e5m2b15. Average power is 9.2µW, which is
7-fold lower than the power consumption of general FP8 multiplier requiring 63.3µW.

(a) Power (b) Delay (c) Area

Figure 10. Power/delay/area profile across quantized weight value for custom FP8 multiplier: e4m3b7. Average power is 13.3µW, which
is about 8-fold lower than the power consumption of general FP8 multiplier requiring 101.3µW.

multipliers for FP8 e4m3 when sweeping the regulariza-
tion factor from λ = 10−1, 100, 101, 102, 103. We can see
that higher regularization provides more sparse weight dis-
tribution, where non-power-of-twos weights are gradually
decreased. Balancing power-of-two weights and non-power-
of-two weights at around λ = 102 can achieve higher accu-
racy and lower energy as discussed in power-aware quanti-
zation as shown in Figure 5. The reason why the moderate
regularization improves accuracy is because of the weight
regularization benefit, which can often improve the parame-
ter efficiency for over-parameterized foundation models.

Figure 18 shows the weight distribution of custom multipli-
ers for FP8 e5m2. We can see the similar trend: Larger the
regularization factor λ, sparser the weight distributions. It is
because custom multiplers having higher-power consump-
tion are avoided. Nevertheless, too strong power reduction
can degrade the performance, and the balanced regulariza-
tion at around λ = 101 offers improved performance and
energy efficiency jointly.

Note that FP8 quantization using a default bias B =
2Ne−1 − 1 is not the best choice as unused quantization
values exist as shown in those histogram figures. This is
a major reason why FP6 and FP5 quantization were better

than FP8 quantization. For fewer-bit FP quantizatins, we
optimized the bias as shown in Appendix G. Accordingly,
quantization values were well distributed as discssed below.

Figure 19, 20, 21, 22, and 23 show the weight histogram
across the regularization factor λ for FP7 e4m2b8, FP6
e3m2b7, FP5 e3m1b7, FP4 e3m0b6 and FP4 e0m3b4 quan-
tizations, respectively. As shown, the weight quantization
is well distributed at low λ, and gradually sparsified with
increased regularzation factor λ. FP4 e0m3b4 is equivalent
to fixed-point precision or scaled int4. We observe that
sparser distribution for FP4 e3m0, but not for INT4 case.
The reason why INT4 has different behavior may be because
the cross entropy term is very high and performance is poor
like 55.91%.

I. Power-Aware Quantization
The power-aware quantization in our HEQ framework for
FP4 and FP3 is shown in this section. Figure 24 shows the
accuracy and power profile across the regularization factor λ
for FP4 e3m0b6, FP4 e0m3b5, and FP3 e2m0b5. As shown,
higher regularization provides more energy efficient weight
quantization. The accuracy is not necessary improved for
such low-precision regimes, while we can keep a compara-

10

Hardware-Efficient Quantization for Green Custom Foundation Models

(a) Power (b) Delay (c) Area

Figure 11. Power/delay/area profile across quantized weight value for custom FP7 multiplier: e4m2b8.

(a) Power (b) Delay (c) Area

Figure 12. Power/delay/area profile across quantized weight value for custom FP6 multiplier: e3m2b7.

ble accuracy to the case of QAT with λ = 0.

Figure 25 shows the performance results of PTQ, QAT
(λ = 0), and HEQ quantization methods across 1 to 8
bits. It shows PTQ has a large loss below 5-bit quantiza-
tion, while QAT/HEQ maintains high accuracy above 2-bit
quantization.

J. Accuracy-Power Tradeoff
When synthesizing the entire foundation model with 86.6M
parameters, the total power will be enormous in general.
Fig. 26 shows the classification accuracy vs. total power
consumption tradeoff when implemented in fully-parallel
AI chip. It presents performance of PTQ (on general mul-
tipliers), QTA (λ = 0 on general multipliers), and HEQ
(with proper lambda on custom multipliers). Our custom
AI chip via HEQ framework has a feasible level of power
consumption, keeping high accuracy. Whereas, the general
AI chip using PTQ quantization requires infeasible level of
high power.

Note that we focused on multiplier complexity, ignoring
most other circuit complexity and the real tradeoff can be
shifted, but we believe that our analysis provides an impor-
tant step towards the real “green AI” achievement.

K. Delay-Aware Quantization
HEQ framework can also optimize the delay and area using
the profile of custom multipliers as shown in Figure 9 and
Figure 10. Figure 27 shows the delay-aware quantization
results for FP8 e5m2 and e4m3 precision. Similar to power-
aware quantization in Figure 5, we can achieve a significant
improvement of processing delay as well as accuracy. For
example, at a moderate regularization factor of λ = 102, the
classification accuracy is improved by 0.5% and 0.35% for
FP8 e5m2 and e4m3, respectively. More notably, the delay
is significantly decreased by 19.5% and 34.5% by our HEQ
framework. When comparing to a general AI chip with the
general FP8 e3m4 multiplier (requiring 3.25ns), our custom
AI chip (0.17ns) can achieve up to 19-fold speedup.

We can optionally include other hardware profiles in loss
function jointly. For example, we may optimize the quanti-
zation distribution to minimize classification error, power
consumption, delay, and area jointly by using more regular-
ization factors:

L = Ex,y

[
CE

(
f(x, {Wi}), y

)
+∑

i

1

N

(
λ1P̃ (Wi) + λ2D̃(Wi) + λ3Ã(Wi)

)]
, (6)

where λi are regularization factors, D̃(·) is an interpolated

11

Hardware-Efficient Quantization for Green Custom Foundation Models

(a) Power (b) Delay (c) Area

Figure 13. Power/delay/area profile across quantized weight value for custom FP5 multiplier: e3m1b7.

(a) Power (b) Delay (c) Area

Figure 14. Power/delay/area profile across quantized weight value for custom FP4 multiplier: e3m0b6.

STE delay profile, and Ã(·) is an interpolated STE area
profile.

12

Hardware-Efficient Quantization for Green Custom Foundation Models

(a) Power (b) Delay (c) Area

Figure 15. Power/delay/area profile across quantized weight value for custom FP4 multiplier: e0m3b4.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7

A
c
c
u
ra

c
y

Bias

FP3 e2m0
FP3 e1m1
FP3 e0m2

(a) FP3

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7

A
c
c
u
ra

c
y

Bias

FP4 e3m0
FP4 e2m1
FP4 e1m2
FP4 e0m3

(b) FP4

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7

A
c
c
u
ra

c
y

Bias

FP5 e4m0
FP5 e3m1
FP5 e2m2
FP5 e1m3
FP5 e0m4

(c) FP5

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

A
c
c
u
ra

c
y

Bias

FP6 e5m0
FP6 e4m1
FP6 e3m2
FP6 e2m3
FP6 e1m4
FP6 e0m5

(d) FP6

Figure 16. QAT calibration performance for few-precision FP quantization, over different bit parameters (Ne, Nm, B).

13

Hardware-Efficient Quantization for Green Custom Foundation Models

(a) λ = 10−1 (b) λ = 100 (c) λ = 101 (d) λ = 102 (e) λ = 103

Figure 17. Quantized weight histogram for custom FP8 multiplier e4m3b7, with a regularization factor λ.

(a) λ = 10−1 (b) λ = 100 (c) λ = 101 (d) λ = 102 (e) λ = 103

Figure 18. Quantized weight histogram for custom FP8 multiplier e5m2b15, with a regularization factor λ.

(a) λ = 100 (b) λ = 101 (c) λ = 102 (d) λ = 103 (e) λ = 104

Figure 19. Quantized weight histogram for custom FP7 multiplier e4m2b8, with a regularization factor λ.

(a) λ = 100 (b) λ = 101 (c) λ = 102 (d) λ = 103 (e) λ = 104

Figure 20. Quantized weight histogram for custom FP6 multiplier e3m2b7, with a regularization factor λ.

(a) λ = 100 (b) λ = 101 (c) λ = 102 (d) λ = 103 (e) λ = 104

Figure 21. Quantized weight histogram for custom FP5 multiplier e3m1b7, with a regularization factor λ.

14

Hardware-Efficient Quantization for Green Custom Foundation Models

(a) λ = 102 (b) λ = 103 (c) λ = 104 (d) λ = 105 (e) λ = 106

Figure 22. Quantized weight histogram for custom FP4 multiplier e3m0b6, with a regularization factor λ.

(a) λ = 10−1 (b) λ = 100 (c) λ = 101 (d) λ = 102 (e) λ = 103

Figure 23. Quantized weight histogram for custom FP4 multiplier e0m3b4, with a regularization factor λ.

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

98.0

10
-10

10
-5

10
0

10
5

10
10
0.064

0.065

0.066

0.067

0.068

0.069

0.070

0.071

0.072

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(a) FP3 e2m0b5

96.6

96.8

97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

10
-10

10
-5

10
0

10
5

10
10
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(b) FP4 e3m0b6

45.0

50.0

55.0

60.0

65.0

70.0

75.0

10
-10

10
-5

10
0

10
5

10
10
0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(c) FP4 e0m3b4

98.0

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

10
-10

10
-5

10
0

10
5

10
10
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(d) FP5 e3m1b7

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

98.9

10
-10

10
-5

10
0

10
5

10
10
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(e) FP6 e3m2b7

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

98.9

10
-10

10
-5

10
0

10
5

10
10
4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(f) FP7 e4m2b8

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

10
-10

10
-5

10
0

10
5

10
10
6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

0.45%

15.4%

(g) FP8 e5m2

98.0

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

10
-10

10
-5

10
0

10
5

10
10
6.0

6.5

7.0

7.5

8.0

8.5

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

0.45%

25.4%

(h) FP8 e4m3

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

10
-10

10
-5

10
0

10
5

10
10
170

175

180

185

190

195

200

205

210

215

220

A
c
c
u

ra
c
y
 (

%
)

P
o

w
e

r
(u

W
)

Lambda

Power
Accuracy

Accuracy (λ=0)

(i) FP16 e5m10b15

Figure 24. Power-aware quantization results across regularization factor λ.

15

Hardware-Efficient Quantization for Green Custom Foundation Models

 95

 96

 97

 98

 99

 1 2 3 4 5 6 7 8

A
c
c
u
ra

c
y
 (

%
)

Number of Bits

PTQ
QAT
HEQ

Figure 25. Accuracy vs. quantization bits.

10 8 10 7 10 6 10 5 10 4 10 3
Total Energy (J)

100 101 102 103 104 105 106

Total Power (W)

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

Ac
cu

ra
cy

 (%
)

FP3

FP4

FP5

FP32

PTQ
QAT
HEQ

Figure 26. Accuracy vs. power tradeoff for foundation designs.

96.5

97.0

97.5

98.0

98.5

99.0

10
-10

10
-5

10
0

10
5

10
10
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

A
c
c
u
ra

c
y
 (

%
)

D
e
la

y
 (

n
s
)

Lambda

Delay
Accuracy

Accuracy (λ=0)

0.5%

19.5%

(a) FP8 e5m2

98.0

98.1

98.2

98.3

98.4

98.5

98.6

98.7

10
-10

10
-5

10
0

10
5

10
10
0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

A
c
c
u
ra

c
y
 (

%
)

D
e
la

y
 (

n
s
)

Lambda

Delay
Accuracy

Accuracy (λ=0)

0.35%

34.5%

(b) FP8 e4m3

Figure 27. Delay-aware quantization.

16

