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Abstract

While the novel class discovery has achieved great success, existing methods usually evaluate
their algorithms on balanced datasets. However, in real-world visual recognition tasks, the
class distribution of a dataset is often long-tailed, making it challenging to apply those
methods. In this paper, we propose a more realistic setting for novel class discovery where
the distribution of novel and known classes is long-tailed. The challenge of this new problem
is to discover novel classes with the help of known classes under an imbalanced class scenario.
To discover imbalanced novel classes efficiently, we propose an adaptive self-labeling strategy
based on an equiangular prototype representation. Our method infers better pseudo-labels
for the novel classes by solving a relaxed optimal transport problem and effectively mitigates
the biases in learning the known and novel classes. The extensive results on CIFAR100,
ImageNet100, and the challenging Herbarium19 datasets demonstrate the superiority of our
method.

1 Introduction

Novel Class Discovery (NCD) has attracted increasing attention in recent years (Han et al., 2021; Fini et al.,
2021; Vaze et al., 2022), which aims to learn novel classes from unlabeled data with the help of known classes.
Despite the existing methods have achieved significant progress, they typically assume the class distribution
is balanced, focusing on evaluations of balanced datasets. This setting, however, is less practical in realistic
scenarios, where the class distributions are mostly long-tailed. To address this limitation, we advocate a
more realistic NCD setting in this work, in which both known and novel-class data are long-tailed. Such a
NCD problem setting is important, as it bridges the gap between the typical novel class discovery problem
and the real-world applications, and remains challenging, as it is often difficult to learn long-tailed known
classes, let alone discovering imbalanced novel classes jointly.

Most existing NCD methods have difficulty coping with the imbalanced class scenario due to their restrictive
assumptions. In particular, the pairwise learning strategy (Han et al., 2021; Zhong et al., 2021b) often learns
a poor representation for the tail classes due to insufficient positive pairs from tail classes. The more recent
self-labeling methods (Asano et al., 2020; Fini et al., 2021) typically assume that the unknown class sizes
are evenly distributed, resulting in misclassifying the majority class samples into the minority classes. An
alternative strategy is to combine the typical novel class discovery method with the supervised long-tailed
learning method (Zhang et al., 2021b; Menon et al., 2020; Kang et al., 2020; Zhang et al., 2021a). They
usually need to estimate the novel-class distribution for post-processing or retraining the classifier. However,
as our preliminary study shows (c.f. Tab.2), such a two-stage method suffers from inferior performance due
to the noisy estimation of the distribution.

To address the aforementioned limitations, we propose a novel adaptive self-labeling learning framework to
solve novel class discovery for long-tailed recognition. Our main idea is to generate a better pseudo-label for
unseen classes, which enables us to alleviate biased learning under severe class imbalance. To this end, we
develop a new formulation for pseudo-label generation process based on a relaxed optimal transport problem,
which assigns pseudo labels to the novel-class data in an adaptive manner and partially alleviates the class
bias by implicitly rebalancing the classes. Moreover, leveraging our adaptive self-labeling strategy, we extend
the equiangular prototype-based classifier (Yang et al., 2022b) to the imbalanced novel class clustering, which
further mitigates long-tailed learning of known and novel classes in a unified manner.
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Specifically, our model consists of an encoder with unsupervised pretraining and an equiangular prototype-
based classifier. Given a batch of known and novel-class data, we encode those data into a unified embedding
space. To learn from the known classes, we minimize the distance between each data embedding and its
corresponding class prototype. Both the unsupervisedly-pretrained encoder and the equiangular prototypes
help mitigate the imbalanced learning of the known classes. To learn the novel classes, we develop a novel
adaptive self-labeling loss, which formulates the class discovery as a relaxed Optimal Transport problem,
which is solved by an efficient bi-level optimization algorithm, and can be jointly optimized with the super-
vised loss of the known classes. Moreover, we design an efficient iterative learning algorithm that alternates
between generating soft pseudo-labels for the novel-class data and performing class representation learning.
In such a strategy, the learning bias of novel classes can be significantly reduced by our equiangular proto-
type design and soft adaptive self-labeling learning. Additionally, we propose a novel method to estimate the
number of novel classes under an imbalance scenario. This enables our method to be applicable in real-world
scenarios with unknown numbers of novel classes.

We conduct extensive experiments on the constructed long-tailed dataset, CIFAR100 and Imagenet100, and
two challenging natural long-tailed dataset, Herbarium19 and iNaturalist18. The results demonstrate the
efficiency of our proposed method. To summarize, the main contributions of our works are four-folds:

• We present a more realistic novel class discovery setting, where the known and novel classes are
long-tailed.

• We introduce a novel adaptive self-labeling learning framework that generates pseudo labels of novel
class in an adaptive manner and extends the equiangular prototype-based classifier to address the
challenge of imbalanced novel class clustering.

• We formulate imbalanced novel class clustering as a relaxed optimal transport problem and develop
a bi-level optimization strategy.

• We conduct extensive experiments on several benchmarks with different settings. And the sizeable
improvement validates the effectiveness of our method.

2 Related Work

Novel class discovery Novel Class Discovery (NCD) aims to automatically learn novel classes in the
open world when given knowledge of known classes. It typically assumes a semantic relation between novel
classes and known classes, and the knowledge learned from known classes enables the model to better cluster
novel classes. The associated deep learning problem was introduced in (Han et al., 2019), and the subsequent
works can be grouped into two categories based on the learning objective they adopt to discover novel classes.
One category of methods (Han et al., 2021; Zhong et al., 2021a;b; Hsu et al., 2018a;b) assume neighbouring
samples in representation space belong to the same semantic category with high-probability. Based on this
assumption, they learn a representation by minimizing the distances between adjacent data and maximizing
non-adjacent ones, which is then used to group unlabeled data into novel classes. The other category of
methods (Fini et al., 2021; Yang et al., 2022a) adopt a self-labeling technique. They assume that novel
classes are equally sized, utilize the optimal transport-based self-labeling (Asano et al., 2020) method to
assign cluster labels to novel class samples, and then self-train the model with the generated pseudo label.

Although the above methods have achieved significant improvement, they usually adopt the setting that the
class distribution of novel classes is uniform, which is often restrictive for real-world problems. For visual
recognition tasks, the class distribution is typically long-tailed, making it more challenging to discover novel
classes. Especially for the pair-wise objective-based method, the learning of tail classes could be better
due to insufficient samples for the tail classes. For self-labeling-based methods, the head classes are often
misclassified as the tail classes due to the restrictive uniform distribution constraint. Moreover, both two
methods tend to learn a biased classifier under the long-tailed setting. In contrast, we propose an adaptive
self-labeling learning framework that generates a high-quality pseudo label for the novel classes by solving
a relaxed optimal transport problem. We also mitigate imbalanced learning of the classifier by adopting
equiangular prototypes.
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Figure 1: The overview of our framework. Our method first samples a batch including known and novel classes
from the long-tailed dataset. And we use MSE loss to minimize the distance between samples and the equiangular
prototype for known and novel classes. For novel classes, we propose a novel adaptive self-labeling method to assign
the pseudo label, which is formulated as a bi-level optimization problem. Specially at step 1, we optimize Lu w.r.t Yu.
At step 2, we optimize Lu w.r.t w. This process is repeated in a loop until convergence. The optimization details
are in Sec.4.3.

Supervised Long-tailed learning The supervised long-tailed learning aims to learn from labelled long-
tailed data and perform well on both head and tail classes, e.g., (Zhang et al., 2021b; Weng et al., 2021).
The core idea of those methods is to enhance the learning of the tail classes. One stream of strategies is to
oversample tail classes on data (Han et al., 2005) or loss function (Cao et al., 2019) and learn a representation
and classifier simultaneously. Among them, Logit-Adjustment (LA) (Menon et al., 2020) is a simple and
effective method that has been widely used. In particular, LA mitigates the classifier bias by adjusting
the logit based on class frequency in or after the learning. The other stream decouples the learning of
representation and classifier (Kang et al., 2020; Zhang et al., 2021a). Especially, classifier retraining (cRT)
(Kang et al., 2020) first learns a representation by instance-balanced resampling and then only retrains
the classifier with the re-balanced technique. Although those methods have succeeded in supervised image
recognition, applying them to novel classes where the distribution is unknown is difficult.

Recently, neural collapse (Papyan et al., 2020) demonstrates that the classifier vectors tend to converge to
the vertices of a simplex equiangular tight frame (ETF). Inspired by this, Yang et al. (2022b) propose to
initialize the classifier as ETF, and fix the parameter of the classifier during the learning, which helps to
mitigate the classifier bias towards majority classes. The problem of classifier bias becomes even more severe
in clustering imbalanced novel data, where both the representation and classifier are learned without clean
label information. However, directly extending the ETF classifier to handle novel class discovery is infeasible
due to the absence of ground-truth for novel classes. To this end, we leverage our adaptive self-labeling
algorithm, and extend the ETF classifier to handle both known and novel classes, mitigating the imbalance
learning of known and novel classes in a unified manner.

3 Problem Setup and Method Overview

We consider the problem of Novel Class Discovery (NCD) for visual recognition in a realistic setting, where
the distribution of known and novel classes is typically long-tailed. In particular, we aim to learn a set of
known classes Ys from an annotated dataset Ds = {(xs

i , ys
i )}N

i=1, and to discover a set of novel classes Yu

from an unlabeled dataset Du = {xu
i }M

i=1. Here xs
i , xu

i ∈ X are the input images and ys
i are the known

class labels in Ds. For the NCD task, those two class sets have no overlap, i.e., Ys
⋂

Yu = ∅, and we
denote their sizes as Ks and Ku respectively. In imbalance scenario, the numbers of training examples in
different classes are imbalanced. For simplicity of notation, we assume that the known and novel classes
are sorted by the cardinality of their training set in descending order. Specifically, we denote the number
of training data for the known class i and the novel class j as Ni and Mj , accordingly, and we have
N1 > N2 · · · > NKs , M1 > M2 · · · > MKu . To measure the class imbalance, we define an imbalance ratio
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for the known and novel classes, denoted as Rs = N1
NKs

and Ru = M1
MKu

, respectively, where typically both
Rs, Ru ≫ 1.

To tackle the NCD task for long-tailed recognition, we propose a novel adaptive self-labeling framework
capable of better learning both known and novel visual classes under severe class imbalance. Our framework
consists of three key ingredients that help alleviate the imbalance learning of known and novel classes: 1)
We introduce a classifier design based on equiangular prototypes for both known and novel classes, which
mitigates class bias due to its fixed parametrization; 2) For the novel classes, we develop a new adaptive
self-labeling loss, which formulates the class discovery as a relaxed Optimal Transport problem and can be
jointly optimized with the supervised loss of the known classes; 3) We design an efficient iterative learning
algorithm that alternates between generating soft pseudo-labels for the novel-class data and performing
representation learning. An overview of our framework is illustrated in Fig.1. In addition, we propose a
simple method to estimate the number of novel class in the imbalance scenario. The details of our method
will be introduced in Sec. 4.

4 Our Method

In this section, we first introduce our model architecture and class representations in Sec. 4.1, followed by
the loss design in Sec. 4.2 and Sec. 4.3 for the known and novel classes, respectively. Then, we summarize our
iterative self-labeling learning algorithm in Sec. 4.4. Finally, we illustrate our proposed method to estimate
the number of novel classes under imbalance scenario in Sec. 4.5.

4.1 Model Architecture and Class Representation

We adopt a generic design for the image classifier, consisting of an image encoder and a classification head
for known and novel classes. Given an input x, our encoder network, denoted as fθ, computes a feature
embedding z = fθ(x) ∈ RD×1, which is then fed into the classification head for class prediction. Here we
normalize the feature embedding such that ∥z∥2 = 1. While any image encoder can be potentially used in our
framework, we adopt an unsupervised pretrained ViT model (Dosovitskiy et al., 2021) as our initial encoder
in this work, which can extract a discriminative representation robust to the imbalanced learning (Liu et al.,
2022). We also share the encoder of known and novel classes to encourage knowledge transfer between two
class sets during model learning.

For the classification head, we consider a prototype-based class representation where each class i is repre-
sented by a unit vector pi ∈ RD×1. More specifically, we denote the class prototypes of the known classes
as Ps = [ps

1, · · · , ps
Ks ] and those of the novel classes as Pu = [pu

1 , · · · , pu
Ku ]. The entire class space is then

represented as P = [Ps, Pu] ∈ RD×(Ks+Ku). To perform classification, given a feature embedding z, we take
the class of its nearest neighbour in the class prototypes P as follows,

c∗ = arg min
i

∥z − Pi∥2 (1)

where Pi is the i-th column of P, and c∗ is the predicted class of the input x.

In the imbalanced class scenario, it is typically challenging to learn the prototypes from the data as they
tend to bias toward the majority classes, in particularly for the classifier learning of novel classes, where the
classifier and representation are learned without label information. While many calibration strategies have
been developed for the long-tailed problems in supervised learning (c.f. Sec. 2), they are not applicable to
the imbalanced novel class discovery task as the label distribution of novel classes is unknown. To address
this, we adopt a fixed parameterization for the class prototypes. Specifically, by leveraging pseudo label of
novel data generated by our adaptive self-labeling algorithm (Sec.4.3) and the groundtruth of known data,
we extend the method proposed by Yang et al. (2022b) in imbalance supervised learning scenario. And we
utilize the vertices of a simplex equiangular tight frame (ETF) as the prototype of both known and novel
classes, which alleviates the problem of biased prototype learning. Formally, our equiangular prototype P is
generated by:

P =
√

K

K − 1M(IK − 1
K

1K×K) (2)
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where M is an arbitrary orthonormal matrix, IK is an diagnoal matrix, 1 denotes the all ones matrix and
K = Ks + Ku is the total number of class prototypes. The generated prototypes have unit l2 norm and
same pair-wise angle. Those properties treat all classes equally, thus alleviating the classifier learning bias
in imbalanced scenario.

4.2 Loss for Known Classes

For the known classes, we simply use the Mean Square Error (MSE) loss, which minimizes the l2 distance
between the feature embedding of an input xs

i and the class prototype of its groundtruth label ys
i . Specifically,

we adopt the average MSE loss on the subset of known classes Ds as follows,

Ls(θ) = 1
N

N∑
i=1

∥zs
i − ps

ys
i
∥2 = − 1

N

N∑
i=1

2zs⊤
i ps

ys
i

+ C (3)

where zs
i , ps

ys
i

is the feature embeddings and class prototypes, respectively, ys
i is the groundtruth label of

input xs
i , and C is a constant. We note that our design copes with the imbalance in the known classes

by adopting the equiangular prototype and initializing the encoder based on an unsupervised pretrained
network, which is simple and effective (as shown in our experimental study)1.

4.3 Adaptive Self-Labeling Loss for Novel Classes

We now present the loss function for discovering the novel classes in Du. Given an input xu
i , we introduce a

pseudo-label variable yu
i to indicate its (unknown) membership to the Ku classes and define a clustering loss

based on the Euclidean distance between its feature embedding zu
i and the class prototypes Pu as follows,

Lu(θ) = 1
M

M∑
i=1

∥zu
i − pu

yu
i
∥2 = − 1

M

M∑
i=1

2zu⊤
i pu

yu
i

+ C (4)

where C is a constant as the feature and prototype vectors are normalized. Our goal is to jointly infer an
optimal membership assignment and learn a discriminative representation that better discovers novel classes.

Regularized Optimal Transport Formulation: Directly optimizing Lu is difficult, and a naive alter-
nating optimization strategy often suffers from poor local minima (Caron et al., 2018), especially under the
scenario of long-tailed class distribution. To tackle this, we reformulate the loss in Eq. 4 into a regularized
Optimal Transport (OT) problem (Asano et al., 2020), which enables us to design an adaptive self-labeling
learning strategy that iteratively generates high-quality pseudo-labels (or class memberships) and optimizes
the feature representation jointly with the known classes. To this end, we introduce two relaxation techniques
to convert the Eq. 4 to an OT problem as detailed below.

First, we consider a soft label yu
i ∈ RKu

+ to encode the class membership of the datum xu
i , where yu⊤

i 1Ku = 1.
Ignoring the constants in Lu, we can re-write the loss function in a vector form as follows,

min
Yu

Lu(Yu; θ) = min
Yu

− 1
M

M∑
i=1

⟨yu
i , zu⊤

i Pu⟩, s.t. yu⊤
i 1Ku = 1 (5)

= min
Yu

⟨Yu, −Pu⊤Z⟩F , s.t. Yu1Ku = µ (6)

where ⟨, ⟩F represents the Frobenius product, Yu = 1
M [yu

1 , · · · , yu
M ]⊤ ∈ RM×Ku

+ is the pseudo-label matrix,
Z = [zu

1 , · · · , zu
M ] ∈ RD×M is the feature embedding matrix and µ = 1

M 1M . Such a soft label formulation is
more robust to the noisy learning (Lukasik et al., 2020) as we use inferred pseudo-labels.

Second, as in (Asano et al., 2020), we introduce a constraint on the sizes of clusters to prevent a degenerate
solution. Formally, we denote the cluster size distribution as a probability vector ν ∈ RKu

+ and define the
pseudo-label matrix constraint as Yu⊤1M = ν. Previous methods typically take an equal-size assumption

1While it is possible to integrate additional label balancing techniques, it is beyond the scope of this work.
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Algorithm 1: Sinkhorn-Knopp Based Pseudo Labeling Algorithm
Input: Matrix Pu⊤Z, marginal distribution µ, ν, hyperparameters T, λ
Output: Y
Function Pseudo-Labeling(Pu⊤Z, µ, w):

Y← exp(Pu⊤Z/λ)
Y← Y/

∑
Y

α, β ← 1, 1
for t ∈ 1, 2, .., T do

α← µ./(Yβ), β ← w./(Y⊤α)
end
Y← diag(α)Ydiag(β)
return Y;

End Function

(Asano et al., 2020; Fini et al., 2021), where ν is a uniform distribution. While such an assumption can
partially alleviate the class bias by implicitly rebalancing the classes, it is often too restrictive for an unknown
long-tailed class distribution. In particular, our preliminary empirical results show that it often forces the
majority classes to be mis-clustered into minority classes, leading to noisy pseudo-label estimation. To
remedy this, we propose a second relaxation mechanism on the above constraint. Specifically, we introduce
an auxiliary variable w ∈ RKu

+ , which is dynamically inferred during learning and encodes a proper constraint
on the cluster size distribution, and formulate the loss into a regularized OT problem as follows:

min
Yu,w

Lu(Yu, w; θ) = min
Yu,w

⟨Yu, −Pu⊤Z⟩F + γKL(w, ν) (7)

s.t. Yu ∈ {Yu ∈ RM×Ku

+ |Yu1Ku = µ, Yu⊤1M = w} (8)

where ν is a probability vector and γ is the balance factor to adjust the strength of KL constraint in the
second term. When γ = inf, the KL constraint falls back to equality constraints. Intuitively, our relaxed
optimal transport formulation allows us to generate better pseudo labels adaptively and alleviate the learning
bias of head classes by proper label smoothing.

Pseudo Label Generation: Based on the regularized OT formulation of the clustering loss Lu, we now
present the pseudo label generation process when the encoder network fθ is given. The generated pseudo
labels will be used as the supervision of novel classes, which is combined with the loss of known classes for
updating the encoder network. We will defer the overall training strategy to Sec. 4.4 and first describe the
pseudo label generation algorithm below.

Eq. (7) and (8) minimize Lu w.r.t (Yu, w) with a fixed cost matrix −Pu⊤Z (as θ is given). Instead of
optimizing Yu, w directly by convex optimize techniques (Dvurechensky et al., 2018; Luo et al., 2023), which
require a specific implementation and have unclear computational complexity in our scenario, we leverage
the efficient Sinkhorn-Knopp algorithm (Cuturi, 2013) and propose a bi-level optimization algorithm to solve
the problem approximately. Our approximate strategy consists of three main components as detailed below.

A. Alternating Optimization with Gradient Truncation: We adopt an alternating optimization strategy
with truncated back-propagation (Shaban et al., 2019) to minimize the loss Lu(Yu, w)2. Specifically, we
start from a fixed w (initialized by ν) and first minimize Lu(Yu, w) w.r.t Yu. As the KL constraint term
vanishes, the task turns into a standard optimal transport problem, which can be efficiently solved by the
Sinkhorn-Knopp Algorithm (Cuturi, 2013), as shown in Alg. 1. We truncate the iteration with a fixed T ,
which allows us to express the generated Yu as a differentiable function of w, denoted as Yu(w). We then
optimize Lu(Yu(w), w) w.r.t w with simple gradient descent. The alternating optimization of Yu and w
takes several iterations to produce high-quality pseudo labels for the novel classes.

B. Parametric Cluster Size Constraint: Instead of representing the cluster size constraint w as a real-valued
vector, we adopt a parametric function form in this work, which significantly reduces the search space of the
optimization and typically leads to more stable optimization with better empirical results. Specifically, we

2Note that we simplify Lu(Yu, w; θ) to Lu(Yu, w) as we do not optimize θ in pseudo label generation process.
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Algorithm 2: Adaptive Self-labeling Algorithm
Input: Ds,Du, encoder fθ, equiangular prototype P ∈ RD×(Ks+Ku),

initial mini-batch Buffer, w, µ = 1J×1, hyperparameters B, L
for e ∈ 1, 2, .., Epoch do

for s ∈ 1, 2, ..., Step do
{(xs

i , ys
i )}B

i=1 ← Sample(Ds), {xu
i }

B
i=1 ← Sample(Du)

zs = fθ(xs), zu = fθ(xu)
//MSE loss for labeled data

Ls = 1
B

∑B

i=1 ||z
s
i −Pys

i
||2

yu = zu⊤Pu ∈ R1×Ku

Yu = Buffer([yu
1 ; yu

2 ..; yu
M ]) ∈ RJ×Ku

for l ∈ 1, 2, ..., L do
Yu = Pseudo-Labeling(Yu, µ, w)
w ≈ arg minw Lu(Yu(w), w)

end
//MSE loss for unlabeled data
Lu = ⟨Yu,−Pu⊤Z⟩F
minimize Ls + αLu w.r.t θ

end
end

parametrize w as a function of parameter τ in the follow form:

wi = τ
−i

Ku−1 , i = 0, 1, ..., Ku − 1 (9)

Where τ can be viewed as the imbalance factor. As our class sizes decrease in our setting, we replace τ with
a function form of 1+exp(τ) in practice, which is always larger than 1. Then we normalize wi by

∑Ku−1
i=0 wi

to make it a valid probability vector.

C. Mini-Batch Buffer: We typically generate pseudo labels in a mini-batch mode (c.f. Sec. 4.4), which
however results in unstable optimization of the OT problem. This is mainly caused by poor estimation of
the cost matrix due to insufficient data, especially in the long-tailed setting. To address this, we build a
mini-batch buffer to store J = 2048 history predictions (i.e., Pu⊤Z) and replay the buffer to augment the
batch-wise optimal transport computation. Empirically, we found that this mini-batch buffer significantly
improves the performance of the novel classes.

4.4 Joint Model Learning

Given the loss function Ls and Lu for the known and novel classes, we develop an iterative learning procedure
for the entire model. As our classifier prototypes are fixed, our joint model learning focuses on the feature
representation learning, represented by the encoder network fθ. Specifically, given the datasets of known
and novel classes, (Ds, Du), we sample a mini-batch of known and novel classes data at each iteration, and
perform the following two steps: 1) For novel-class data, we generate their pseudo labels by optimizing the
regularized OT-based loss, as shown in Sec. 4.3; 2) Given the inferred pseudo labels for the novel-class data
and the ground-truth labels for the known classes, we perform gradient descent on a combined loss function
as follow,

L(θ) = Ls(θ) + αLu(θ), (10)

where Ls is the loss for the known classes, Lu is the loss for the novel classes, and α is the factor to balance
the learning of known and novel classes. The above learning process minimizes the overall loss function
over the encoder parameters and pseudo labels in an alternative manner. Finally, we summarize the entire
learning algorithm in Alg.2.

4.5 Estimation the number of novel categories

We propose a simple and effective method for estimating the number of novel classes, Ku, in an imbalanced
scenario. Our approach involves an initial selection of Ku, followed by the use of a hierarchical clustering

7



Under review as submission to TMLR

Table 1: The details of each datasets. Rs is 50 for CIFAR100-50-50 and ImageNet100-50-50.

Datasets CIFAR100-50-50 ImageNet100-50-50 Herbarium19 iNaturalist18-1K iNaturalist18-2K
Ru 50 100 50 100 UnKnown UnKnown UnKnown

Known Classes 50 50 50 50 342 500 1000
Known Data 6.4k 6.4k 16.5k 16.5k 17.8k 26.3k 52.7k
Novel Classes 50 50 50 50 342 500 1000
Novel Data 6.4k 5.5k 16.2k 14.0k 16.5k 26.4k 49.9k

algorithm to cluster both known and novel classes (Ds, Du). Next, we use the Hungarian algorithm to find
the optimal mapping between the set of cluster indices and known class labels, and evaluate the performance
of the known classes. Finally, we determine the best value of Ku by choosing the setting with the highest
accuracy of the known classes (Vaze et al., 2022).

However, in imbalanced datasets, the average performance of known classes tends to be biased towards larger
classes, which results in an underestimation of the number of estimated classes. To overcome this issue, we
consider the average accuracy over class, which is not influenced by imbalance, and use a mixed metric to
search for the optimal value of Ku. The mixed metric is defined as the weighted sum of the average accuracy
of each sample, denoted by denoted by Accs, and each class on known classes, denoted by Accc, as follows:

Acc = βAccs + (1 − β)Accc, (11)

where β is a weighting parameter and is set as 0.5 empirically. We employ the mixed metric to perform a
binary search for the optimal value of Ku. The detail algorithm is shown in Appendix A.

5 Experiments

5.1 Experimental Setup

Datasets We evaluate the performance of our method on three datasets, including two long-tailed versions
of image classification datasets, CIFAR100 (Krizhevsky et al., 2009) and ImageNet100 (Deng et al., 2009),
and two real-world medium/large-scale long-tailed image classification datasets, Herbarium19 (Tan et al.,
2019) and iNaturalist18 (Van Horn et al., 2018). To alleviate the challenge of clustering thousands of novel
classes in imbalanced scenarios and reduce training costs, we subsample 1k and 2k classes from iNaturalist18
to create iNaturalist18-1K and iNaturalist18-2K, respectively. For all datasets, we randomly divide all classes
into 50% known classes and 50% novel classes. For CIFAR100 and ImageNet100, we create “long-tailed"
datasets for the known and novel classes by downsampling data examples per class following the exponential
profile in (Cui et al., 2019) with imbalance ratio R = N1

NK
. In order to explore the performance of novel

class discovery under different scenarios, we set the imbalance ratio of known classes Rs as 50 and that of
novel classes Ru as 50 and 100, which represent typical settings in long-tailed image recognition tasks. To
report the class performance, we evaluate all methods on a balanced test dataset in each scenario and collect
statistics on both known and novel classes. The details of each dataset are shown in Tab. 1.

Metric To evaluate the performance of our model on each dataset, we calculate the average accuracy over
classes on test dataset. We measure the clustering class accuracy by comparing the hidden ground truth
labels yi with the model predictions ŷi using the following formula:

ClusterAcc = max
perm∈P

1
N

N∑
i=1

yi = perm(ŷi) (12)

where P represents the set of all permutations and combinations. To optimize permutations, we use the
Hungarian algorithm (Kuhn, 1955). It is important to note that we perform the Hungarian assignment for
all categories only once, and then measure the classification class accuracy on both the known and novel
subsets. We also sort the categories class according to their sizes in descending order and divide them into
[Head: Medium: Tail] sections with the ratio of 3: 4: 3 for all datasets.
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Table 2: Long-tailed novel class discovery performance on CIFAR-100, ImageNet100. We report average class accuracy
on test datasets. Rs, Ru are the imbalance factors of known and novel classes respectively. “+LA" means post
processing with logits-adjustment (Menon et al., 2020), “+cRT" means classifier retraining (Kang et al., 2020).

CIFAR100-50-50 ImageNet100-50-50
Rs = 50, Ru = 50 Rs = 50, Ru = 100 Rs = 50, Ru = 50 Rs = 50, Ru = 100

Method All Novel Known All Novel Known All Novel Known All Novel Known
Autonovel 44.42 22.28 66.56 44.04 22.12 65.96 67.50 47.96 87.04 63.86 40.88 86.84
Autonovel + LA 45.32 20.76 69.88 42.20 18.00 66.40 67.74 46.72 88.76 64.08 39.32 88.84
AutoNovel + cRT 47.20 26.48 67.92 41.94 22.62 61.26 67.76 49.88 85.64 63.90 42.40 85.40
UNO 50.82 34.10 67.54 49.50 31.24 67.76 65.30 43.08 87.52 62.52 37.84 87.20
UNO + LA 52.36 33.82 70.90 51.62 31.04 72.20 65.92 43.12 88.72 63.28 37.72 88.84
UNO + cRT 54.26 40.42 68.10 47.62 31.02 64.22 68.38 50.80 85.96 63.10 39.96 86.24
Ours 53.75 40.60 66.90 51.90 36.80 67.00 73.94 61.48 86.40 69.38 51.96 86.80

Table 3: Long-tailed novel class discovery performance on medium/large-scale Herbarium19 and iNaturalist18. Other
details are the same as Tab. 2.

Herbarium iNaturalist18-1K iNaturalist18-2K
Method All Novel Known All Novel Known All Novel Known

Autonovel 34.58 9.96 59.30 42.33 11.67 73.00 39.08 8.57 69.60
Autonovel + LA 32.54 8.60 56.56 42.40 11.27 73.53 44.67 14.33 75.00
AutoNovel + cRT 45.05 24.46 64.49 44.20 16.13 72.27 37.95 9.27 66.63
UNO 47.47 34.50 60.58 52.93 31.60 74.27 45.60 19.97 71.23
UNO + LA 46.76 27.96 65.69 46.63 24.33 74.60 46.63 20.33 72.93
UNO + cRT 46.47 33.13 59.95 51.73 32.60 70.87 46.47 24.90 68.03
Ours 49.21 36.93 61.63 58.87 45.47 72.27 49.57 34.13 65.00

Implementation Details For fair comparisons, all methods use a ViT-B-16 backbone as the image en-
coder, which is pre-trained with DINO (Caron et al., 2021) in an unsupervised manner. For our method, we
train 50 epochs on CIFAR100 and ImageNet100, 70 epochs on Herbarium. We use AdamW with momentum
as the optimizer with linear warm-up and cosine annealing (lrbase = 1e-3, lrmin = 1e-4, and weight decay
5e-4). We set α = 1, and select γ = 500 by validation set. In addition, we analyze the sensitivity of γ
in Appendix C. For all experiments, we set the batch size to 128 and the iteration step L to 10. For the
Sinkhorn-Knopp algorithm, we adopt all the hyperparameters from (Caron et al., 2020), e.g. niter = 3 and
ϵ = 0.05. Implementation details of other methods can be found in Appendix B.

5.2 Comparison with SOTA

Tab.2 shows a comparison of our method with other baselines on the CIFAR100, Imagenet100, and Herbar-
ium19 datasets3. For CIFAR100, when Rs = Ru = 50, our method achieves results that are competitive
compared to the two-stage training methods. As the data become more imbalanced, i.e. Ru = 100, our
method achieves 5.78% improvement on the novel class accuracy. We note that our method does not exhibit
a significant advantage due to the limited quality of the representation computed from the low-resolution
images. For ImageNet100, our method achieves large improvements in different Ru settings, surpassed the
previous SOTA method by 10.68% and 9.56%.

Furthermore, in Tab. 3, we show the results on medium/large scale datasets. Specifically, on the challenging
fine-grained imbalanced Herbarium19 dataset, which contains 341 known classes, our method also achieves
2.43% improvement on the novel class accuracy compared to UNO. We also report the per-sample aver-
age class accuracy in Appendix E, on which we achieve ∼ 10% improvement. On the more challenging
iNaturalist18-1k and iNaturalist18-2k datasets, we observe a significant improvement (> 10%) in the perfor-
mance of novel classes compared to the Herbarium19 dataset. In summary, our notable performance gains
in multiple experimental settings demonstrate that our method is effective for the challenging long-tailed
NCD task.

3More analysis of NCD methods with class re-balancing techniques is included in Appendix D.
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Table 4: Estimation the number of novel categories. Rs is 50 for CIFAR100 and ImageNet100 datasets.

Method CIFAR100-50-50 ImageNet100-50-50 Herbarium
Ru = 50 Ru = 100 Ru = 50 Ru = 100 Unknown

GT 50 50 50 50 341
Baseline 0 10 7 14 2

Ours 20 29 59 59 153

Table 5: Experiments on three datasets when Ku is unknown.

CIFAR100-50-50 ImageNet100-50-50 Herbarium
Rs = 50, Ru = 50 Rs = 50, Ru = 100 Rs = 50, Ru = 50 Rs = 50, Ru = 100 Unknown

Method All Novel Known All Novel Known All Novel Known All Novel Known All Novel Known
AutoNovel 41.25 16.08 66.42 43.74 17.64 69.84 63.92 37.80 90.04 66.68 44.96 88.40 37.84 15.64 60.16
AutoNovel+LA 41.82 16.18 67.46 43.82 18.08 69.56 61.74 32.68 90.80 62.26 35.52 89.00 42.15 19.06 65.37
AutoNovel+cRT 45.81 19.50 72.12 43.44 18.18 68.70 62.83 37.96 87.68 52.44 16.68 88.20 40.95 18.86 63.16
UNO 47.67 28.92 66.42 46.56 25.92 67.20 67.96 48.48 87.44 64.16 41.24 87.08 40.83 23.55 58.24
UNO+LA 49.51 28.18 70.84 48.02 25.70 70.34 67.94 47.44 88.44 65.02 41.48 88.56 42.83 23.02 62.56
UNO+cRT 49.35 30.82 67.88 45.49 26.68 64.30 70.94 55.32 86.56 62.76 38.72 86.80 40.67 22.84 58.63
Ours 49.03 32.66 65.40 48.89 33.06 64.72 74.06 61.04 87.08 68.94 50.84 87.04 44.20 29.01 59.34
Ours+LA 49.64 32.46 66.82 49.87 33.12 66.62 74.38 61.48 87.28 71.08 54.92 87.24 45.74 29.55 61.90

5.3 Estimation the number of novel categories

To evaluate the effectiveness of our estimation method, we establish a Baseline that uses the average accuracy
as the indicator to search for the optimal Ku value by hierarchical clustering. The details of algorithm are
shown in A. As shown in Tab.4, our proposed method significantly outperforms the Baseline on three datasets
and various scenarios, indicating the superiority of our proposed mixed metric based estimation method in
imbalanced scenarios. Furthermore, we conduct experiments on three datasets with estimated Ku. As Tab.5
shown, our method achieves sizeable improvements on the novel and overall class accuracy, except in the
case of CIFAR when Ru = 50, which we achieve comparable results. On the CIFAR dataset, the baseline
surpasses our method on the known classes, especially equipped with the LA or cRT technique, resulting
in our method being slightly better or worse than existing methods in overall accuracy. When our method
is equipped with LA, we can achieve better results. While on ImageNet100 and Herbarium19 datasets, our
method surpasses the existing methods by a significant margin. For example, on ImageNet100 dataset when
Ru = 100, ours outperforms the best baseline (AutoNovel) by 3.92% in overall accuracy and 5.88% in novel
accuracy. Moreover, when our method is equipped with LA, the performance is further improved, with an
increase of 4.4% in overall accuracy and 9.96% in novel accuracy.

It is important to note that the effect of estimated Ku differs based on its relationship with the ground truth
value. When the estimated Ku is lower than the ground truth value, such like CIFAR100 and Herbarium19,
the performance deteriorates compared to using the true Ku. This occurs because the estimated lower Ku

leads to the mixing of some classes, especially medium and tail classes, resulting in degraded performance.
When the estimated Ku is higher than the ground truth value, such like ImageNet100, using the estimated
Ku leads to better results for UNO and comparable results for Ours. For UNO which assume equally sized
distribution, larger Ku tend to assign the head classes to additional empty classes, reducing the noise caused
by the mixing of head classes with medium and tail classes, and thereby improving the accuracy of medium
and tail classes. While, our method dynamically adjusts the allocation ratio for novel classes, effectively
suppressing the assignment of head classes to empty classes, which allows us to achieve comparable results.
A more detailed analysis of this phenomenon can be found in Appendix F.

5.4 Ablation study

Component analysis: In Tab.6, we ablate the components in our method on Imagenet100 and report
model performance by adding each core component of our method in isolation, which includes the equiangular
prototype representation, adaptive self-labeling and the mini-batch buffer. As shown in the first and second
rows of the Tab.6, the addition of min-batch buffer results in a 2% improvement compared to the baseline on
novel class accuracy. By comparing the second and third rows, we can see that all sub-part class accuracy
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Table 6: Ablation study on ImageNet100. “EP” stands for equiangular prototype and “ASL” stands for adaptive
self-labeling.

Rs = 50, Ru = 50 Rs = 50, Ru = 100
Method Novel Head Medium Tail Novel Head Medium Tail

Baseline 43.08 44.93 49.20 33.07 37.84 49.73 43.10 18.93
+ Buffer 46.36 46.93 51.90 38.40 39.88 52.00 46.00 19.60
+ Buffer + EP 57.40 66.00 59.70 45.73 47.24 68.67 49.20 23.20
+ Buffer + EP + ASL 61.48 77.47 55.80 53.07 51.96 77.47 54.20 23.47

Table 7: The effects of different combinations of loss function and classifier. Results on ImageNet100, for Rs =
50, Ru = 50. cls is an abbreviation for classifier.

Method Novel Head Medium Tail
Learnable cls + CE loss 46.36 46.93 51.90 38.40
EP cls + CE loss 52.40 53.47 66.10 33.07
EP cls + MSE loss 57.40 66.00 59.70 45.73

has been improved, particularly for the head class accuracy. For instance, in the Ru = 100 setting, our
method achieves 16.67% improvement on the head, 7.8% improvement on medium, 7.33% improvement on
tail classes.This demonstrates that the equiangular prototype representation helps alleviate the imbalance
learning of novel classes, and learn a discriminative representation for all novel classes. Comparing the
third and last row, we show that adopting adaptive self-labeling greatly improves the tail and head class
accuracy. For example, our method achieves 11.47% improvement on head, and 7.34% improvement on tail
classes for Ru = 50. The results indicate that the uniform constraint on the distribution of clusters is not
suitable for imbalance clustering, as it tends to misclassify head classes samples as tail classes. And the
reason for the slightly worse performance for medium classes is that the uniform distribution constraint
better approximates the true medium distribution. However, this constraint harms the performance of the
head and tail, resulting in a nearly 4% decrease in the novel class accuracy. In conclusion, the overall results
validate the effectiveness of our proposed components. Especially the equiangular prototype and adaptive
self-labeling produce notable improvements.

Effect of Equiangular Prototype: In Sec.4, we utilize MSE loss to minimize the distance between
sample and prototype. We explore the effects of different combinations of loss functions and classifiers. As
Tab.7 shown, a learnable classifier with CE loss performs worse than EP cls + CE loss. We argue that the
learned prototype tends to bias to head classes, and the learned representation is less discriminative. What’s
more, EP cls with MSE loss improve EP cls with CE loss by a large margin, especially for head and tail
classes. In the early learning stage, the representation is relatively poor, and massive head class samples are
allocated to tail classes because of uniform distribution constraints. While the gradient of CE loss is larger
than MSE loss, resulting in the EP + CE loss fitting on the noise pseudo-label quickly.

Moreover, to better understand the effect of the equiangular prototype for novel class clustering, we visualize
the feature space by t-SNE(Van der Maaten & Hinton, 2008) on the test set. As Fig.2 shown, the feature
representations learned by the equiangular prototype are more tightly grouped and more evenly distributed
interclass distances. However, learnable classifier results in several classes being entangled together.

Adaptive self-labeling: In this part, we validate the effectiveness of our design on w. We set w as the
uniform and ground-truth distribution and conduct experiments, respectively. Interestingly, as shown in the
first two rows of Tab.8, setting w as a uniform prior achieves better performance, especially on medium and
tail. We speculate that the uniform constraint smooths the pseudo label of head class samples, mitigating
the bias learning of head classes, thus improving the results of medium and tail classes. In addition, we also
try two ways to learn w with a prior constraint of uniform distribution. One way is to parameterize w as a
real-valued vector, and the other is to use a parametric form as a function of τ . As shown in the last two
rows of Tab.8, we find that optimizing a k-dimensional w is unstable and prone to assign overly large cluster

11



Under review as submission to TMLR

Figure 2: t-SNE visualization of novel instances in ImageNet100 for features after the last transform block. The left
is the feature space using a learnable classifier, and the right is the feature space using equiangular prototype.

Table 8: The impact of different param-
eteric strategy of w. The first two rows
of w are fixed, and the last two rows rep-
resent the two parameterization ways of
w. Results on ImageNet100, for Rs =
50, Ru = 50.

Method Novel Head Medium Tail
w = Uniform 57.40 66.00 59.70 45.73
w = True Prior 42.40 64.53 46.90 14.27
w 55.64 69.73 59.80 31.87
w(τ) 61.48 77.47 55.80 53.07
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Figure 3: Analysis of w during training

sizes for some clusters. Therefore, optimizing w parametrized by a function of parameter τ (As shown in
Eq.9) seems to be more effective.

To provide more analysis on w, we visualize the learned imbalance factor and the head/medium/tail class
accuracy during the training process of the model. As Fig.3 shows, in the early stage, the head class accuracy
first increases quickly, indicating that the model bias on the head classes and the head representation is
learned better. Correspondingly, the learned imbalance factor increase, thus assigning more samples to the
head classes. Subsequently, the medium and tail class accuracy increase; meanwhile, the imbalance factor
decreases, resulting in the pseudo label process bias to medium and tail classes. Although the imbalance
factor changes a little during the learning, it improves novel class accuracy by a large margin compared to
the fixed uniform prior (the first row and last row in Tab.8).

6 Conclusion
In this paper, we propose a realistic novel class discovery setting for image recognition, where known and
novel classes are long-tailed. To assign pseudo labels to novel classes and mitigate imbalance learning, we
propose a novel adaptive self-labeling framework, which formulates the pseudo-label assignment problem as
a relaxed optimal transport problem and extends the equiangular prototype-based classifier to handle novel
class discovery, effectively mitigating the challenges of imbalanced learning. Moreover, we propose an bi-level
optimization algorithm to efficiently solve the relaxed optimal transport problem. We also propose a method
to estimate the number of novel classes in an imbalanced scenario. Finally, we conduct massive experiments
on two small-scale long-tailed CIFAR100 and ImageNet100 datasets, and two medium/large-scale real-world
long-tailed Herbarium19 and iNaturalist18 datasets, demonstrating our method’s superiority.
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A The algorithm of estimating the number of novel categories

We introduce a novel approach for estimating the number of unknown classes in imbalanced scenarios (Section
4.5). Our method leverages the clustering performance of the known classes dataset Ds as a means of
searching for the optimal value of Ku. The detailed algorithm for this estimation process is outlined in
Algorithm 3. In our method, we evaluate the performance using the mixed metric (Eqn. 11). In contrast,
the "Baseline" method utilizes the average accuracy of each sample as its evaluation metric, which tends to
bias to majority classes.

Algorithm 3: The algorithm of estimating the number of novel categories.
Input: Ds,Du, Ks, maximum Ku

max, evaluation metric eval, hierarchical clustering algorithm HC
Output: Ku

mid
Ku

high, Ku
med, Ku

low ← Ku
max, Ku

max//2, 0
Acchigh = eval(HC(Ds,Du, Ku

high + Ks),Ds)
Accmed = eval(HC(Ds,Du, Ku

med + Ks),Ds)
Acclow = eval(HC(Ds,Du, Ku

low + Ks),Ds)
while Ku

high > Ku
low do

if Acchigh > Acclow then
Ku

low ← Ku
med

Ku
med ← (Ku

high + Ku
low)//2

Acclow = Accmed

Accmed = eval(HC(Ds,Du, Ku
med + Ks),Ds)

end
else

Ku
high ← Ku

med

Ku
med ← (Ku

high + Ku
low)//2

Acchigh = Accmed

Accmed = eval(HC(Ds,Du, Ku
med + Ks),Ds)

end
end

B Implementation details

As there are currently no existing baselines for novel class discovery in an imbalanced setting, we have
implemented two typical NCD methods, AutoNovel (Han et al., 2021) and UNO (Fini et al., 2021). To
handle imbalanced learning, we have combined these NCD methods with two common approaches for long-
tailed problems: logit-adjustment (Menon et al., 2020) and decoupling the learning of representation and
classifier head (Kang et al., 2020).

We have used the same unsupervised pretrained model and only modified the training setup of AutoNovel
and UNO. Specifically, we trained AutoNovel for 200 epochs until convergence on all datasets, and the
training strategy for UNO is identical to ours, as described in the main paper.

For our implementation of logit-adjustment, we have set π = 1 following (Menon et al., 2020). If the
estimated number of pseudo-labels for a novel class is 0, we do not make any corrections to its logits. When
adding cRT (Kang et al., 2020), we first estimate the class distribution and use the same number of epochs
as in the first stage.

C Sensitive analysis of γ

The optimal value for the hyperparameter γ is selected by partitioning a subset of known classes as the
validation set. Additionally, to investigate the sensitivity of the hyperparameter gamma, we have presented
the change in novel class accuracy from gamma values of 100 to infinity in Figure 4. Our findings indicate
that when gamma is larger than 300, our adaptive self-labeling method outperforms the naive baseline.
However, the value selected using our validation set is not the optimal one.
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Figure 4: The sensitive analysis of γ
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Figure 5: The confusion matrix of novel classes for typical NCD methods.

Table 9: The details analysis of typical NCD methods. Results on
ImageNet100, for Rs = 50, Ru = 50.

Method Novel Head Medium Tail
Autonovel 47.96 55.87 55.60 29.87
UNO 43.08 44.93 49.50 32.13
Ours 61.48 77.47 55.80 53.07

Table 10: The results of UNO on the balance
dataset.

Dataset All Novel Known
CIFAR100 74.55 65.40 83.70

ImageNet100 85.12 76.96 93.28

D Analysis of NCD method

aragraphNCD methods on Head/Medium/Tail classes: In Tab. 2 of the main manuscripts, we have presented
the results of NCD methods. To further analyze these methods, we have shown their performance on the
Head, Medium, and Tail classes in the novel class in Tab. 9. Our proposed method shows an improvement
of over 20% on both the Head and Tail classes, demonstrating its advantage.

Additionally, Autonovel performs worse on the Tail class due to the limited number of positive pair samples
for tail classes. In contrast, UNO performs worse in the Head classes because the head classes are misclassified
into Tail classes. This argument is supported by the confusion matrix shown in Fig. 5. Specifically, in the
case of Autonovel, several tail classes are merged into a single class due to poor representation. There are
too many samples on the right side of the confusion matrix for UNO, which denotes that the head classes
are being misclassified into tail classes.
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Figure 6: The distribution of herbarium19 dataset

NCD methods with class re-balancing techniques: We conclude that novel class discovery (NCD) for
long-tailed data is challenging, and existing methods have not been able to solve this problem. As shown in
Tab. 2 of the main paper and Tab.10, the novel class accuracy decreased by almost 30% on both CIFAR100
and ImageNet100 datasets.

To improve the performance of NCD in long-tailed scenarios, we have combined NCD with long-tail methods
(+LA, +cRT). We observe that the accuracy of known and novel classes improves when the distribution
estimation of novel classes is more accurate. Specifically, in CIFAR100, when Ru = 50, AutoNovel performs
poorly in estimating the distribution of novel classes due to the use of pairwise loss, which assigns similar
features the same pseudo label, making it difficult to learn distinctive representations for tail classes in
an imbalanced setting. This results in tail classes being mixed with head classes. When AutoNovel is
combined with long-tail methods, the novel classes decrease while UNO improves. When Ru = 100, the
severe imbalance of novel classes makes learning novel classes more difficult, resulting in a worse estimated
distribution. As a result, combining UNO with long-tail methods no longer has any effect.

On ImageNet, the estimated distribution of novel classes is more accurate, and both AutoNovel and UNO
have improved the accuracy of novel class. However, UNO’s accuracy of known classes slightly decreased
because novel classes and known classes are often confused. For Herbarium19, the actual distribution is
difficult to predict, so the achievement of LA and cRT is limited.

In conclusion, due to the noisy estimated distribution, naively combining NCD and long-tail methods cannot
effectively solve the long-tailed novel class discovery problem.

E More results on Herbarium19 dataset

Fig.6 presents the distribution of the Herbarium19 dataset. The dataset is composed of 683 classes, out
of which 178 categories have less than 20 samples, which presents a significant challenge when attempting
to cluster novel classes. Tab.11 shows the average accuracy over both class and instance. Our proposed
method outperforms the typical NCD methods by a considerable margin in both metrics, demonstrating the
effectiveness of our approach.

F More explanation about estimation the number of novel categories

In order to better analyze the experiment of estimating the number of novel categories under a higher Ku, we
visualize the novel class confusion matrices of UNO and Ours for known and unknown Ku with Rs = Ru = 50
in ImageNet100. The y-axis is groud-truth, and the x-axis is prediction.
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Table 11: Long-tailed novel class discovery performance on Herbarium19. We report average class and samples
accuracy on test datasets. The top three lines is the accuracy average over classes. The bottom three lines is the
accuracy average over samples.

Herbarium
Method All Novel Known

Autonovel 34.58 9.96 59.30
UNO 47.47 34.50 60.58
Ours 49.21 36.93 61.63
Autonovel 40.83 14.15 65.98
UNO 50.20 31.40 67.51
Ours 55.66 41.15 69.33

Figure 7: The confusion matrix of UNO for known and unknown Ku

UNO utilizes the Sinkhorn algorithm to generate pseudo labels, which enforces an equal distribution for each
class. This will result in splitting a head class into multiple subcategories, which may be mixed up with
the medium and tail classes, as illustrated by the green-bordered boxes in the left side image in Figure 7.
Due to the misclassification of the head class, this will introduce noise that affects the quality of prediction
for the medium and tail classes, as indicated by the red-bordered boxes in the left side image in Figure 7.
When Ku is larger than the true Ku, this problem can be alleviated because the head class is more likely
to be assigned to categories that do not match the ground truth, as shown by the purple-bordered boxes in
the right diagram. In this case, the noise in the pseudo labels for the medium class and tail class will be
reduced, thus improving the accuracy of medium and tail classes, as shown in the the red-bordered boxes in
the right side image in Figure 7.

According to the result analysis, we find that our method’s novel classes accuracy will not be significantly
affected when Ku is greater than the true value. Our method learns a long-tailed distribution based on
the training set data, dynamically adjusting the allocation ratio for novel classes. Compared to UNO, our
method can increase the weight of the head class, which can suppress the decomposition of head classes into
multiple subcategories. As a result, only a small number of categories are allocated to categories that do not
match the ground truth, as shown the purple-bordered boxes in the right side image in Figure 8.

G Without strong model on CIFAR and ImageNet

We conduct experiment on CIFAR100 and ImageNet100 datasets using a non-strong model. We first perform
unsupervised pre-training of the model on a long-tailed dataset using MoCoHe et al. (2020) on known classes.
Next, we conduct supervised training on the known classes data. Finally, we discover the novel classes by
jointly training on the known and novel classes.

The results in Tab.12 demonstrate that our method outperforms existing methods on the novel classes in both
CIFAR100 and ImageNet100 datasets, especially in the more challenging setting where Ru = 100. However,
on the CIFAR dataset, when equipped with the LA or cRT technique, the baseline method surpasses our
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Figure 8: The confusion matrix of Ours for known and unknown Ku

Table 12: The performance on CIFAR-100, ImageNet100 without strong model.

CIFAR100-50-50 ImageNet100-50-50
Rs = 50, Ru = 50 Rs = 50, Ru = 100 Rs = 50, Ru = 50 Rs = 50, Ru = 100

Method All Novel Known All Novel Known All Novel Known All Novel Known
AutoNovel 29.72 16.90 42.54 30.39 16.82 43.96 45.52 25.24 65.80 42.88 19.56 66.20
AutoNovel+LA 30.74 18.60 42.88 30.54 17.04 44.04 45.90 25.28 66.52 43.04 19.88 66.20
AutoNovel+cRT 30.72 18.38 43.06 29.35 16.20 42.50 46.84 27.20 66.48 42.78 21.20 64.36
UNO 33.80 27.04 40.56 33.05 24.64 41.46 43.52 26.88 60.16 42.00 24.88 59.12
UNO+LA 34.78 27.50 42.06 34.66 24.04 45.28 45.78 29.08 62.48 44.80 26.80 62.80
UNO+cRT 36.98 29.44 44.52 33.27 25.50 41.04 43.72 27.36 60.08 43.16 25.92 60.40
Ours 36.42 30.22 42.62 35.08 27.36 42.80 47.66 29.48 65.84 47.08 27.96 66.20
Ours+LA 37.51 30.72 44.30 35.84 27.50 44.18 48.90 29.28 68.52 48.04 27.80 68.28

method on the known classes, resulting in our method being slightly better or worse than existing methods
in overall accuracy. While on ImageNet100 datasets, our method surpasses the existing method by a sizeable
margin. Furthermore, when applying the LA technique to our method, our results consistently outperform
the existing methods in terms of the "All" and "Novel" metrics.

H Known data are balanced

We conduct the experiment when known classes are balanced on CIFAR100 and ImageNet100. The results in
Tab.13 show we achieve consistent and significant improvement on novel classes. For CIFAR100, our method
achieves large improvements in different Ru settings, surpasses the previous SOTA method by 5.74% and
6.20% in novel accuracy. For ImageNet100, we achieve a significant improvement over the previous SOTA
method by 13.68% and 14.48% in novel accuracy.

Table 13: Experiments on balanced known classes

CIFAR100-50-50 ImageNet100-50-50
Rs = 1, Ru = 50 Rs = 1, Ru = 100 Rs = 1, Ru = 50 Rs = 1, Ru = 100

Method All Novel Known All Novel Known All Novel Known All Novel Known
Autonovel 55.66 24.24 87.08 54.60 22.24 86.96 69.20 45.28 93.12 66.60 39.60 93.60
Autonovel + LA 56.20 24.80 87.70 55.11 22.46 87.76 69.00 44.72 93.28 66.54 39.48 93.60
AutoNovel + cRT 57.11 27.78 86.44 56.01 25.88 86.41 69.71 45.74 93.68 67.35 41.23 93.48
UNO 59.84 32.88 86.80 57.19 27.16 87.22 68.68 44.04 93.32 67.84 41.60 94.08
UNO + LA 59.87 32.92 86.82 58.07 28.90 87.24 68.82 44.28 93.36 68.00 41.60 94.40
UNO + cRT 60.35 34.38 86.32 57.74 28.46 87.02 69.74 45.88 93.60 67.66 40.88 94.44
Ours 63.19 40.12 86.26 60.55 35.10 86.00 76.50 59.56 93.44 74.86 56.08 93.64
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